音频功率放大电路设计 模拟电子技术

音频功率放大电路设计 模拟电子技术
音频功率放大电路设计 模拟电子技术

成绩课程设计说明书

题目:音频功率放大电路设计课程名称:模拟电子技术

学院:电子信息与电气工程学院学生姓名:

学号:

专业班级:

指导教师:

2014年6月7 日

课程设计任务书设计题目音频功率放大电路设计

学生姓名所在学院电子信息与电气工

程学院

专业、年级、班

设计要求:

1. 设计制作一个音频功率放大电路(带高低音调节);

2. 负载电阻为8Ω(扩音器的等效电阻);

3. 额定输出功率为4W;

4. 带宽大于50Hz~15KHz;

5. 音调调节:低音(100Hz)±12dB,高音(10KHz)±12dB ;

6. 输入阻抗大于100KΩ。

学生应完成的任务:

设计一个音频功率放大电路,并利用Multisim软件进行电路仿真。利用Altium Designer 软件绘制电路原理图,并设计制作电路的PCB板。根据设计原理对电路进行安装调试,完成课程设计工作,并提交课程设计报告。

参考文献:

[1] 童诗白.模拟电子技术基础[M].北京:高等教育出版社,2005.

[3] 邱关源,罗先觉.电路(第五版)[M].北京:高等教育出版社,2006.

[4] 阎石.数字电子技术(第五版)[M].北京:高等教育出版社,2005.

[5] 谷树忠,刘文洲.Altium Designer教程[M].北京:电子工业出版社,2010.

工作计划:

指导教师(签名):学生(签名):

音频功率放大电路设计

摘要:设计了一个音频功率放大电路,该电路具有音频功率放大和高低音调节功能。电路由前置电压放大级,音调控制级,功率放大级三部分组成。其中前置电压放大级由NE5532P组成的反相比例运算电路来实现,前置放大器主要负责信号的电压放大。音调控制级由阻容网络组成的RC型负反馈音调控制电路来实现,音调控制电路主要负责音调调节等功能。功率放大级由集成功率器件TDA2030A连成OCL双电源电路来实现。功率放大级主要负责将从音调控制级输出的信号进行电流放大,然后驱动喇叭工作。TDA2030A具有体积小,输出功率大,失真小等特点,内含多种保护电路,工作安全可靠性高。

关键词:音频放大;功率放大;音调调节;集成器件

目录

1. 设计背景 (1)

1.1 课程设计 (1)

1.2 功率放大电路概述 (1)

2. 设计方案 (1)

3. 方案实施 (3)

3.1 电路图设计 (3)

3.2 电路图仿真 (7)

3.3画原理图 (9)

3.4 PCB制作 (9)

4. 安装调试 (9)

5. 结果与结论 (10)

5.1 结果 (10)

5.2 结论 (11)

6. 收获与致谢 (11)

7. 参考文献 (12)

8. 附件 (12)

8. 1 电路仿真图 (12)

8.2 电路原理图 (13)

8.3 PCB布线图 (14)

8.4 元器件清单 (15)

1. 设计背景

1.1 课程设计

这学期学习了模拟电子技术基础和数字电子技术这两门课。模拟电子技术基础这门课程主要讲了常见半导体器件,各种放大电路及其频响和反馈,信号的运算和处理,波形的发生和信号转换,功率放大电路和直流电源等。学过之后为加强我们的实际操作能力,学校要求我们完成一次课程设计任务。我们计划设计一个音频功率放大电路。它能够很好的应用到我们所学有关功率放大这节内容。

1.2 功率放大电路概述

能够向负载提供足够信号功率的放大电路称为功率放大电路。功率放大器的作用是给负载RL(扬声器)提供一定的输出功率。当负载一定时,希望输出的功率尽可能大,输出的信号的非线性失真尽可能小,效率尽可能高。功率放大器的常见电路形式有OTL 电路和OCL电路。有用集成运算放大器和晶体管组成的功率放大器,也有专门的集成功率放大器。从能量的控制和转换的角度看,功率放大电路与其他放大电路在本质上没有根本的区别:只是功放既不是单纯追求输出高电压,也不是单纯追求输出大电流,而是追求在电源电压确定的情况下,输出尽可能大的功率。功放的主要技术指标为最大输出功率和转换效率。在电源电压确定后,输出尽可能大的功率和提高转换效率始终是功放研究的主要问题。因而围绕这连个性能指标的改善,可组成不同电路形式的功放。

2. 设计方案

本次课程设计要求制作一个带有高低音调节功能的音频功率放大电路,额定输出功率为4W,带宽为50Hz~15KHz,输入阻抗大于100KΩ,可以在Multisim仿真软件上进行测试。音频功率放大器是一种应用广泛、实用性强的电子音响设备,作用是将声音源输入的信号进行放大,然后输出驱动扬声器发出声音。声音源的种类有很多种,故输出信号的电压差别很大,从零点几毫伏到几百毫伏。一般动率放大器的输入灵敏度是一定的,这些不同的声音源信号如果直接输入到功率放大器的话,对于输入信号过低的,功率放大器功率输出不足,不能充分发挥功放的作用;假如输入信号的幅值过大,功率放大器的输出信号将严重过载失真。这样就失去了音频放大的意义了,所以一个实用的音

2

频功率放大系统必须设置前置放大器,以便使放大器适应不同的输入信号,或放大,或衰减,或进行阻抗变换,使其与功率放大器的输入灵敏度相匹配。

在音频功放电路中,需要体现的是电路的功率放大功能。然而实际中却有许多噪音,且输入信号电压较小,所以所设计电路第一级应当进行电压放大,并能够消除噪音,所以采用了前置放大电路。前置放大电路可以由分立元件组成,也可由集成运放放大电路组成。但分立元件组成的放大电路结构复杂,而集成运放放大电路设计简便,易于实施。因此前置放大电路计划用集成运放NE5532P 来实现。由于电路要求要能够进行高低音调节,因而采用了音调控制电路。而常用的音调控制电路有三种形式,一是衰减式RC 音调控制电路,其调节范围宽,但容易产生失真;另一种是反馈型音调控制电路,其调节范围小一些,但失真小,而且电路简便易行;第三种是混合式音调控制电路,但其电路复杂,多用于高级收录机。结合本次课程设计要求,决定采用衰减式RC 音调控制电路。经过了前两极,第三极要进行功率放大,所以采用了功率放大电路。功率放大有两种方案。一可以由三极管与电容组成的复合管放大电路来实现,但这种设计电路结构复杂,二可以由集成功率器件TDA2030A 来实现,TDA2030A 是一块性能十分优良的功率放大电路,其主要特点是上升速率高、瞬态互调失真小,输出功率大,保护性能比较完善,并且外围电路简单,使用方便。所以决定采用集成功率器件TDA2030A 来实现功率放大。结合以上,本课程设计中采用由NE5532P 组成的前置放大电路放大器,由阻容网络组成的RC 型负反馈音调控制电路,由集成功率器件TDA2030A 连成OCL 电路的功率放大级。其基本设计路线如图1所示。

图1 基本设计路线图

负反馈音调控制电路

TDA2030A 组成的功率放大级

音频输出

NE5532

P 组成的前置放大级

3

3. 方案实施

3.1 电路图设计

1.前置放大电路

由NE5532P 组成的前置放大电路是一个反相输入比例放大器,电路理想闭环电压增益 1

3

R R A u -

=。此级计划的放大倍数为5.1倍,因此电阻R3采用510K 电阻,R1采用100K 电阻。在如图2所示的前置放大电路中,电阻R1的值就是输入电阻R 的值,所以R=100k 。同时反馈电阻 R3和R1的比值就是放大倍数。减小R1的值可以提高放大倍数,但同时也降低了输入电阻,因此在实际电路设计中,电阻R3和R1的取值需要折衷考虑。音频放大电路的增益是很高的,所以扩音机的前置放大器的性能主要取决于噪声。为了减小前置级放大器的噪声,第一级要选用低噪声的运放。

图2前置放大电路

2.音调控制电路

音调控制电路中采用了由阻容网络组成的RC 型负反馈音调控制电路。其音调控制电路图如图3所示。它是通过不同的负反馈网络和输入网络造成放大器闭环放大倍数随信号频率不同而改变,从而达到音调控制的目的。电路图中电位器Rp1是低音调节电位器,Rp2是高音调节电位器,电容C12是音频信号输入耦合电容,电容C2、C3是低音提升和衰减电容。

4

图3音调控制电路图

对于低音信号来说,当低音调节电位器Rp1滑动端调到最左端时,C2被短路, 电路图如下图4所示。由于电容C3对于低音信号容抗大,所以相对地提高了低音信号的放大倍数,起到了对低音提升的作用。同样当Rp1的滑动端调到最右端时,电容C3被短路,其等效电路如下图图5所示。由于电容C2对输入音频信号的低音信号具有较小的电压放大倍数,所以该电路可实现低音衰减。

电路对于高音信号来说,电容C2、C3的容抗很小,可以认为短路。调节高音调节电位器Rp2,即可实现对高音信号的提升或衰减。其电路图如图6所示。

音调调节电路的设计要求为:电路的最大提升/衰减量为±20dB 。中心频率点

KHz f 10=;低频频率点Hz f L 100=;高频频率点KHz f H 10=;要求在频率点L f 和H f 处,电路的提升/衰减量为dB k 12=。代入公式得,

Hz f w

f k L L L 400210022612

622=?≈?==π Hz f w f L L L 4010

400102211==≈=π

KHz f w

f k

H H H 5.221022612

611=?=?==--π KHz f w f H H H 25102112=?==π

电阻取值取:R5=R6=R=10KΩ,Rp1=Rp2=10R=100KΩ,R8=1/3R=3.3KΩ。电容取C2=C3>>C4,当电阻电容满足这些条件时,就可以保证电路的最大提升/衰减量的要求,使电路的幅频特性满足“上下”对称。

5

KHz C R w f H H 2521

24822=??==ππ 计算出C4=1.9nF 近似取C4=2.2nF 。 Hz C R w f p L L 502122

111=??==

ππ 计算出 C2=C3=31.8nF 近似取C2=C3=47nF 。

图4 低音提升电路示意图 图5 低音衰减电路示意图

图6 高音提升和衰减电路示意图

3.功率放大级

外部音源信号经过前置放大、音调调节电路后、输入后面的功率放大级,然后就可以输出去驱动扬声器,发出声音。功率放大级电路图如图7所示。本实验中的功率放大器采用 TDA2030 A 集成器件,其本质就是一个运算放大器,和其它小信号放大用的运放相比,其有较大电流输出能力,可以输出较大的功率。TDA2030A 功率集成放大器的使用十分灵活,可以构成多种输出结构:既可以在正负对称电源下工作构成OCL 电路,也可以在单电源下工作,构成OTL 电路,还可以用两只放大器一起工作,构成BTL 电路等。本课程设计功率放大级由集成功率器件TDA2030A 连成OCL 电路输出。TDA2030A 功率集成电路具有转换速率高,失真小,输出功率大,外围电路简单等特点,

6

内部电路包含由恒流源差动放大电路构成的输入级、中间电压放大级,复合互补对称式OCL 电路构成的输出级;启动和偏置电路以及短路、过热保护电路等。

图7功率放大级电路图

Rp3是一只电位器,作用是进行音量(V olume )调节。输入信号(音调调节电路的输出信号)通过耦合电容 C7后,再由 Rp3进行分压调节,连接到 TDA2030A 的同相输入端。电阻R13、R14组成反馈回路,和TDA2030A 构成了一个同相比例放大电路,其中R14=47K Ω,R13=680Ω。功率放大器的交流电压放大倍数为:70113

14

=+

=R R A u 。这一部分就是整个功率放大电路的核心,其本质和普通运放完全一致。需要说明的是电容 C6同样是一只耦合电容,作用同样是“隔直通交”,使功率放大器仅仅对交流信号产生放大作用,而对直流信号不产生任何放大:1、对于直流信号,电容C6相当于“开路”,此时电阻 R13不起作用,功率放大器和电阻 R14构成的是一个电压跟随器。由于电位器RP3是通过电容C7和前级电路耦合,因此RP3上的直流电位一定为零,同时可以保证功率放大器的输出也一定为零,即有“零输入,零输出”的性质。2、对于交流信号,电容C6相当于“短路”,此时电阻R14和R13组成同相比例放大器反馈回路。 图中D1、D2是两只起保护作用的二极管,反向并联在功率放大器的输出端和电源之间,二极管D1、D2在电路正常工作时处于反向,是不导通的,对电路工作没有影响,喇叭在工作时会产生感生电动势,如果感生电动势过大,超过了电源电压的范围,则D1和D2开始导通,将输出端的感生电动势进行钳位,从而保护功率放大器不会被损坏。

这两只二极管采用的是普通整流二极管1N4001。电阻R15和电容C11串接在电路的输出端,对扬声器的频响特性进行补偿,和扬声器一起可以看成功率放大器的负载,使功率放大器输出端的总负载趋近于纯阻性。整个原理图设计见附件8.1图11电路仿真图。

3.2 电路图仿真

设计好整个电路图后,在Multisim仿真软件上先找到各个器件,然后对器件进行连接,整个电路图连接好后,为各个电阻和电容选取适当值,然后打开Multisim的开关进行仿真,通过用示波器和交流毫伏表测量各级电压,发现模拟结果符合预期设计电路的要求,由此判断我们所画电路图正确,可以用Altium Designer进行下一步操作。

当频率为50Hz时其各级电压有效值,波形图和波特图如图8,功率放大级的输出电压能满足负载所需电压,所以此频率下该功放电路能进行正常工作。

图8 50Hz时电路各级电压有效值,波形图和波特图

当频率为1kHz时,电路的各级电压有效值,波形图和波特图如图9。其功率放大级的输出电压为5.6V,刚好能满足负载所需电压,因此能够很好的工作。

7

8

图9 1KHz 时电路各级电压有效值,波形图和波特图

当频率为15KHz 时各级电压有效值,波形图和波特图如图10所示。

图10 15KHz 时电路各级电压有效值,波形图和波特图

功率放大级输出电压为3.103V,功率输出级电压值偏小,该电路高频特性不是太好。输入电阻测量数据如表1所示。

表1输入电阻测试表

频率输入电压输入电流输入电阻

50Hz 49.497mV 492.380nA 100.5KΩ

1kHz 49.497mV 492.129nA 100.5KΩ

15kHz 49.497mV 492.541nA 100.5KΩ

由测量可知该设计电路的输入电阻在100KΩ左右,满足了设计要求。

3.3 画原理图

打开Altium Designer软件,先新建一个PCB工程,再在该工程中建一个原理图和PCB图,并保存。根据上面所仿真的电路图画原理图,先找到原理图所需要的各种器件,并检查好封装。然后进行连线,连线时应注意看好导线是否交叉。检查所画原理图是否正确,如果没有错误,把原理图导入到PCB图中。对PCB中的各器件进行摆放,直到各个器件之间的交叉线最少。然后进行布线,尽量避免有跳线。完成PCB的布线后就可以进行下一步操作了。

3.4 PCB制作

在Altium Designer中按照先前所画电路图,根据仿真原理图画出Altium Designer 原理图,首先找出画原理图所需各种器件,将仿真图中的负载8欧电阻换成Speaker,再根据需求布线布局,在布线前要在Altium Designer中完成对电路图中各元件的封装。在封装时要注意,对于同一个元件可能有多种封装方式,封装时根据所给元件的类型选择合适的封装对各个元件进行封装。封装完成后,把原理图导入PCB中。导入PCB后,再对元件的位置重新手动摆放,使线尽量少的重叠,以减少布线时的跳线出现。画成的PCB图见附件8.3。在制作PCB中,根据制作过程的要求,需要制成单层板,PCB制板中焊盘半径设置为0.85mm或0.9mm,电源和地线的宽度设置为0.6到0.8mm,信号线设置为0.5mm,当导线从两个焊盘之间穿过时设置宽度为0.3mm。

印刷电路板的流程:首先,在制作单层板时把PCB布线图打印为PDF文件,使用油光纸;其次,把覆铜板切割成设计要求的尺寸,把打印好的图纸放在覆铜板上,并在转印机上转印;再次,将做好的板子放在盐酸溶液中腐蚀,直到导线周围的铜箔被腐蚀

9

掉然后洗净钻孔,之后用砂纸把覆铜板导线表面的墨擦掉,把铜露出来,在打磨过程中注意不要将比较细的铜线磨掉了。

4. 安装与调试

在安装电子器件前,应仔细查阅电路所使用的集成电路的管脚排列图及使用注意事项,同时测量电子元器件的好坏。注意电解电容的极性不要接反,电源电压的极性不要接反。安装时,根据原理图将原件对号入座,安装好所有的芯片和电子元器件后,进行焊接,焊接完成后,按照电路图逐一检查电路有没有漏焊的问题,接下来用万用表逐一检查有没有虚焊或线路断路或线路短路。在线路没有问题的情况下连接15V和-15电源调试,之后用电源逐个模块进行检查。将信号输入端对地短路,用万用表或示波器测量每一级电路中关键点的直流电压是否正常,是否和理论计算值相同。用波特仪看一下电路的幅频和相频特性曲线。在电路的输入端加入不同频率的正弦信号,调节各个电位器,检查信号是否受控,受控是否正确,加上输入信号(一定幅度和频率的正弦信号),观察每一级放大器的输出信号是否正常,信号有无失真,信号的放大幅度是否与设计值相同等。如果发现故障,则应当从第一级电路开始,逐级向后检查,找出原因并排除故障。

5. 结果与结论

5.1 结果

本次课程设计很好的完成了带有高低音调节功能的音频功率放大电路、带宽大于50Hz~15KHz、输入阻抗大于100KΩ,负载额定输出功率为4W等设计要求的音频功率放大电路。通过对电路进行分解测试和整体测试,发现其符合要求,前置放大电路由NE5532P组成放大了5.1倍,由阻容网络组成的RC型负反馈音调控制电路构成的音调调节级没有放大,由集成功率器件TDA2030A连成OCL电路的功率放大级放大了70倍。负载额定输出功率为4W,所需电压为5.6V左右,经过两级放大能满足此条件。

10

5.2 结论

在画原理图中经过多次修改最终成功的将原理图导入了PCB中,并进行了布线。最终成功的画好了PCB图,并把它制成了电路板,经过焊接,调试,发现其不能正常工作。经过检查发现Multisim和Altium Designer两个软件中同一个器件NE5532P里面的端子接法不同,由于没有仔细看它们的端子的区别,导致NE5532P电源正负极接反了,然后加了两根跳线把电源正负极进行了对调,后经过测试电路能正常工作了,心里十分的高兴。

6. 收获与致谢

经过这两周的课程设计实习我收获了很多,大大培养了我的动手能力和同学间的相互合作精神,加深了我对数字、模拟电子技术理论知识的理解,让我对制作一个实用电路板的整体流程有了一个很好的理解。但是由于软件基本功不行,设计过程中遇到了许多小难题,从用Multisim软件对电路进行仿真,到用Altium Designer画原理图进而导入PCB图并对PCB进行布线,尤其是在画PCB 图时遇到了很多问题,在PCB布线的时候,由于原理图中少了一个节点和有些原件封装不对,导致重新画了几次,耽误了大量时间,在经过不懈努力后才完成了我们的PCB板。所以我们在设计的过程中,不可对其中任意一个环节不耐心,要认真检查到每一根导线和每一个器件的封装。确保每一个环节的正确性,这样才不会返工。

总体来说,这次实习使我受益匪浅,培养了我的设计思维,,增加了我的实际操作能力。同时也使我深刻意识到了认真的重要性,在设计的过程中也发现自己的好多不足之处。因此在以后要努力学习,熟练掌握书本上的知识,然后运用时才能得心应手。这次课程设计要特别感谢张天鹏老师和我的组员及给予我帮助的人。其中张天鹏老师的耐心辅导以及在设计中给出的宝贵建议和意见,使我少走了很多弯路,在此我表示深深的感谢!

11

7. 参考文献

[1] 童诗白.模拟电子技术基础[M].北京:高等教育出版社,2005.

[2] 秦长海,张天鹏,翟亚芳.数字电子技术[M].北京:北京大学出版社,2012.

[3] 邱关源,罗先觉.电路(第五版)[M].北京:高等教育出版社,2006.

[4] 阎石.数字电子技术(第五版)[M].北京:高等教育出版社,2005.

[5] 谷树忠,刘文洲.Altium Designer教程[M].北京:电子工业出版社,2010.

8. 附件

8.1电路仿真图

电路仿真图如图11所示。

图11电路仿真图

12

8.2电路原理图

电路原理图如图12

所示。

13

8.3 PCB布线图

PCB布线图如图13所示。

图13 PCB布线图

14

8.4 元器件清单

元器件清单如表2所示。

表2元器件清单表

元件型号数量元件型号数量电阻510kΩ 1 电容220n 1 电阻100kΩ 1 电容47n 2 电阻51kΩ 1 电容 2.2n 1 电阻10kΩ 5 二极管1N4001 2 电阻22kΩ 1 大电位器100k 3 电阻 3.3kΩ 1 喇叭 1 电阻680Ω 1 TDA2030 1 电阻1Ω 1 NE5532 1 电容10u 5 音频接口 1

15

指导教师评语:

课程设计报告成绩:,占总成绩比例:40%

课程设计其它环节成绩:

环节名称:原理设计,成绩:,占总成绩比例:20%环节名称:PCB设计,成绩:,占总成绩比例:20%环节名称:安装调试,成绩:,占总成绩比例:20%总成绩:

指导教师签字:

年月日

本次课程设计负责人意见:

负责人签字:

年月日

16

音频功率放大器电路

TDA2030集成电路功率放大器设计 一、设计题目集成电路功率放大器 二、给定条件 设计一款额定输出功率为10 ~ 20W的低失真集成电路功率放大器,要求电路简洁,制作方便、性能可靠。性能主要指标: 输出功率:10 ~ 20W(额定功率); 频率响应:20Hz ~ 100kHz(≤3dB) 谐波失真:≤1% (10W,30Hz~20kHz); 输出阻抗:≤0.16Ω; 输入灵敏度:600mV(1000Hz,额定输出时) 三、设计内容 1.根据具体电路图计算电路参数 2.选取元件、识别和测试。包括各类电阻、电容、变压器的数值、质量、电器性能的准确判断、解决大功率放大器散热的问题。 3.了解有关集成电路特点和性能资料情况 4.根据实际机壳大小设计1:1印刷板布线图 5.制作印刷线路板 6.电路板焊接、调试(调试步骤可以参考《模拟电子技术实验指 导书》有关放大器测试过程 7.实训期间必须遵守实训纪律、听从老师安排和注意用电安全。 四、功率放大电路的测试基本内容 注意:将输入电位器调到最大输入的情况。 1.测量输出电压放大倍数A u 测试条件:直流电源电压14v,输入信号1KHz 70 mv(振幅值100mv),输出负

载电阻分别为4Ω和8Ω。 2.测量允许的最大输入信号(1KHz)和最大不失真输出功率测试条件:①直流电源电压14v,负载电阻分别为4Ω和8Ω。 ②直流电源电压10v,负载电阻为8Ω。 3.测量上、下限截止频率f H 和f L 测试条件:直流电源电压14v,输入信号70mv(振幅值100mv),改变输入信号频率、负载电阻为8Ω。 五、参考资料 TDA2030简介:TDA 2030 是一块性能十分优良的功率放大集成电路,其主要特点是上升速率高、瞬态互调失真小,在目前流行的数十种功率放大集成电路中,规定瞬态互调失真指标的仅有包括TDA 2030 在内的几种。我们知道,瞬态互调失真是决定放大器品质的重要因素,该集成功放的一个重要优点。 TDA2030 集成电路的另一特点是输出功率大,而保护性能以较完善。根据掌握的资料,在各国生产的单片集成电路中,输出功率最大的不过20W,而TDA 2030的输出功率却能达18W,若使用两块电路组成BTL电路,输出功率可增至35W。另一方面,大功率集成块由于所用电源电压高、输出电流大,在使用中稍有不慎往往致使损坏。然而在TDA 2030集成电路中,设计了较为完善的保护电路,一旦输出电流过大或管壳过热,集成块能自动地减流或截止,使自己得到保护(当然这保护是有条件的,我们决不能因为有保护功能而不适当地进行使用)。 TDA2030 集成电路的第三个特点是外围电路简单,使用方便。在现有的各种功率集成电路中,它的管脚属于最少的一类,总共才5端,外型如同塑封大功率管,这就给使用带来不少方便。 TDA2030 在电源电压±14V,负载电阻为4Ω时输出14瓦功率(失真度≤0.5%);在电源电压±16V,负载电阻为4Ω时输出18瓦功率(失真度≤0.5%)。该电路由于价廉质优,使用方便,并正在越来越广泛地应用于各种款式收录机和高保真立体声设备中。该电路可供低频课程设计选用。 双电源供电BTL音频功率放大器 工作原理:用两块TDA2030 组成如图1所示的BTL功放电路,TDA 2030(1)为同相放大器,输入信号V in通过交流耦合电容C1馈入同相输入端①脚,交流闭环增益为K VC①=1+R3 / R2≈R3 / R2≈30dB。R3 同时又使电路构成直流全闭环组态,确保电路直流工作点稳定。TAD 2030(2)为反相放大器,它的输入信号是由TDA 2030(1)输出端的U01经R5、R7分压器衰减后取得的,并经电容C6 后馈给反相输入端②脚,它的交流闭环增益K VC②=R9 / R7//R5≈R9/R7≈30dB。由R9=R5,所以TDA 2030(1)与TDA 2030(2)的两个输出信号U01 和U02 应该是幅度相等相位相反的,即: U01≈U in·R3 / R2

音频功率放大电路报告

一、设计题目:音频功率放大电路 二、设计的任务和要求 1、主要要求:设计并制作用晶体管和集成运算放大器组成的音频功率放大电路, 负载为扬声器,阻抗8Ω。 2、性能指标:频带宽50H Z ~20kH Z ,输出波形基本不失真;电路输出功率大于8W; 输入灵敏度为100mV,输入阻抗不低于47KΩ。 三、原理电路和程序设计 3.1、方案的确定及论证 1、OTA互补对称功率放大器 OTL 电路通常由两个对称的异型管构成,因此又称为互补对称电路,图 3-1 为单电源 OTL 互补对称功率放大电路。电路中 T1 是推动级(电压放大,也叫激励级),其中Rb1、Rb2是 T1 的基极偏置电阻,Re为 T1发射极电阻,Rb为T1集电极负载电阻,它们共同构成 T1 的稳定静态工作点;T2、T3 组成互补对称功率放大电路的输出级,且 T2、T3工作在乙类状态;C2 为输出耦合电容。功率放大器采用射极输出器,提高了输入电阻和带负载的能力。 性能分析: 乙类互补推挽功放(OTL)的输出功率的计算公式如下: 输出功率:P o =U o I o =U o 2/R L 输出最大功率:P om =U o I o =U o 2/R L =U om 2/2R L =V CC 2/8R L

显然P 与电源电压及负载有关 om 2/8R 当输入功率为8w,阻抗8w时,有Pom=V CC V =8*8*8≈22.6v 则电路所需的电源为22.6v。 CC 2、用集成器件实现 Tda2030简介:TDA2030是德律风根生产的音频功放电路,采用V型5 脚单列直插式塑料封装结构。该集成电路广泛应用于汽车立体声收录音机、中功率音响设备,具有体积小、输出功率大、失真小等特点。并具有内部保护电路。 电路特点: [1].外接元件非常少。(基本应用电路图3-2) [2].输出功率大,Po=18W(RL=4Ω)。 [3].采用超小型封装(TO-220),可提高组装密度。 [4].开机冲击极小。 [5].内含各种保护电路,因此工作安全可靠。主要保护电路有:短路保护、热保护、地线偶然开路、电源极性反接(Vsmax=12V)以及负载泄放电压反冲等。 [6].TDA2030A能在最低±6V最高±22V的电压下工作在±19V、8Ω阻抗时能够输出16W的有效功率,THD≤0.1%。用它来做电脑有源音箱的功率放大部分或小型功放再合适不过了。 图3-2使用单电源供电的tda2030基本应用电路

高保真音频功率放大器的仿真设计与实现

民族学院科技学院 信息工程系 课程设计报告书 题目: 高保真音频功率放大器的仿真设计与实现 课程:电子线路课程设计 专业:电气工程及自动化 班级: K0312416 学号: K031241619 学生:吴松祥 指导教师:庆 2015年 1 月 5 日

信息工程系课程设计任务书 2015年 1 月 5 日

信息工程学院系设计成绩评定表

目录 1设计要求及思路 (2) 1.1 题目 (2) 1.2 设计任务 (2) 1.3 设计要求 (2) 1.4 设计思路 (2) 2仿真软件介绍 (5) 2.1 仿真软件概况 (5) 2.2 仿真软件优点及应用围 (5) 2.3 仿真软件版本 (5) 3 电路原理图 (6) 3.1 工作原理论述 (8) 3.2 理论分析 (8) 4 仿真部分 (9) 4.1 仿真曲线分析 (10) 4.2 仿真曲线结论 (13) 5 实物 (14) 5.1 元件清单 (14) 5.2 实物展示 (14) 6 心得体会 (15) 7 参考文献 (16)

1 设计要求及思路 1.1 题目: 高保真音频功率放大器的仿真设计与实现 1.2 设计任务: 根据技术指标和已知条件,选择合适的功放电路,如:OCL、OTL、或BTL电路。 完成对高保真音频功率放大器的设计、装备与调试。 1.3设计要求: 在8Ω扬声器的负载下,达到10W的输出功率, 频率响应20-20KHz, 效率>60%, 失真小。 1.4设计思路: 1.4.1 功放电路,我们决定在OCL、OTL和BTL电路中选择其一进行设计。 图表 1OTL电路图图表2OCL电路 OTL(Output Transformer Less)电路: 称为无输出变压器功放电路。是一种输出级与扬声器之间采用电容耦合而无输 出变压器的功放电路,它是高保真功率放大器的基本电路之一,但输出端的耦 合电容对频响也有一定影响。 OTL电路的主要特点有: 采用单电源供电方式,输出端直流电位为电源电压的一半;输出端与负载之间 采用大容量电容耦合,扬声器一端接地;具有恒压输出特性,允许扬声器阻抗 在4Ω、8Ω、16Ω之中选择,最大输出电压的振幅为电源电压的一半,即1/2 V CC,额定输出功率约为 /(8RL)。 OCL(Output Condensert Less)电路: 称为无输出电容功放电路,是在OTL电路的基础上发展起来的。 OCL电路的主要特点有:

音频功率放大器设计实验报告

题目:音频功率放大器电路 音频功率放大器设计任务 1、基本要求 (1)频带范围 200Hz —— 10KHz,失真度 < 5%。 (2)电压增益 >= 20dB。 (3)输出功率 >= 1 W (8欧姆负载)。 (4)功率放大电路部分使用分立元件设计。 发挥部分 (1)增加音调控制电路。 (2)增加话筒输入接口,灵敏度 5mV,输入阻抗 >> 20 欧姆。 (3)输出功率 >= 10W (8欧姆负载)。 (4)其他。 目录 1 引言····························································· 2 总体设计方案·····················································2.1 设计思路······················································· 2.2 总体设计框图··················································· 3 设计原理分析·····················································3.1设计总原理图 3.2设计的PCB电路图 ··· 1 引言 在现代音响普及中,人们因生活层次、文化习俗、音乐修养、欣赏口味的不同,令对相同电气指标的音响设备得出不同的评价。所以,就高保真度功放而言,应该达到电气指标与实际听音指标的平衡与统一。

音频功率放大器是一个技术已经相当成熟的领域,几十年来,人们为之付出了不懈的努力,无论从线路技术还是元器件方面,乃至于思想认识上都取得了长足的进步。本次设计旨在熟悉设计流程,达到基本指标。 2 总体方案 根据实验要求,本次设计主要是也能够是用集成功放TDA2030为主的电路 一、电路工作原理 图1所示电路为音频功率放大器原理图,其中TDA2030是高保真集成功率放大器芯片,输出功率大于10W,频率响应为10~1400Hz,输出电流峰值最大可达3.5A。其内部电路包含输入级、中间级和输出级,且有短路保护和过热保护,可确保电路工作安全可靠。TDA2030使用方便、外围所需元器少,一般不需要调试即可成功。 RP是音量调节电位器,C1是输入耦合电容,R1是TDA2030同相输入端偏置电阻。 R2、R3决定了该电路交流负反馈的强弱及闭环增益。该电路闭环增益为 (R2+R3)/R2=(0.68+22)/0.68=33.3倍,C2起隔直流作用,以使电路直流为100%负反馈。静态工作点稳定性好。 C4、C5为电源高频旁路电容,防止电路产生自激振荡。R4、R5称为茹贝网路,用以在电路接有感性负载扬声器时,保证高频稳定性。VD1、VD2是保护二极管,防止输出电压峰值损坏集成块TDA2030。 2.电流反馈 电流反馈是指在一个反馈电路中,若反馈量与输出电流成正比则为电流反馈;若反馈量与输出电压成正比则为电压反馈。通常可以采用负载短路法来判断。 从概念上说,若反馈量与输出电压(有时不一定是输出电压,而是取样处的电压)成正比则为电压反馈;若反馈量与输出电流(有时不一定是输出电流,而是取样处的电流)成正比则为电流反馈。在判断电压反馈和电流反馈时,除了上述方法外,也可以采用负载短路法。负载短路法实际上是一种反向推理法,假设将放大电路的负载电阻RL短路(此时,),若

音频功率放大器设计详解

音频功率放大器设计 一、设计任务 设计一个实用的音频功率放大器。在输入正弦波幅度≤5mV,负载电阻等于8Ω的 条件下,音频功率放大器满足如下要求: 1、最大输出不失真功率P OM≥8W。 2、功率放大器的频带宽度BW≥50Hz~15KHz。 3、在最大输出功率下非线性失真系数≤3%。 4、输入阻抗R i≥100kΩ。 5、具有音调控制功能:低音100Hz处有±12dB的调节范围,高 音10kHz处有±12dB的调节范围。 二、设计方案分析 根据设计课题的要求,该音频功率放大器可由图所示框图实现。 下面主要介绍各部 分电路的特点及要求。 图1 音频功率放大器组成框图 1、前置放大器 音频功率放大器的作用是将声音源输入的信号进行放大,然后输

出驱动扬声器。声音源 的种类有多种,如传声器(话筒)、电唱机、录音机(放音磁头)、CD唱机及线路传输等,这些声音源的输出信号的电压差别很大,从零点几毫伏到几百毫伏。一般功率放大器的输入灵敏度是一定的,这些不同的声音源信号如果直接输入到功率放大器中的话,对于输入过低的信号,功率放大器输出功率不足,不能充分发挥功放的作用;假如输入信号的幅值过大,功率放大器的输出信号将严重过载失真,这样将失去了音频放大的意义。所以一个实用的音频功率放大系统必须设置前置放大器,以便使放大器适应不同的的输入信号,或放大,或衰减,或进行阻抗变换,使其与功率放大器的输入灵敏度相匹配。另外在各种声音源中,除了信号的幅度差别外,它们的频率特性有的也不同,如电唱机输出信号和磁带放音的输出信号频率特性曲线呈上翘形,即低音被衰减,高音被提升。对于这样的输入信号,在进行功率放大器之前,需要进行频率补偿,使其频率特性曲线恢复到接近平坦的状态,即加入频率均衡网络放大器。 对于话筒和线路输入信号,一般只需将输入信号进行放大和衰减,不需要进行频率均衡。前置放大器的主要功能一是使话筒的输出阻抗与前置放大器的输入阻抗相匹配;二是使前置放大器的输出电压幅度与功率放大器的输入灵敏度相匹配。由于话筒输出信号非常微弱,一般只有100μV~几毫伏,所以前置放大器输入级的噪声对整个放大器的信噪比影响很大。前置放大器的输入级首先采用低噪声电路,对于由晶体管组成的分立元件组成的前置放大器,首先要选择低

音频功率放大电路内容(新)

第一章、绪论 功率放大器的作用是给音响放大器的负载(扬声器)提供一定的输出概率。当负载一定时,希望输出的功率尽可能大,输出信号的非线性失真尽可能小,效率尽可能高。功放常见的电路形式有OTL(Output Transformer less)和OCL(Output Capacitor less)电路。有用集成运算放大器和晶体管组成的功放,也有专用集成电路功放。 LM386是美国国家半导体公司生产的音频功率放大器,主要应用于低电压消费类产品。为使外围元件最少,电压增益内置为20。但在1脚和8脚之间增加一只外接电阻或电容,便可将电压增益调为任意值,直至200。输入端以地位参考,同时输出端被自动偏置到电源电压的一半,工作电压范围宽,4-12V or 5-18V,在6V电源电压下,它的静态功耗仅为24mW, 且外围元件少。 设计功放电路由输入级、中间级和输出级三部分组成的:输入级是由100uF的耦合电容及100 k的电位器组成的,它具有隔直、调节音量及增益的作用; 中间级是由集成运放LM386以及由R1、RV4、C2等组成的可调增益放大电路; 输出级是由低通滤波器及扬声器组成的,其中L1为高频扼流圈; 由于该电路为双声道功率放大器,所以下部分电路与上部分电路完全对称,故电路原理同上。

第二章、系统组成与工作原理 功率放大电路由前置放大器、功率放大器、以及电源部分组成。如图1所示。功率放大器的前臵放大器主要作用是电压放大,这部分包括音调控制,音量控制等电路。功率放大器也叫主放大器,它可以把几十毫伏的信号电压放大到要求的功率。电源部分的作用是把220V交流电变成低压直流电,供给各级放大电路使用。 Lm386原理与说明: LM386是美国国家半导体公司生产的音频功率放大器,主要应用于低电压消费类产品。为使外围元件最少,电压增益内置为20。但在1脚和8脚之间增加一只外接电阻和电容,便可将电压增益调为任意值,直至200。输入端以地位参考,同时输出端被自动偏置到电源电压的一半,在6V电源电压下,它

音频功率放大器设计报告分析

目录 课程设计任务书 (2) 摘要 (3) 1 模电课设概述 (5) 1.1设计背景 (5) 1.2音频放大类别 (5) 1.3设计目的及意义 (6) 1.4开发环境Multisim 10.0简要介绍 (7) 2 课程设计内容 (8) 2.1功放电路方案的选择 (8) 2.2 BTL电路的组成 (10) 2.3 电路仿真 (13) 3 实物焊接及调试过程 (18) 3.1 焊接实物 (18) 3.2 调试过程遇到的问题及解决方法 (19) 4 总结与心得 (20) 附录 (21) 附件一实验原理图 (21) 附录二元件清单 (22) 附录三参考文献 (23) 成绩评定表 (24)

课程设计任务书 学生姓名:专业班级: 指导教师:工作单位:、 题目: 音频功率放大器 初始条件:芯片:TDA2030A、极性电容、非极性电容、可变电阻、定值电阻、扬声器、 要求完成的主要任务: 1.选择合适的功放电路,如:OCL、OTL、或BTL电路。完成对高 保真音频功率放大器的设计、装备与调试; 2.输入信号Uid≤100mv,频率响应范围30Hz-3KHz; 3.在8Ω扬声器的负载下,输出功率连续可调,最大输出功率达 到6W; 4.音频信号放大后,失真≤5%。 5.效率≥60% 时间安排: 安装调试,地点: 指导教师签名:年月日 系主任(或责任教师)签名:年月日

摘要 这学期刚学习模电课,学校要求我们完成一次课程设计任务。模电这门课程主要讲 直流稳压电源。功率放大器的作用是给音响放大器的负载RL 率尽可能高。功率放大器的常见电路形式有OTL电路和OCL电路。有用继承运算放大器 BTL功 TDA2030A集成功放,并采用双电源电源供电。TDA2030A集成电路的特点是输出功率大,而且保护性能比较完善,其工作电压范围较广,信号失真度较小,使用两块TDA2030A组成BTL电路,输出功率可增至35W。实验用multism软件对BTL multism软件模拟 该电路由于价廉质优,使用方便,广泛应用于各种款式收录机和高保真立体声设备中。 BTL、TDA2030A、功率放大、multism。

音频功率放大电路课程设计报告

, 课程设计 课程名称_模拟电子技术课程设计 题目名称音频功率放大电路 $ 学生学院 专业班级 学号 学生姓名__ 指导教师 : 2010 年 6 月 20 日

— 音频功率放大电路课程设计报告 一、设计题目 题目:音频功率放大电路 二、设计任务和要求 ` 1)设计任务 设计并制作一个音频功率放大电路(电路形式不限),负载为扬声器,阻抗8Ω。 2)设计要求 频带宽50H Z ~20kH Z ,输出波形基本不失真;电路输出功率大于8W; 输入灵敏度为100mV,输入阻抗不低于47KΩ。 三、原理电路设计 功率放大电路: % 功率放大电路通常作为多级放大电路的输出级。功率放大器的常见电路形式有OTL电路和OCL电路。在很多电子设备中,要求放大电路的输出级能够带动某种负载,例如驱动仪表,使指针偏转;驱动扬声器,使之发声;或驱动自动控制系统中的执行机构等。也就是把输入的模拟信号经被放大后,去推动一个实际的负载工作,所以要求放大电路有足够大的输出功率,这样的放大电路统称为功率放大电路。而音频功率放大器的作用就是给音响放大器的负载RL(扬声器)提供一定的输出功率。当负载一定时,希望输出的功率尽可能大,输出的信号的非线形失真尽可能地小,效率尽可能的高。随着半导体工艺,技术的不断发展,输出功率几十瓦以上的集成放大器已经得到了广泛的应用。功率VMOS管的出现,也给功率放大器的发展带来了新的生机。总之,功率放大器的主要任务是向负载提供较大的信号功率,故功率放大器应具有以下几个主要特点: 1. 输出功率要足够大 工作在大信号状态下,输出电压和输出电流都很大.要求在允许的失真条件下,

音频功率放大器

河南城建学院 《电子线路设计》课程设计说明书 设计题目:音频功率放大器 专业:计算机科学与技术 指导教师:杜小杰 班级:0814141 学号:081414109 姓名:罗含霜 同组人:娄莉娟 计算机科学与工程学院 2016 年6月6日

前言 在介绍音频功率放大器的文章中,有时会看到“THD+N”,THD+N是英文Total Hormonic Distortion +Noise 的缩写,译成中文是“总谐波失真加噪声”。它是音频功率放大器的一个主要性能指标,也是音频功率放大器的额定输出功率的一个条件。 THD+N性能指标 THD+N表示失真+噪声,因此THD+N自然越小越好。但这个指标是在一定条件下测试的。同一个音频功率放大器,若改变其条件,其THD+N的值会有很大的变动。 这里指的条件是,一定的工作电压VCC(或VDD)、一定的负载电阻RL、一定的输入频率FIN(一般常用1KHZ)、一定的输出功率Po下进行测试。若改变了其中的条件,其THD+N值是不同的。例如,某一音频功率放大器,在VDD=3V、FIN=1kHz、RL=32Ω、Po=25mW条件下测试,其TDH+N=0.003%,若将RL改成16欧,使Po 增加到50mW,VDD及FIN不变,所测的TDH+N=0.005%。 一般说,输出功率小(如几十mW)的高质量音频功率放大器(如用于MP3播放机),它的THD+N指标可达10-5,具有较高的保真度。输出几百mW的音频功率放大器,要用扬声器放音,其THD+N一般与为10-4;输出功率在1~2W,其THD+N 更大些,一般为0.1~0.5%.THD+N这一指标大小音频功率放大器的结构类别有关(如A类功放、D类功放),例如D类功放的噪声较大,则THD+N的值也较A类大。 这里特别要指出的是资料中给出的THD+N这个指标是在FIN=1kHz下给出的,在实际上音频范围是20Hz~20kHz,则在20Hz~20kHz范围测试时,其THD+N要大得多。例如,某音频功率放大器在1kHz时测试,其TDH+N=0.08%。若FIN改成20Hz-20kHz,,其他条件不变,其THD+N变为小于0.5%。 过去有用“不失真输出功率是多少”这种说法来说明其输出功率大小。这话的意思指的是输出的峰峰值没有“削顶”现象出现,即Vout(P-P)=Vcc-(上压差+下压差)这种说法是不科学的。即使不产生削顶,它也有一定的失真。较科学的说法是THD+N在某一指标下可输出的功率是多少。

高效率音频功率放大器设计文献综述【文献综述】

文献综述 电子信息工程 高效率音频功率放大器设计文献综述 一、前言 为了节约电路的成本,提高放大器的效率,采用普通的电子元器件设计高 效率音频功率放大器的方法,使用基本的运算放大器,构成PWM路,形成D 类功率放大器,实现了高效率,低失真的设计要求。为了提高电路的抗干扰性能,在设计中使用了电压跟随器,差动放大器,有源带通滤波器等。使设计获 得了良好的效果。 二、主题 在现代音响普及中,人们因生活层次、文化习俗、音乐修养、欣赏口味的 不同,令对相同电气指标的音响设备得出不同的评价。所以,就高保真度功放 而言,应该达到电气指标与实际听音指标的平衡与统一。 音频功率放大器是一个技术已经相当成熟的领域,几十年来,人们为之付出了不懈的努力,无论从线路技术还是元器件方面,乃至于思想认识上都取得了长足的进步。 (一)早期的晶体管功放 半导体技术的进步使晶体管放大器向前迈进了一大步。自从有了晶体管,人们就开始用它制造功率放大器。  早期的放大器几乎全用锗管来制作,但由于锗管工艺上的一些原因,使得放大器中所用的晶体管,尤其是功放管性能指标不易做得很高,例如,共发射极截止频率fh的典型值为4kHz,大电流管的耐压值一般在30V一40V左右。这样,放大器的频率响应也就很狭窄,其3dB截止频率通常在10kHz左右,大大影响了音乐中高频信号的重现。再加上功放管的耐压、电流和功耗三个指标相互制约,制作较大功率的OTL或OCL放大器不易寻到三个指标都满足要求的管子,所以不得不采用变压器耦合输出。变压器的相移又使电路中加深度负反馈变得很困难,谐波失真得不到充分的抑制,因此这一时期的晶体管放大器音质是很差的。“还

音频功率放大电路

课程设计说明书 课程名称:数字电子技术、模拟电子技术 设计题目:音频功率放大电路 院系:电子信息与电气工程学院 学生姓名: 学号: 专业班级: 指导教师: 年月日

课程设计任务书设计题目音频功率放大电路 学生姓名 电子信息与电 所在院系专业、年级、班 气工程学院 设计要求: 1、设计制作一个音频功率放大电路(带高低音调节); 2、负载电阻为8Ω(扩音器的等效阻抗); 3、额定输出功率为10W ; 4、带宽大于50Hz~15KHz ; 5、输入阻抗大于500KΩ。 学生应完成的工作: 设计音频功率放大电路,并利用Multisim 软件进行电路仿真。利用DXP 软件绘制电路原理图, 并设计制作电路的PCB 板。根据设计原理对电路进行安装、调试,完成课程设计工作,并提交课程设 计报告。 参考文献阅读: [ 1]童诗白 . 模拟电子技术基础[ M ]. 北京:高等教育出版社,2005 . [ 2]臧春华 . 电子线路设计与应用[ M ]. 北京 : 高等教育出版社,2005 . [ 3]邱关源,罗先觉 . 电路(第五版[ M ]. 北京:高等教育出版社,2006. [ 4]阎石 . 数字电子技术(第五版)[ M ]. 北京:高等教育出版社,2005. [ 5]张阳天,韩异凡 . Protel DXP 电路设计 [ M ]. 北京:高等教育出版社,2005. 工作计划: 5 月 14 号—1 6 号完成仿真图的设计; 5 月 1 7 号完成原理图设计; 5 月 1 8 号— 5 月 21 完成 PCB 图设计; 5 月 22 号— 5 月 24 完成 PCB 板的制作及电路的安装与调试; 5 月 25 完成实验报告。 任务下达日期:年月日 任务完成日期:年月日 指导教师(签名):学生(签名):

音频功率放大器_(规范排版)

摘要 功率放大器,简称“功放”。很多情况下主机的额定输出功率不能胜任带动整个音响系统的任务,这时就要在主机和播放设备之间加装功率放大器来补充所需的功率缺口,而功率放大器在整个音响系统中起到了“组织、协调”的枢纽作用,在某种程度上主宰着整个系统能否提供良好的音质输出。 音频放大电路是典型应用电路,由一块TDA 2030和较少元件组成的音频放大电路、装置调整方便、性能指标好等突出的优点。特别是集成块内部设计有完整的保护电路,能自我保护。 TDA 2030是一块性能十分优良的功率放大集成电路,其主要特点是上升速率高、瞬态互调失真小,在目前流行的数十种功率放大集成电路中,规定瞬态互调失真指标的仅有包括TDA 2030在内的几种。我们知道,瞬态互调失真是决定放大器品质的重要因素,该集成功放的一个重要优点。 TDA2030A功率放大管利用三极管的电流控制作用或场效应管的电压控制作用将电源的功率转换为按照输入信号变化的电流。因为声音是不同振幅和不同频率的波,即交流信号电流,三极管的集电极电流永远是基极电流的β倍,β是三极管的交流放大倍数,应用这一点,若将小信号注入基极,则集电极流过的电流会等于基极电流的β倍,然后将这个信号用隔直电容隔离出来,就得到了电流(或电压)是原先的β倍的大信号,这现象成为三极管的放大作用。经过不断的电流及电压放大,就完成了功率放大。 根据掌握的资料,在各国生产的单片集成电路中,输出功率最大的不过20W,而TDA 2030的输出功率却能达18W,若使用两块电路组成BTL电路,输出功率可增至35W。另一方面,大功率集成块由于所用电源电压高、输出电流大,在使用中稍有不慎往往致使损坏。然而在TDA 2030集成电路中,设计了较为完善的保护电路,一旦输出电流过大或管壳过热,集成块能自动地减流或截止,使自己得到保护(当然这保护是有条件的,我们决不能因为有保护功能而不适当地进行使用)。

音频功率放大器设计(明细)

电气与电子信息工程学院《电子线路设计与测试B》报告 设计题目:多级音频放大电路的设计与测试专业班级:电子信息工程技术2013(1)班学号: 201330230118 姓名: 指导教师: 设计时间: 2015/07/13~2015/07/17 设计地点:K2—306

电子线路设计与测试B成绩评定表 姓名学号 专业班级电子信息工程技术2013级(1)班 课程设计题目:多级音频放大电路的设计与测试 课程设计答辩或质疑记录: 1、对一个音频功率放大器的前置级有什么要求? 答:要求:一是使话筒的输出阻抗与前置放大器的输入阻抗相匹配;二是使前置放大器的输出电压幅度与功率放大器的输入灵敏度相匹配。 2、试画出利用TDA2030/2030A实现的OTL功率放大器电路? 答: 3、何为D类功率放大器?D类功率放大器有什么特点? 答:(1)D类功放也叫丁类功放,是指功放管处于开关工作状态的功率放大器。 (2)特点:效率高、功率大、失真小、体积小。 成绩评定依据: 实物制作(40%): 课程设计考勤情况(10%): 课程设计答辩情况(20%): 完成设计任务及报告规范性(30%): 最终评定成绩: 指导教师签字: 年月日

目录 《电子线路设计与测试B》课程设计任务书 (4) 一、课程设计题目:多级音频放大电路的设计与测试 (4) 二、课程设计内容 (4) 三、进度安排 (4) 四、基本要求 (5) 五、课程设计考核办法与成绩评定 (5) 六、课程设计参考资料 (5) 多级音频功率放大电路的设计与测试 (6) 一、设计任务 (6) 二、设计方案分析 (6) 1、前置放大器 (6) 2、音调控制电路 (7) 3、功率放大器 (11) 三、主要单元电路参考设计 (11) 1、前置放大器电路 (12) 2、音调控制器电路 (12) 3、功率放大器电路 (14) 四、软件的仿真与调试 (15) 五、原理图与PCB的制作 (16) 六、音频功率放大器的调试 (17) 七、心得体会 (18) 八、附录 (19) 1、元件清单 (19) 2、实物图 (19) 3、文献 (19)

音频功率放大器实验报告

一、实验目的 1)了解音频功率放大器的电路组成,多级放大器级联的特点与性能; 2)学会通过综合运用所学知识,设计符合要求的电路,分析并解决设计过程中遇到的问题,掌握设计的基本过程与分析方法; 3)学会使用Multisim、Pspice等软件对电路进行仿真测试,学会Altium Designer使用进行PCB制版,最后焊接做成实物,学会对实际功放的测试调试方法,达到理想的效果。 4)培养设计开发过程中分析处理问题的能力、团队合作的能力。 二、实验要求 1)设计要求 设计并制作一个音频功率放大电路(电路形式不限),负载为扬声器,阻抗8Ω。要求直流稳压电源供电,多级电压、功率放大,所设计的电路满足以下基本指标: (1)频带宽度50Hz~20kHz,输出波形基本不失真; (2)电路输出功率大于8W; (3)输入阻抗:≥10kΩ; (4)放大倍数:≥40dB; (5)具有音调控制功能:低音100Hz处有±12dB的调节范围,高音10kHz 处有±12dB的调节范围; (6)所设计的电路具有一定的抗干扰能力; (7)具有合适频响宽度、保真度要好、动态特性好。 发挥部分: (1)增加电路输出短路保护功能; (2)尽量提高放大器效率; (3)尽量降低放大器电源电压; (4)采用交流220V,50Hz电源供电。 2)实物要求 正确理解有关要求,完成系统设计,具体要求如下: (1)画出电路原理图; (2)确定元器件及元件参数; (3)进行电路模拟仿真; (4)SCH文件生成与打印输出;

(5)PCB文件生成与打印输出; (6)PCB版图制作与焊接; (7)电路调试及参数测量。 三、实验内容与原理 音频功率放大器是一种应用广泛、实用性强的电子音响设备,它主要应用于对弱音频信号的放大以及音频信号的传输增强和处理。按其构成可分为前置放大级、音调控制级和功率放大级三部分,如图1所示。 v 图1 音频功率放大器的组成框图 1)前置放大级 音频功率放大器的作用是将声音源输入的信号进行放大,然后输出驱动扬声器。声音源的种类有多种,如传声器(话筒)、电唱机、录音机(放音磁头)、CD 唱机及线路传输等,这些声音源的输出信号的电压差别很大,从零点几毫伏到几百毫伏。一般功率放大器的输入灵敏度是一定的,这些不同的声音源信号如果直接输入到功率放大器中的话,对于输入过低的信号,功率放大器输出功率不足,不能充分发挥功放的作用;假如输入信号的幅值过大,功率放大器的输出信号将严重过载失真,这样将失去了音频放大的意义。所以一个实用的音频功率放大系统必须设置前置放大器,以便使放大器适应不同的输入信号,或放大,或衰减,或进行阻抗变换,使其与功率放大器的输入灵敏度相匹配。另外在各种声音源中,除了信号的幅度差别外,它们的频率特性有的也不同,如电唱机输出信号和磁带放音的输出信号频率特性曲线呈上翘形,即低音被衰减,高音被提升。对于这样的输入信号,在进行功率放大器之前,需要进行频率补偿,使其频率特性曲线恢复到接近平坦的状态,即加入频率均衡网络放大器。 对于话筒和线路输入信号,一般只需将输入信号进行放大和衰减,不需要进行频率均衡。前置放大器的主要功能一是使话筒的输出阻抗与前置放大器的输入阻抗相匹配;二是使前置放大器的输出电压幅度与功率放大器的输入灵敏度相匹配。由于话筒输出信号非常微弱,一般只有100μV~几毫伏,所以前置放大器输入级的噪声对整个放大器的信噪比影响很大。前置放大器的输入级首先采用低噪声电路,对于由晶体管组成的分立元件组成的前置放大器,首先要选择低噪声的晶体管,另外还要设置合适的静态工作点。由于场效应管的噪声系数一般比晶体管小,而且它几乎与静态工作点无关,在要求高输入阻抗的前置放大器的情况下,

音频功率放大器的设计仿真与实现全解

课程设计任务书 学生姓名:专业班级:电信 指导教师:工作单位:信息工程学院 题目: 音频功率放大器的设计仿真与实现 初始条件: 可选元件:集成功放,电容、电阻、电位器若干;或自选元器件。直流电源±12V,或自选电源。 可用仪器:示波器,万用表,毫伏表等。 要求完成的主要任务: (1)设计任务 根据技术指标和已知条件,选择合适的功放电路,如:OCL 、OTL 或BTL 电路。完成对音频功率放大器的设计、装配与调试。 (2)设计要求 1输出功率10W/8Ω;频率响应20~20KHz ;效率>60﹪;失真小。 2选择电路方案,完成对确定方案电路的设计。 3利用Proteus 或Multisim 仿真设计电路原理图,确定电路元件参数、掌握电路工作原理并仿真实现系统功能。 4安装调试并按规范要求格式完成课程设计报告书。 5选做:利用仿真软件的PCB 设计功能进行PCB 设计。 时间安排: 1 第18 周前半周,完成仿真设计调试;并制作实物。 2 第18 周后半周,硬件调试,撰写、提交课程设计报告,进行验收和答辩 指导教师签名:系主任(或责任教师)签名:

目录 1设计任务与要求???????错误!未定义书签。 1.1设计任务?????????错误!未定义书签。 1.2设计要求?????????错误!未定义书签。2设计方案???????????错误!未定义书签。3选择器件与参数运算?????错误!未定义书签。 3.1运放 NE5532 介绍????? 错误!未定义书签。 3.2T DA 2030 介绍 ?????????????????????4? 3.3功率计算 ????????????????????????5? 4单元电路设计 ??????????????????????? 6? 4.1主电源电路 ???????????????????????6? 4.2调音电路 ????????????????????????6? 4.3功率放大电路 ??????????????????????7 5电路设计仿真 ??????????????????????? 9? 5.1仿真电路图 ???????????????????????..9?

音频功率放大器课程设计--OTL音频功率放大器的设计与制作-精品

学号: 课程设计 题目OTL音频功率放大器的设计与制作 学院信息工程学院 专业通信工程 班级通信1302 姓名 指导教师 2014 年 1 月23 日

课程设计任务书 题目:OTL音频功率放大器的设计与制作 初始条件: 元件:集成功放TDA2030A、集成稳压器LM7812、电阻、电容、电位计若干。 仪器:万用表、示波器、交流毫伏表、函数信号发生器、学生电源要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求) 1、课程设计工作量:1周。 2、技术要求: ①要求设计制作一个音频功率放大器频率响应20~20KHZ,效率>60﹪,失真小。完成对音频功率放大器的设计、仿真、装配与调试,并自制直流稳压电源。 ②确定设计方案以及电路原理图并用multisim进行电路仿真。 时间安排: 序号设计内容所用时间 1 布置任务及调研1天 2 方案确定0.5天 3 制作与调试 1.5天 4 撰写设计报告书1天 5 答辩1天 合计1周 指导教师签名: 系主任(或责任教师)签名:年月日

目录 摘要 (1) Abstract (2) 音频功率放大器的设计与制作 (3) 1. 设计原理及参数 (3) 1.1音频功放电路的设计 (3) 1.1.1设计原理 (3) 1.1.2 参数计算 (5) 1.2直流稳压电源的设计 (6) 1.2.1设计原理 (6) 1.2.2参数计算 (7) 2.仿真结果及分析 (8) 2.1音频功率放大电路 (8) 2.1.1仿真原理图 (8) 2.1.2仿真效果图 (9) 2.2直流稳压电源电路 (11) 2.2.1电路原理图仿真 (11) 2.2.2仿真效果图 (11) 3.实物制作与性能测试 (12) 3.1音频功放实物制作 (12) 3.2性能测试 (13) 3.2.1功率性能测试 (13) 3.2.2频率响应测试 (14) 3.3直流稳压电源制作 (14) 3.4直流稳压电源的测试 (15) 4.收获以及体会 (15)

音频功率放大电路实验报告分析

实验报告 课程名称: 电路与模拟电子技术实验 指导老师: 成绩:__________________ 实验名称: 音频功率放大电路 实验类型: 研究探索型实验 同组学生姓名:__________ 一、实验目的和要求 1、理解音频功率放大电路的工作原理。 2、学习手工焊接和电路布局组装方法。 3、提高电子电路的综合调试能力。 4、通过myDAQ 来分析理论数据和实际数据之间的关系。 二、实验内容和原理(必填) 音频功率放大电路,也即音响系统放大器,用于对音频信号的处理和放大。按其构成可分为前置放大级、音调控制级和功率放大级三部分。 作为音响系统中的放大设备,它接受的信号源有多种形式,通常有话筒输出、唱机输出、录音输出和调谐器输出。它们的输出信号差异很大,因此,音频功放电路中设置前置放大级以适应不同信号源的输入。 为了满足听众对频响的要求和弥补设置了音调控制放大器,希望能对高音、低音部分的频率特性进行调节扬声器系统的频率响应不足,。 为了充分地推动扬声器,通常音响系统中的功率放大器能输出数十瓦以上功率,而高级音响系统的功放最大输出功率可达几百瓦以上。 扩音机的整机电路如下图所示,按其构成,可分为前置放大级,音调控制级和功率放大级三部分。 装 订 线

前置放大电路: 前置放大级输入阻抗较高,输出阻抗较低。前置放大级的性能对整个音频功放电路的影响很大,为了减小噪声,前置级通常要选用低噪声的运放。 由A1组成的前置放大电路是一个电压串联负反馈同相输入比例放大器。 理想闭环电压放大倍数为:23 1R R A vf + = 输入电阻:1R R if = 输出电阻:0of =R 功率放大级: 对于功率放大级,除了输出功率应满足技术指标外,还要求电路的效率高、非线性失真小、输出与音箱负载相匹配,否则将会影响放音效果。 集成功率放大器通常有OTL 和OCL 两种电路结构形式。OTL 功放的优点是只需单电源供电,缺点是输出要通过大电容与负载耦合,因此低频响应较差;OCL 功放的优点是输出与负载可直接耦合,频响特性较好,但需要用双电源供电。(实验室提供本功能模块) 本实验电路的功率放大级由集成功率器件TDA2030A 连成OCL 电路输出形式。 TDA2030A 功率集成电路具有转换速率高,失真小,输出功率大,外围电路简单等特点,采用5脚塑料封装结构。其中1脚为同相输入端;2脚为反相输入端;3脚为负电源;4脚为输出端; 5脚为正电源。 功放级电路中,电容C15、C16用作电源滤波。D1和D2为防止输出端的瞬时过电压损坏芯片的保护二极管。R11、C10为输出端校正网络以补偿感性负载,其作用是把扬声器的电感性负载补偿接近纯电阻性,避免自激和过电压。 图中通过R10、R9、C9引入了深度交直流电压串联负反馈。由于接入C9,直流反馈系数F ′=1。对于交流信号而言,

几款最常用的音频功放芯片以及应用电路介绍

几款最常用的音频功放芯片以及应用电路介绍 来源:华强北IC代购网功放芯片就好像是多媒体播放设备的“心脏”,是为播放设备提供动力的部件,也是关系到音质的重要环节之一,其重要性自然不言而喻。于是有许多音频功放芯片的初学者就会好奇,要怎么才能选到合适的芯片呢?常用的音频功放芯片有哪些?下面华强北IC代购网搜集了几款最常用的音频功放芯片,以及功率放大集成电路介绍希望对大家的音频电路设计有帮助。 常用的音频功放芯片 1、LM1875 LM1875是最常用的功放芯片之一,为单声道设计,不仅具有音质醇厚功率大的优点,还具有完整的保护电路,在同类型芯片中属于高档型号。 2、LM3886 同样是单声道设计,共有11个引脚,相对LM1875来说,LM3885具有更大的功率,更宽的动态,在其他参数上也有优势,所以只有在最高端多媒体音响才会采用LM3886作为音频功放芯片。 3、LM4766

网上通常的说法是,LM4766等于将两个LM3886封装在一起,为什么这样说呢?从性能参数来看,LM4766恰好和LM3886相当,甚至音色表色也是如出一辙。不过,由于LM4766引脚较多,业内人士常把它称之为“蜈蚣芯片”,在焊接的时候具有一定的难度。 功率放大集成电路分类介绍 1、二声道三维环绕声处理集成电路 音响系统中使用的二声道三维环绕声系统有SRS、Spatializer、Q Surround以及虚拟杜比环绕声系统。 2、杜比定向逻辑环绕声集成电路 杜比定向逻辑环绕声解码系统是经过杜比编码处理过的左、右二声迹信号调节还原成四声道音频信号。 3、数码环绕声解码集成电路 音响系统中使用的数码环绕声系统有杜比数码系统和DTS系统等,两种系统音频信号的记录与重放均为独立六声道。 4、电子音量控制集成电路 电子音量控制集成电路是采用直流电压或串行数据控制的可调增益放大器,其内部一般由衰减器、锁存器、移位寄存器和电平传唤电路组成。 5、电子转换开关集成电路 电子转换开关集成电路是采用直流电压或串行数据控制的额多路电子互锁开关集成电路,内部一般由逻辑控制、电平转换、锁存器、模拟开关等组成。 6、扬声器保护集成电路 扬声器保护集成电路可以在音频功放芯片出现故障、过载或过电压时将扬声器系统与功放电路断开,从而达到保护扬声器和功放电路的目的。扬声器保护集成电路内部一般由检测电路、触发器、静噪电路及继电器驱动电路等组成。

相关文档
最新文档