九年级数学上册 几何模型压轴题单元测试卷(含答案解析)

九年级数学上册 几何模型压轴题单元测试卷(含答案解析)
九年级数学上册 几何模型压轴题单元测试卷(含答案解析)

九年级数学上册几何模型压轴题单元测试卷(含答案解析)

一、初三数学旋转易错题压轴题(难)

1.探究:如图①和②,在四边形ABCD中,AB=AD,∠BAD=90°,点E、F分别在BC、CD 上,∠EAF=45°.

(1)如图①,若∠B、∠ADC都是直角,把ABE

△绕点A逆时针旋转90°至△ADG,使AB与AD重合,则能得EF=BE+DF,请写出推理过程;

(2)如图②,若∠B、∠D都不是直角,则当∠B与∠D满足数量关系时,仍有

EF=BE+DF;

(3)拓展:如图③,在ABC中,∠BAC=90°,AB=AC=22,点D、E均在边BC上,且∠DAE=45°.若BD=1,求DE的长.

【答案】(1)见解析;(2)∠B+∠D=180°;(3)5 3

【解析】

【分析】

(1)根据已知条件证明△EAF≌△GAF,进而得到EF=FG,即可得到答案;

(2)先作辅助线,把△ABE绕A点旋转到△ADG,使AB和AD重合,根据(1),要使EF=BE+DF,需证明△EAF≌△GAF,因此需证明F、D、G在一条直线上,即

180

ADG ADF

∠+∠=?,即180

B D

∠+∠=?;

(3)先作辅助线,把△AEC绕A点旋转到△AFB,使AB和AC重合,连接DF,根据已知条件证明△FAD≌△EAD,设DE=x,则DF=x,BF=CE=3﹣x,然后再Rt BDF中根据勾股定理即可求出x的值,即DE的长.

【详解】

(1)解:如图,

∵把△ABE绕点A逆时针旋转90°至△ADG,使AB与AD重合,

∴AE=AG,∠BAE=∠DAG,BE=DG,

∵∠BAD=90°,∠EAF=45°,

∴∠BAE+∠DAF=45°,

∴∠DAG+∠DAF=45°,

即∠EAF=∠GAF=45°,

在△EAF和△GAF中

AF AF

EAF GAF

AE AG

=

?

?

∠=∠

?

?=

?

∴△EAF≌△GAF(SAS),

∴EF=GF,

∵BE=DG,

∴EF=GF=BE+DF;

(2)解:∠B+∠D=180°,

理由是:

如图,把△ABE绕A点旋转到△ADG,使AB和AD重合,则AE=AG,∠B=∠ADG,∠BAE=∠DAG,

∵∠B+∠ADC=180°,

∴∠ADC+∠ADG=180°,

∴F、D、G在一条直线上,

和(1)类似,∠EAF=∠GAF=45°,

在△EAF和△GAF中

AF AF

EAF GAF

AE AG

=

?

?

∠=∠

?

?=

?

∴△EAF≌△GAF(SAS),

∴EF=GF,

∵BE=DG,

∴EF=GF=BE+DF;

故答案为:∠B+∠D=180°;

(3)解:∵△ABC中,2BAC=90°,

∴∠ABC=∠C=45°,由勾股定理得:22

AB AC

+,

如图,把△AEC 绕A 点旋转到△AFB ,使AB 和AC 重合,连接DF . 则AF=AE ,∠FBA=∠C=45°,∠BAF=∠CAE , ∵∠DAE=45°,

∴∠FAD=∠FAB+∠BAD=∠CAE+∠BAD=∠BAC ﹣∠DAE=90°﹣45°=45°, ∴∠FAD=∠DAE=45°, 在△FAD 和△EAD 中

AD AD FAD EAD AF AE =??

∠=∠??=?

∴△FAD ≌△EAD , ∴DF=DE , 设DE=x ,则DF=x , ∵BD=1,

∴BF=CE=4﹣1﹣x=3﹣x , ∵∠FBA=45°,∠ABC=45°, ∴∠FBD=90°,

由勾股定理得:222DF BF BD =+,

22(3)1x x =-+,

解得:x=53

, 即DE=

53. 【点睛】

本题综合考查三角形的性质和判定、正方形的性质应用、全等三角形的性质和判定、勾股定理等知识,解题关键在于正确做出辅助线得出全等三角形.

2.综合与实践 问题情境

在一节数学活动课上,老师带领同学们借助几何画板对以下题目进行了研究.如图1, MN 是过点A 的直线,点C 为直线MN 外一点,连接AC ,作∠ACD=60°,使AC=DC ,在MN 上取一点B ,使∠DBN=60°.

观察发现

(1)根据图1中的数据,猜想线段AB、DB、CB之间满足的数量关系是;

(2)希望小组认真思考后提出一种证明方法:将CB所在的直线以点C为旋转中心,逆时针旋转60°,与直线MN交于点E,即可证明(1)中的结论. 请你在图1中作出线段CE,并根据此方法写出证明过程;

实践探究

(3)奋进小组在继续探究的过程中,将点C绕点A逆时针旋转,他们发现当旋转到图2和图3的位置时,∠DBN=120°,线段AB、BD、CB的大小发生了变化,但是仍然满足一定的数量关系,请你直接写出这两种关系:

在图2中,线段AB、DB、CB之间满足的数量关系是;

在图3中,线段AB、DB、CB之间满足的数量关系是;

提出问题

(4)智慧小组提出一个问题:若图3中BC⊥CD于点C时,BC=2,则AC为多长?请你解答此问题.

【答案】(1)AB+DB=CB;(2)见解析;(3)AB-DB=CB;DB-AB=CB;(4)23【解析】

【分析】

(1)根据图中数据直接猜想AB+DB=CB

(2)在射线AM上一点E,使得∠ECB=60°,证明△ACE≌△DCB,推出EB=CB从而得出(1)中的结论;

(3)利用旋转的性质和线段的和差关系以及全等三角形的性质得出线段关系;

(4)过点C作∠BCE=60o,边CE与直线MN交于点E,设AC与BD交于点F.证明

△ACE≌△DCB,得出BC=EC,结合△ECB为等边三角形,得出∠ECA=90°,在

Rt△AEC中根据边长计算出AC的长度.

【详解】

综合与实践

(1)AB+DB=CB

(2)线段CE如图所示.

证明:∵∠ECB=∠ACD=60o,

∴∠2+∠ACB=∠1+∠ACB,

∴∠2=∠1.

∵∠ACD=∠DBN=60o, ∠ABD+∠DBN=180o,

∴∠ABD+∠ACD=180o,

∴在四边形ACDB中,∠CAB+∠3=180o.

∵∠CAB+∠4=180o,

∴∠4=∠3.

又∵AC=DC,

∴△ACE≌△DCB(ASA)

∴EA=BD,EC=BC.

又∵∠ECB=60°,

∴△ECB为等边三角形,

∴EB=CB.

而EB=EA+AB=DB+AB,

∴CB=DB+AB.

(3) AB-DB=CB;DB-AB=CB;

(4)证明:如图,过点C作∠BCE=60o,边CE与直线MN交于点E,设AC与BD交于点F.∵∠DCA=60o

∴∠ECB+∠BCA=∠DCA+∠BCA

即∠ECA=∠BCD

∵∠DBN=120o

∴∠DBA=60o

又∵∠AFB=∠DFC

∴∠EAF=∠BDC

又∵AC=DC

∴△ACE≌△DCB(ASA)

∴BC=EC

∴△ECB为等边三角形

∴∠CEB=60o

∵BC⊥CD

∴∠ECA=∠BCD=90o

∴在Rt△AEC中,∠CAE=30o

∵BC=2,EC=BC

∴AC=EC·tan60o= 23

【点睛】

本题考查了全等三角形的判定和性质,旋转的性质,根据题中条件适当添加辅助线构造全等三角形,利用全等的性质得出线段关系是本题的关键.

3.如图1,正方形ABCD与正方形AEFG的边AB、AE(AB<AE)在一条直线上,正方形AEFG以点A为旋转中心逆时针旋转,设旋转角为. 在旋转过程中,两个正方形只有点A 重合,其它顶点均不重合,连接BE、DG.

(1)当正方形AEFG旋转至如图2所示的位置时,求证:BE=DG;

(2)当点C在直线BE上时,连接FC,直接写出∠FCD 的度数;

(3)如图3,如果=45°,AB =2,AE=,求点G到BE的距离.

【答案】(1)证明见解析;(2)45°或135°;(3).

【解析】

试题分析:(1)根据正方形的性质可得AB=AD,AE=AG,∠BAD=∠EAG=90°,再求出

∠BAE=∠DAG,然后利用“边角边”证明△ABE和△ADG全等,根据全等三角形对应边相等证明即可.

(2)当点C在直线BE上时,可知点E与C重合或G点C与重合,据此求解即可.

(3)根据和求解即可.

试题解析:(1)如图2,∵四边形ABCD是正方形,∴AB=AD,∠BAE+∠EAD=90°.

∵四边形AEFG是正方形,∴AE=AG,∠EAD+∠DAG=90°.

∴∠BAE=∠DAG..

∴△ABE≌△ADG(SAS).

∴BE=DG..

(2)如图,当点C在直线BE上时,可知点E与C重合或G点C与重合,此时∠FCD 的度数为45°或135°.

(3)如图3,连接GB、GE.

由已知α=45°,可知∠BAE=45°.

又∵GE为正方形AEFG的对角线,∴∠AEG=45°.∴AB∥GE.

∵,∴GE =8.

∴.

过点B作BH⊥AE于点H.

∵AB=2,∴. ∴..

设点G到BE的距离为h.

∴.

∴.

∴点G到BE的距离为.

考点:1.旋转的性质;2.正方形的性质;3.全等三角形的判定和性质;4.平行的判定和性质;5.勾股定理;6.分类思想的应用.

4.某数学活动小组在作三角形的拓展图形,研究其性质时,经历了如下过程:

操作发现

(1)某小组做了有一个角是120?的等腰三角形DAC和等边三角形GEB纸片,=,让两个三角形如图①放置,点C和点G重合,点D,点E在AB的同侧,AC DA DC

和GB在同一条直线上,点F为AB的中点,连接DF,EF,则DF和EF的数量关系与位置关系为:________;

数学思考

(2)在图①的基础上,将GEB绕着C点按顺时针方向旋转90?,如图②,试判断DF和EF的数量关系和位置关系,并说明理由;

类比探索

(3)①将GEB绕着点C任意方向旋转,如图③或图④,请问DF和EF的数量关系和位置关系改变了吗?无论改变与否,选择图③或图④进行证明;

②GEB绕着点C旋转的过程中,猜想DF与EF的数量关系和位置关系,用一句话表述:________.

【答案】(1)3EF DF =,DF EF ;

(2)3EF DF =,DF EF ,理由见解析;

(3)①3EF DF =,DF EF ;②旋转过程中3EF DF =,DF

EF 始终成立.

【解析】 【分析】

(1)由题意过点D 作DM AB ⊥于点M ,过点E 作EN AB ⊥于点N ,利用等边三角形和中点性质设DM a =,2GB b =,结合相似三角形判定和性质进行综合分析求解; (2)根据题意要求判断DF 和EF 的数量关系和位置关系,连接CF ,OB 与AE 交于点M ,并综合利用垂直平分线定理以及矩形和等边三角形性质与三角函数进行综合分析; (3)①根据题意延长DF 并截取FN DF =,连接NE ,连接NB 并延长交CE 于点P ,交DC 的延长线于点O ,连接DE ,并利用全等三角形判定和性质以及三角函数进行分析证明;

②由题意可知结合①猜想可知旋转过程中3EF DF =,DF EF 始终成立.

【详解】

解:(1)3EF DF =,DF

EF ;

如解图,过点D 作DM AB ⊥于点M ,过点E 作EN AB ⊥于点N ,

AD CD =,EGB 为等边三角形. AM MC ∴=,GN BN =. 又点F 为AB 的中点, AF BF ∴=.

()1

2

MF CF NC NB AC AM CB MC NC +=++=+=+∴.

MF NC NB ∴==,CF CN FN AM +==.

设DM a =,2GB b =,

120ADC ∠=?,DA DC =,

3AM a ∴=,3FN a =,MF NC NB b ===. tan 33EGB NE GN GN b =?==∠.

在DMF 和FNE 中,

3

33DM FN a ==

, 3

33MF NE b

==

, 又

90DMF FNE ∠=∠=?, DMF FNE ∴∽.

MDF NFE ∴∠=∠,

3

DF DM FE FN ==

,即3EF DF =. 90MDF DFM ∠+∠=?,

90DFM NFE ∴∠+∠=?. 90DFE ∴∠=?.

3EF DF ∴=且DF

EF .

(2)3EF DF =,DF

EF .

理由如下:

如解图,连接CF ,OB 与AE 交于点M ,当旋转角是90?时,则90ACB ∠=?,在

Rt ACB △中,点F 是AB 的中点,

CF BF ∴=. 又CE EB =,

EF ∴垂直平分BC.同理,DF 垂直平分AC , ∴四边形LCMF 为矩形, 90DFE ∴∠=?.

DF EF ∴⊥,//AC EF .

DA DC =,120ADC =∠?,30DCA ∴∠=?. GEB 为等边三角形, 60ECB ∴∠=?.

∴∠DCA+∠ACB+∠ECB=180^° ∴D ,C ,E 三点共线.

30DCA DEF ∴∠=∠=?.

∴在Rt

DEF △中,

3tan 3

3

DE DF F F E DF

=

==∠; (3)①3EF DF =,DF EF .

选择题图进行证明:

如解图,延长DF 并截取FN DF =,连接NE ,连接NB 并延长交CE 于点P ,交DC 的延长线于点O ,连接DE ,

在ADF 和BNF 中,

AF BF AFD BFN DF NF =??

∠=∠??=?

, ()SAS ADF BNF ∴?.

AD NB ∴=,ADF BNF ∠=∠. //AD NB ∴.

18060O ADC ∴∠=?-∠=?.

又CPO BPE ∠=∠,60O CEB ∠=∠=?, OCP OBE ∴∠=∠. DCE NBE ∴∠=∠. 又GEB 是等边三角形, GE BE ∴=,

又AD BN CD ==, ()SAS DCE NBE ∴?.

DE NE ∴=,BEN CED ∠=∠.

BEN BED CED BED ∴∠+∠=∠+∠, 即60NED BEC ∠=∠=?. DEN ∴是等边三角形. 又DF FN =,

DF EF ∴⊥,60FDE ∠=?.

tan 3E E F DF DF FD ∴∠=?=.

或选择图进行证明,证明如下:

如解图,延长DF 并延长到点N ,使得FN DF =,

连接NB ,DE ,NE ,NB 与CD 交于点O ,EB 与CD 相交于点J , 在ADF 和BNF 中,

AF BF AFD BFN DF NF =??

∠=∠??=?

, ()SAS ADF BNF ∴?.

AD NB ∴=,ADF BNF ∠=∠. //AD NB ∴.

120NOC ADC ∴∠=∠=?. 60BOJ ∴∠=?,60JEC ∠=?. 又OJB EJC ∠=∠, OBE ECJ ∴∠=∠.

AD CD =,AD NB =, CD NB ∴=. 又GEB 是等边三角形, CE BE ∴=.

()SAS DCE NBE ∴?.

DE NE ∴=,BEN CED ∠=∠.

BEN BED CED BED ∴∠-∠=∠-∠, 即60NED BEC ∠=∠=?. DEN ∴是等边三角形. 又DF FN =,

DF EF ∴⊥,60FDE ∠=?.

tan 3E E F DF DF FD ∴∠=?=.

②旋转过程中3EF DF =,DF EF 始终成立.

【点睛】

本题考查几何图形的综合探究题,难度大,运用数形结合思维分析以及掌握并灵活利用全等三角形判定和性质以及三角函数、相似三角形判定和性质等是解题关键.

错因分析:①未掌握旋转的性质,即旋转前后线段、角度均不变;②不能合理利用类比关系,由浅到深解决问题.

5

.(1)如图①,在矩形ABCD 中,对角线AC 与BD 相交于点O ,过点O 作直线EF ⊥BD ,交AD 于点E ,交BC 于点F ,连接BE 、DF ,且BE 平分∠ABD . ①求证:四边形BFDE 是菱形; ②直接写出∠EBF 的度数;

(2)把(1)中菱形BFDE 进行分离研究,如图②,点G 、I 分别在BF 、BE 边上,且BG=BI ,连接GD ,H 为GD 的中点,连接FH 并延长,交ED 于点J ,连接IJ 、IH 、IF 、IG.试探究线段IH 与FH 之间满足的关系,并说明理由;

(3)把(1)中矩形ABCD 进行特殊化探究,如图③,当矩形ABCD 满足AB=AD 时,点E 是对角线AC 上一点,连接DE 、EF 、DF ,使△DEF 是等腰直角三角形,DF 交AC 于点G.请直接写出线段AG 、GE 、EC 三者之间满足的数量关系.

【答案】(1)①详见解析;②60°.(2)IH =3FH ;(3)EG 2=AG 2+CE 2. 【解析】 【分析】

(1)①由△DOE ≌△BOF ,推出EO =OF ,∵OB =OD ,推出四边形EBFD 是平行四边形,再证明EB =ED 即可.

②先证明∠ABD =2∠ADB ,推出∠ADB =30°,延长即可解决问题. (2)IH =3FH .只要证明△IJF 是等边三角形即可.

(3)结论:EG 2=AG 2+CE 2.如图3中,将△ADG 绕点D 逆时针旋转90°得到△DCM ,先证明△DEG ≌△DEM ,再证明△ECM 是直角三角形即可解决问题. 【详解】

(1)①证明:如图1中,

∵四边形ABCD 是矩形, ∴AD ∥BC ,OB =OD , ∴∠EDO =∠FBO , 在△DOE 和△BOF 中,

EDO FBO OD OB

EOD BOF ∠∠??

??∠∠?

=== , ∴△DOE ≌△BOF ,

∴EO=OF,∵OB=OD,

∴四边形EBFD是平行四边形,

∵EF⊥BD,OB=OD,

∴EB=ED,

∴四边形EBFD是菱形.

②∵BE平分∠ABD,

∴∠ABE=∠EBD,

∵EB=ED,

∴∠EBD=∠EDB,

∴∠ABD=2∠ADB,

∵∠ABD+∠ADB=90°,

∴∠ADB=30°,∠ABD=60°,

∴∠ABE=∠EBO=∠OBF=30°,

∴∠EBF=60°.

(2)结论:IH=3FH.

理由:如图2中,延长BE到M,使得EM=EJ,连接MJ.

∵四边形EBFD是菱形,∠B=60°,

∴EB=BF=ED,DE∥BF,

∴∠JDH=∠FGH,

在△DHJ和△GHF中,

DHG GHF

DH GH

JDH FGH

∠∠

?

?

?

?∠∠

?

∴△DHJ≌△GHF,

∴DJ=FG,JH=HF,

∴EJ=BG=EM=BI,

∴BE=IM=BF,

∵∠MEJ=∠B=60°,

∴△MEJ是等边三角形,

∴MJ=EM=NI,∠M=∠B=60°

在△BIF和△MJI中,

BI MJ

B M

BF IM

?

?

∠∠

?

?

?

∴△BIF≌△MJI,

∴IJ=IF,∠BFI=∠MIJ,∵HJ=HF,

∴IH⊥JF,

∵∠BFI+∠BIF=120°,

∴∠MIJ+∠BIF=120°,

∴∠JIF=60°,

∴△JIF是等边三角形,

在Rt△IHF中,∵∠IHF=90°,∠IFH=60°,

∴∠FIH=30°,

∴IH=3FH.

(3)结论:EG2=AG2+CE2.

理由:如图3中,将△ADG绕点D逆时针旋转90°得到△DCM,

∵∠FAD+∠DEF=90°,

∴AFED四点共圆,

∴∠EDF=∠DAE=45°,∠ADC=90°,

∴∠ADF+∠EDC=45°,

∵∠ADF=∠CDM,

∴∠CDM+∠CDE=45°=∠EDG,

在△DEM和△DEG中,

DE DE

EDG EDM

DG DM

?

?

∠∠

?

?

?

∴△DEG≌△DEM,

∴GE=EM,

∵∠DCM=∠DAG=∠ACD=45°,AG=CM,

∴∠ECM=90°

∴EC2+CM2=EM2,

∵EG=EM,AG=CM,

∴GE2=AG2+CE2.

【点睛】

考查四边形综合题、矩形的性质、正方形的性质、菱形的判定和性质,等边三角形的判定

和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形,学会转化的思想思考问题.

6.如图1,在平面直角坐标系xOy中,抛物线C:y=ax2+bx+c与x轴相交于A,B两点,顶点为D(0,4),AB=42,设点F(m,0)是x轴的正半轴上一点,将抛物线C绕点F 旋转180°,得到新的抛物线C′.

(1)求抛物线C的函数表达式;

(2)若抛物线C′与抛物线C在y轴的右侧有两个不同的公共点,求m的取值范围.(3)如图2,P是第一象限内抛物线C上一点,它到两坐标轴的距离相等,点P在抛物线C′上的对应点P′,设M是C上的动点,N是C′上的动点,试探究四边形PMP′N能否成为正方形?若能,求出m的值;若不能,请说明理由.

【答案】(1)2

1

4

2

y x

=-+;(2)2<m<223)m=6或m17﹣3.

【解析】

【分析】

(1)由题意抛物线的顶点C(0,4),A(20),设抛物线的解析式为24

y ax

=+,把A(220)代入可得a=

1

2

-,由此即可解决问题;

(2)由题意抛物线C′的顶点坐标为(2m,﹣4),设抛物线C′的解析式为

()2

1

24

2

y x m

=--,由

()

2

2

1

4

2

1

24

2

y x

y x m

?

=-+

??

?

?=--

??

,消去y得到22

2280

x mx m

-+-=,由题

意,抛物线C′与抛物线C在y轴的右侧有两个不同的公共点,则有

()

22

2

(2)4280

20

280

m m

m

m

?--->

??

>

?

?->

??

,解不等式组即可解决问题;

(3)情形1,四边形PMP′N能成为正方形.作PE⊥x轴于E,MH⊥x轴于H.由题意易知P(2,2),当△PFM是等腰直角三角形时,四边形PMP′N是正方形,推出

PF =FM ,∠PFM =90°,

易证△PFE ≌△FMH ,可得PE =FH =2,EF =HM =2﹣m ,可得

M (m +2,m ﹣2),理由待定系数法即可解决问题;情形2,如图,四边形PMP ′N 是正方形,同法可得M (m ﹣2,2﹣m ),利用待定系数法即可解决问题. 【详解】

(1)由题意抛物线的顶点C (0,4),A (22,0),设抛物线的解析式为

24y ax =+,把A (22,0)代入可得a =12

-

, ∴抛物线C 的函数表达式为2

142

y x =-+.

(2)由题意抛物线C ′的顶点坐标为(2m ,﹣4),设抛物线C ′的解析式为

()2

1242

y x m =

--, 由()22

1421242y x y x m ?=-+????=--??

消去y 得到222280x mx m -+-= ,

由题意,抛物线C ′与抛物线C 在y 轴的右侧有两个不同的公共点,则有

()

222(2)428020280m m m m ?--->??

>?

?->??

, 解得2<m <22,

∴满足条件的m 的取值范围为2<m <22. (3)结论:四边形PMP ′N 能成为正方形.

理由:1情形1,如图,作PE ⊥x 轴于E ,MH ⊥x 轴于H .

由题意易知P (2,2),当△PFM 是等腰直角三角形时,四边形PMP ′N 是正方形,∴PF =FM ,∠PFM =90°,易证△PFE ≌△FMH ,可得

PE =FH =2,EF =HM =2﹣m ,∴M (m +2,m ﹣2),∵点M 在21

42

y x =-+上,

∴()2

12242

m m -=-

++,解得m =17﹣3或﹣17﹣3(舍弃),∴m =17﹣3时,四边形PMP ′N 是正方形.

情形2,如图,四边形PMP ′N 是正方形,同法可得M (m ﹣2,2﹣m ),

把M (m ﹣2,2﹣m )代入2

142y x =-+中,()212242

m m -=--+,解得m =6或0(舍

弃),

∴m =6时,四边形PMP ′N 是正方形.

综上所述:m =6或m =17﹣3时,四边形PMP ′N 是正方形.

7.如图1,点O 是正方形ABCD 两对角线的交点. 分别延长OD 到点G ,OC 到点E ,使OG =2OD ,OE =2OC ,然后以OG 、OE 为邻边作正方形OEFG ,连接AG ,DE . (1)求证:DE ⊥AG ;

(2)正方形ABCD 固定,将正方形OEFG 绕点O 逆时针旋转角(0°< <360°)得到正方形

,如图2. ①在旋转过程中,当∠是直角时,求的度数;(注明:当直角边为斜边一半时,这条

直角边所对的锐角为30度)

②若正方形ABCD 的边长为1,在旋转过程中,求长的最大值和此时的度数,直接写

出结果不必说明理由.

【答案】(1)DE⊥AG (2)①当∠为直角时,α=30°或150°.②315°

【解析】

分析:(1)延长ED交AG于点H,证明≌,根据等量代换证明结论;(2)根据题意和锐角正弦的概念以及特殊角的三角函数值得到,分两种情况求出的度数;

(3)根据正方形的性质分别求出OA和OF的长,根据旋转变换的性质求出AF′长的最大值和此时的度数.

详解:如图1,延长ED交AG于点H,

点O是正方形ABCD两对角线的交点,

在和中,

≌,

即;

在旋转过程中,成为直角有两种情况:

Ⅰ由增大到过程中,当时,

在中,sin∠AGO=,

即;

Ⅱ由增大到过程中,当时,

同理可求,

综上所述,当时,或.

如图3,

当旋转到A、O、在一条直线上时,的长最大,

正方形ABCD的边长为1,

此时.

点睛:考查了正方形的性质,全等三角形的判定与性质,锐角三角形函数,旋转变换的性质的综合应用,有一定的综合性,注意分类讨论的思想.

8.如图,正方形ABCO的边OA、OC在坐标轴上,点B的坐标为(6,6),将正方形ABCO 绕点C逆时针旋转角度α(0°<α<90°),得到正方形CDEF,ED交线段AB于点G,ED的延长线交线段OA于点H,连接CH、CG.

(1)求证:△CBG≌△CDG;

(2)求∠HCG的度数;并判断线段HG、OH、BG之间的数量关系,说明理由;

(3)连接BD、DA、AE、EB得到四边形AEBD,在旋转过程中,四边形AEBD能否为矩形?如果能,请求出点H的坐标;如果不能,请说明理由.

九年级数学几何模型压轴题专题练习(解析版)

九年级数学几何模型压轴题专题练习(解析版) 一、初三数学 旋转易错题压轴题(难) 1.已知:如图①,在矩形ABCD 中,3,4,AB AD AE BD ==⊥,垂足是E .点F 是点 E 关于AB 的对称点,连接A F 、BF . (1)求AF 和BE 的长; (2)若将ABF 沿着射线BD 方向平移,设平移的距离为m (平移距离指点B 沿BD 方向所经过的线段长度).当点F 分别平移到线段AB AD 、上时,直接写出相应的m 的值. (3)如图②,将ABF 绕点B 顺时针旋转一个角1(080)a a ?<

初三数学压轴题

1.如图,直线3y x =-+与x 轴,y 轴分别相交于点B ,点C ,经过B C ,两点的抛物线 2 y ax bx c =++与x 轴的另一交点为A ,顶点为P ,且对称轴是直线2x =. (1)求A 点的坐标; (2)求该抛物线的函数表达式; (3)连结A C .请问在x 轴上是否存在点Q ,使得以点P B Q ,,为顶点的三角形与 A B C △相似,若存在,请求出点Q 的坐标;若不存在,请说明理由. [解] 直线3y x =-+与x 轴相交于点B ,∴当0y =时,3x =, ∴点B 的坐标为(30), . 又 抛物线过x 轴上的A B ,两点, 且对称轴为2x =,根据抛物线的对称性,∴点A 的坐标为(10),. (2)3y x =-+ 过点C ,易知(03)C ,,3c ∴=. 又 抛物线2y ax bx c =++过点(10)(30)A B ,,,, 309330a b a b +==?∴?++=?,. 解得14a b =??=-?,. 2 43y x x ∴=-+. (3)连结P B ,由22 43(2)1y x x x =-+=--,得(21)P -,, 设抛物线的对称轴交x 轴于点M ,在R t P B M △中,1PM M B ==, 452PBM PB ∴== ,∠.由点(30)(03)B C ,,,易得3O B O C ==, 在等腰直角三角形O BC 中,45ABC = ∠,由勾股定理,得32BC =. 假设在x 轴上存在点Q ,使得以点P B Q ,,为顶点的三角形与A B C △相似. ①当 B Q P B B C A B =,45PBQ ABC == ∠∠时,PBQ ABC △∽△. 即 2232 B Q = ,3BQ ∴=,又3B O = ,∴点Q 与点O 重合,1Q ∴的坐标是(00),. ②当 Q B P B A B B C = ,45Q BP ABC == ∠∠时,QBP ABC △∽△. A B C P O y 2x = A B C P O x y 2x =

中考数学复习几何压轴题

中考数学复习几何压轴题 1.在△ABC 中,点D 在AC 上,点E 在BC 上,且DE ∥AB ,将△CDE 绕点C 按顺时针方向旋转得到△E D C ''(使E BC '∠<180°),连接D A '、E B ',设直线E B '与AC 交于点O . (1)如图①,当AC =BC 时,D A ':E B '的值为 ; (2)如图②,当AC =5,BC =4时,求D A ':E B '的值; (3)在(2)的条件下,若∠ACB =60°,且E 为BC 的中点,求△OAB 面积的最小值. 图① 图② 答 案 : 1;……………………………………………………………………………………………1分 (2)解:∵DE ∥AB ,∴△CDE ∽△CAB .∴AC DC BC EC =. 由旋转图形的性质得,C D DC C E EC '='=,,∴AC C D BC C E '='. ∵ D C E ECD ' '∠=∠,∴ , E AC D C E E AC ECD '∠+''∠='∠+∠即 D AC E BC '∠='∠. ∴E BC '?∽D AC '?.∴4 5 ==''BC AC E B D A .……………………………………………………4分 (3)解:作BM ⊥AC 于点M ,则BM =BC ·sin 60°=23. ∵E 为BC 中点,∴CE = 2 1 BC =2. △CDE 旋转时,点E '在以点C 为圆心、CE 长为半径的圆上运动. ∵CO 随着E CB '∠的增大而增大, ∴当E B '与⊙C 相切时,即C E B '∠=90°时E CB '∠最大,则CO 最大. O D E'O E' A D

中考数学压轴题动态几何题型精选解析

2013中考数学压轴题动态几何题型精选解析(三) 例题如图1,在直角坐标系中,已知点A(0,2)、点B(﹣2,0),过点B和线段OA的中点C作直线BC,以线段BC为边向上作正方形BCDE. (1)填空:点D的坐标为,点E的坐标为. (2)若抛物线y=ax2+bx+c(a≠0)经过A、D、E三点,求该抛物线的解析式. (3)若正方形和抛物线均以每秒个单位长度的速度沿射线BC同时向上平移,直至正方形的顶点E落在y 轴上时,正方形和抛物线均停止运动. ①在运动过程中,设正方形落在y轴右侧部分的面积为s,求s关于平移时间t(秒)的函数关系式,并写出相应自变量t的取值范围. ②运动停止时,求抛物线的顶点坐标. 思路分析: (1)构造全等三角形,由全等三角形对应线段之间的相等关系,求出点D、点E的坐标; (2)利用待定系数法求出抛物线的解析式; (3)本问非常复杂,须小心思考与计算: ①为求s的表达式,需要识别正方形(与抛物线)的运动过程.正方形的平移,从开始到结束,总共历时秒,期间可以划分成三个阶段:当0<t≤时,对应图(3)a;当<t≤1时,对应图(3)b;当1<t≤时,对应图(3)c.每个阶段的表达式不同,请对照图形认真思考; ②当运动停止时,点E到达y轴,点E(﹣3,2)运动到点E′(0,),可知整条抛物线向右平移了3个单位,向上平移了个单位.由此得到平移之后的抛物线解析式,进而求出其顶点坐标. 解:(1)由题意可知:OB=2,OC=1. 如图(1)所示,过D点作DH⊥y轴于H,过E点作EG⊥x轴于G. 易证△CDH≌△BCO,∴DH=OC=1,CH=OB=2,∴D(﹣1,3); 同理△EBG≌△BCO,∴BG=OC=1,EG=OB=2,∴E(﹣3,2). ∴D(﹣1,3)、E(﹣3,2). (2)抛物线经过(0,2)、(﹣1,3)、(﹣3,2), 则 解得

中考数学几何压轴题

1.(1)操作发现· 如图,矩形ABCD 中,E 是AD 的中点,将△ABE 沿BE 折叠后得到△GBE ,且点G 在矩形ABCD 内部.小明将BG 延长交DC 于点F ,认为GF =DF ,你同意吗?说明理由. (2)问题解决 保持(1)中的条件不变,若DC =2DF ,求AB AD 的值; (3)类比探究 保持(1)中的条件不变,若DC =n ·DF ,求 AB AD 的值. 2.如图1所示,在直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,∠DCB =75o,以CD 为一边的

等边△DCE 的另一顶点E 在腰AB 上. (1)求∠AED 的度数; (2)求证:AB =BC ; (3)如图2所示,若F 为线段CD 上一点,∠FBC =30o. 求 DF FC 的值. 3.如图①,在等腰梯形ABCD 中,AD ∥BC ,AE ⊥BC 于点E ,DF ⊥BC 于点F .AD =2cm ,BC =6cm ,AE =4cm .点P 、Q 分别在线段AE 、DF 上,顺次连接B 、P 、Q 、C ,线段BP 、PQ 、QC 、CB 所围成的封闭图形记为M .若点P 在线段AE 上运动时,点Q 也随之在线段DF 上运动,使图形M 的形状发生改变,但面积始终.. 为10cm 2.设EP =x cm ,FQ =y cm ,A B C D E 图1 A B C D E 图2 F

解答下列问题: (1)直接写出当x =3时y 的值; (2)求y 与x 之间的函数关系式,并写出自变量x 的取值范围; (3)当x 取何值时,图形M 成为等腰梯形?图形M 成为三角形? (4)直接写出线段PQ 在运动过程中所能扫过的区域的面积. 4.如图①,将一张矩形纸片对折,然后沿虚线剪切,得到两个(不等边)三角形纸片△ABC ,△A 1B 1C 1. A B C D E F (备用图) A B C D E F Q P 图① 图 ① A C A 1 B 1 C 1

中考数学压轴题精选讲义

2010年中考数学压轴题 【001 】如图,已知抛物线2 (1)y a x =-+a ≠0)经过点(2)A -,0,抛物线的顶点为D , 过O 作射线OM AD ∥.过顶点D 平行于x 轴的直线交射线OM 于点C ,B 在x 轴正半轴上,连结BC . (1)求该抛物线的解析式; (2)若动点P 从点O 出发,以每秒1个长度单位的速度沿射线OM 运动,设点P 运动的时间为 ()t s .问当t 为何值时,四边形DAOP 分别为平行四边形?直角梯形?等腰梯形? (3)若OC OB =,动点P 和动点Q 分别从点O 和点B 同时出发,分别以每秒1个长度单位和2个长度单位的速度沿OC 和BO 运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t ()s ,连接PQ ,当t 为何值时,四边形BCPQ 的面积最小?并求出最小值及此时PQ 的长. 【002】如图16,在Rt △ABC 中,∠C =90°,AC = 3,AB = 5.点P 从点C 出发沿CA 以每秒1个单位长的速度向点A 匀速运动,到达点A 后立刻以原来的速度沿AC 返回;点Q 从点A 出发沿AB 以每秒1个单位长的速度向点B 匀速运动.伴随着P 、Q 的运动,DE 保持垂直平分PQ ,且交PQ 于点D ,交折线QB -BC -CP 于点E .点P 、Q 同时出发,当点Q 到达点B 时停止运动,点P 也随之停止.设点P 、Q 运动的时间是t 秒(t >0). (1)当t = 2时,AP =,点Q 到AC 的距离是; (2)在点P 从C 向A 运动的过程中,求△APQ 的面积S 与 t 的函数关系式;(不必写出t 的取值范围) (3)在点E 从B 向C 运动的过程中,四边形QBED 能否成 为直角梯形?若能,求t 的值.若不能,请说明理由; (4)当DE 经过点C 时,请直接..写出t 的值. 图16

几何图形变换中考数学压轴题整顿

几何图形变换压轴题中考整理 1(黑龙江省哈尔滨市)已知:△ABC的高AD所在直线与高BE所在直线相交于点F.(1)如图l,若△ABC为锐角三角形,且∠ABC=45°,过点F作FG∥BC,交直线AB于点G,求证:FG+DC=AD; (2)如图2,若∠ABC=135°,过点F作FG∥BC,交直线AB于点G,则FG、DC、AD之间满足的数量关系是____________________________________; (3)在(2)的条件下,若AG=2 5,DC=3,将一个45°角的顶点与点B重合并绕点B旋转,这个角的两边分别交线段FG于M、N两点(如图3),连接CF,线段CF分别 3,求线段PQ的长. 与线段BM、线段BN相交于P、Q两点,若NG= 2 (湖北省随州市)如图①,已知△ABC是等腰三直角角形,∠BAC=90°,点D是BC 的中点.作正方形DEFG,使点A,C分别在DG和DE上,连接AE,BG.(1)试猜想线段BG和AE的数量关系,请直接写出你得到的结论. (2)将正方形DEFG绕点D逆时针方向旋转一定角度后(旋转角度大于0°,小于或等于360°),如图②,通过观察或测量等方法判断(1)中的结论是否仍然成立?如果成立,请予以证明;如果不成立,请说明理由. (3)若BC=DE=2,在(2)的旋转过程中,当AE为最大值时,求AF的值.

3、如图13-1,一等腰直角三角尺GEF 的两条直角边与正方形ABCD 的两条边分别重合在一起.现正方形ABCD 保持不动,将三角尺GEF 绕斜边EF 的中点O (点O 也是BD 中点)按顺时针方向旋转. (1)如图13-2,当EF 与AB 相交于点M ,GF 与BD 相交于点N 时,通过观察或测 量BM ,FN 的长度,猜想BM ,FN 满足的数量关系,并证明你的猜想; (2)若三角尺GEF 旋转到如图13-3所示的位置时,线段FE 的延长线与AB 的延长 线相交于点M ,线段BD 的延长线与GF 的延长线相交于点N ,此时,(1)中的猜想还成立吗?若成立,请证明;若不成立,请说明理由. 3.在△ABC 中,点P 为BC 的中点. (1)如图1,求证:AP < 2 1 (AB +BC ); (2)延长AB 到D ,使得BD =AC ,延长AC 到E ,使得CE =AB ,连结DE . ①如图2,连结BE ,若∠BAC =60°,请你探究线段BE 与线段AP 之间的数量关系.写出你的结论,并加以证明; ②请在图3中证明:BC ≥ 2 1 DE . 图13-2 E A B D G F O M N C 图13-3 A B D G E F O M N C 图13- 1 A ( G ) B ( E ) C O D ( F )

中考数学几何压轴题

中考数学几何压轴题(2) 1.如图1,在Rt△ABC中,∠B=90°,BC=2AB=8,点D、E分别是边BC、AC的中点,连接DE,将△EDC绕点C按顺时针方向旋转,记旋转角为α. (1)问题发现 ①当α=0°时,= ;②当α=180°时,= . (2)拓展探究 试判断:当0°≤α<360°时,的大小有无变化?请仅就图2的情形给出证明. (3)问题解决 当△EDC旋转至A,D,E三点共线时,直接写出线段BD的长. 2.已知直线m∥n,点C是直线m上一点,点D是直线n上一点,CD与直线m、n不垂直,点P为线段CD的中点. (1)操作发现:直线l⊥m,l⊥n,垂足分别为A、B,当点A与点C重合时(如图①所示),连接PB,请直接写出线段PA与PB的数量关系:. (2)猜想证明:在图①的情况下,把直线l向上平移到如图②的位置,试问(1)中的PA 与PB的关系式是否仍然成立?若成立,请证明;若不成立,请说明理由.

(3)延伸探究:在图②的情况下,把直线l绕点A旋转,使得∠APB=90°(如图③所示),若两平行线m、n之间的距离为2k.求证:PA?PB=k?AB. 3.【问题提出】 如图①,已知△ABC是等腰三角形,点E在线段AB上,点D在直线BC上,且ED=EC,将△BCE绕点C顺时针旋转60°至△ACF连接EF 试证明:AB=DB+AF 【类比探究】 (1)如图②,如果点E在线段AB的延长线上,其他条件不变,线段AB,DB,AF之间又有怎样的数量关系?请说明理由 (2)如果点E在线段BA的延长线上,其他条件不变,请在图③的基础上将图形补充完整,并写出AB,DB,AF之间的数量关系,不必说明理由.

中考数学压轴题(含答案)

2016中考压轴题突破 训练目标 1.熟悉题型结构,辨识题目类型,调用解题方法; 2.书写框架明晰,踩点得分(完整、快速、简洁)。 题型结构及解题方法 压轴题综合性强,知识高度融合,侧重考查学生对知识的综合运用能力,对问题背景的研究能力以及对数学模型和套路的调用整合能力。

答题规范动作 1.试卷上探索思路、在演草纸上演草。 2.合理规划答题卡的答题区域:两栏书写,先左后右。 作答前根据思路,提前规划,确保在答题区域内写完答案;同时方便修改。 3.作答要求:框架明晰,结论突出,过程简洁。 23题作答更加注重结论,不同类型的作答要点: 几何推理环节,要突出几何特征及数量关系表达,简化证明过程; 面积问题,要突出面积表达的方案和结论; 几何最值问题,直接确定最值存在状态,再进行求解; 存在性问题,要明确分类,突出总结。 4.20分钟内完成。 实力才是考试发挥的前提。若在真题演练阶段训练过程中,对老师所讲的套路不熟悉或不知道,需要查找资源解决。下方所列查漏补缺资源集中训练每类问题的思路和方法,这些训练与真题演练阶段的训练互相补充,帮学生系统解决压轴题,以到中考考场时,不仅题目会做,而且能高效拿分。课程名称: 2014中考数学难点突破 1、图形运动产生的面积问题 2、存在性问题 3、二次函数综合(包括二次函数与几何综合、二次函数之面积问题、二次函数中的存在性问题) 4、2014中考数学压轴题全面突破(包括动态几何、函数与几何综合、点的存在性、三角形的存 在性、四边形的存在性、压轴题综合训练)

一、图形运动产生的面积问题 一、 知识点睛 1. 研究_基本_图形 2. 分析运动状态: ①由起点、终点确定t 的范围; ②对t 分段,根据运动趋势画图,找边与定点,通常是状态转折点相交时的特殊位置. 3. 分段画图,选择适当方法表达面积. 二、精讲精练 1. 已知,等边三角形ABC 的边长为4厘米,长为1厘米的线段MN 在△ABC 的边AB 上,沿AB 方向以1 厘米/秒的速度向B 点运动(运动开始时,点M 与点A 重合,点N 到达点B 时运动终止),过点M 、N 分别作AB 边的垂线,与△ABC 的其他边交于P 、Q 两点,线段MN 运动的时间为t 秒. (1)线段MN 在运动的过程中,t 为何值时,四边形MNQP 恰为矩形并求出该矩形的面积. (2)线段MN 在运动的过程中,四边形MNQP 的面积为S ,运动的时间为t .求四边形MNQP 的面积S 随运动时间t 变化的函数关系式,并写出自变量t 的取值范围. 1题图 2题图 2. 如图,等腰梯形ABCD 中,AB ∥CD ,AB = CD 高CE =,对角线AC 、BD 交于点H .平 行于线段BD 的两条直线MN 、RQ 同时从点A 出发,沿AC 方向向点C 匀速平移,分别交等腰梯形ABCD 的边于M 、N 和R 、Q ,分别交对角线AC 于F 、G ,当直线RQ 到达点C 时,两直线同时停止移动.记 等腰梯形ABCD 被直线MN 扫过的面积为1S ,被直线RQ 扫过的面积为2S ,若直线MN 平移的速度为1单位/秒,直线RQ 平移的速度为2单位/秒,设两直线移动的时间为x 秒. (1)填空:∠AHB =____________;AC =_____________; (2)若213S S ,求x . 3. 如图,△ABC 中,∠C =90°,AC =8cm ,BC =6cm ,点P 、Q 同时从点C 出发,以1cm/s 的速度分别沿CA 、 CB 匀速运动,当点Q 到达点B 时,点P 、Q 同时停止运动.过点P 作AC 的垂线l 交AB 于点R ,连接PQ 、RQ ,并作△PQR 关于直线l 对称的图形,得到△PQ'R .设点Q 的运动时间为t (s ),△PQ'R 与△PAR 重叠部分的面积为S (cm 2). (1)t 为何值时,点Q' 恰好落在AB 上 (2)求S 与t 的函数关系式,并写出t 的取值范围. (3)S 能否为9 8 若能,求出此时t 的值; 若不能,请说明理由. C B A B C P R Q Q' l A C M N Q P B C H D C B A A B C H H D C B A A B C D M N R Q F G H E H D C B A H D C B A

2020年贵州省中考数学压轴题汇编解析:几何综合

2020年全国各地中考数学压轴题汇编(贵州专版) 几何综合 参考答案与试题解析 一.选择题(共6小题) 1.(2020?贵阳)如图,在菱形ABCD中,E是AC的中点,EF∥CB,交AB于点F,如果EF=3,那么菱形ABCD的周长为() A.24 B.18 C.12 D.9 解:∵E是AC中点, ∵EF∥BC,交AB于点F, ∴EF是△ABC的中位线, ∴EF=BC, ∴BC=6, ∴菱形ABCD的周长是4×6=24. 故选:A. 2.(2020?遵义)如图,点P是矩形ABCD的对角线AC上一点,过点P作EF∥BC,分别交AB,CD于E、F,连接PB、PD.若AE=2,PF=8.则图中阴影部分的面积为() A.10 B.12 C.16 D.18 解:作PM⊥AD于M,交BC于N.

则有四边形AEPM,四边形DFPM,四边形CFPN,四边形BEPN都是矩形, ∴S △ADC =S △ABC ,S △AMP =S △AEP ,S △PBE =S △PBN ,S △PFD =S △PDM ,S △PFC =S △PCN , ∴S △DFP =S△PBE=×2×8=8, ∴S 阴=8+ 8=16, 故选:C. 3.(2020?贵阳)如图,A、B、C是小正方形的顶点,且每个小正方形的边长为1,则tan∠BAC的值为() A.B.1 C.D. 解:连接BC, 由网格可得AB=BC=,AC=,即AB2+BC2=AC2, ∴△ABC为等腰直角三角形, ∴∠BAC=45°, 则tan∠BAC=1, 故选:B. 4.(2020?遵义)如图,四边形ABCD中,AD∥BC,∠ABC=90°,AB=5,BC=10,连接AC、BD,以BD为直径的圆交AC于点E.若DE=3,则AD的长为()

中考数学压轴题几何代数综合题(PDF版)

第三课时 几何代数综合题1.已知:如图①,在矩形ABCD 中,AB=5,AD=320 ,AE ⊥BD ,垂足是 E.点F 是点E 关于AB 的对称点,连接 AF 、BF. (1)求AE 和BE 的长; (2)若将△ABF 沿着射线BD 方向平移,设平移的距离为 m (平移距离指点B 沿BD 方向所经过的线段长度).当点F 分别平移到线段AB 、AD 上时,直接写出相应的m 的值. (3)如图②,将△ABF 绕点B 顺时针旋转一个角(0°<<180°),记旋转中的△ABF 为△A ′BF ′,在旋转过程 中,设A ′F ′所在的直线与直线 AD 交于点P.与直线BD 交于点Q.是否存在这样的P 、Q 两点,使△DPQ 为等腰三角形?若存在,求出此时DQ 的长;若不存在,请说明理由 . 解:(1)在Rt △ABD 中,AB=5,AD = ,由勾股定理得:BD === . ∵S △ABD =BD?AE =AB?AD , ∴AE===4. 在Rt △ABE 中,AB=5,AE=4,由勾股定理得: BE=3.(2)设平移中的三角形为△ A ′ B ′F ′,如答图2所示:由对称点性质可知,∠ 1=∠2.由平移性质可知,AB ∥A ′B ′,∠4=∠1,BF=B ′F ′=3. ①当点F ′落在AB 上时,∵AB ∥A ′B ′, ∴∠3=∠4,∴∠3=∠2, ∴BB ′=B ′F ′=3,即m=3; ②当点F ′落在AD 上时,∵AB ∥A ′B ′, ∴∠6=∠2,∵∠1=∠2,∠5=∠1, ∴∠5=∠6,又易知A ′B ′⊥AD , ∴△B ′F ′D 为等腰三角形, ∴B ′D=B ′F ′=3, ∴BB ′=B D ﹣B ′D =﹣3=,即m=. (3)存在.理由如下:

初二数学几何压轴题选编.doc

1. 如图,在△ABC中,∠ABC=45°,C D⊥AB,BE⊥AC,垂足分别为D、E,F 为BC的中点.BE 与D F、DC分别交于点G、H, 连接AG. (1)求证:BH=AC; (2)若AB=BC,求证:AG=BG. 2 将两个全等的直角三角形ABC 和DBE 按图①方式摆放,其中∠ACB= ∠DEB=90 °,∠ A= ∠D=30 °,点 E 落在AB 上,DE 所在直线交AC 所在直线于点 F. (1)求证:AF+EF=DE ; (2)若将图①中的△DBE 绕点 B 按顺时针方向旋转角α,且0°<α<60°,其它条件不变,如图②,请直接写出你在(1)中猜想的结论是否仍然成立; (3)若将图①中的△DBE绕点B按顺时针方向旋转角β,且60°<β<180°,其它条件不变,如图③. 你认为(1)中猜想的结论还成立吗?若成立,写出证明过程;若不成立,请写出AF、EF与DE之间的关系,并说明理由.

3 已知:如图,点E在△ABC的边AC上,且∠AEB=∠ABC. (1) 求证:∠ABE=∠C; (2) 若∠BAE的平分线AF交BE于F,F D∥BC交AC于D,设AB=6,AC=10,求DC的长; (3) 若BE平分∠ABC,AF平分∠BAC,且F D∥B C交AC于点D,连接 F C,则△DFC是什么三 角形?为什么? 4.如图①,在△ABC 中,∠BAC= 90°,AB = AC ,∠ABC= 45°.MN 是经过点 A 的直线,BD MN 于D,CE MN 于E. (1)求证:BD = AE. (2)若将MN 绕点A 旋转,使MN 与BC 相交于点G (如图②),其他条件不变,求证:BD = AE. (3)在(2)的情况下,若CE 的延长线过AB 的中点 F (如图③),连接GF, 求证:1= 2. N A N A F 1 N E 2E A D E B C G D M B C B C G D M M 26 题图①26 题图②26 题图③

中考数学压轴题精选及答案(整理版)

20XX 年全国各地中考数学压轴题精选 1、(黄石市20XX 年)(本小题满分9分)已知⊙1O 与⊙2O 相交于A 、B 两点,点1 O 在⊙2O 上,C 为⊙2O 上一点(不与A ,B ,1O 重合) ,直线CB 与⊙1O 交于另一点D 。 (1)如图(8),若 AC 是⊙2O 的直径,求证:AC CD =; (2)如图(9),若C 是⊙1O 外一点,求证:1O C AD ⊥; (3)如图(10),若C 是⊙1O 内一点,判断(2)中的结论是否成立。 2、(黄石市20XX 年)(本小题满分10分)已知二次函数 2248y x mx m =-+- (1)当2x ≤时,函数值 y 随x 的增大而减小,求m 的取值范围。 (2)以抛物线 2248y x mx m =-+-的顶点A 为一个顶点作该抛物线的内接 正三角形 AMN (M ,N 两点在抛物线上) ,请问:△AMN 的面积是与m 无关的定值吗?若是,请求出这个定值;若不是,请说明理由。 (3)若抛物线 2248y x mx m =-+-与x 轴交点的横坐标均为整数,求整数m 的值。

3、(20XX 年广东茂名市)如图,⊙P 与y 轴相切于坐标原点O (0,0) ,与x 轴相交于点A (5,0),过点A 的直线AB 与 y 轴的正半轴交于点B ,与⊙P 交于点C . (1)已知AC=3,求点B的坐标; (4分) (2)若AC=a , D 是O B的中点.问:点O 、P 、C 、D 四点是否在同一圆上?请说明 理由.如果这四点在同一圆上,记这个圆的圆心为1O ,函数 x k y = 的图象经过点1O ,求k 的值(用含a 的代数式表示). 4、庆市潼南县20XX 年)如图,在平面直角坐标系中,△ABC 是直角三角形,∠ ACB =90,AC =BC ,OA =1,OC =4,抛物线2y x bx c =++经过A ,B 两点,抛物 线的顶点为D . (1)求b ,c 的值; (2)点E 是直角三角形ABC 斜边AB 上一动点(点A 、B 除外),过点E 作x 轴的 垂线 交抛物线于点F ,当线段EF 的长度最大时,求点E 的坐标; (3)在(2)的条件下:①求以点E、B、F、D为顶点的四边形的面积;②在抛 物线上是否存在一点P ,使△EFP 是以EF 为直角边的直角三角形? 若存在,求出所有点P 的坐标;若不存在,说明理由. 第3题图 χ y

中考数学几何选择填空压轴题精选配答案

中考数学几何选择填空压轴题精选配答案 Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】

2016中考数学几何选择填空压轴题精选(配答案)一.选择题(共13小题) 1.(2013蕲春县模拟)如图,点O为正方形ABCD的中心,BE平分∠DBC交DC 于点E,延长BC到点F,使FC=EC,连接DF交BE的延长线于点H,连接OH交DC于点G,连接HC.则以下四个结论中正确结论的个数为() ①OH=BF;②∠CHF=45°;③GH=BC;④DH2=HEHB. A .1个B . 2个C . 3个D . 4个 2.(2013连云港模拟)如图,Rt△ABC中,BC=,∠ACB=90°,∠A=30°,D1是斜边AB的中点,过D1作D1E1⊥AC于E1,连结BE1交CD1于D2;过D2作 D2E2⊥AC于E2,连结BE2交CD1于D3;过D3作D3E3⊥AC于E3,…,如此继续,可以依次得到点E4、E5、…、E2013,分别记△BCE1、△BCE2、△BCE3、…、△BCE2013的面积为S1、S2、S3、…、S2013.则S2013的大小为() A .B . C . D . 3.如图,梯形ABCD中,AD∥BC,,∠ABC=45°,AE⊥BC于点E,BF⊥AC于点F,交AE于点G,AD=BE,连接DG、CG.以下结论: ①△BEG≌△AEC;②∠GAC=∠GCA;③DG=DC;④G为AE中点时,△AGC的面积有最大值.其中正确的结论有() A .1个B . 2个C . 3个D . 4个 4.如图,正方形ABCD中,在AD的延长线上取点E,F,使DE=AD,DF=BD,连接BF分别交CD,CE于H,G下列结论:

中考数学压轴题精选(几何综合题)

中考数学压轴题(几何综合题) 1、如图1,△ABC中,∠ACB=90°,AC=4厘米,BC=6厘米,D是BC的中点.点E从A 出发,以a厘米/秒(a>0)的速度沿AC匀速向点C运动,点F同时以1厘米/秒的速度从C出发,沿CB匀速向点B运动,其中一个动点到达端点时,另一个动点也随之停止运动,过点E作AC的垂线,交AD于点G,连接EF,FG.设它们运动的时间为t秒(t>0).(1)当t=2时,△ECF∽△BCA,求a的值; (2)当a=1 2 时,以点E、F、D、G为顶点的四边形是平行四边形,求t的值; (3)当a=2时,是否存在某个时间,使△DFG是直角三角形?若存在,请求出t的值; 若不存在,请说明理由. 解:(1)∵t=2,∴CF=2厘米,AE=2a厘米, ∴EC=(4-2a ) 厘米. ∵△ECF∽△BCA.∴EC CF CB AC = ∴422 64 a - =.∴ 1 2 a=. (2)由题意,AE=1 2 t厘米,CD=3厘米,CF=t厘米. ∵EG∥CD,∴△AEG∽△ACD.∴EG AE CD AC =, 1 2 34 t EG =.∴EG= 3 8 t. ∵以点E、F、D、G为顶点的四边形是平行四边形,∴EG=DF. 当0≤t<3时,3 3 8 t t =-, 24 11 t=. 当3<t≤6时,3 3 8 t t=-, 24 5 t=. 综上 24 11 t=或 24 5 (3)由题意,AE=2t厘米,CF=t厘米,可得:△AEG∽△ACD AG=5 2 t厘米,EG= 3 2 t,DF=3-t厘米,DG=5- 5 2 t(厘米). G D B A C F E (第27题) D B A C 备用图 图1

七年级(下册)数学几何压轴题集锦

在矩形ABCD中,点E为BC边上的一动点,沿AE翻折,△ABE与△AFE重合,射线AF与直线CD交于点G。 1、当BE:EC=3:1时,连结EG,若AB=6,BC=12,求锐角AEG的正弦值。 2、以B为原点,直线BC和直线AB分别为X轴、Y轴建立平面直角坐标系,AB=5,BC=8,当点E从原点出发沿X正半轴运动时,是否存在某一时刻使△AEG成等腰三角形,若存在,求出点E的坐标。 1、2 a b m b a-+b+3=0=14. ABC A S 如图,已知(0,),B(0,),C(,)且(4), o y= DC FD ADO ⊥∠∠ ∠ (1)求C点坐标 (2)作DE,交轴于E点,EF为AED的平分线,且DFE90。 求证:平分; (3)E在y轴负半轴上运动时,连EC,点P为AC延长线上一点,EM平分∠AEC,且PM⊥EM,PN⊥x轴于N点,PQ平分∠APN,交x轴于Q点,则E在运动过程中,

MPQ ECA ∠∠的大小是否发生变化,若不变,求出其值。 2、如图1,AB//EF, ∠2=2∠1 (1)证明∠FEC=∠FCE; (2)如图2,M 为AC 上一点,N 为FE 延长线上一点,且∠FNM=∠FMN ,则∠NMC 与∠CFM 有何数量关系,并证明。 图1 图2 3、(1)如图,△ABC, ∠ABC 、∠ACB 的三等分线交于点E 、D ,若∠1=130°,∠2=110°,求∠A 的度数。 B C B C

B C (2)如图,△ABC,∠ABC 的三等分线分别与∠ACB 的平分线交于点D,E 若∠1=110°,∠2=130°,求∠ A 的度数。 A C 4、如图,∠ABC+∠ADC=180°,OE 、OF 分别是角平分线,则判断OE 、OF 的位置关系为? F A B 5、已知∠A=∠C=90°. (1)如图,∠ABC 的平分线与∠ADC 的平分线交于点E ,试问BE 与DE 有何位置关

初中数学压轴题及答案

创作编号: GB8878185555334563BT9125XW 创作者: 凤呜大王* 中考数学压轴题 1. 已知:如图,抛物线y=-x 2+bx+c 与x 轴、y 轴分别相交于点A (-1,0)、B (0,3)两点,其顶点为D. (1) 求该抛物线的解析式; (2) 若该抛物线与x 轴的另一个交点为E. 求四边形ABDE 的面积; (3) △AOB 与△BDE 是否相似?如果相似,请予以证明;如果不相似,请说明理 由. (注:抛物线y=ax 2+bx+c(a ≠0)的顶点坐标为???? ? ?--a b ac a b 44,22 ) 2. 如图,在Rt ABC △中,90A ∠=,6AB =,8AC =,D E ,分别是边AB AC ,的中点,点P 从点D 出发沿DE 方向运动,过点P 作PQ BC ⊥于Q ,过点Q 作 QR BA ∥交AC 于 R ,当点Q 与点C 重合时,点P 停止运动.设BQ x =,QR y =. (1)求点D 到BC 的距离DH 的长; (2)求y 关于x 的函数关系式(不要求写出自变量的取值范围); (3)是否存在点P ,使PQR △为等腰三角形?若存在,请求出所有满足要求的x 的

值;若不存在,请说明理由. 3在△ABC 中,∠A =90°,AB =4,AC =3,M 是AB 上的动点(不与A ,B 重合),过M 点作MN ∥BC 交AC 于点N .以MN 为直径作⊙O ,并在⊙O 内作内接矩形AMPN .令AM =x . (1)用含x 的代数式表示△MNP 的面积S ; (2)当x 为何值时,⊙O 与直线BC 相切? (3)在动点M 的运动过程中,记△MNP 与梯形BCNM 重合的面积为y ,试求y 关于x 的函数表达式,并求x 为何值时,y 的值最大,最大值是多少? 创作编号: GB8878185555334563BT9125XW 创作者: 凤呜大王* P 图 3 B D 图 2 B 图 1 A B C D E R P H Q

中考数学几何选择填空压轴题精选

中考数学几何选择填空压轴题精选 一.选择题(共13小题) 1.(2013?蕲春县模拟)如图,点O为正方形ABCD的中心,BE平分∠DBC交DC于点E,延长BC到点F,使FC=EC,连接DF交BE 的延长线于点H,连接OH交DC于点G,连接HC.则以下四个结论中正确结论的个数为() ①OH=BF;②∠CHF=45°;③GH=BC;④DH2=HE?HB. A.1个B.2个C.3个D.4个 2.(2013?连云港模拟)如图,Rt△ABC中,BC=,∠ACB=90°,∠A=30°,D1是斜边AB的中点,过D1作D1E1⊥AC于E1,连结BE1交CD1于D2;过D2作D2E2⊥AC于E2,连结BE2交CD1于D3;过D3作D3E3⊥AC于E3,…,如此继续,可以依次得到点E4、E5、…、E2013,分别记△BCE1、△BCE2、△BCE3、…、△BCE2013的面积为S1、S2、S3、…、S2013.则S2013的大小为() A.B.C.D. 3.如图,梯形ABCD中,AD∥BC,,∠ABC=45°,AE⊥BC于点E,BF⊥AC于点F,交AE于点G,AD=BE,连接DG、CG.以下结论:①△BEG≌△AEC;②∠GAC=∠GCA;③DG=DC;④G为AE中点时,△AGC的面积有最大值.其中正确的结论有() A.1个B.2个C.3个D.4个 4.如图,正方形ABCD中,在AD的延长线上取点E,F,使DE=AD,DF=BD,连接BF分别交CD,CE于H,G下列结论: ①EC=2DG;②∠GDH=∠GHD;③S△CDG=S?DHGE;④图中有8个等腰三角形.其中正确的是() A.①③B.②④C.①④D.②③ 5.(2008?荆州)如图,直角梯形ABCD中,∠BCD=90°,AD∥BC,BC=CD,E为梯形内一点,且∠BEC=90°,将△BEC绕C点旋转90°使BC与DC重合,得到△DCF,连EF交CD于M.已知BC=5,CF=3,则DM:MC的值为() A.5:3B.3:5C.4:3D.3:4 6.如图,矩形ABCD的面积为5,它的两条对角线交于点O1,以AB,AO1为两邻边作平行四边形ABC1O1,平行四边形ABC1O1的对角线交BD于点02,同样以AB,AO2为两邻边作平行四边形ABC2O2.…,依此类推,则平行四边形ABC2009O2009的面积为() A.B.C.D. 7.如图,在锐角△ABC中,AB=6,∠BAC=45°,∠BAC的平分线交BC于点D,M,N分别是AD和AB上的动点,则BM+MN的最小值是() A.B.6C.D.3 8.(2013?牡丹江)如图,在△ABC中∠A=60°,BM⊥AC于点M,CN⊥AB于点N,P为BC边的中点,连接PM,PN,则下列结论:①PM=PN;②;③△PMN为等边三角形;④当∠ABC=45°时,BN=PC.其中正确的个数是() A.1个B.2个C.3个D.4个 9.(2012?黑河)Rt△ABC中,AB=AC,点D为BC中点.∠MDN=90°,∠MDN绕点D旋转,DM、DN分别与边AB、AC交于E、F两点.下列结论: ①(BE+CF)=BC; ②S△AEF≤S△ABC; ③S四边形AEDF=AD?EF; ④AD≥EF; ⑤AD与EF可能互相平分, 其中正确结论的个数是() A.1个B.2个C.3个D.4个

近年来中考数学压轴题大集合

近年来中考数学压轴题大集合 【一】函数与几何综合的压轴题 1.〔2004安徽芜湖〕如图①,在平面直角坐标系中,AB 、CD 都垂直于x 轴,垂足分别为B 、D 且AD 与B 相交于E 点.:A (-2,-6),C (1,-3) (1) 求证:E 点在y 轴上; (2) 假如有一抛物线通过A ,E ,C 三点,求此抛物线方程. (3) 假如AB 位置不变,再将DC 水平向右移动k (k >0)个单位,如今AD 与BC 相交于E ′点, 如图②,求△AE ′C 的面积S 关于k 的函数解析式. [解]〔1〕 〔本小题介绍二种方法,供参考〕 方法一:过E 作EO ′⊥x 轴,垂足O ′∴AB ∥EO ′∥DC ∴,EO DO EO BO AB DB CD DB ' '''== 又∵DO ′+BO ′=DB ∴1EO EO AB DC ' ' += ∵AB =6,DC =3,∴EO ′=2 又∵DO EO DB AB ' '=,∴2 316 EO DO DB AB ''=?=?= ∴DO ′=DO ,即O ′与O 重合,E 在y 轴上 方法二:由D 〔1,0〕,A 〔-2,-6〕,得DA 直线方程:y =2x -2① 再由B 〔-2,0〕,C 〔1,-3〕,得BC 直线方程:y =-x -2② 联立①②得 2 x y =?? =-? ∴E 点坐标〔0,-2〕,即E 点在y 轴上 〔2〕设抛物线的方程y =ax 2+bx +c (a ≠0)过A 〔-2,-6〕,C 〔1,-3〕 E 〔0,-2〕三点,得方程组426 32a b c a b c c -+=-?? ++=-??=-? 解得a =-1,b =0,c =-2 ∴抛物线方程y =-x 2-2 〔3〕〔本小题给出三种方法,供参考〕 由〔1〕当DC 水平向右平移k 后,过AD 与BC 的交点E ′作E ′F ⊥x 轴垂足为F 。 同〔1〕可得:1E F E F AB DC ''+=得:E ′F =2 图①

中考数学超好几何证明压轴题大全

中考数学超好几何证明压 轴题大全 This manuscript was revised by the office on December 10, 2020.

1、如图,在梯形ABCD 中,AB ∥CD ,∠BCD=90°,且AB=1,BC=2,tan ∠ADC=2. (1)求证:DC=BC; (2)E 是梯形内一点,F 是梯形外一点,且∠EDC=∠FBC ,DE=BF ,试判断△ECF 的形状,并证明你的结论; (3)在(2)的条件下,当BE :CE=1:2,∠BEC=135°时,求sin ∠BFE 的值. 2、已知:如图,在□ABCD 中,E 、F 分别为边AB 、CD 的中点,BD 是对角线,AG ∥DB 交CB 的延 长线于G . (1)求证:△ADE ≌△CBF ; (2)若四边形 BEDF 是菱形,则四边形AGBD 是什 么特殊四边形并证明你的结论. 3、如图13-1,一等腰直角三角尺GEF 的两条直角边与正方形ABCD 的两条边分别重合在一起.现正方形ABCD 保持不动,将三角尺GEF 绕斜边EF 的中点O (点O 也是BD 中点)按顺时针方向旋 转. (1)如图13-2,当EF 与AB 相交于点M ,GF 与BD 相交于点N 时,通过观察或 测量BM ,FN 的长度,猜想BM ,FN 满足的数量关系,并证明你的猜想; (2)若三角尺GEF 旋转到如图13-3所示的位置时,线段FE 的延长线与AB 的延长线相交于点M ,线段BD 的延长线与GF 的延长线相交于点N ,此时,(1)中的猜想还成立吗若成立,请证明;若不成立,请说明理由. 4、如图,已知⊙O 的直径AB 垂直于弦CD 于E ,连结AD 、BD 、OC 、OD ,且OD =5。 (1)若,求CD 的长; (2)若 ∠ADO :∠EDO =4:1,求扇形OAC (阴影部分)的面积(结果保留 )。 5、如图,已知:C 是以AB 为直径的半圆O 上一点,CH ⊥AB 于点H ,直线AC 与过B 点的切线相交于点D ,E 为CH 中点,连接AE 并延长交BD 于点F ,直线CF 交直线AB 于点G. (1)求证:点F 是BD 中点; (2)求证:CG 是⊙O 的切线; (3)若FB=FE=2,求⊙O 的半径. 6、如图,已知O 为原点,点A 的坐标为(4,3), ⊙A 的半径为2.过A 作直线l 平行于x 轴,点P 在直线l 上运动. (1)当点P 在⊙O 上时,请你直接写出它的坐标; (2)设点P 的横坐标为12,试判断直线OP 与⊙A 的位置关系,并说明理由. 7、如图,延长⊙O 的半径OA 到B ,使OA=AB , DE 是圆的一条切线,E 是切点,过点B 作DE 的垂线, 垂足为点C . 求证:∠ACB=31∠OAC . E B F C D A 图13-2 E A B D G F O M N C 图13-3 A B D G E F O M N C 图13-1 A ( E ) C O D F C A B D O E

相关文档
最新文档