太阳能光电化学电池_唐玮

太阳能光电化学电池_唐玮
太阳能光电化学电池_唐玮

1引言

氢气因其对环境无污染被认为是最理想的清洁能源[1]。在传统的制取氢气的方法当中,化石燃料的制取约占全球制氢数量的90%,这种方法主要是利用变压吸附以及蒸汽转化相结合的方法制取高纯度的氢[2]。利用电能制取氢[3]也占有一定的比例。但上述两种方式,制取高纯度的氢时能耗大,污染大。在近些年来的研究中,利用免费而且无限量的太阳能通过光电催化分解水的方法制取氢被认为是最具有前景的制氢方法[4]。

太阳能光电化学电池大致可以分为以下三类:1.光生化学电池,是将太阳能转变为电能;2.半导体、电解质光电化学电池,是将太阳能转化为电能;3.光电化学电池分解水制氢,是将太阳能转化成化学能[5]。半导体光解水制氢技术是比较成熟的,其主要是将二氧化钛、过渡金属氧化物、层状金属氧化物和能利用可见光的复合层状物作为光催化剂来光解水制氢[6]。光电化学法制氢实际上是运用特殊的化学电池,这种电池的电极在光照下可以将光子能量转移并且产生电流从而将水离解得到氢气,研究人员对光电化学制氢的方法做了大量的理论和试验研究[7]。光电化学分解水制氢是太阳能制氢研究的一个重要组成之一[8],典型的光电化学分解太阳能池和普通的电解池原理是相一致的,由光阳极和对极阴极所组成的典型的光电化学分解太阳能池,在有电解质存在下的光阳极在吸收光后通过半导体带上电子由外电路流向阴极,水中的氢离子会从阴极上接受电子从而产生氢气[9]。其中,光阳极通常是光半导体材料,其收到激发后可以产生电子空穴对,光阳极半导体[10]是影响制取氢气最关键的影响因素,半导体材料应尽可能多的吸收可见光减少。本实验选用纳米二氧化钛[11]作为光阳极材料,二氧化钛是一种新型节能环保材料,价格便宜、无毒且原料易得,具有抗光腐蚀性和优良的光催化性能,在光催化、太阳能电池、高效光敏催化剂等领域有着广泛的使用[12],但二氧化钛的禁带宽度较宽,只能吸收紫外线和近紫外线,而太阳光的利用率并不是很高,这就限制了二氧化钛在太阳能制氢中的实际应用[13],人们对提高二氧化钛的光催化反应活性方面做了大量的研究工作,如对二氧化钛进行晶格掺杂、表面贵金属(Pt、Pd、Ru、Au)沉积、光敏化等。通过对二氧化钛的表面修饰,降低纳米二氧化钛光生电子和空穴的复合,提高光子效率,提高纳米二氧化钛的光催化活性[14]。本实验通过溶胶-凝胶对二氧化钛进行修饰[15]来提高其对光电转

换的效率。二氧化钛作为太阳能光电制氢系统的阳极时,能够产生0.7-0.9V的电压,所以使水裂解就必须施加一定的偏压。在太阳能制氢系统[16]中施加偏压主要有利用太阳能增加外部偏压和在太阳能池内部施加偏压的两种方法,由这两种方法可将太阳能电化学分解水制氢分为一步法和两步法。将催化电极加在太阳电池的两个电极板上的是一步法,它是利用太阳电极所产生的电压降直接的将水分解为氢气和氧气。两步法是将太阳能光电转化与电化学转化分为两个独立的过程进行的,这种方法将多个太阳能池通过串联以使每一个都满足电解水所需要的电压。两步法虽然可以在系统中分别选出较优的电化学电极材料和转化率高的太阳能电池,可以有效的避免半导体电极带来的光化学腐蚀等问题,但在将电流引出电池时,需要消耗大量的电能,然而电解水只需要低的电压,大功率的电能会产生很大的电流,既会在成材料的耗损也会增加电极的过电势[17]。本实验利用纳米二氧化钛作为光阳极半导体材料,通过测试一系列不同光强辐射对光电法系统制取氢的影响。

2 实验部分

2.1仪器与试剂

2.1.1 仪器

马弗炉 (武汉电炉厂)

扫描电镜(东莞市协美电子有限公司)

太阳能电池板(深圳太阳能公司)

升压器(输出端200-450v)

降压器(输出端1.5-12v)

2.1.2试剂

无水乙醇(阿拉丁试剂公司)

硫酸钠(阿拉丁试剂公司)

氯化钠(阿拉丁试剂公司)

钛酸四丁酯(阿拉丁试剂公司)

2.2 实验步骤

2.2.1纳米二氧化钛的制备

将钛酸四丁酯缓慢加入乙醇与水的混合液,同时滴加适量氯化钠,控制水解出现凝胶,并且将温度控制在25℃~30℃范围内。接着取叶肉丰富的女贞树叶,

在水中浸泡后除去叶肉及叶脉部分,用乙醇溶液洗去表面色素,将制得的二氧化钛凝胶均匀涂抹在叶片表面,马弗炉温度升至300℃,加热约15分钟后将温度提高到450℃继续加热15分钟,然后将温度调节至600℃加热5分钟后取出,得到纸片状薄膜。利用东莞市协美电子有限公司扫描电镜得到所制备的纳米二氧化钛形貌。

2.2.2光电极的制备

用研钵将所制得的二氧化钛聚集体研磨10分钟,接着在超声波清洗器用1ml 乙酰丙酮将其超声分散,然后用喷笔滴2-3滴水来增加二氧化钛与电极之间的附着力,先用喷笔喷一薄层,喷涂过程中要注意控制出气量,等薄层晾干后,用相同的方法再喷涂一层,按照上述方法反复喷涂5-7次。

2.2.3制氢系统的组装

由图1可知,制氢系统主要由以下四部分构成:卤素灯,光阳极,光阴极和升压器组成。连接方式为:太阳能电池板与升压器相连接(升压至450v),然后连接光电极(掺杂氟的氧化锡玻璃,FTO),有放入石英的导电玻璃制成的反应釜的液面以下是光阳极,有石墨插入液面以下是光阴极,打开光源(1000w卤素灯)。

2.2.4 氢气量的测定

使用深圳吉顺安公司的便携式氢气检测仪完成检测,以1000ppm作为基准测定时间,数据分别列于表1、表2、表3中。

2.3 结果与讨论

利用扫描电镜得到所制备的纳米二氧化钛形貌,由图2可以清晰看出,所的产物为颗粒状,直径约为 50nm-500nm之间,厚度不均,呈珊瑚状,颗粒厚度约为20nm-40nm,其中多处出现直径约为500nm厚度约为20nm的薄层叠加。

以1000ppm作为基准测定时间,利用深圳吉顺安公司的便携式氢气检测仪完成检测,数据分别列于表1、表2、表3中。

由表1、表2、表3可以知道,对于硫酸钠(20%)水溶液,硫酸(20%)溶液以及氢氧化钠(20%)来说,从100mw/cm2到50mw/cm2之间,以10mw/cm2作为光强梯度,在100mw/cm2时,电解水的速度均最快,其余数据随光强的降低依次

呈线性增加,其中表1中的60 mw/cm2和90mw/cm2两组数据偏差较大,表2中60mw/cm2和90mw/cm2两组数据的线性关系最好,表3中100-60mw/cm2五组数据线性关系较好,随光强的降低时间依次增加,光强为50 mw/cm2的第六组数据与前五组数据不成线性关系,数据误差大。

对比表1、表2和表3,可以看出对于电解质为强酸和强碱的溶液,在相同光强下电解时间较电解质为中性的溶液所用时间要短的多,原因可能为酸溶液提供电解所需氢离子,碱溶液提供电解所需的氢氧根离子,大大缩短了电解所用时间。

3 结论

我们使用光电系统分解水,在改变光强的条件下,由反应时间得到光强对电解水的影响,相比于传统的制氢方法,利用光电制氢可以大大减少能源的消耗和对环境的污染,这很符合化学反应过程所采用的物质和所产生的物质均是自然界原有的绿色化学的理念。根据我们所得的实验数据也说明,相同的光强条件下,酸性电解质溶液和碱性电解质溶液电解时间比中性电解质溶液要短,对于同以电解质溶液,光强越强所需的电解时间也越短。

参考文献

[1]黄维.氢能──理想的新能源.化学教育.1995,07:18-20

[2]张建伟. 变压吸附制取纯氢装置的运行及其综合评价.低温与特气. 2001,04:9-11

[2]刘一鸣.工业制氢方法的比较与选择. 化学与生物工程. 2007,03:11-16

[3]宋晓军. 制氢方法及制氢系统. 齐鲁石油化工. 2012,02:8-12

[4]胡以怀,贾靖,纪娟.太阳能热化学制氢技术研究进展. 能源工程. 2008,01:13-19

[5]JohnA.Turner.Photoelectrochemical Water Splitting. Fuel Cells & Infrastructure Technologies Program Review .2004,35:55-59

[6] Shohei Fukumoto,Masaaki Kitano,Masato Takeuchi,Masaya Matsuoka,Masakazu Anpo. Photocatalytic Hydrogen Production from Aqueous Solutions of Alcohol as Model Compounds of Biomass Using Visible Light-Responsive TiO2 Thin Films[J]. Catalysis Letters . 2009 :1-2

[7] Anil Kumar R,Suresh M S,Nagaraju J.Effect of solararray capacitance on the performance of switching shuntvoltage regulator. IEEE Trans.on IndustrialElectronics . 2006:13-19

[8]郭新斌,乔庆东.太阳能光解水制氢催化剂研究进展.化工进展. 2006,07:24-26

[9]陈喜蓉,董新法,林维明.太阳能光催化分解水制氢研究进展.现代化工. 2006,12:33-41

[10]胡智学.纳米二氧化钛薄膜在太阳电池中的应用.科技资讯. 2011,35:27-29

[11]杨丽娜,周光强,高建峰,孙中战.纳米二氧化钛的制备及应用的研究进展.化工中间体. 2011,03:30-35

[12]Guangjun Hu,Xiangfu Meng,Xiyan Feng,Yanfen Ding,Shimin Zhang,Mingshu Yang. Anatase TiO2 nanoparticles/carbon nanotubes nanofibers: preparation, characterization and photocatalytic properties. Journal of Materials Science . 2007:17-21

[13]孙忠月,王兢,龙光斗,李盛彪.纳米二氧化钛的制备方法.科技资讯. 2008,17:14-19

[14]Yoshihisa Sakata,Yuta Matsuda,Takashi Yanagida,Katsumasa Hirata,Hayao Imamura,Kentaro Teramura. Effect of Metal Ion Addition in a Ni Supported Ga2O3Photocatalyst on the Photocatalytic Overall Splitting of H2O. Catalysis Letters . 2008 :1-2

[15]冉德超,张传斌,张玮,傅敏.溶胶-凝胶法制备纳米氧化锌的研究进展.重庆工商大学学报.2009,02:11-19

[16]陶加.太阳能制氢取得突破性进展.中国石油和化工. 2014,07:28-30

[17]冯进来,王宝辉,李宝玉,王志涛.新型太阳能制氢系统的分析与研究进展.江西能源. 2004,02:35-38

致谢

本论文是在王卷刚老师的悉心指导下完成的,在实验过程中,得到了本校师兄师姐以及同学王靖雯和宋伟的帮助,在此对他们表示衷心的感谢!

太阳能电池发展现状综述

太阳能电池发展现状综述 摘要:随着社会的发展,传统能源消耗殆尽,能源越来越收到重视。其中发展前景最为广阔的莫过于太阳能。太阳能绿色环保,因此逐渐受到了人们的普遍重视。太阳能已成为新能源领域最具活力的部分,世界各国都致力于发展太阳能。本文主要阐述了太阳能电池的发展历程,太阳能电池的种类,太阳能电池的现状以及发展前景. 关键词:太阳能电池;太阳能电池种类;发展现状; Narration on the Current Situation of Solar Battery Abstract:With the development of society, traditional energy will be used up in a short time.Eneygy are being payed more and more attention.And the solar energy is the most promising.Because of its’environmental protection,it gets widespread attention. Solar energy has become the most vibrant part among the new energy field,and all countrise tried their best to develop solar energy.This article mainly explains the development of solar battery,the types of solar battery,curent situation of solar battery and its’ prospect. Key Words:solar battery; types of solar battery; curent situation of solar battery 1引言 随着经济的发展,能源的重要性日趋凸显。但是石油、煤等不可生起源消耗殆尽,人们开始探索新的能源。太阳能取之不尽用之不竭,因此受到了人们的亲睐。在太阳能电池领域中,太阳能的光电利用是近些年来发展最快、最具活力的研究领域[1].太阳能电池的研制和开发日益得到重视.制作太阳能电池主要是以半导体材料为基础.其工作原理是利用光电材料吸收光能后发生的光电子转化反应。根据所用材料的不同,太阳能电池可分为:①硅太阳能电池;②以无机盐如砷化镓Ⅲ一V化合物、硫化镉、铜铟硒等多元化合物为材料的电池;③纳米晶太阳能电池等。不论以何种材料来制作电池,对太阳能电池材料一般的要求有:①半导体材料的禁带不能太宽;②要有较高的光电转换效率;③材料本身对环境不造成污染;④材料便于工业化生产且材料性能稳定。基于以上几个方面考虑,硅是最理想的太阳能电池材料[2].这也是太阳能电池以硅材料为主的主要原因. 本文简要地综述了太阳能电池发展进程,太阳能电池的种类,以及发展现状,并讨论了太阳能电池的发展趋势。 2太阳能电池现状及其前景

光电化学电池的发展和未来发展趋势

光电化学电池的发展和未来发展趋势 1508471008赵世南随着人类的工业文明得以迅猛发展,由此引发的能源危机和环境污染成为急待解决的严重问题,利用和转换太阳能是解决世界范围内的能源危机和环境问题的一条重要途径。世界上第一个认识到光电化学转换太阳能为电能可能实现的是Becquere,他在1839年发现涂布了卤化银颗粒的金属电极在电解液中产生了光电流,以后Brattain、Garrett及Gerisher等人先后提出和建立了一系列有关光电化学能量转换的基本概念和理论,开辟了光电化学研究的新领域。 光电化学池即通过光阳板吸收太阳能并将光能转化为电能。光阳板通常为光半导体材料,受光激发可以产生电子——空穴对,光阳极和对极(阴极)组成光电化学池,在电解质存在下光阳极吸光后在半导体带上产生的电子通过外电路流向对极,水中的质子从对极上接受电子产生氢气。 光电化学池中染料敏化纳米晶光电化学电池以其低成本和高效率而成为硅太阳能电池的有力竞争者。染料敏化太阳电池主要由透明导电玻璃、TiO2多孔纳米膜、电解质溶液以及镀铂镜对电极构成的“三明治”式结构。与p-n结固态太阳能电池不同的是,在染料敏化太阳电池中光的吸收和光生电荷的分离是分开的。染料敏化太阳能电池(DSSC)是由二氧化钛多孔膜、光敏化剂(染料)、电解质(含氧化还原电对)、镀铂对电极及导电基板组成的夹层结构。 光电化学池中染料敏化纳米晶光电化学电池其基本工作原理是:在染料分子的激发态、TiO2导带、SnO2(导电玻璃)导带、Pt(对电极)功函之间存在着一个能级梯度差,当染料分子吸收太阳光其中基态的电子受光激发跃迁到染料激发态能级后,在能级差的驱动下,电子将会迅速转移到TiO2导带中,经纳米晶TiO2膜空间网格的输运进入到SnO2导带,后经外路到达对电极,并与氧化还原电对进行电子交换后,依靠氧化还原电对在氧化态染料和对电极间完成电子转移,从而实现整个光电循环。 染料敏化太阳能电池的核心部分是纳米多孔半导体氧化物薄膜电极。敏化染料中染料分子是染料敏化太阳能电池的光捕获天线,是染料敏化太阳能电池的一个重要组成部分,它的作用就是吸收太阳光,将基态电子激发到高能态,然后再转移到外电路,它的性能是决定电池转换效率的重要因素之一。整个光电转换的性能决定于染料能级与TiO2能级的匹配情况以及它对太阳光谱的响应性能。到目前,最有效的敏化染料是含有4,4-二羧基-2,2-联吡啶配体的钌有机配

优质纳米晶硅薄膜的低温制备技术及其在太阳能电池中的应用进展

收稿日期:2008209211 3基金项目:韩山师范学院青年科研基金资助项目(0503) 作者简介:陈城钊(1975— ),男,广东潮州人,讲师,硕士.第2卷 第4期 材 料 研 究 与 应 用 Vo1.2,No.42008年12月 MA TERIAL S RESEARCH AND APPL ICA TION Dec .2008 文章编号:167329981(2008)0420450205 优质纳米晶硅薄膜的低温制备技术及其 在太阳能电池中的应用进展3 陈城钊1,邱胜桦1,刘翠青1,吴燕丹1,李 平1,余楚迎2,林璇英1,2 (1.韩山师范学院物理与电子工程系,广东潮州 521041;2.汕头大学物理系,广东汕头 515063) 摘 要:纳米晶硅薄膜是集晶体硅材料和氢化非晶硅薄膜优点于一体,可望广泛应用于薄膜太阳能电池、光存储器、发光二极管和薄膜晶体管等光电器件的一种新型功能材料.本文综述低温制备优质纳米晶硅薄膜技术的研究进展及其在薄膜硅太阳能电池上的应用.关键词:纳米晶硅薄膜;太阳能电池;低温制备;进展中图分类号:TM914.4 文献标识码:A 纳米晶硅(nc 2Si ζH )薄膜就是硅的纳米晶粒镶嵌在a 2Si ζH 网络里的一种硅纳米结构.由于它具 有较高的电导率(10-3~10-1Ω-1?cm -1)、宽带隙、高光敏性、高光吸收系数等优良的光电特性而引起学术界的重视.纳米晶硅薄膜同时具备宽带隙和高电导这两种太阳能电池窗口材料所需的优良性质,现已成为研究探索的热门纳米薄膜材料 [1] .除用于 制备薄膜太阳能电池外,在发光二极管、光存储器、隧穿二极管、薄膜晶体管以及单电子晶体管等光电器件方面也有潜在应用 [2] . 1 低温制备纳米晶硅薄膜的技术 为了制备适用于以玻璃为衬底的太阳能电池的 纳米晶硅薄膜,近年来发展了低温(<450℃)制膜技术.按成膜过程可分为两大类:一类是先制备非晶态材料,再固相晶化为纳米晶硅;另一类是直接在玻璃衬底上沉积纳米晶硅薄膜[2] . 1.1 固相晶化法 固相晶化(SPC )法的特点是非晶固体发生晶化的温度低于其熔融后结晶的温度.低造价太阳能电 池的纳米晶薄膜,一般以廉价的玻璃作衬底,以硅烷气为原材料,用PECVD 法沉积a 2Si ∶H 薄膜,然后再用热处理的方法使其转化为纳米晶硅薄膜.这种方法的优点是能制备大面积的薄膜,可进行原位掺杂,成本低,工艺简单,易于批量生产.常规的高温炉退火、金属诱导晶化、快速热退火、区域熔化再结晶等都属于固相晶化法.1.1.1 常规高温炉退火 该方法是在氮气保护下把非晶硅薄膜放入炉腔内退火,使其由非晶态转变为纳米晶态[3].非晶硅晶化的驱动力是晶相相对于非晶相较低的G ibbs 自由能.固相晶化过程主要由晶核的形成及晶核长大两步完成.形核率和生长速率都受温度的影响,所以纳米晶硅薄膜的晶粒尺寸受温度的影响很大.晶硅薄膜的晶粒尺寸除受温度的影响外,与初始非晶硅膜的结构状况也有密切的关系.有研究者采用“部分掺杂法”来增大晶粒尺寸,即在基底上沉积两层膜,下层进行磷掺杂,作为成核层,上层不掺杂,作为晶体生长层,退火后可获得较大的晶粒[4].1.1.2 金属诱导晶化 金属诱导晶化就是在非晶硅薄膜上镀一层金属

有机太阳能电池研究进展(1)

专题介绍 有机太阳能电池研究进展 X 林 鹏,张志峰,熊德平,张梦欣,王 丽 (北京交通大学光电子技术研究所,信息存储、显示与材料开放实验室,北京,100044) 摘 要:有机太阳能电池与无机太阳能电池相比,还存在许多关键性问题。为了改善有机太阳能电池的性能,各种研究工作正在进行,这些研究主要是为了寻找新的材料,优化器件结构。对电池原理、部分表征方法、效率损失机制、典型器件结构、最近的发展、以及未来的发展趋势作了简要描述。 关键词:有机太阳能电池;器件结构;给体;受体;转换效率 中图分类号:T N 383 文献标识码:A 文章编号:1005-488X(2004)01-0055-06 Progres s in Study of Organic Sola r Ce ll LIN Peng ,ZHANG Zhi -feng ,XIONG De -ping ,ZHANG Meng -xin ,WANG Li (I nstitute of O p toelectronics T echnology ,Beij ing J iaotong University ,Beijing ,100044,China )Abstr act :Compaer ed with inorganic solar cells ,organic solar cells still have many critical pr oblems.In order to improve the properties of organic solar cells,a lot of different studies have been carried on.T he main purposes of these studies are to seek new mater ials and new device structure.A brief review of the theory of photovoltaic cells,along with some aspects of their characterization ,the basic efficiency loss mechanism ,typical device structures ,and the trends in research will be presented. Key wor ds :organic photovoltaic cell;device structure;donor;acceptor ;conversion effi-ciency 前 言 进入21世纪以来,由于煤、石油、天然气等自然资源有限,已经不能满足人类发展的需要。环境污染也已经成为亟待解决的严重问题。同使用矿物燃料发电相比,太阳能发电有着不可比拟的优点。 太阳能取之不尽,太阳几分钟射向地球的能量相当 于人类一年所耗用的能量。太阳能的利用已经开始逐年增长。但目前使用的硅等太阳能电池材料,因成本太高,只能在一些特殊的场合如卫星供电、边远地区通信塔等使用。目前太阳能发电量只相当于全球总发电量的0.04%。要使太阳能发电得到大规模推广,就必须降低太阳能电池材料的成本,或 第24卷第1期2004年3月 光 电 子 技 术OPT OELECT RONIC T ECHNOLOGY Vol.24No.1 Mar.2004   X 收稿日期:2003-11-17 作者简介:林 鹏(1978-),男,硕士生。主要从事光电子技术研究。 张志峰(1977-),男,硕士生。主要从事有机电致发光(OLED)的研究工作。熊德平(1975-),男,硕士生。主要从事无机半导体材料方面的研究工作。

能源转换效率最佳的碳纳米管光电化学太阳能电池

能源转换效率最佳的碳纳米管光电化学太阳能电池 布满磷脂盘状物(phospholipid disks)的碳纳米管,能让太阳能电池具备自我修复(self-repairing)的功能,就像是植物行光合作用。这种光电化学(photoelectrochemical)太阳能电池是由美国麻省理工学院(MIT)的研究人员所开发,其能源转换效率号称可达到目前效能最佳之固态太阳能光电板的两倍。 以人工方式进行的太阳能转换,以及自然界的太阳能转换,两者间的主要不同之处,在于工程师会为太阳能电池做防护,以避免固态无机材料的逐渐劣化;而自然界的太阳能转换,是通过光合作用,来预防并修复不可避免的液态有机材料损坏。 在自然界,使用永续性太阳能的案例不胜枚举;举例来说,能让树叶进行光合作用的有机化合物,经常会受到阳光的损坏,但树叶有自我修复机制。通过对能够不断更新其太阳能转换燃料机制的生物性光合作用过程之研究,科学家们现在已经有自信能制作出模仿该种自我修复能力的太阳能电池。 MIT 的研究人员并没有声称已经破解光合作用的秘密,但表示已能够模仿植物的自我修复机制,不断充实其能量采集技术。 光合作用过程包含一些内建的机制,植物内部以化学为基础的动力引擎,会周期性地分解为基本的功能区块(building blocks),然后那些更新过的元素会再重组成全新的引擎。根据MIT 教授Michael Strano 的说法,植物会每个小时执行以上的程序,更新并循环其基于蛋白质的光合作用功能,使其以最佳效率持续运作。 Strano 所开发的方案,具备一种会模仿光合作用程序可逆性、叫做磷脂的合成性盘状分子,该种分子每一个都具备能将光线转换成电流的内部反应中

太阳能电池

太阳能电池及材料研究 引言 太阳能是人类取之不尽用之不竭的可再生能源.也是清洁能源,不产生任何的环境污染。在太阳能的有效利用当中;大阳能光电利用是近些年来发展最快,最具活力的研究领域,是其中最受瞩目的项目之一。为此,人们研制和开发了太阳能电池。制作太阳能电池主要是以半导体材料为基础,其工作原理是利用光电材料吸收光能后发生光电于转换反应,根据所用材料的不同,太阳能电池可分为:1、硅太阳能电池;2、以无机盐如砷化镓III-V化合物、硫化镉、铜铟硒等多元化合物为材料的电池;3、功能高分子材料制备的大阳能电池;4、纳米晶太阳能电池等。不论以何种材料来制作电池,对太阳能电池材料一般的要求有:1、半导体材料的禁带不能太宽;②要有较高的光电转换效率:3、材料本身对环境不造成污染; 4、材料便于工业化生产且材料性能稳定。基于以上几个方面考虑,硅是最理想的太阳能电池材料,这也是太阳能电池以硅材料为主的主要原因。但随着新材料的不断开发和相关技术的发展,以其它村料为基础的太阳能电池也愈来愈显示出诱人的前景。本文简要地综述了太阳能电池的种类及其研究现状,并讨论了太阳能电池的发展及趋势。 1 硅系太阳能电池 1.1 单晶硅太阳能电池 硅系列太阳能电池中,单晶硅大阳能电池转换效率最高,技术也最为成熟。高性能单晶硅电池是建立在高质量单晶硅材料和相关的成热的加工处理工艺基础上的。现在单晶硅的电地工艺己近成熟,在电池制作中,一般都采用表面织构化、发射区钝化、分区掺杂等技术,开发的电池主要有平面单晶硅电池和刻槽埋栅电极单晶硅电池。提高转化效率主要是*单晶硅表面微结构处理和分区掺杂工艺。在此方面,德国夫朗霍费费莱堡太阳能系统研究所保持着世界领先水平。该研究所采用光刻照相技术将电池表面织构化,制成倒金字塔结构。并在表面把一13nm。厚的氧化物钝化层与两层减反射涂层相结合.通过改进了的电镀过程增加栅极的宽度和高度的比率:通过以上制得的电池转化效率超过23%,是大值可达23.3%。Kyocera公司制备的大面积(225cm2)单电晶太阳能电池转换效率为19.44%,国内北京太阳能研究所也积极进行高效晶体硅太阳能电池的研究和开发,研制的平面高效单晶硅电池(2cm X 2cm)转换效率达到19.79%,刻槽埋栅电极晶体硅电池(5cm X 5cm)转换效率达8.6%。 单晶硅太阳能电池转换效率无疑是最高的,在大规模应用和工业生产中仍占据主导地位,但由于受单晶硅材料价格及相应的繁琐的电池工艺影响,致使单晶硅成本价格居高不下,要想大幅度降低其成本是非常困难的。为了节省高质量材料,寻找单晶硅电池的替代产品,现在发展了薄膜太阳能电 池,其中多晶硅薄膜太阳能电池和非晶硅薄膜太阳能电池就是典型代表。 1.2 多晶硅薄膜太阳能电池 通常的晶体硅太阳能电池是在厚度350~450μm的高质量硅片上制成的,这种硅片从提拉或浇铸的硅锭上锯割而成。因此实际消耗的硅材料更多。为了节省材料,人们从70年代中期就开始在廉价衬底上沉积多晶硅薄膜,但由于生长的硅膜晶粒大小,未能制成有价值的太阳能电池。为了获得大尺寸晶粒的薄膜,人们一直没有停止过研究,并提出了很多方法。目前制备多晶硅薄膜电池多采用化学气相沉积法,包括低压化学气相沉积(LPCVD)和等

太阳能电池工作原理和应用

太阳能电池的分类简介 (1)硅太阳能电池 硅太阳能电池分为单晶硅太阳能电池、多晶硅薄膜太阳能电池和非晶硅薄膜太阳能电池三种。 单晶硅太阳能电池转换效率最高,技术也最为成熟。在实验室里最高的转换效率为24.7%,规模生产时的效率为15%(截止2011,为18%)。在大规模应用和工业生产中仍占据主导地位,但由于单晶硅成本价格高,大幅度降 低其成本很困难,为了节省硅材料,发展了多晶硅 薄膜和非晶硅薄膜做为单晶硅太阳能电池的替代 产品。 多晶硅薄膜太阳能电池与单晶硅比较,成本低 廉,而效率高于非晶硅薄膜电池,其实验室最高转 换效率为18%,工业规模生产的转换效率为10%(截 止2011,为17%)。因此,多晶硅薄膜电池不久 将会在太阳能电池市场上占据主导地位。 非晶硅薄膜太阳能电池成本低重量轻,转换效率较高,便于大规模生产,有极大的潜力。但受制于其材料引发的光电效率衰退效应,稳定性不高,直接影响了它的实际应用。如果能进一步解决稳定性问题及提高转换率问题,那么,非晶硅太阳能电池无疑是太阳能电池的主要发展产品之一。

2)多晶体薄膜电池 多晶体薄膜电池硫化镉、碲化镉多晶薄膜电池的效率较非晶硅薄膜太阳能电池效率高,成本较单晶硅电池低,并且也易于大规模生产,但由于镉有剧毒,会对环境造成严重的污染,因此,并不是晶体硅太阳能电池最理想的替代产 品。 砷化镓(GaAs)III-V化合物电池的转换效率 可达28%,GaAs化合物材料具有十分理想的光学 带隙以及较高的吸收效率,抗辐照能力强,对热 不敏感,适合于制造高效单结电池。但是GaAs 材料的价格不菲,因而在很大程度上限制了用 GaAs电池的普及。 (3)有机聚合物电池 以有机聚合物代替无机材料是刚刚开始的一个太阳能电池制造的研究方向。由于有机材料柔性好,制作容易,材料来源广泛,成本低等优势,从而对大规模利用太阳能,提供廉价电能具有重要意义。但以有机材料制备太阳能电池的研究仅仅刚开始,不论是使用寿命,还是电池效率都不能和无机材料特别是硅电池相比。能否发展成为具有实用意义的产品,还有待于进一步研究探索。 (5)有机薄膜电池 有机薄膜太阳能电池,就是由有机材料构成核心部分的太阳能电池。大家对有机太阳能电池不熟悉,这是情理中的事。如今量产的太阳能电池里,95%以上是硅基的,而剩下的不到5%也是由其它无机材料制成的 6)染料敏化电池 染料敏化太阳能电池,是将一种色素附着在TiO2粒子上,然后浸泡在一种电解液中。色素受到光的照射,生成自由电子和空穴。自由电子被TiO2吸收,从电极流出进入外电路,再经过用电器,流入电解液,最后回到色素。染料敏化太阳能电池的制造成本很低,这使它具有很强的竞争力。它的能量转换效率为12%左右。 (7)塑料电池 塑料太阳能电池以可循环使用的塑料薄膜为原料,能通过“卷对卷印刷”技术大规模生产,其成本低廉、环保。但塑料太阳能电池尚不成熟,预计在未来5年到10年,基于塑料等有机材料的太阳能电池制造技术将走向成熟并大规模投入使用。 太阳能工作原理 太阳能电池是通过光电效应或者光化学效应直接把光能转化成电能的装置。太阳能发电有两种方式,一种是光一热一电转换方式,另一种是光一电直接转换方式。其中,光一电直接转换方式是利用光电效应,将太阳辐射能直接转换成电能,光一电转换的基本装置就是太阳能电池。太阳能电池是一种大有前途的新型

太阳能电池的发展历史

龙源期刊网 https://www.360docs.net/doc/e612403954.html, 太阳能电池的发展历史 作者:张金晶 来源:《商情》2016年第26期 【摘要】相对于风能、地热能、生物能和潮汐能等新能源,太阳能以污染小、可利用率高、资源分布广泛和使用安全可靠等优点,成为最具有发展前景的能源之一。目前,随着太阳能电池制备技术的不断完善,其技术的开发应用已经走向商业化、大众化,特别是一些小功率、小器件的太阳能电池在一些地区都已经大量生产而且广泛使用。所以谁先开发光电转换效率高、制备成本低的太阳能电池就能在将来的市场抢占先机。 【关键词】太阳能单晶硅薄膜电池 引言:随着社会的飞速发展,能源是影响当今社会进步的重要因素,但是现阶段人类社会发展大部分还是依靠化石能源提供能量。可是化石能源分布极不均衡,并且不可再生,而且燃烧化石能源带来的环境污染、雾霾气候和温室效应严重影响到了人类社会的可持续发展。然而太阳能是一种可再生清洁能源,可以提供充足的能量供人类使用,因此开发新能源,是人类社会薪火相传,世代相传的重要保证。 此外,不可再生能源的过快消耗对当今的环境形势提出了新的挑战。例如如何解决温室效应,臭氧空洞等问题。有限的化石能源以及在开发利用不可再生能源的过程中出现的负面影响,不仅阻碍了人类经济的飞速发展,而且还严重影响到社会的可持续发展。因此,发展一种新型能源已然成为世界各国提升自己综合国力和倡导能源发展的一个重要手段。 1. 第一代太阳能电池 第一代太阳能电池是发展时间最久,制备工艺最为成熟的一代电池,一般按照研究对象我们将其可分为单晶硅、多晶硅、非晶硅电池。按照应用程度来说前两者单晶硅与多晶硅在市场所占份额最多,商业前景最好。 单晶硅太阳电池和多晶硅太阳电池。从单晶硅太阳能电池发明开始到现在,尽管硅材料有各种问题,但仍然是目前太阳能电池的主要材料,其比例约占整个太阳电池产量的90%以上。我国北京市太阳能研究所从20世纪90年代起开始进行高效电池研究,采用倒金字塔表面织构化、发射区钝化、背场等技术,使单晶硅太阳能电池的效率达到了19.8%。多晶硅太阳能电池的研究开发成本较低,稳定性也比较好,这两大优势引起了科研工作者的注意。其光电转换效率随着制备工艺的成熟不断提高,它达到的最高的光电转换效率为21.9%,但是它的电池效率在目前的太阳能电池中仍处于一般水平。 2.第二代太阳能电池

钙钛矿太阳能电池的光物理原理

钙钛矿太阳能电池的光物理原理 钙钛矿太阳能电池的光物理 溶液制备法制备的有机-无机杂化钙钛矿型太阳能电池,是光伏领域的一种新型太阳能电池新型材料,其光电转换效率已经超过17%,并且在该领域产生了巨大影响。这篇文章中,在这类新的光伏材料中,关于载流子动力学和电荷转移机制中的光物理和新的发现,进行了检验和提炼。一些开放性物理问题也将被讨论。 关键词:甲基氨碘化铅,钙钛矿型太阳能电池,光物理,瞬态吸收光谱,电荷动力学,电荷转移机制 有机无机杂化钙钛矿型太阳能电池(或简单的钙钛矿型太阳能电池)是在低成本光电池的研究中的最主要的突破。在这大约5年的期间里,这些溶液加工制备的太阳能电池成为第三代太阳能电池的先驱,比如有机太阳能电池,染料敏化太阳能电池,量子点太阳能电池。尽管,在最近举行的材料研究学会2014春季会议报告中声称,电池的转化效率已经达到了19.3%,但是到目前为止,能够证明确定的记录是17.9%,而在2009年,这个记录只有3.8%。相比较而言,染料敏化太阳能电池需要二十多年的研究才超过10%的转化效率。尽管在器件性能的显著增加,但钙钛矿型太阳能电池中的光物理机制仍然是不明确的。在本文中,我将首先简要地回顾了目前的钙钛矿型太阳能电池领域的进展,然后追踪一下光物理研究的发展。我还会强调一下钙钛矿中电子和空穴的扩散长度,CH3NH3PbI3的热空穴冷却动力学 和放大自发辐射的发现。最后,在这些材料中,一些关于光物理的问题也会进行讨论。 2.有机无机钙钛矿太阳能电池 2.1 三维的有机无机钙钛矿电池的结构 钙钛矿是一般化学式为AMX3 化合物的总称。A阳离子在立方晶胞的8个角上,M阳离子被6个X阴离子包围,位于[PbI6]4- 八面体的中心。如图1,CH3NH3PbI3情况。尽管钛酸钙的通用名称有着相同的“钙钛矿”标签,但有机无机钙钛矿材料与他们同名仅仅是因为他们的结构。在纳米科学发展的19世纪80年代,这类杂化材料能够形成三维(3D)到零维(0-D)与[PbI6]4- 八面体单元的类似物,直到把晶胞已作为广泛应用在半导体介观量子限制效应模型而深入研究。CH3NH3PbX3 (其中x是Cl,Br,I)是广泛调查的光伏材料的选择,这个材料由3D八面体网状结构形成。 2.2该领域和基本器件结构的概述

太阳能光热光电综合利用

本文由hpshu贡献 pdf文档可能在WAP端浏览体验不佳。建议您优先选择TXT,或下载源文件到本机查看。 2009 年第 1 期 上海电力 可再生能源发电 太阳能光热光电综合利用 倪明江 ,骆仲泱 ,寿春晖 ,王 ,赵佳飞 ,岑可法涛 ( 浙江大学能源清洁利用国家重点实验室 ,浙江杭州 310027) 摘 : 太阳能光热光电的综合利用技术是将聚光、要分光、热电联用等技术集成 ,通过对太阳能全波段能量进行一体化地利用 ,可极大地提高太阳能的利用效率 ,降低成本 ,具有重要的研究价值和市场应用价值。文章介绍了太阳能光热光电综合利用系统的技术情况 ,分别对集中式和分布式两种技术路线作了阐述 ,分析了聚光 PV/ T 系统以及与建筑一体化设计的 PV/ T 系统的未来发展方向。最后 , 结合各类太阳能利用系统的特点 , 比较分析了各种光热光电技术存在的问题 ,提出了综合利用各种光热光电技术来提高应用效果的理念。关键词 : 太阳能利用技术 ; 热发电 ; 聚光热电联用 ; 光热光电综合利用中图分类号 : T K513 文献标识码 :A 基金项目 : 国家自然科学基金资助项目(50676082) 1 引言 传统化石能源的大量使用 , 不仅造成了化石能源本身的短缺 , 也给世界环境带来了极大的危害 ,给人类生存空间造成了严重威胁。寻求可再生能源的高效清洁利用成了目前人类面临的共同问题 [ 1 ,2 ] 发展。而以现今的发展趋势来看 , 太阳能热力发电和光伏发电将是世界各国在太阳能利用领域研究的新重点。 2. 1 热利用 太阳能热利用方面 , 中国已成为世界上最大的太阳能热利用产品的生产、应用和出口的国家。 2007 年 ,集热器总保有量约为 10 800 万 m2 。热 。太阳能作为可再生清洁能源蕴藏着巨 15 大能量 ,被普遍认为是理想的新能源。太阳辐射到达地球表面的能量高达 4 ×1 0 5 利用形式多样 , 包括了太阳能热水器、太阳能空调、太阳能干燥和太阳能海水淡化等。 ( 1 ) 太阳能热水器太阳能热水器是太阳能热利用中最常见的一种装置。其基本原理是将太阳辐射能收集起来 , 通过与物质的相互作用转换成热能供生产和生活利用。我国是世界上最大的太阳能热水器制造中心 , 由我国生产的集热器推广面积约占世界的 76 % 。随着太阳能热水器的发展 ,出现了闷晒式、 M W , 相当于 每年 3. 6 ×亿 t 标准煤 ,约为全球能耗的 2000 10 倍。太阳能可以免费使用 ,又不需要运输 ,对环境无任何污染。在传统化石能源储备减少、价格快速上升 ,在温室气体排放引发的气候环境问题愈来愈显著的今天 , 太阳能作为可再生能源和新能源的代表 , 得到越来越多的关注 , 太阳能的利用、太阳能材料及相关技术的开发在世界范围内引起了重视

光伏电池的原理及发展现状

光伏电池的原理及发展现状 众所周知,太阳能是一种用之不竭、储量巨大的清洁可再生能源,每天到地球表面的辐射能量相当于数亿万桶石油燃烧的能量,太阳能开发与利用逐步成府重点发展的战略。热能和光能利用是太阳能应用的两种重要形式。光伏发电是利用光伏电池的光伏效应将太阳光的光能直接转换为电能的一种可再生、无污染的发电方式,正在全球范围内迅猛发展,其不仅要替代部分化石能源,而且未来将成为世界能源供应的主体,是世界各国可再生能源发展的重点。本文阐述了太阳能光伏电池的原理,综述了国内外光伏发电技术的发展现状及发展趋势。 光伏电池的原理及发展现状1839 年,法国的Edmond Becquerel 发现了光伏效应,即光照能使半导体材料内部的电荷分布状态发生变化而产生电动势和电流。光伏电池是基于半导体P- N 结接受太阳光照产生光伏效应,直接将光能转换成电能的能量转换器。1954 年,美国Bell 实验室的G.Pearson 等发明了单晶硅光伏电池,其原理如图1 所示。 图 1 中,太阳光照射到光伏电池表面,其吸收具有一定能量的光子,在内部产生处于非平衡状态的电子-空穴对;在P- N 结内建电场的作用下,电子、空穴分别被驱向N,P 区,从而在P- N 结附近形成与内建电场方向相反的光生电场;光生电场抵消P- N 结内建电场后的多余部分使P,N 区分别带正、负电,于是产生由N 区指向P 区的光生电动势; 当外接负载后,则有电流从P 区流出,经负载从N 区流入光伏电池。图2 为光伏电池等效电路,其中,Iph为与光伏电池面积、入射光辐照度成正比的光生电流(1 cm2硅光伏电池的Iph值为16 ~30 mA);ID,Ish分别为P- N 结的正向电流、漏电流;串联电阻RS主要由电池体电阻、电极导体电阻等组成(RS一般<1 );旁漏电阻Rsh 由硅片边缘不清洁或体内缺陷所致(Rsh一般为几k);RL 为外接负载电阻,IL,UO 分别为光伏电池输出电压、电流;当负载开路(RL= )时,UO即为开路电压Uoc,其与环境温度成反比、与电池面积无关(在100 mW/cm2的光谱辐照度下,硅光伏电池的Uoc一般为450 ~600 mV。与图2 对应的光伏电池解析模型,

优质纳米晶硅薄膜的低温制备技术及其在太阳能电池中的应用进展陈城钊

收稿日期:2008-09-11 *基金项目:韩山师范学院青年科研基金资助项目(0503)作者简介:陈城钊(1975)),男,广东潮州人,讲师,硕士. 第2卷 第4期材 料 研 究 与 应 用 V o1.2,N o.42008年12月 M A T ERIA L S RESEA RCH A ND AP PL ICAT ION Dec .2008 文章编号:1673-9981(2008)04-0450-05 优质纳米晶硅薄膜的低温制备技术及其 在太阳能电池中的应用进展 * 陈城钊1 ,邱胜桦1 ,刘翠青1 ,吴燕丹1 ,李 平1 ,余楚迎2 ,林璇英 1,2 (1.韩山师范学院物理与电子工程系,广东潮州 521041; 2.汕头大学物理系,广东汕头 515063)摘 要:纳米晶硅薄膜是集晶体硅材料和氢化非晶硅薄膜优点于一体,可望广泛应用于薄膜太阳能电池、光存储器、发光二极管和薄膜晶体管等光电器件的一种新型功能材料.本文综述低温制备优质纳米晶硅薄膜技术的研究进展及其在薄膜硅太阳能电池上的应用.关键词:纳米晶硅薄膜;太阳能电池;低温制备;进展中图分类号:T M 914.4 文献标识码:A 纳米晶硅(nc -Si z H )薄膜就是硅的纳米晶粒镶嵌在a -Si z H 网络里的一种硅纳米结构.由于它具 有较高的电导率(10-3~10-18-1#cm -1)、宽带隙、高光敏性、高光吸收系数等优良的光电特性而引起学术界的重视.纳米晶硅薄膜同时具备宽带隙和高电导这两种太阳能电池窗口材料所需的优良性质,现已成为研究探索的热门纳米薄膜材料[1].除用于制备薄膜太阳能电池外,在发光二极管、光存储器、隧穿二极管、薄膜晶体管以及单电子晶体管等光电器件方面也有潜在应用 [2] . 1 低温制备纳米晶硅薄膜的技术 为了制备适用于以玻璃为衬底的太阳能电池的纳米晶硅薄膜,近年来发展了低温(<450e )制膜技术.按成膜过程可分为两大类:一类是先制备非晶态材料,再固相晶化为纳米晶硅;另一类是直接在玻璃衬底上沉积纳米晶硅薄膜[2].1.1 固相晶化法 固相晶化(SPC)法的特点是非晶固体发生晶化的温度低于其熔融后结晶的温度.低造价太阳能电 池的纳米晶薄膜,一般以廉价的玻璃作衬底,以硅烷气为原材料,用PECVD 法沉积a -Si B H 薄膜,然后再用热处理的方法使其转化为纳米晶硅薄膜.这种方法的优点是能制备大面积的薄膜,可进行原位掺杂,成本低,工艺简单,易于批量生产.常规的高温炉退火、金属诱导晶化、快速热退火、区域熔化再结晶等都属于固相晶化法.1.1.1 常规高温炉退火 该方法是在氮气保护下把非晶硅薄膜放入炉腔内退火,使其由非晶态转变为纳米晶态 [3] .非晶硅晶 化的驱动力是晶相相对于非晶相较低的Gibbs 自由 能.固相晶化过程主要由晶核的形成及晶核长大两步完成.形核率和生长速率都受温度的影响,所以纳米晶硅薄膜的晶粒尺寸受温度的影响很大.晶硅薄膜的晶粒尺寸除受温度的影响外,与初始非晶硅膜的结构状况也有密切的关系.有研究者采用/部分掺杂法0来增大晶粒尺寸,即在基底上沉积两层膜,下层进行磷掺杂,作为成核层,上层不掺杂,作为晶体生长层,退火后可获得较大的晶粒[4].1.1.2 金属诱导晶化 金属诱导晶化就是在非晶硅薄膜上镀一层金属

光电化学电极的研究及其在太阳能转化方面的应用

物理学和高新技术 光电化学电极的研究及其在太阳能转化方面的应用 3 罗文俊 于 涛 邹志刚 (南京大学物理系 环境材料与再生能源研究中心 南京 210093) 摘 要 Ti O 2半导体光电极的发现引发了科学界大量关于半导体光电极的研究.目前,对Ti O 2的掺杂,对新材料的探索以及对异质结的深入研究,目的都是为了提高半导体光电极的太阳光利用效率.敏化太阳能电池的出现是半导体光电极在实用化方面迈进的一大步.文章简述半导体光电极的研究历史,并对该领域将来的研究方向进行了展望. 关键词 半导体光电极,异质结,染料敏化,太阳能 Se m i conductor photoelectrodes and thei r appli ca ti ons i n sol ar energy conversi on LUO W en 2Jun Y U Tao Z OU Zhi 2Gang (Eco m aterials and Rene w able Energy Research Center ,D epart m ent of Physics ,N anjing U niversity,N anjing 210093,China ) Abstract Since it was found that Ti O 2phot oelectrodes can s p lit water into H 2and O 2directly under UV irradi 2ati on,much research has focused on sem iconductor electrodes,including doped Ti O 2,new materials,and heter o 2juncti ons,in efforts t o i m p rove the conversi on efficiency of solar energy .Subsequently,the appearance of dye -sensitized solar cells made sem iconduct or electr odes p ractically feasible .The hist orical devel opment of sem icon 2duct or photoelectrodes is briefly introduced,and their future p r os pects discussed . Keywords sem iconductor phot oelectr odes,heterojunction,dye -sensitized,s olar energy 3 国家自然科学基金(批准号:20373025,50472067)、2005年度教 育部留学回国人员科研启动基金资助项目 2005-05-26收到初稿,2005-09-16修回  通讯联系人.Email:yutao@nju .edu .cn 能源和环境问题是人类在21世纪面临的两大 主要难题,如何解决这两大难题给人类提出了巨大挑战.在能源方面,太阳能和氢能被认为是本世纪最有可能逐步代替化石能源的绿色能源.但是目前生产氢气的成本太高,探索降低生产氢气成本的新方法、新工艺已经成为当前世界各国亟待解决的战略问题.采用半导体光电极的技术,利用太阳能制备氢气或者直接将太阳能转化成电能被认为是最有希望的研究方向之一. 1 半导体光电极的发现 1839年,Becquerel 在巴黎的一次学术会议上报 道了他的研究结果 [1] .他在两种不同的金属电极上 镀一层卤化银作为电化学电池的电极,浸泡在电解液中,当让光照射到其中一根电极上时,他惊奇地发现在外电路中有电流通过.当时Becquerel 只有18岁,受实验条件和认识水平的限制,他在这一方面并没有做更为深入的研究. 直至20世纪50年代,随着半导体工业的迅速发展和半导体理论的日渐成熟,众多科学家在半导体材料及半导体器件方面做了大量的研究工作,积累了丰富的实验数据,半导体材料以其特殊的光电性质,在电化学研究中作为电极发挥了重要作用.诺

太阳能电池的原理及制作

太阳能电池的原理及制作 太阳能是人类取之不尽用之不竭的可再生能源。也是清洁能源,不产生任何的环境污染。在太阳能的有效利用当中;大阳能光电利用是近些年来发展最快,最具活力的研究领域,是其中最受瞩目的项目之一。 制作太阳能电池主要是以半导体材料为基础,其工作原理是利用光电材料吸收光能后发生光电于转换反应,根据所用材料的不同,太阳能电池可分为:1、硅太阳能电池;2、以无机盐如砷化镓III-V化合物、硫化镉、铜铟硒等多元化合物为材料的电池;3、功能高分子材料制备的大阳能电池;4、纳米晶太阳能电池等。 一、硅太阳能电池 1.硅太阳能电池工作原理与结构 太阳能电池发电的原理主要是半导体的光电效应,一般的半导体主要结构如下: 图中,正电荷表示硅原子,负电荷表示围绕在硅原子旁边的四个电子。 当硅晶体中掺入其他的杂质,如硼、磷等,当掺入硼时,硅晶体中就会存在着一个空穴,它的形成可以参照下图: 图中,正电荷表示硅原子,负电荷表示围绕在硅原子旁边的四个电子。而黄色的表示掺入的硼原子,因为硼原子周围只有3个电子,所以就会产生入图所示的蓝色的空穴,这个空穴因为没有电子而变得很不稳定,容易吸收电子而中和,形成P(positive)型半导体。 同样,掺入磷原子以后,因为磷原子有五个电子,所以就会有一个电子变得非常活跃,形成N(negative)型半导体。黄色的为磷原子核,红色的为多余的电子。如下图。

N型半导体中含有较多的空穴,而P型半导体中含有较多的电子,这样,当P型和N型半导体结合在一起时,就会在接触面形成电势 差,这就是PN结。 当P型和N型半导体结合在一起时,在两 种半导体的交界面区域里会形成一个特殊的薄 层),界面的P型一侧带负电,N型一侧带正电。 这是由于P型半导体多空穴,N型半导体多自由电子,出现了浓度差。N区的电子会扩散到P区,P区的空穴会扩散到N区,一旦扩散就形成了一个由N指向P的“内电场”,从而阻止扩散进行。达到平衡后,就形成了这样一个特殊的薄层形成电势差,这就是PN结。 当晶片受光后,PN结中,N型半导体的空穴往P型区移动,而P型区中的电子往N 型区移动,从而形成从N型区到P型区的电流。然后在PN结中形成电势差,这就形成了电源。(如下图所示)

太阳能电池发展前景

第二章太阳能电池的基本理论 2.1 半导体 半导体是导电性能介于金属与绝缘体之间的一种材料。在高纯度的半导体中材料中,电子和空穴的浓度相等,这样的半导体称为本征半导体。如果向其中加入某种杂质元素,若电子的浓度大于空穴的浓度,则称它为n型半导体,此时的电子成为多数载流子,空穴则为少数载流子。反之,可以形成p型半导体。 图2.1 半导体的能带图示意图 2.2 pn结及其能带结构 2.2.1 pn结 图2.2 (a)pn结简化结构图(b)理想均匀掺杂pn结的掺杂剖面如图2.2(b)所示,随着扩散运动的进行,在p区和n区的交界面p

2.2.2 pn 结的能带结构 当两块半导体结合形成pn 结时,按照费米能级的意义,电子将从费米能级高的n 区流向费米能级低的p 区,空穴从费米能级低的p 区流向费米能级高的n 区因此,E Fn 不断下降,E Fp 不断上升,直到E Fn = E Fp 为止。这时,pn 结中有统一的费米能级E F , pn 结处于平衡状态。其能带如图所示 图2.3 平衡pn 结的能带图(a)n 、p 型半导体能带(b)平衡pn 结能带图 事实上,E Fn 是随着n 区能带一起向下移动,E Fp 是随着p 区能带一起向上移动的。能带能移动的原因是pn 结空间电荷区存在内建电场的作用。随着内建电场(方向n→p )的增加,空间电荷区内电势V(x)(方向n→p )降低,而电子的势能-qV(x)由n 区向p 区升高,所以p 区的能带相对n 区上移,n 区的能带相对于p 区下移,直至费米能级处处相等时,能带才停止相对移动,pn 结达到平衡状态。 因此,pn 结中费米能级处处相等恰好标志了每一种载流子的扩散电流和漂移电流相互抵消,没有净电流通过pn 结。 这一结论也可从电流密度方程式中推出,电子电流密度和空穴电流密度分别如下: (式2-1) F n n dE J n dx =μ

太阳能电池的的性能主要取决于它的光电转换效率和输出功率

太阳能电池板 太阳能电池的的性能主要取决于它的光电转换效率和输出功率. 1.效率越大,相同面积的太阳能电池板输出功率也就越大, 用高效率的太阳能电池板可以节省安装面积, 但是价格更贵. 2.太阳能电池的功率, 在太阳能电池板的背面标牌中, 有关于太阳能电池板的输出参数, 如VOC开路电压,ISC短路电流,VMP工作电压,IMP工作电流, 等. 但我们只需要用工作电压和工作电流就可以了, 这两个相乘就可以得这块太阳能电池板的输出功率. 太阳能电池板介绍:采用高质量单晶/多晶硅材料,经精密设备树脂封装生产出来的太阳能板,有良好的光电转换效果,外形美观,使用寿命长。 太阳能电池板的作用是将太阳的光能转化为电能后,输出直流电存入蓄电池中。太阳能电池板是太阳能发电系统中最重要的部件之一。 太阳能电池组件可组成各种大小不同的太阳能电池方阵,亦称太阳能电池阵列。太阳能电池板的功率输出能力与其面积大小密切相关,面积越大,在相 同光照条件下的输出功率也越大。 2.太阳能电池板的种类 (1)单晶硅太阳能电池 目前单晶硅太阳能电池的光电转换效率为15%左右,最高的达到24%,这是目前所有种类的太阳能电池中光电转换效率最高的,但制作成本很大,以致于它还不能被大量广泛和普遍地使用。由于单晶硅一般采用钢化玻璃以及防水树脂进行封装,因此其坚固耐用,使用寿命一般可达15年,最高可达25年。 (2)多晶硅太阳能电池 多晶硅太阳能电池的制作工艺与单晶硅太阳能电池差不多,但是多晶硅太阳能电池的光电转换效率则要降低不少,其光电转换效率约12%左右(2004年7月1日日本夏普上市效率为14.8%的世界最高效率多晶硅太阳能电池)。从制作成本上来讲,比单晶硅太阳能电池要便宜一些,材料制造简便,节约电耗,总的生产成本较低,因此得到大量发展。此外,多晶硅太阳能电池的使用寿命也要比单晶硅太阳能电池短。从性能价格比来讲,单晶硅太阳能电池还略好。 :

相关文档
最新文档