四种杀菌剂对小麦全蚀病菌抑制中浓

四种杀菌剂对小麦全蚀病菌抑制中浓
四种杀菌剂对小麦全蚀病菌抑制中浓

四种杀菌剂对小麦全蚀病菌抑制中浓

度(EC50)的测定

(河南农业大学植物保护学院450008 )

摘要:为了选择可有效防治小麦全蚀病茵的杀菌剂,通过FAO推荐的茵落直径法测定其对四种杀茵剂剂其混剂的敏感性。结果表明:小麦全蚀致病菌对申嗪霉素最为敏感,其EC50为0.000768mg/mL。对敌委丹、适乐时和二者的混剂中度敏感,其EC50分别为0.002913mg/mL、0.002028mg/mL、0.00132mg/mL。对硅噻菌胺低度敏感,其EC50为0.00239543mg/mL。由此可见,申嗪霉素对小麦全蚀病的防治在试验药剂中效果最好。

关键词:小麦;全蚀病菌;杀菌剂;抑制中浓度(EC50);测定

1引言

全蚀病是目前小麦生产上一种严重的土传病害,由于缺乏高抗品种,药剂防治仍然是一种主要的防治手段,近些年来市场上并没有对全蚀病效果特别好的药剂。高效、低毒与环境相容性好的微生物源抗菌剂申嗪霉素(M18)是我国自主开发的原创性农药。该产品已经获得农业部颁发的农药登记证,其主要的有效成分是吩嗪-1-羧酸。本试验通过申嗪霉素对全蚀病菌的抑菌情况来,考察是否可以作为防治全蚀病的药剂。

2 材料与方法

2.1 供试杀菌剂

3% 敌委丹 SC (先正达公司生产公司)、2.5% 适乐时 SC (瑞士诺华公司生产)、1% 申嗪菌素 SC (上海农乐生物制品股份有限公司生产)、12.5% 硅噻菌胺 SC (孟山都公司生产)等四种药剂。

2.2 供适病菌

病原菌:禾顶囊壳菌(Gaeumannomyces graminis(Sacc.)v.Arx & Oliver),由河南农业大学植物保护学院植物病理实验室分离保藏。

2.3 母液配置

1% 申嗪霉素用无菌水配成0.4mg/mL的母液。3% 敌委丹用无菌水配成

1.2mg/mL的母液。

2.5% 适乐时用无菌水配成1mg/mL的母液。12.5% 硅噻菌胺用无菌水配成0.5mg/mL的母液。

2.4 培养基制备

先将所需药液用无菌水配成系列预浓度。将PDA 融化并冷却到45~50℃,取1 ml 的供试药液和9 m1 培养基加到直径为8.5 cm培养皿中混匀,制成含药平板。

2.5 处理浓度和处理次数

采用FAO推荐的菌落直径法,用直径为4 mm 的打孔器沿菌落边缘打取菌块,分别放入含有系列预浓度的杀菌剂培养基上,以不含药的培养基做为对照,每皿接一个菌块,重复3次。小麦全蚀病菌在25 C下培养7d。处理浓度如表1,每处理重复4次。

表1 5 种杀菌剂的处理浓度

处理供适浓度(mg/mL)

类型药剂名称 1 2 3 4 5

单剂申嗪霉素0.008 0.004 0.002 0.001 0.0005 敌委丹0.024 0.012 0.006 0.003 0.0015

适乐时0.02 0.01 0.005 0.0025 0.00125

硅噻菌胺0.1 0.05 0.025 0.0125 0.00625

混剂敌委丹+

适乐时

0.02136 0.01068 0.00534 0.00267 0.001335 无菌水

对照

—————

2.6 数据分析

用十字交叉法测量菌落直径,试验重复4次,由菌落直径平均值(mm),依以下公式算出生长抑制率。

菌丝生长抑制率=(1-药剂处理菌落直径÷对照处理菌落直径)×100% 将菌丝生长抑制率换算成抑制几率值(Y),药剂浓度换算成浓度对数(X)。

按浓度对数与几率值回归法求得不同杀菌剂对番茄早疫病的毒力公式Y=a+bx,并由毒力公式计算各药剂对小麦全蚀病的抑制中浓度EC

50

值。

3 结果与分析

3.1四种杀菌剂对小麦全蚀致病菌(禾顶囊壳菌)萌发抑制率的测定见表2.表 2 四种杀菌剂不同浓度对小麦全蚀致病菌萌发抑制率

药剂浓度(mg/ml) 菌落直径(mm)

直径平均值(mm) 抑制率(%) A B C D

0.008 4 7 8 10 7.25 90.301

0.004 20 20 19 19 19.5 73.91304

申嗪霉素0.002 28 29 29 30 29 61.20401

0.001 35 35 36 35 35.25 52.84281

0.0005 38 38 39 40 38.75 48.16054

0.024 6 7 4 7 6 91.97324

0.012 17 18 18 17 17.5 76.58863

敌委丹0.006 29 31 31 30 30.25 59.53177

0.003 35 38 35 36 36 51.83946

0.0015 45 47 46 46 46 38.46154

0.02 4 6 7 4 5.25 92.97659

0.01 18 19 20 17 18.5 75.25084

适乐时0.005 31 30 33 32 31.5 57.85953

0.0025 36 38 34 36 36 51.83946

0.00125 39 40 36 38 38.25 48.82943

0.1 4 7 8 10 7.25 90.301

0.05 17 18 18 17 17.5 75.25084

硅噻菌胺0.025 29 31 31 30 30.25 57.85953

0.0125 35 38 35 36 36 51.83946

0.00625 39 40 36 38 38.25 48.16054

0.02136 4 5 6 4 4.75 93.64548

0.01068 14 13 14 12 13.25 82.27425 敌委丹+适乐时0.00534 19 18 19 20 19 74.58194

0.00267 27 30 31 29 29.25 60.86957

0.001335 32 34 35 35 34 54.51505 无菌水对照 -- 75 74 74 76 74.75 --

由表2数据可知,申嗪霉素、敌委丹、适乐时、硅噻菌胺等四种杀菌剂及敌委丹与适乐时(1:2)混剂,对小麦全蚀致病菌(禾顶囊壳菌)均表现出抑制作用。并且各种药剂的抑制效果与浓度呈正相关。高浓度均可表现出较强的抑制作

用。

3.2 四种杀菌剂对小麦全蚀致病菌EC50的测定

表 3 四种杀菌剂对小麦全蚀致病菌萌发抑制中浓度

药剂毒力回归方程相关系数EC50(mg/mL)申嗪霉素Y=1.0827x + 8.3722 0.9513 0.000768

敌委丹Y=1.3529x + 8.4304 0.9761 0.002913

适乐时Y=1.2102x + 8.2590 0.9236 0.002028

硅噻菌胺Y=0.9401x + 5.5834 0.9674 0.002395

敌委丹+适乐时Y=1.1541x + 8.3233 0.9795 0.00132

由表3可以看出,实验用的申嗪霉素、敌委丹、适乐时三种药剂及敌委丹与适乐时(1:2)的混剂,均对小麦全蚀致病菌(禾顶囊壳菌)有较强的抑制作用。根据剂量反应曲线的回归方程和测定结果表明,申嗪霉素的抑菌作用最强,小麦全蚀病对申嗪霉素的EC50为0.000768mg/mL。敌委丹、适乐时和二者的混剂的抑菌作用次之,小麦全蚀病对它们的EC50分别为0.002913 mg/mL、0.002028

mg/mL、0.00132 mg/mL.。硅噻菌胺对小麦全蚀病致病菌也有较好的抑制作用,其EC50为0.002395mg/mL。

4 结论

过去关于小麦全蚀病的化学防治的研究报道虽然很多,但主要是针对某一种化学药剂的室内或田间某一时期防治效果,缺乏对多种药剂的系统比较研究。本试验对多种新型杀菌剂,通过室内毒力测定等多方面进行了系统比较研究。从中筛选出1%申嗪霉素 SC 这一高效杀菌剂,这对于小麦全蚀病的药剂防治工作具有较高的实际意义,为合理使用杀菌剂防治病害提供了理论依据。由于本试验仅仅考察了申嗪霉素对全蚀病菌的室内毒力测定,还需要进步的试验室内盆栽试验和田间试验。也要考虑申嗪霉素的剂型问题,对于土传病害建议做成拌种剂更为合理。

油田用新型杀菌剂研究

油田用新型杀菌剂的研究进展 摘要 菌腐蚀危害一直以来就在油田生产中存在,特别是随着二、三次采油技术的发展, 多数油田进入高含水开发期,油田注、采水量的不断增加, 采出液含水率的增高,加上聚合物驱的应用,这些都给细菌在油田系统中的繁殖创造了有利条件, 使得细菌腐蚀问题日益严重[1]。本文便是针对杀菌剂的发展进行的研究。 关键字:油田注水;杀菌剂;细菌 引言 在油田注水系统中,各种微生物,如:硫酸盐还原菌(SRB)、铁细菌、腐生菌以及其它微生物,它们在生长、代谢、繁殖过程中,可引起钻采设备、注水管线及其它金属材料的严重腐蚀,并堵塞管道,损害油层,引起注水量、石油产量、油气质量下降,也为原油加工带来严重困难,造成极大的经济损失[2,3],本文就油田杀菌剂最新应用研究现状进行了总结, 并分析了油田杀菌剂的发展趋势, 以期为新型杀菌剂的开发提供参考。 1 油田回注水中主要细菌类型[4] 1.1 硫酸盐还原菌(SRB) SRB对采油设备的腐蚀主要机理是:缺氧条件下引起铁腐蚀(厌氧腐蚀),形成非晶形的硫化亚铁沉淀,造成堵塞,降低注水井的注入能力;硫化氢污染燃料气;硫化氢污染库存的燃料油。此外,硫化氢很容易从被污染的水中逸出,并在通风条件差的地方积累硫化氢是一种具有剧毒的气体,人吸人体内是很危险的[5]。 1.2 铁细菌(FB) 铁细菌具有附着在金属表面的能力和氧化水中亚铁成为氢氧化高铁的能力,使高铁

化合物在铁细菌胶质鞘中沉积下来。这样形成了包含菌体和氢氧化铁等组成的结瘤。由于瘤底部缺氧,能加速硫酸盐还原菌的繁殖,并造成注水井和过滤器的堵塞[4]。 1.3腐生菌(TGB) 腐生菌(TGB),能生物降解各种有机处理剂,同时产生的大量菌体和粘性代谢产物与机械杂质等一起进入地层,引起地层堵塞和油层酸化。它们产生的粘液与污泥中各种杂质一起附着在管线和设备上,堵塞注水井和过滤器。同时,粘泥底下容易产生硫酸盐还原菌。造成局部缺氧条件,给硫酸盐还原菌的生长繁殖有了很好的条件。 2 我国油田注水常用的杀菌剂[6] 2.1 氧化型杀菌剂 氧化性杀菌剂具有杀菌力强、价格低廉、来源广泛等优点, 至今仍是应用比较广泛的一类杀菌剂。我国各油田早期注水杀菌常用氯气, 这是因为氯气具有来源丰富、价格便宜、使用方便、作用快、杀菌致死时间短、可清除管壁附着的菌落、防止垢下腐蚀、污染较小等优点。近些年, 国外氧化性杀菌剂的研究主要向使用较安全、杀菌效率较高的方向发展,目前, 国内一些科研机构也开始着手这方面的研究,并在渤海油田得到了应用。但国内大多陆上油田, 注水系统主要在密闭条件下进行, 注水中有机质含量很高, 通常需要大量的氧化剂才能达到杀菌的目的。长期的现场试验研究表明, 氧化性杀菌剂由于杀菌效果不佳或是会增加腐蚀, 现场应用不理想。因此, 我国油田注水系统杀菌仍以非氧化性杀菌剂为主。在所有油田杀菌剂市场中氧化性杀菌剂占17.5%, 非氧化性杀菌剂占72.5%, 其他约占10%。这也间接地反映出非氧化性杀菌剂的优势所在。 2.2 非氧化型杀菌剂 目前, 我国大多数油田所使用的杀菌剂多为非氧化型杀菌剂, 根据它们的杀菌作用基团及作用机理, 通常可分为以下几类:

杀菌剂的介绍

杀菌剂的介绍 参考资料:https://www.360docs.net/doc/e61652933.html,/trade/supply/index--1000100310021009--.htm 杀菌剂的作用方式有两种:一是保护性杀菌剂,二是内吸性杀菌剂。保护性杀菌剂在植物体外或体表直接与病原菌接触,杀死或抑制病原菌,使之无法进入植物,从而保护植物免受病原菌的危害。此类杀菌剂称为保护性杀菌剂,其作用有两个方面:一是药剂喷洒后与病原菌接触直接杀死病原菌,即“接触性杀菌作用”;另一种是把药剂喷洒在植物体表面上,当病原菌落在植物体上接触到药剂而被毒杀,称为“残效性杀菌作用”。保护性杀菌剂主要有以下几类:硫及无机硫化合物,如硫磺悬浮剂,固体石硫合剂等;铜制剂,主要有波尔多液,铜氨合剂等;有机硫化合物,如福美双、代森锌、代森铵、代森锰锌等;酞酰亚铵类,如克菌丹、敌菌丹和灭菌丹等;抗生素类,如井冈霉素、灭瘟素、多氧霉素等;其它类,如叶枯灵、叶枯净、百菌清、禾穗宁等。 内吸性杀菌剂 施用于作物体的某一部位后能被作物吸收,并在体内运输到作物体的其他部位发生作用,具有这种性能的杀菌剂称为“内吸性杀菌剂”。内吸性杀虫剂有两种传导方式,一是向顶性传导,即药剂被吸收到植物体内以后随蒸腾流向植物顶部传导至顶叶、顶芽及叶类、叶缘。目前的内吸性杀菌剂多属此类。另一种是向基性传导,即药剂被植物体吸收后于韧皮部内沿光合作用产物的运输向下传导。内吸性杀菌剂中属于此类的较少。还有些杀菌剂如乙膦铝等可向上下两个方向传导。内吸性杀菌剂主要有以下几类:苯并咪唑类,如苯菌灵、多菌灵、噻菌灵、硫菌灵与甲基硫菌灵等;二甲酰亚胺类,如异菌脲、乙烯菌核利等;有机磷类,如稻瘟净、异稻瘟净、三乙膦酸铝等;苯基酰胺类,如甲霜灵等;甾醇生物合成抑制剂类,此类杀菌剂包括十三吗啉、嗪氨灵、丁赛特、甲菌啶和乙菌啶、抑霉唑和咪酰胺、三唑醇和三唑酮等,从化学结构上看,他们分别属于吗啉、吡啉、吡啶、嘧啶、咪唑、1,2,4-三唑类化合物。甾醇合成抑制剂类杀菌剂兼具保护作用和治疗作用,杀菌谱较广。 杀菌剂防治植物病害的原理:简单地说,杀菌剂是对病原微生物具有毒杀作用的化合物。但“杀菌”一词涵义并不仅限于“杀死”病原微生物生长或孢子萌发两层含意。能够把病原微生物杀死的杀菌剂起杀菌作用,能抑制病原物孢子萌发或生长的杀菌剂起抑菌作用,这两种作用都可以在农业生产上达到防病和治病的目的。杀菌剂的作用方式不同,使用方法也各异,但从根本上来说,杀菌剂防治病害的原理不外乎三种,即化学保护,化学治疗和化学免疫。 化学保护就是在植物未患病之前喷洒杀菌剂预防植物病害的发生。有“未见兔子先撒鹰”的意思。常见的杀菌剂中有些杀菌剂只有保护措施一般有两种:一是在病原菌的来源处施药清除侵染源,病原菌的来源主要有病菌越冬的场所,中间寄主和土壤等。通过施用杀菌剂消灭或减少侵染源的目的就是要减少病原菌对作物造成侵染的可能性。例如冬季清除果园内杂草,消灭越冬病菌;种菌消毒和土壤消毒等具体手段都属此类化学保护措施。二是在田间生长着的未发病而可能被病原菌侵染的作物体上喷洒杀菌剂,防止病原菌侵染。作物表面喷上杀菌剂以后就可以对前来侵染作物的病原物细胞或孢子起毒杀作用。为防治土传病原菌对作物的侵染,在播种前用杀菌剂处理作物种子或在移栽前使用杀菌剂处理幼苗根部都属于此类措施。 化学治疗就是“见了兔子方撒鹰”。即在植物发病或感病后才施用杀菌剂使之对被保护的作物或者对病原菌起作用,改变病原菌的致病过程,从而达到减轻或消除病害的目的。预防

小麦全蚀病和防治技术

小麦全蚀病及其防治技术 省市植保植检站珍 小麦全蚀病是小麦的重要病害之一,省植物检疫对象。省1992 年首先在原阳、浚县、扶沟等县发现小麦全蚀病,以后扩展蔓延很快,目前已发展到好几个地、市。小麦受全蚀病危害以后,表现为分蘖减少,成穗率低,千粒重下降,有的后期形成枯孕穗、枯白穗。轻发生地块一般减产5%~20%,严重的减产50%以上,甚至绝收。 小麦全蚀病寄主围较广,除危害小麦外,还危害大麦、玉米、谷子等作 物及鹅观草、毒麦等禾本科杂草。 一、主要识别症状 小麦全蚀病是一种典型的根部病害,病菌侵染的部位只限于小麦根部和茎基部15cm以下,地上部的症状,如白穗,主要是由于根及茎基部受害引起的。小麦整个生育期均可感病,各生育期发病症状识别如下: 1.幼苗期:幼苗感病后,初生根部根茎变为黑褐色,次生根上也有很多病斑,严重时病斑连在一起,使整个根系变黑死亡。发病轻的麦苗即使不死亡,也表现为地上部叶色变黄,植株矮小,生长不良,类似干旱缺肥状。病株易从根茎部拔断。 2.分蘖期:地上部分无明显症状,仅重病植株表现稍矮,基部黄叶多。拔出麦苗,用水冲洗麦根,可见种子根与地下茎都变成了黑褐色。 3.拔节期:病株返青迟缓,黄叶多,拔节后期重病植株矮化、稀疏,叶片自下而上变黄,似干旱缺肥状。麦田出现矮化发病中心,生长高低不平。 4.抽穗灌浆期:病株成簇或点片出现早枯白穗,并且在茎基部叶鞘侧形 成“黑膏药”状的黑色菌丝层,极易识别。这也是与其它小麦根病区别的主要症状。 二、传播途径 1.土壤传播:小麦全蚀病菌主要集中在病株根部及茎基部地上15cm围 ,小麦收割后,病根茬大部分留在田间,土壤中菌源量逐年积累,致使病田 的病情也逐年加重。而土壤中的病菌还可以通过犁耙耕种向四周扩展蔓延。 2.粪肥传播:病菌能随落场土、麦糠、麦秸、茎秆等混入粪肥中,这些粪肥若直接还田或者不经高温发酵沤制施入田中,就可把病菌带入田间,导致病害传播蔓延。 3.种子传播:混杂在种子间的病株残体随种子调运,是远距离传播的主要途径。 三、影响发病的因素 小麦全蚀病的发生与栽培管理、土质肥力、整地方式、小麦播期、品种抗性等很多因素有关。 1.连作病重,轮作病轻。如小麦与玉米、谷子等作物1年连作多年连种,增加了土壤中的病菌量,故病情加重;隔茬种麦或水旱轮作可有效控制病情的发展。 2.土壤肥力低病情重。有机质含量高和氮磷钾肥充足的土壤发病轻,主要是因为这些地块有利于小麦生长,从而增强了植株抗病菌侵染的能力和受害后恢复生长的能力。反之,土壤瘠薄,氮磷钾肥比例失调,尤其是缺磷地块,病

四种杀菌剂对小麦全蚀病菌抑制中浓度

四种杀菌剂对小麦全蚀病菌抑制中浓 度(EC50)的测定 (河南农业大学植物保护学院450008 ) 摘要:为了选择可有效防治小麦全蚀病茵的杀菌剂,通过FAO推荐的茵落直径法测定其对四种杀茵剂剂其混剂的敏感性。结果表明:小麦全蚀致病菌对申嗪霉素最为敏感,其EC50为0.000768mg/mL。对敌委丹、适乐时和二者的混剂中度敏感,其EC50分别为0.002913mg/mL、0.002028mg/mL、0.00132mg/mL。对硅噻菌胺低度敏感,其EC50为0.00239543mg/mL。由此可见,申嗪霉素对小麦全蚀病的防治在试验药剂中效果最好。 关键词:小麦;全蚀病菌;杀菌剂;抑制中浓度(EC50);测定 1引言 全蚀病是目前小麦生产上一种严重的土传病害,由于缺乏高抗品种,药剂防治仍然是一种主要的防治手段,近些年来市场上并没有对全蚀病效果特别好的药剂。高效、低毒与环境相容性好的微生物源抗菌剂申嗪霉素(M18)是我国自主开发的原创性农药。该产品已经获得农业部颁发的农药登记证,其主要的有效成分是吩嗪-1-羧酸。本试验通过申嗪霉素对全蚀病菌的抑菌情况来,考察是否可以作为防治全蚀病的药剂。 2 材料与方法 2.1 供试杀菌剂 3% 敌委丹 SC (先正达公司生产公司)、2.5% 适乐时 SC (瑞士诺华公司生产)、1% 申嗪菌素 SC (上海农乐生物制品股份有限公司生产)、12.5% 硅噻菌胺 SC (孟山都公司生产)等四种药剂。 2.2 供适病菌 病原菌:禾顶囊壳菌(Gaeumannomyces graminis(Sacc.)v.Arx & Oliver),由河南农业大学植物保护学院植物病理实验室分离保藏。 2.3 母液配置

油田注水用杀菌剂在我国的应用及发展

油田注水用杀菌剂在我国的应用及发展 大油田用于增产对于回注水中细菌含量高的情况,流程没有详细说明细菌的处理不仅是生油生产带来的潜在危险,这也制约了杀菌药的进一步研究和开发。油面随着油田注水规模的扩大,聚合物驱的液体性能逐渐提高复杂的,在未来发展杀菌药的时候,应该有更多的高校和科研院所共同参与和加强基础理论研究,提出了更新更合适的灭菌和抗菌措施。 标签:油田注水;杀菌剂;作用机理 1 使用中存在问题 常规产品过剩,缺乏针对性强、独具特色的药剂;药剂品种过于单一,众多的杀菌剂牌号都是由这些单剂进行各种各样的复配得到的。这是因为药剂间的复配不仅能提高杀菌效率还能降低处理费用,所以近年来国内有关科研机构及厂家都积极的选用复配的方式研制新产品,在一定程度上,对研究新型杀菌剂缺乏积极性。 杀菌剂的质量虽然比过去有了较大的提高,但仍存在许多问题。如常用的杀菌剂1227一般加量约为60mg/l,但现场已有报导,其投加量为250mg/l仍不能完全杀灭注水中的细菌。当然产生这种现象可能有多种原因,如:细菌具有了抗药性,药剂中杀菌剂含量不够或有抑制其作用的杂质;投加方式不合理,投加地点欠妥当等;同一杀菌剂产品,不同批次,不同厂家,在物理化学性能、使用性能等方面存在较大差异的现象已日益增多。为此,有关的质量检验机构应加大抽检力度,规范杀菌剂市场,提高杀菌剂的质量。 缺乏对注水处理的重视。石油生产加工企业管理者在生产加工方面较为重视的大多为所能获得的利益和成本的投入,而对于产品的质量以及性能却尤为忽视,这便是当下石油产品性能低下,质量不能达标的根本原因所在,因此,在石油产品深加工过程中一些重要的细节就会被忽视掉,典型的就是石油注水这样的环节。企业管理者尤其是技术人员缺乏对于注水处理的重视,认为这项环节可有可无,或是草草了事以应付形式,有的企业甚至直接取消这个步骤,认为这样不仅能够加快成品的生产效率还可以减少技术投入、人才配备以及节约成本,其实不然,这样的行为只能得到一时的蝇头小利,而生产出的产品大多不符合国家的基本质量要求,则许多投入等于浪费。 2 我国油田注水常用的杀菌剂及其作用机理 2.1 氧化型杀菌剂 氧化型杀菌剂又称氧化型毒剂,可见这种杀菌剂在使用的过程中的毒性是十分巨大的,这種杀菌剂在使用时的基本作用机理是利用强氧化物质对蛋白质等大分子物质的破坏,因为在石油注水中利用杀菌剂的目的主要是杀死所用注水液中

小麦全蚀病的防治方法

小麦全蚀病的症状和危害 全蚀病又称小麦立枯病、黑脚病。全蚀病是一种根部病害,只侵染麦根和茎基部1—2节。苗期病株矮小,下部黄叶多,种子根和地中茎变成灰黑色,严重时造成麦苗连片枯死。返青迟缓、分蘖少,病株根部大部分变黑,有的时候在茎基部及叶鞘内侧出现较明显灰黑色菌丝层。 1·阶段特征 小麦抽穗后田间病株成簇或点片状发生早枯白穗,病根变黑,易于拔起。在茎在部表面及叶鞘内布满紧密交织的黑褐色菌丝层,呈“黑脚”状,天线后颜色加深呈黑膏药状,上密布黑褐色颗粒状子囊壳。该病与小麦其他根腐型病害区别在于种子根和次生根变黑腐败,茎基部生有黑膏药状的菌丝体。幼苗期病原菌主要侵染根和地下茎,使之变黑腐烂,地上表现病苗基部叶片发黄,心叶内卷,分蘖减少,生长衰弱,严重时死亡。病苗返青推迟,矮小稀疏,根部变黑加重。拔节后茎基部1-2节叶鞘内侧和茎秆表面在潮湿条件下形成肉眼可见的黑褐色菌丝层,称为“黑脚”,这是全蚀病区别于其他根腐病的典型症状。重病株地上部明显矮化,发病晚的植株矮化不明显。由于茎基部发病,植株早枯形成“白穗”。田间病株成簇或点片状分布,严重时全田植株枯死。在潮湿情况下,小麦近成熟时在病株基部叶鞘内侧生有黑色颗粒状突起,即病原菌的子囊壳。但在干旱条件下,病株基部“黑脚”症状不明显,也不产生子囊壳。 2·小麦各生育时期的症状及诊断:①幼苗分蘗期至返青拔节期。

基部叶发黄,并自下而上似干旱缺肥状。苗期初生根和地下茎变灰黑色,病重时次生根局部变黑。拔节后,茎基1-2节的叶鞘内侧和病茎表面生有灰黑色的菌丝层。诊断:将变黑根剪成小段,用乳酚油封片,略加温使其透明,镜检根表如有纵向栗褐色的葡萄菌丝体,即为全蚀病株。②抽穗灌浆期。病株变矮、褪色,生长参差不齐,叶色、穗色深浅不一,潮湿时出现基腐(基部一、二个茎节)性的“黑脚”,最后植株旱枯,行成“白穗”。剥开基部叶鞘,可见叶鞘内表皮和茎秆表面密生黑色菌丝体和菌丝结。小麦近成熟时,若土壤潮湿,病株叶鞘内表皮可生有黑色颗粒状突起的子囊壳。 3·传播途径 小麦全蚀病菌是一种土壤寄居菌。该菌主要以菌丝遗留在土壤中的病残体或混有病残体未腐熟的粪肥及混有病残体的种子上越冬、越夏。是后茬小麦的主要侵染源。引种混有病残体种子是无言病区发病的主要原因。割麦收获区病根茬上的休眠菌丝体成为下茬主要初侵染源。冬麦区种子萌发不久,夏病菌菌丝体就可侵害种根,并在变黑的种根内越冬。翌春小麦返青,菌丝体也随温度升高而加快生长,向上扩展至分蘖节和茎基部,拔节至抽穗期,可侵染至第1—2节,由于茎基受害腐解病株陆续死亡。在春小麦区,种子萌发后在病残体上越冬菌丝侵染幼根,渐赂上扩展侵染分蘖节和茎基部,最后引起植朱死亡。病株多在灌浆期出现白穗,遇干热风,病株加速死亡。 4·发病条件 小麦全蚀病菌较好气,发育温限3—35℃,适宜温度19—24℃,

杀菌剂分类大全1

杀菌剂大全1 酰胺类杀菌剂 卵菌纲:高效甲霜灵、高效苯霜灵、噻酰菌胺、环丙酰菌胺、氟吡菌胺、吡噻菌胺(菌核病、灰霉病、白粉病)、双炔酰菌胺、苯酰菌胺、噻唑菌胺、氟啶酰菌胺、双炔酰菌胺 稻瘟病:氰菌胺、双氯氰菌胺、环酰菌胺(灰霉病) 土壤病害:磺菌胺、噻氟菌胺、 叶枯酞(抑制细菌)、环氟菌胺(白粉病)、硅噻菌胺(全蚀病)、萎锈灵(黑穗病、黄萎病、立枯病、防腐剂、具有生长刺激作用)、甲呋酰胺(黑穗病)、呋吡菌胺(纹枯病、菌核病、白绢病)、啶酰菌胺(白粉病、灰霉病、各种腐烂病、褐腐病和根腐病等)、甲磷菌胺、氟菌胺 通过抑制琥珀酸脱氢酶破坏病菌呼吸而致效 酰胺类化合物作为杀菌剂已有几十年的历史,大多数酰胺类杀菌剂的杀菌谱比较窄,近期又有许多新颖的化合物商品化,最明显的结构特点是杂环,特别值得提及的是吡噻菌胺(penthiopyrad)和啶酰菌胺(boscalid)具有较广的活性谱。 氟吗啉是沈阳化工研究院开发的丙烯酰胺类杀菌剂。是我国有史以来真正创制的农用杀菌剂、是首次获得中国和美国发明专利的农用杀菌剂。具有良好的内吸、保护和治疗活性。对卵菌亚纲病原菌引起的病害如霜霉病、疫病如黄瓜霜霉病、葡萄霜霉病、马铃薯晚疫病、番茄疫病、辣椒疫病、烟草疫病等有优异的活性。 噻氟菌胺是琥珀酸酯脱氢酶抑制剂,即在真菌三羧酸循环中抑制琥珀酸酯脱氢酶的合成。对丝核菌属、柄锈菌属、黑粉菌属、腥黑粉菌属、伏革菌属和核腔菌属等致病真菌有活性,对担子菌纲真菌引起的病害如立枯病等有特效。

氰菌胺和双氯氰菌胺分别是由日本农药公司和住友化学公司开发的酰胺类杀菌剂。主要用于防治稻瘟病。 环酰菌胺主要用于防治各种灰霉病以及相关的菌核病、黑斑病等。 硅噻菌胺是含硅的噻酚酰胺类杀菌剂。具体作用机理尚不清楚,可能是ATP 抑制剂。主要用于小麦全蚀病的防治。 呋吡菌胺(纹枯病、菌核病、白绢病)是日本住友化学公司开发的吡唑酰胺类杀菌剂,主要抑制真菌线粒体中琥珀酸的氧化作用,具有优异的预防和治疗效果。 噻唑菌胺(ethaboxam)是韩国LG农化公司研制开发的噻唑酰胺类杀菌剂,主要用于防治卵菌纲病害。 噻酰菌胺(tiadinil)是由日本农药公司开发的噻二唑酰胺类杀菌剂,主要用于防治稻瘟病。 啶酰菌胺(白粉病、灰霉病、各种腐烂病、褐腐病和根腐病等)0(boscalid)是由巴期夫公司开发的吡啶酰胺类杀菌剂,主要用于防治菌核病、锈病、马铃薯早疫病和灰霉病等。 吡噻菌胺(penthiopyrad)是由日本三井化学公司开发的吡唑酰胺类杀菌剂。主要用于防治白粉病和灰霉病等。 氟啶酰菌胺(fluopicolide)和双炔酰菌胺(mandipropami)分别由拜耳和先正达公司开发,具有优异的杀菌活性,均对霜霉病有特效。 二羧酰亚胺类杀菌剂 乙菌利(黑穗菌核白粉)、异菌脲(灰霉病)、腐霉利(菌核病、灰霉病、黑星病、褐腐病、大斑病)、乙烯菌核利(菌核菌、白粉、黑斑病、灰霉病)、克菌丹(地下地上方方面面保护)、灭菌丹(多种病害)、菌核利(菌核病、灰霉病)传统杀菌剂,通过抑制NADH细胞色素C还原酶破坏类酯类和膜的合成而致效甲氧基丙烯酸酯类杀菌剂 基本上所有真菌病害:嘧菌酯、氟嘧菌酯、醚菌酯、唑菌胺酯、烯肟菌酯、烯肟菌胺

蔬菜生产使用的几种高效杀菌剂

蔬菜生产使用的几种高效杀菌剂2014-8-28 07:46 阅读(34) 1、防治病害多面手——75%猛杀生干悬浮剂。 特性:(1)为杀菌谱广的保护性杀菌剂,对大多数病害都有效,一药防多病。(2)杀菌作用位点多,不易产生抗性。(3)亲和性好,它能和大多数杀菌剂、杀虫剂混合,起到扩大杀菌谱病虫兼治的目的。(4)含有多种微量元素,起到刺激作物生长的作用。(5)对作物非常安全。 防治对象:黄瓜霜霉病、炭疽病、黑星病、叶斑病;番茄晚疫病、早疫病、叶霉病、灰叶斑病、炭疽病;茄子早疫病、炭疽病;辣椒、甜椒疫病、炭疽病 使用方法:使用600倍,发病前及初期喷药。 2、广谱杀菌明星——80%新万生可湿性粉剂 特性:(1)预防性杀菌剂,病前用药,定时防治,均匀喷洒。(2)锌锰离子比例合理,无其它金属杂质,对作物花、果幼嫩组织相当安全,不造成伤害,可放心使用。(3)不易分解,稳定性较同类产品高,即使配成药液后,也能保持长时间不分解。 防治对象:蔬菜叶斑病、锈病、黑星病、炭疽病、霜霉病、疮痂病、疫病等真菌性病害。 使用方法:瓜菜500-800倍,发病前及初期喷药。 3、菜田保护神——68.75%易保可分散性粒剂 特性:(1)极耐雨水冲刷,雨后再分布能力极强。(2)双重保护,,持效期更长。(3)杀菌谱广,对高等真菌,低等真菌都有很好的防治效果。(4)若病害发生后,易保与其他治疗性的药剂如福星、克露、速克灵等药剂混用,效果更佳。(5)含有多种微量元素,刺激作物更好的生长,对作物安全。 防治对象:对蔬菜炭疽病、黑星病、黑斑病、叶斑病、霜霉病、早疫病、晚疫病、灰霉病、白粉病、茎枯病、疮痂病等多种病害都有很好的预防效果。 使用方法:使用杜邦易保1000-1500倍,在病害病斑出现前开始用药,每隔7-10天施药一次,共计3-4次。 4、高效杀菌专家—— 40% 福星乳油 特性:(1)使用后把已经侵入的病原菌和孢子杀死,并且能够保护杀菌15到20天,同时有保护、治疗和铲除作用。(3)杀菌广谱、迅速。该药对大部分病原真菌均有较好的防效,尤其对子囊菌、担子菌及部分半知菌类病菌的防效尤为优异。(3)喷药后能迅速渗入植物体内双向传导,避免雨水的冲刷,8小时遇雨不影响药效。(4)对人、畜低毒,不伤害天敌和有益生物。

常用杀菌剂的分类及简介

常用杀菌剂的分类及简介 杀菌剂可根据作用方式、原料来源及化学组成进行分类。 (一)按杀菌剂的原料来源分 1、无机杀菌剂如硫磺粉、石硫合剂、硫酸铜、升汞、石灰波 尔多液、氢氧化铜、氧化亚铜等。 2、有机硫杀菌剂如代森铵、敌锈钠、福美锌、代森锌、代森 锰锌、福美双等。 3、有机磷、砷杀菌剂如稻瘟净、克瘟散、乙磷铝、甲基立枯 磷、退菌特、稻脚青等。 4、取代苯类杀菌剂如甲基托布津、百菌清、敌克松等。 5、唑类杀菌剂如粉锈宁、多菌灵、恶霉灵、世高、丙环唑等。 6、抗菌素类杀菌剂井冈霉素、多抗霉素、春雷霉素、农用链 霉素、农抗120等。 7、复配杀菌剂如炭疽福美、杀毒矾、霜脲锰锌、甲霜灵• 锰锌、甲基硫菌灵•锰锌、甲霜灵—福美双可湿性粉剂等。 8、其他杀菌剂如甲霜灵、菌核利、腐霉利、扑海因、灭菌丹、 克菌丹等。 (二)按杀菌剂的使用方式分 1、保护剂在病原微生物没有接触植物或没浸入植物体之前, 用药剂处理植物或周围环境,达到抑制病原孢子萌发或杀死萌发的病原孢子,以保护植物免受其害,这种作用称为保护作用。具有此种作用的药剂为保护剂。如波尔多液、代森锌、硫酸铜、代森锰锌、百菌清等。

2、治疗剂病原微生物已经浸入植物体内,但植物表现病症处于潜伏期。药物从植物表皮渗人植物组织内部,经输导、扩散、或产生代谢物来杀死或抑制病原,使病株不再受害,并恢复健康。具有这种治疗作用的药剂称为治疗剂或化学治疗剂。如甲基托布津、多菌灵、春雷霉素等。 3、铲除剂指植物感病后施药能直接杀死已侵入植物的病原物。具有这种铲除作用的药剂为铲除剂。如福美砷、石硫合剂等。 (三)按杀菌剂在植物体内传导特性分 1、内吸性杀菌剂能被植物叶、茎、根、种子吸收进入植物体内,经植物体液输导、扩散、存留或产生代谢物,可防治一些深入到植物体内或种子胚乳内病害,以保护作物不受病原物的浸染或对已感病的植物进行治疗,因此具有治疗和保护作用。如多菌灵、力克菌、绿亨2号、多霉清、霜疫清、甲霜灵、乙磷铝、甲基托布津、敌克松、粉锈宁、、杀毒矾、拌种双等。 2、非内吸性杀菌剂指药剂不能被植物内吸并传导、存留。目前,大多数品种都是非内吸性的杀菌剂,此类药剂不易使病原物产生抗药性,比较经济,但大多数只具有保护作用,不能防治深入植物体内的病害。如硫酸锌、硫酸铜、多果定、百菌清、绿乳铜、表面活性剂、增效剂、硫合剂、草木灰、波尔多液、代森锰锌、福美双等。 此外,杀菌剂还可根据使用方法分类,如种子处理剂、土壤消毒剂、喷洒剂等。

小麦全蚀病及其防治技术

小麦全蚀病及其防治技术 河南省新乡市植保植检站刘珍 小麦全蚀病是小麦的重要病害之一,河南省植物检疫对象。河南省1992 年首先在原阳、浚县、扶沟等县发现小麦全蚀病,以后扩展蔓延很快,目前已发展到好几个地、市。小麦受全蚀病危害以后,表现为分蘖减少,成穗率低,千粒重下降,有的后期形成枯孕穗、枯白穗。轻发生地块一般减产5%~20%,严重的减产50%以上,甚至绝收。 小麦全蚀病寄主范围较广,除危害小麦外,还危害大麦、玉米、谷子等作物及鹅观草、毒麦等禾本科杂草。 一、主要识别症状 小麦全蚀病是一种典型的根部病害,病菌侵染的部位只限于小麦根部和茎基部15cm以下,地上部的症状,如白穗,主要是由于根及茎基部受害引起的。小麦整个生育期均可感病,各生育期发病症状识别如下: 1.幼苗期:幼苗感病后,初生根部根茎变为黑褐色,次生根上也有很多病斑,严重时病斑连在一起,使整个根系变黑死亡。发病轻的麦苗即使不死亡,也表现为地上部叶色变黄,植株矮小,生长不良,类似干旱缺肥状。病株易从根茎部拔断。 2.分蘖期:地上部分无明显症状,仅重病植株表现稍矮,基部黄叶多。拔出麦苗,用水冲洗麦根,可见种子根与地下茎都变成了黑褐色。 3.拔节期:病株返青迟缓,黄叶多,拔节后期重病植株矮化、稀疏,叶片自下而上变黄,似干旱缺肥状。麦田出现矮化发病中心,生长高低不平。 4.抽穗灌浆期:病株成簇或点片出现早枯白穗,并且在茎基部叶鞘内侧形成“黑膏药”状的黑色菌丝层,极易识别。这也是与其它小麦根病区别的主要症状。 二、传播途径 1.土壤传播:小麦全蚀病菌主要集中在病株根部及茎基部地上15cm范围内,小麦收割后,病根茬大部分留在田间,土壤中菌源量逐年积累,致使病田的病情也逐年加重。而土壤中的病菌还可以通过犁耙耕种向四周扩展蔓延。 2.粪肥传播:病菌能随落场土、麦糠、麦秸、茎秆等混入粪肥中,这些粪肥若直接还田或者不经高温发酵沤制施入田中,就可把病菌带入田间,导致病害传播蔓延。 3.种子传播:混杂在种子间的病株残体随种子调运,是远距离传播的主要途径。 三、影响发病的因素 小麦全蚀病的发生与栽培管理、土质肥力、整地方式、小麦播期、品种抗性等很多因素有关。 1.连作病重,轮作病轻。如小麦与玉米、谷子等作物1年连作多年连种,增加了土壤中的病菌量,故病情加重;隔茬种麦或水旱轮作可有效控制病情的发展。 2.土壤肥力低病情重。有机质含量高和氮磷钾肥充足的土壤发病轻,主要是因为这些地块有利于小麦生长,从而增强了植株抗病菌侵染的能力和受害后恢复生长的能力。反之,土壤瘠薄,氮磷钾肥比例失调,尤其是缺磷地块,病

2016杀菌剂大全

类别品种作用机理和特点防治对象 酰胺类 氟吗啉防治卵菌纲病原菌产生的病害,保护、治疗、铲除;渗透、内吸,高活性,持效16d霜/疫霉病特效烯酰吗啉抑制卵菌细胞壁的形成,内吸霜/疫霉病特效叶枯酞抑制细菌在水稻中的繁殖,阻碍转移,内吸水稻白叶枯病磺菌胺抑制孢子萌发,土壤杀菌剂,对白菜根肿病特效根肿/根腐/猝倒甲磺菌胺土壤杀菌剂 噻氟菌胺强内吸传导,对担子菌特效立枯/黑粉/锈病环氟菌胺抑制白粉菌吸器、菌丝和附着孢的形成,内吸活性差白粉病 硅噻菌胺能量抑制剂,具有良好的保护活性,长残效,种子处理小麦全蚀病 吡噻菌胺机理独特,高活性、广谱、无交互抗性粉锈/霜霉/菌核环酰菌胺机理独特,灰霉特效灰霉/黑斑/ 菌核苯酰菌胺杀卵菌机理独特:抑制菌核分裂,无交抗,保护剂晚疫/霜霉病 环丙酰菌胺内吸保护,抑制黑色素合成,感病后加速抗菌素产生稻瘟病 噻酰菌胺阻止侵入,诱导抗性,内吸传导,持效期长,环境影响小白粉/霜霉/稻瘟病氰菌胺内吸和残留活性好,黑色素生物合成抑制剂稻瘟病

双氯氰菌胺黑色素生物合成抑制剂稻瘟病 高效甲霜灵核糖体RNAⅠ合成抑制剂,保护、治疗、内吸运转霜/疫/腐霉高效苯霜灵卵菌病害 萎锈灵选择性内吸杀菌,萌芽种子除菌,刺激省黑穗/锈病 呋吡酰胺强烈抑制琥珀基质电子传递,内吸传导,长残效水稻纹枯病甲呋酰胺内吸,种子处理,黑穗病(玉米除外)麦类黑穗病氟酰胺琥珀酸酯脱氢酶抑制剂,保护/治疗/内吸,稻纹枯特效立枯/纹枯/雪腐 甲丙烯和咪唑类 嘧菌酯线粒体呼吸抑制剂,新型/高效/广谱,保/治/铲/吸/渗所有真菌病害肟菌酯线粒体呼吸抑制剂,无交抗,广谱/渗透/内吸/保护白粉/叶斑等啶氧菌酯线粒体呼吸抑制剂,广谱/内吸/熏蒸/耐雨水冲刷麦类病害唑菌胺酯线粒体呼吸抑制剂,广谱/内吸/转移/混用所有真菌病害氟嘧菌酯线粒体呼吸抑制剂,广谱/内吸/长效/速效所有真菌病害烯肟菌酯新型/高效/广谱/内吸所有真菌病害苯氧菌胺线粒体呼吸抑制剂,保/治/铲/吸/渗水稻稻瘟病烯肟菌胺--

常见的几种杀菌剂及其特性

常见的几种杀菌剂及其特性: 一、波尔多液是一种良好的保护性杀菌剂,由硫酸铜、生石灰和水配制而成,根据硫酸铜和生石灰用量不同可分为等量式(1:1),半量式(1:0.5),多量式(1:3)和倍量式(1:2)等数种。配制时,先各用一半的水化开硫酸铜和生石灰,然后将硫酸铜倒入生石灰溶液中,并用棍棒搅拌均匀即可。配成的波尔多液呈天蓝色的胶体悬浮液,呈碱性,粘着力强,能在植物表面形成一层薄膜,有效期可维持半个月左右。波尔多液不耐贮存,必须现配现用,不能与忌碱农药混用。可防治黑斑病、锈病,霜霉病,灰斑病等多种病害。 二、石硫合剂也是一种保护性杀菌剂,以生石灰,硫磺粉和水按1:2:10的比例经过熬制而成,原液为深红褐色透明液体,有臭鸡蛋味,呈碱性。配制时,先将水放锅中煮开,倒入1份生石灰,等石灰溶解后,再加入先用少量水调成糊状的2份硫磺粉,边加边搅拌,加毕用大火烧沸1小时左右,等药液呈红褐色时停火,冷却后,滤去沉渣,即为石硫合剂原液,其波美充度一般为20-24。原液在使用前必须稀释,休眠期喷洒可用波美3-5度,生长期只能用波美度0.3-0.5的稀释液。能防治白粉病,锈病,霜霉病,穿孔病,叶斑病等多种病害,还可防治粉虱,叶螨,介壳虫等害虫。 三、百菌清有保护和治疗作用,杀菌范围广,残效期长,对皮肤和粘膜有刺激作用。常用75%百菌清可湿性粉剂600-1000倍液喷雾防治锈病,霜霉病,白粉病,黑斑病,炭病,疫病等病害。不能与强碱性农药混用。 四、多菌灵是一种高效低毒,广谱的内吸杀菌剂,具有保护和治疗作用,残效期长。一般用50%可湿性粉剂1000-1500倍液喷雾防治褐斑病,菌核病,炭疽病,白粉病等病害,也可用拌种和土壤消毒,拌种时,用量一般为种子重量的2-3/1000。 五、托布津是一种高效低毒、广谱的内吸杀菌剂,具有保护和治疗作用,残效期长,其杀菌范围和药效和多菌灵相似,对人畜毒性低,对植物安全。常用50%的可湿性粉剂500-1000倍液喷雾防治白粉病,炭疽病,煤污病,白绢病,菌核病,叶斑病,灰霉病,黑斑病等病害,常用的还有甲基托布津。 六、代森锌是一种广谱性有机硫杀菌剂,呈淡黄色,稍有臭味,在空气中或日光下极易分解,常用65%的可湿性粉剂400-600倍液喷雾防治褐斑病,炭疽病,猝倒病,穿孔病,灰霉病,白粉病,锈病,叶枯病,立枯病等,不能与碱性或含有铜,汞的药剂混用。 七、退菌特是一种有机砷,有机磷混合杀菌剂,白色粉末,难溶于水,易溶于碱性溶液中,在酸性高温及潮湿的环境中易分解。一般用50%的可湿性粉剂1000-1500倍液,或80%的可湿性粉剂2000-2500倍液喷雾防治炭疽病,锈病,立枯病,白粉病,菌核病等病害。 八、苯来特是一种广谱性的内吸性杀菌剂,兼有保护和治疗作用,不溶于水,微有刺激性臭味,药效期长,常用50%的可湿性粉剂2000-5000倍液喷雾防治灰霉病,炭疽病,白粉病,菌核病等病害。 九、代森铵杀菌力强,兼有保护和治疗作用,分解后,还有一定肥效作用,呈淡黄色液体,常用1000倍液喷雾防治白粉病,霜霉病和叶斑病,也可用200-400倍液浇灌土壤防治立枯

各杀菌剂特点

石化行业使用杀菌剂的原因 在石油工业中,油田污水系统、注入水系统、采油泥浆系统等,所处的环境非常适合腐殖菌、硫酸还原菌、铁细菌等各类微生物的生长繁殖,从而加速管线的腐蚀,腐蚀产物、菌体及其代谢产物极易形成垢,造成堵塞地层,损害油层渗透率,降低设备传热效率,对正常的生产极为不利。因此,必须使用杀菌剂进行杀菌处理。 石油行业微生物分类: 微生物分为三类: 1.可自由游动的细菌; 2.可附着于设备结构上的藻类; 3.可侵蚀并破坏设备。 杀菌剂的种类及特性: 种类: (1)氧化型杀菌剂 氯 氯在水中形成次氯酸,次氯酸电离出有杀菌活性的次氯酸根,在PH值6-8时杀菌效果最好。氯的应

用范围广泛,通常是在水源处加入即可使整个系统保持一定浓度从而达到控制细菌数的目的。 杀菌原理:氯在水中形成次氯酸,次氯酸电离出有杀菌活性的次氯酸根; 优点:应用范围广泛、高效、价格低廉,操 作方便; 缺点:环境污染,对人有害对形成生物膜的 细菌杀菌效果不好。 含氯化合物 含氯杀菌剂包括漂白剂次氯酸钠和次氯酸钙,他们比氯气使用方便,操作危险性小,但价格偏高。但会引入大量钙离子易造成系统结垢。 杀菌原理:水解电离出次氯酸根; 优点:杀菌效果与氯气相当,比氯气使用方便,操作危险性小; 缺点:易导致结垢问题,价格偏高,比氯气 用量大。 二氧化氯 二氧化氯是高效氧化型杀菌剂,适用于清洗过程,用于除去有机物、生物粘泥及硫化铁沉积。二氧化氯

受PH值限制小,杀菌效果不受有机物和氨的影响。因受温度和压力影响,一般使用在线发生,用次氯酸钠、亚氯酸钠和盐酸经两步反应形成二氧化氯。首先,15%盐酸和10%次氯酸钠生成6%合成氯,之后再与亚氯酸钠反应形成二氧化氯。 杀菌原理:氧化作用; 优点:不受PH值限制,不受有机物影响,对生物粘泥有特效,能溶解硫化铁垢。 缺点:须特殊装置,毒性大,价格高。 氯胺 氯胺是次氯酸和氨的反应产物,氯胺的杀菌性能比氯气低5%。但氯胺能穿透微生物膜并杀死细菌,它与生物膜组织不反应,可用于消毒处理。 优点:对生物膜菌种有杀菌活性,杀菌活性持续时间长,对设备腐蚀性小,毒性低。 缺点:耗氨,比单独使用氯价格高。 溴 溴与氯类似,在水中形成次溴酸,电离出次溴酸根,在广泛的PH范围杀菌效果都很好。溴杀菌剂一

杀菌剂 30种常用杀菌剂

三十种常用杀菌剂 通用名称有效成分商品名称作用机理防治对象氢氧化铜波 尔多液(Copper hydroxide) 氢氧化铜 可杀得101、冠 菌铜、杀菌得、 冠菌清、猛杀 得、瑞扑、真菌 克 主要靠铜离子,铜离子被萌发的孢子 吸收,当达到一定浓度时,就可以杀 死孢子细胞,从而起到杀菌作用,但 此作用仅限于阻止孢子萌发,也即仅 有保护作用。 细菌性病害,适用于瓜类的叶 斑病、早(晚)疫病、霜霉病、 炭疽病、立枯病等多种病害, 以保护作用为主。 代森锰锌(Mancozeb)代森锰锌 大生M45、大生 富、喷克、新万 生、山德生、丰 收、大胜 抑制菌体内丙酮酸的氧化。 主要防治蔬菜霜霉病、炭疽 病、褐斑病等。 三乙膦酸铝 乙磷铝Fosety-Aluminiu m 三-(乙基磷 酸)铝 疫霉灵、乙磷 铝、疫霜灵 抑制病原真菌的孢子的萌发或阻止孢 子和菌丝体的生长。 主要防治黄瓜和白菜霜霉病、 水稻纹枯和稻瘟病、棉花疫 病、烟草黑胫病、橡胶割面条 溃疡病、胡椒病 甲霜灵·锰锌metalaxyl+m ancozeb [D,L-N-(2,6- 二甲基苯 基)-N-(2甲氧 基乙酰)丙氨 酸甲酯] 瑞毒霉.锰锌、 蕾多米尔.锰 锌、 甲霜灵主要是抑制了对a-鹅膏蕈碱 不敏感的RNA聚合酶A,从而阻碍了 rRNA前体的转录,具体胡抵制机理尚 不清楚。代森锰锌主要是抑制菌体内 丙酮酸的氧化。 对霜霉菌、疫霉菌和腐霉菌所 致的病害均有效 氟吗啉flumorph 4-[3-(3,4-二甲 基苯基)-3-(4- 氟苯基)丙烯 酰]吗啉 灭克 有关氟吗啉的具体作用机制目前仍不 清楚。Kuhn等根据其杀菌谱、杀菌活 性及形态学方面的研究结果推测其主 要作用机制是干扰病菌细胞壁物质的 合成或组装。 防治卵菌纲病原菌引起的霜 霉病及晚疫病等病害.。 霜霉威Propamocarb 3-(二甲基 氨基)丙基 氨基甲酸丙 酯 普力克、霜霉威 盐酸盐、丙酰胺 可抑制病菌细胞膜的形成,抑制菌丝 生长和孢子萌发,减少孢子囊形成和 游动孢子数量,从而达到防治病害的 目的。 防治蔬菜、果树的霜霉病、疫 病、猝倒病(腐霉和疫霉)有 优异的效果(对霜霉病、晚疫 病特效)藻状菌引起的病害。 重点卵菌门 烯酰吗啉· 锰锌Mancozeb+ Dimethomorph, W.P. 4-[3-(4-氯苯 基)-3-(3,4-二 甲氧基苯氧 基)丙烯酰]吗 啉和代森锰锌 安克-锰锌 抑制卵菌细胞壁的形成而起作用,只 有Z型异构体有活性,但是,由于在光 照下两异构体间可迅速相互转变,因 此Z型异构体在应用屯E型异构体是 一样的, 用于防治霜霉病、疫病、灰霉 病等病害 氟吡菌胺· 霜霉威Fluopicolide+ Propamocarb 氟吡菌胺和 3-(二甲基 氨基)丙基 氨基甲酸丙 酯 银法利 主要作用于细胞膜和细胞间的特点特 异性蛋白而表现杀菌活性,具有独特 的“薄层穿透力”,可加强药剂的横向 传导性及纵向输送力,对病原菌的各 主要形态均有很好的抑制活性;另一 单剂霜霉威是一种氨基甲酸酯类杀菌 剂,其作用机理是抑制病菌细胞膜成 分的磷脂和脂肪酸的生化合成,抑制 菌丝生长、孢子囊形成和孢子萌发, 具有局部内吸作用 主要防治霜霉病、疫病、晚疫 病、猝倒病等常见卵菌纲病害 霜脲氰·锰锌Cymoxanil+M ancozeb 1-(2-氰基-2- 甲氧基亚胺 基)-3-乙基脲 和代森锰锌 克霜、霜霸、 克露、妥冻 通过抑制病原菌细胞线粒体的电子转 移使氧化磷酸化的作用停止,使病原 菌细胞丧失能量来源而死亡 对疫霉、壳二孢属、尾孢属等 真菌性病害如疫霉病、霜霉病 均特效。 多菌灵Carbendazim 苯并咪唑-2- 氨基甲酸丙酯 苯并咪唑44号、 棉萎灵、贝芬 替、保卫田、枯 萎立克、 干扰真菌的有丝分裂中纺锤体的形 成,从而细胞分裂 防治瓜类枯萎病、蔓枯病、炭 疽病、白粉病、霜霉病,叶斑 病等多种病

世界顶级杀菌剂全介绍(完整、系统)

顶级杀菌剂全介绍(完整、系统)2014-09-05 号商品名通用名主要功能厂家 1金雷4%精甲霜灵+64%代森锰锌 水分散粒剂 霜霉、腐霉、疫病、根腐 先正 达 2适乐时 2.5%咯菌腈悬浮种衣剂根、茎腐病 3阿米多彩50%百菌清+6%嘧菌酯水悬内吸、全面保护、持效期长 4阿米妙收20%嘧菌酯+12.5%苯醚甲 环唑水悬 保护、治疗、持效期长、对高等真菌特效 5绘绿50%嘧菌酯水粒剂高效、全面保护、持效期长6卉友50%咯菌腈可湿性粉剂根、茎腐病、灰霉病 7敌力脱25%丙环唑乳油高等真菌特效 8达科宁70%百菌清可湿性粉剂全面保护、持效期较长 9杀毒矾8%噁霜灵+56%代森锰锌可 湿性粉剂 霜霉、腐霉、疫病、根腐 10势克25%苯醚甲环唑乳油高等真菌特效 11瑞凡25%双炔酰菌胺悬浮剂霜霉、腐霉、疫病、根腐12亮盾精甲霜灵+嘧菌酯水悬霜霉、腐霉、疫病、根腐 13满适金3.5%咯菌·精甲霜悬浮种衣 剂 根、茎腐病 14爱苗15%苯醚甲环唑+15%丙环 唑乳油 高等真菌特效 16大生80%代森锰锌可湿性粉剂全面保护 陶氏17大生富50%代森锰锌水悬全面保护

18 应得 24%腈苯唑悬浮剂 高等真菌特效 19 施保克 45%咪鲜胺水乳剂 炭疽病特效 拜耳 20 扑海因 50%异菌脲悬浮剂 灰霉、菌核病、核盘菌、白绢病特效 21 安泰生 70%丙森锌可湿性粉剂 全面保护 22 霉多克 5.5%缬霉威+61.3%丙森锌 可湿性粉剂 霜霉、腐霉、疫病、根腐 23 好力克 43%戊唑醇悬浮剂 高等真菌特效 24 施佳乐 40%嘧霉胺悬浮剂 灰霉、菌核病、核盘菌、白绢病特效 25 富力库 25%戊唑醇水乳剂 高等真菌特效 26 普力克 72.2%霜霉威盐酸盐水剂 霜霉、腐霉、疫病、根腐 27 银法利 62.5%霜霉威盐酸盐+6.2 5%氟吡菌胺 霜霉、腐霉、疫病、根腐 28 施保功 50%咪鲜胺锰盐可湿性粉剂 炭疽病特效 29 易保 68.74%代森锰锌.噁唑菌酮 水分散粒剂 高效、全面保护 杜邦 30 克露 64%代森锰锌+8%霜脲氰可 湿性粉剂 霜霉、腐霉、疫病、根腐 31 新万生 80%代森锰锌可湿性粉剂 全面保护 32 万兴 10.67%氟硅唑+10%噁唑菌 酮乳油 高等真菌特效 33 可杀得 53.8%,77%氢氧化铜可湿 性粉剂 细菌、真菌保护性杀菌剂 34 福星 40%氟硅唑乳油 高等真菌特效 35 甲基托布津 70%甲基硫菌灵粉剂 高等真菌保护治疗剂 日曹

(整理)常用杀菌剂的种类

常用杀菌剂的种类、性质及作用 奥美塞克——750g/十三吗啉 1、“奥美塞克”杀灭枝干腐烂病、干腐病、轮纹病特效。是目前防治枝干病害最为特效的产品。 2、“奥美塞克”具有内吸、保护、治疗、铲除四大高能作用。既安全,又不易产生抗性。对白粉病、霉心病、赤星病、褐斑病及烂根病也具有显著防效。 (一)农用抗生素 1、多抗霉素 【中文通用名称】多抗霉素 【英文通用名称】polylxin 【商品名称】宝丽安、多氧霉素、科生霉素、多氧清等。 【化学名称】肽嘧啶核苷类抗生素 【制剂类型】10%、3%、2%、1.5%多抗霉素可湿性粉剂,0.3%多抗霉素水剂 【理化性质】该类抗生素含有A至N 14种同系物的混合物。我国生产的多抗霉素主要成分是多抗霉素A和多抗霉素B,是多抗霉素金色产色链霉菌(Streptomyces aureo chromogenes)所产生的代谢物,含量为84%(相当于84×10单位/g),系无色针状结晶,熔点(m.p.)180℃。日本产的多抗霉素称为多氧霉素,是可可链霉素阿苏变种(Streptomyces cacaoi var.asoensis)产生的代谢产物,主要成分为多抗霉素B,占22%~25%(相当于22×10~25×10单位/g),系无定形结晶,分解温度(m.p.)为160℃。多抗霉素易溶于水,多抗霉素对人、畜低毒,在动物体内无蓄积,易排出体外。对鱼、水生生物及蜜蜂低毒。是环保型绿色农药。 【作用】多抗霉素是广谱性、具有内吸传导作用的抗生素类杀菌剂。对链格孢菌、葡萄孢菌、灰霉菌等真菌病害有较好防治效果。当药剂喷到病菌体上后,病原菌细胞壁壳多糖的生物合成受到干扰,使以壳多糖为基质构成细胞壁的真菌,芽管和菌丝体局部膨大、破裂,细胞内容物溢出,导致病原菌细胞不能正常生长发育而死亡。同时,该药剂还具有抑制病菌产生孢子及病斑扩大等作用。 多抗霉素在北方落叶果树上,主要是用来防治苹果斑点落叶病、霉心病、梨黑斑病、草莓的灰霉病等。尤其对霉心病的防治,苹果落花60%~80%时,喷布多抗霉素,防治霉心病效果显著,而且不影响坐果。 2、嘧啶核苷类抗菌素 【中文通用名称】嘧啶核苷类抗菌素 【英文通用名称】TF-120 【商品名称】农抗120、抗霉菌素120、120农用抗菌素 【化学名称】嘧啶核苷类抗菌素

相关文档
最新文档