海拔与大气密度和温度间的换算关系精编版

海拔与大气密度和温度间的换算关系精编版
海拔与大气密度和温度间的换算关系精编版

海拔高度与大气密度和温度间的换算关系

1、根据大气压力和空气密度计算公式,以及空气湿度经验公式,可得出大气压、空气密度、湿度与海拔高度的关系。

注:标准状态下大气压力为1,相对空气密度为1,绝对湿度为11 g/m3。

从表中可以看出,海拔高度每升高1000 m,相对大气压力大约降低12%,空气密度降低约10%,绝对湿度随海拔高度的升高而降低。

绝对湿度是指每单位容积的气体所含水分的重量,用mg/L或g/m3表示;相对湿度是指绝对湿度与该温度饱和状态水蒸气含量之比用百分数表达。

2、空气温度与海拔高度的关系

在无热源、无遮护的情况下,空气温度随海拔高度的增高而降低。一般研究所采集的温度与海拔高度的关系:

从表中可以看出:空气温度在一般情况下,海拔高度每升高1000 m,最高温度会降低5℃,平均温度也会降低5 ℃。

大气密度(atmospheric density)

单位容积的大气质量。

空气密度在标准状况(0℃(273k),101KPa)下为1.293g·L-1。

空气的密度大小与气温等因素有关,我们一般采用的空气密度是指在0摄氏度、绝对标准指标下,密度为1.297千克每立方米(1.297kg/m3).

大气压力随海拔高度而变化,由经验公式P=P0(1-0.02257h)5.256(kPa)式中h一海拔高度(km). 用上面公式,算出压力,然后根据密度= P *29/(8314*T),其中P的单位是帕,T的单位是K,通常也就是273.15+t

不同温度下干空气密度计算公式:

空气密度=1.293(实际压力/标准物理大气压) *(273/实际绝对温度),绝对温度=摄氏度+ 273通常情况下,

即30摄氏度时,取1.165KG/M3

-60摄氏度时,取1.65KG/M3

海拔与大气密度和温度 间的换算关系 The manuscript was revised on the evening of 2021

海拔高度与大气密度和温度间的换算关系 1、根据大气压力和空气密度计算公式,以及空气湿度经验公式,可得出大气压、空气密度、湿度与海拔高度的关系。 注:标准状态下大气压力为1,相对空气密度为1,绝对湿度为11 g/m3。 从表中可以看出,海拔高度每升高1000 m,相对大气压力大约降低12%,空气密度降低约10%,绝对湿度随海拔高度的升高而降低。 绝对湿度是指每单位容积的气体所含水分的重量,用mg/L或g/m3表示;相对湿度是指绝对湿度与该温度饱和状态水蒸气含量之比用百分数表达。 2、空气温度与海拔高度的关系 在无热源、无遮护的情况下,空气温度随海拔高度的增高而降低。一般研究所采集的温度与海拔高度的关系: 从表中可以看出:空气温度在一般情况下,海拔高度每升高1000 m,最高温度会降低5℃,平均温度也会降低5 ℃。 大气密度(atmospheric density) 单位容积的大气质量。 空气密度在标准状况(0℃(273k),101KPa)下为·L-1。 空气的密度大小与气温等因素有关,我们一般采用的空气密度是指在0摄氏度、绝对标准指标下,密度为千克每立方米m3).

大气压力随海拔高度而变化,由经验公式 P=P0()(kPa)式中 h一海拔高度(km). 用上面公式,算出压力,然后根据密度= P *29/(8314*T),其中 P的单位是帕,T的单位是K,通常也就是+t 不同温度下干空气算公式: 空气密度 =(实际压力 /标准物理大气压) *(273/实际绝对温度),绝对温度= + 273通常情况下, 即 30摄氏度时,取 M3 -60摄氏度时,取 M3

一个地方气压值经常有变化→其上空大气柱中空气质量的多少→大气柱厚度和密度改变的反映:大气柱厚度和密度与空气质量应该是成正比关系 任何地方的气压值总是随着海拔高度的增加而递减。据实测,在地面层中,高度每升100m,气压平均降低12.7hPa,在高层则小于此数值。 确定空气密度大小与气压随高度变化的定量关系,一般是应用静力学方程和压高方程。 1、静力学方程 具体太长,我简单说明下: 假使大气相对于地面处于静止状态,则某一点的气压值等于该点单位面积上所承受空气柱的重量。 公式是:h≈8000(1+t/273)/P(m/hPa) 其中h是气压高度差,t是摄氏温标,P是气压 从公式可以看出 ①在同一气压下,气柱的温度越高,密度越小,气压随高度递减越慢,单位气压高度差越大。 ②在同一温度下,气压值越大的地方,空气密度越大,气压随高度递减越快,单位高度差越小。 通常,大气处于静力平衡状态,当气层不太厚和要求精度不太高时,这公式可粗略估算气压与高度的定量关系。如果研究的气层高度变化范围很大,气柱中上下层

温度、密度变化显著时,该公式就不适合用了,这时候可以用压高方程。 2、压高方程 为了精确地获得气压与高度的对应关系,通常将静力学方程从气层底部到顶部进行积分,即得出压高方程,然后再将之替换简化为: Z2-Z1=18400(1+t/273)log( P1/P2) 式中P1、P2分别是高度Z2、Z1的气压值,t是摄氏温标 从公式可以看出 ①气压随高度增加按指数规律递减 ②高度越高,气压减小得越慢 这公式是将大气当成干空气处理的,但当空气中水汽含量较多时,就必须用虚温代替式中的气温。这就不详细再说了,太复杂了,你应该也不需要用到这么复杂的公式吧! 呵呵,我没看清楚你的真正题意,给你一个相关的链接,可能比较准确。

大气压与温度的关系 大气压:和高度、湿度、温度的变化成反比--注意,这里说的是大气压,而非气压! 详细说明如下: 高度越高--空气越稀薄; 湿度越大--空气中的水分越多,尔水的分子量比空气的混合分子量小,水气的增加,等于稀释了空气; 温度越高--虽然增加了空气分子的对撞机会,但是空气迅速膨胀,对流,尔引起空气变得稀薄,其增加的对撞能量远小于空气变稀薄减小的对撞能量,自然空气压力减小。 有关常识如下: 定义: 1.亦称“大气压强”。重要的气象要素之一。由于地球周围大气的重力而产生的压强。其大小与高度、温度等条件有关。一般随高度的增大而减小。例如,高山上的大气压就比地面上的大气压小得多。 在水平方向上,大气压的差异引起空气的流动。 2.压强的一种单位。“标准大气压”的简称。科学上规定,把相当于760mm 高的水银柱(汞柱)产生的压强或1.01×十的五次方帕斯卡叫做1标准大气压,简称大气压。 地球的周围被厚厚的空气包围着,这些空气被称为大气层。空气可以像水那样自由的流动,同时它也受重力作用。因此空气的内部向各个方向都有压强,这个压强被称为大气压。在1643年意大利科学家托里拆利在一根80厘米长的细玻璃管中注满水银倒臵在盛有水银的水槽中,发现玻璃管中的水银大约下降了4厘米后就不再下降了。

这4厘米的空间无空气进入,是真空。托里拆利据此推断大气的压强就等于水银柱的长度。后来科学家们根据压强公式准确地算出了大气压在标准状态下为1.013×105Pa。由于当时的信息交流不畅意大利和法国对大气压实验研究结果并没有被全欧洲所熟知,所以在德国对大气压的早期研究是独立进行的。1654年奥托格里克在德国马德堡作了著名的马德堡半球实验,有力的验证了大气压强的存在,这让人们对大气压有了深刻的认识。在那个时期,奥托格里克还做了很多验证大气压存在且很大的实验,也正是在这一时候他第一次听到托里拆利早在11年前已测出了大气压。 标准大气压 1标准大气压=760毫米汞柱=76厘米汞柱=1.013×10的5次方帕斯卡=10.336米水柱。 标准大气压值及其变迁 标准大气压值的规定,是随着科学技术的发展,经过几次变化的。 最初规定在摄氏温度0℃、纬度45°、晴天时海平面上的大气压强为标准大气压,其值大约相当于76厘米汞柱高。后来发现,在这个条件下的大气压强值并不稳定,它受风力、温度等条件的影响而变化。 于是就规定76厘米汞柱高为标准大气压值。但是后来又发现76厘米汞柱高的压强值也是不稳定的,汞的密度大小受温度的影响而发生变化;g值也随纬度而变化。测量大气压的仪器叫气压计。 为了确保标准大气压是一个定值,1954年第十届国际计量大会决议声明,规定标准大气压值为 1标准大气压=101325牛顿/米2,即为101325帕斯卡(Pa)大气压的变化温度、湿度与大气压强的关系 湿度越大大气压强越大 初中物理告诉我们:“大气压的变化跟天气有密切的关系.一般地说,晴天的大气压比阴天高,冬天的大气压比夏天高.”对这段叙述,就是老师也往往不

1.干空气密度 密度是指单位体积空气所具有的质量, 国际单位为千克/米3(kg/m3 ),一般用符号ρ表示。 式中M——空气的质量,kg; V——空气的体积,m3。 空气密度随空气压力、温度及湿度而变化。上式只是定义式,通风工程中通常由气态方程求得干、湿空气密度的计算式。由气态方程有: 式中:ρ——其它状态下干空气的密度,kg/m3; ρ0——标准状态下干空气的密度,kg/m3; P、P0——分别为其它状态及标准状态下空气的压力,千帕(kpa); T、T0——分别为其它状态及标准状态下空气的热力学温度,K。 标准状态下,T0=273K,P0=101.3kPa时,组成成分正常的干空气的密度 ρ0=1.293 kg/m3。将这些数值代入式(2-1-2),即可得干空气密度计算式为: 使用上式计算干空气密度时,要注意压力、温度的取值。式中P为空气的绝对压力,单位为kPa;T为空气的热力学温度(K),T=273+t, t为空气的摄氏温度(℃)。 2.湿空气密度 对于湿空气,相当于压力为P的干空气被一部分压力为Ps的水蒸汽所占据,被占据后的湿空气就由压力为Pd的干空气和压力为Ps的水蒸汽组成(如图2-1-1所示)。根据道尔顿分压定律,湿空气压力等于干空气分压Pd与水蒸汽分压Ps之和,即:P=Pd+Ps。 根据相对湿度计算式,水蒸汽分压Ps=ψPb,根据气态方程及道尔顿的分压定律,即可推导出湿空气密度计算式为: 式中ρw ——湿空气密度, kg/m3; ψ——空气相对湿度,%; Pb——饱和水蒸汽压力,kPa(由表2-1-1确定)。

其它符号意义同上。 表2-1-1 不同温度下饱和水蒸汽压力 空气温度(℃) 饱和水蒸汽压力(Pa) 空气温度(℃) 饱和水蒸汽压力(Pa) 空气温度(℃) 饱和水蒸汽压力(Pa) -20 128 8 1069.24 20 2333.1 -15 193.32 9 1143.9 21 2493.1 -10 287.98 10 1127.9 22 2639.8 -5 422.63 11 1311.89 23 2813.1 610.6 12 1402.55

空气温度干空气密度 饱和空气密 度 饱和空气 饱和空气含 湿量 饱和空气焓 水蒸气分压 力 t ρρb pq.b db ib ℃kg/m3 kg/m3 ×102Pa g/kg干空 气 kJ/kg干空 气 -20 1.396 1.395 1.02 0.63 -18.55 -19 1.394 1.393 1.13 0.7 -17.39 -18 1.385 1.384 1.25 0.77 -16.2 -17 1.379 1.378 1.37 0.85 -14.99 -16 1.374 1.373 1.5 0.93 -13.77 -15 1.368 1.367 1.65 1.01 -12.6 -14 1.363 1.362 1.81 1.11 -11.35 -13 1.358 1.357 1.98 1.22 -10.05 -12 1.353 1.352 2.17 1.34 -8.75 -11 1.348 1.347 2.37 1.46 -7.45 -10 1.342 1.341 2.59 1.6 -6.07 -9 1.337 1.336 2.83 1.75 -4.73 -8 1.332 1.331 3.09 1.91 -3.31 -7 1.327 1.325 3.36 2.08 -1.88 -6 1.322 1.32 3.67 2.27 -0.42 -5 1.317 1.315 4 2.47 1.09 -4 1.312 1.31 4.36 2.69 2.68 -3 1.308 1.306 4.75 2.94 4.31 -2 1.303 1.301 5.16 3.19 5.9 -1 1.298 1.295 5.61 3.47 7.62 0 1.293 1.29 6.09 3.78 9.42 1 1.288 1.285 6.56 4.07 11.14 2 1.284 1.281 7.04 4.37 12.89 3 1.279 1.275 7.57 4.7 14.74 4 1.27 5 1.271 8.11 5.03 16.58 5 1.27 1.26 6 8. 7 5.4 18.51 6 1.265 1.261 9.32 5.79 20.51 7 1.261 1.256 9.99 6.21 22.61 8 1.256 1.251 10.7 6.65 24.7 9 1.252 1.247 11.46 7.13 26.92 10 1.248 1.242 12.25 7.63 29.18 11 1.243 1.237 13.09 8.15 31.52 12 1.239 1.232 13.99 8.75 34.08 13 1.235 1.228 14.94 9.35 36.59 14 1.23 1.223 15.95 9.97 39.19 15 1.226 1.218 17.01 10.6 41.78 16 1.222 1.214 18.13 11.4 44.8

大气压力与海拔高度怎么转换 标准大气压强Po= Pa= cmHg= mmHg Po=1.01325×10^5 Pa=76cmHg=760mmHg 一个地方气压值经常有变化→其上空大气柱中空气质量的多少→大气柱厚度和密度改变的 反映:大气柱厚度和密度与空气质量应该是成正比关系 任何地方的气压值总是随着海拔高度的增加而递减。据实测,在地面层中,高度每升100m,气压平均降低12.7hPa,在高层则小于此数值。 确定空气密度大小与气压随高度变化的定量关系,一般是应用静力学方程和压高方程。 1、静力学方程 假使大气相对于地面处于静止状态,则某一点的气压值等于该点单位面积上所承受空气柱的重量。 公式是:h≈8000(1+t/273)/P(m/hPa) 其中h是气压高度差,t是摄氏温标,P是气压 从公式可以看出 ①在同一气压下,气柱的温度越高,密度越小,气压随高度递减越慢,单位气压高度差越大。 ②在同一温度下,气压值越大的地方,空气密度越大,气压随高度递减越快,单位高度差越小。 通常,大气处于静力平衡状态,当气层不太厚和要求精度不太高时,这公式可粗略估算气压与高度的定量关系。如果研究的气层高度变化范围很大,气柱中上下层温度、密度变化显著时,该公式就不适合用了,这时候可以用压高方程。 2、压高方程 为了精确地获得气压与高度的对应关系,通常将静力学方程从气层底部到顶部进行积分,即得出压高方程,然后再将之替换简化为: Z2-Z1=18400(1+t/273)log( P1/P2) 式中P1、P2分别是高度Z2、Z1的气压值,t是摄氏温标 从公式可以看出 ①气压随高度增加按指数规律递减 ②高度越高,气压减小得越慢 这公式是将大气当成干空气处理的,但当空气中水汽含量较多时,就必须用虚温代替式中的气温。 大气密度与海拔高度和温度间的换算 1、根据大气压力和空气密度计算公式,以及空气湿度经验公式,可得出大气压、空气密度、湿度与海拔高度的关系。 海拔高度(m)0 1 000 2 000 2 500 3 000 4 000 5 000相对大气压力10.8810.7740.7240.6770.5910.514相对空气密度10.9030.8130.7700.7300.6530.583

标准状态下的气体密度表 标准状态下的气体密度表 注:标准状态为温度0℃,压力0.1013MPa。 液化气的性质 中国石油新闻中心[ 2007-05-14 15:09 ] 由于LPG有这种性质,故能用低温、大容量、常压储存,丙烷和丁烷可分别储存。运输时可以用低温海上运输,也可以常温处理后带压运输。 密度 LPG的气态密度是空气的1.5~2倍,易在大气中自然扩散,并向低洼区流动,聚积在不通风的低洼地点。LPG液态的密度约为水的密度的一半。在15℃时,液态丙烷的密度为0.507kg/L,气态丙烷在标准状态下的密度为1.90kg/m3;液态丁烷的密度为0.583kg/L,气态丁烷在标准状态下的密度为2.45kg/m3。LPG在G3:G4=5:5时,液态LPG的密度为0.545kg/L;,气态LPG 在标准状态下的密度为2.175kg/m3。 饱和蒸气压 LPG在平衡状态时的饱和蒸气压随温度的升高而增大。丙烷和丁烷的饱和蒸气压与温度的关系见表4-1。 表4-1 丙烷和丁烷的饱和蒸气压与温度的关系表

膨胀性 LPG液态时膨胀性较强,体积膨胀系数比汽油、煤油和水的大,约为水的16倍。所以,国家规定LPG储罐、火车槽车、汽车槽车、气瓶的充装量必须小于85%,严禁超装。 值和导热系数 LPG的热值一般用低热值计算,在25℃,101 325Pa (1大气压)下表4-2 LPG热值表 表4-2 LPG热值表 LPG的导热系数与温度有关。气态的导热系数随温度的升高而增大,而液态的志热系数随温度的升高而减少,见表4-3。 表4-3 丙烷、丁烷的导热系数表 5.比热容 LPG的比热容随温度的上升而增加。比热容有比定压(恒压)热容和比定容(恒容)热容2种。LPG的蒸发潜热随温度上升而减少,见表4-4 表4-4 丙烷、丁烷在不同温度下的比定压热容和蒸发潜热

大气密度随高度的变化 现有关于大气密度随高度变化的模型主要由以下三种: 1、玻尔兹曼公式(BF ): 00 11()()exp[()]GMm n r n r kT r r =- 其中0r 为地球半径,0r r h =+。0()n r 为地表处大气密度, 在0℃(273K )、101Kpa 下,地表大气密度为31.29/kg m 。()n r 为所要求的高度0h r r =-处的大气密度。G 为 万有引力常量,11226.67210/G Nm kg -=?;k 为玻尔兹曼常数,2311.38110k JK --=?;m 为气体分子质量,271.66110m kg -=??分子量。M 为地球质量,245.97710M kg =?。T 为大气的热力学温度。 根据玻尔兹曼公式,计算得到的大气密度在无穷远处具有不等于零的有限值: 00 1()exp()GMm n n kT r ∞=-? 但是,有限数量的大气不可能以到处都不等于零的密度分布在无限大的宇宙空间,这也说明了玻尔兹曼公式不能再全空间范围适用。 2、Jeans 理论 0000011()()exp[ ()],()0,eff eff GMm n r n r r r r H kT r r n r r r H ≈-≤≤+=>+ 其中0,/eff H H r H kT mg ≤≤=。对地球来说,若T=300K ,则H 为380km 。可见 Jeans 理论是对玻尔兹曼公式的一种硬截断,所以称之为玻尔兹曼公式的硬截断理论(HCBF )。 3、修正的玻尔兹曼公式(RBF ) 4000 11()()()exp[()]r GMm n r n r r kT r r =- 修正后的玻尔兹曼公式主要是在BF 的基础上添加了归一化因子40(/)r r 。加 入修正因子后,RBF 可满足()0n ∞=,因此可以在全空间适用。

饱和蒸汽温度密度压力对照表 温度(℃)密度(kg/m3)绝对压力(Mpa) 100 0.6 1.103 101 0.611 1.05 102 0.639 1.088 103 0.66 1.127 104 0.682 1.167 105 0.705 1.208 106 0.728 1.25 107 0.752 1.294 108 0.776 1.339 109 0.801 1.385 110 0.827 1.433 111 0.853 1.482 112 0.88 1.532 113 0.908 1.583 114 0.936 1.636 115 0.965 1.691 116 0.995 1.747 117 1.025 1.804 118 1.057 1.863 119 1.089 1.923 120 1.122 1.985 121 1.155 2.049 122 1.19 2.115 123 1.225 2.182 124 1.261 2.25 125 1.298 2.321 126 1.336 2.393 127 1.375 2.468 128 1.415 2.544 129 1.455 2.622 130 1.497 2.701 131 1.539 2.783 132 1.583 2.867 133 1.627 2.953 134 1.672 3.041 135 1.719 3.131 136 1.766 3.223 137 1.815 3.317 138 1.864 3.414 139 1.915 3.513 140 1.967 3.614

141 2.019 3.717 142 2.073 3.823 143 2.129 3.931 144 2.185 4.042 145 2.242 4.155 146 2.301 4.271 147 2.361 4.398 148 2.422 4.51 149 2.484 4.634 150 2.548 4.76 151 2.613 4.889 152 2.679 5.021 153 2.747 5.155 154 2.816 5.292 155 2.886 5.433 156 2.958 5.577 157 3.032 5.732 158 3.106 5.872 159 3.182 6.025 160 3.26 6.181 161 3.339 6.339 162 3.42 6.502 163 3.502 6.667 164 3.586 6.836 165 3.671 7.008 166 3.758 7.183 167 3.847 7.362 168 3.937 7.545 169 4.029 7.731 170 4.123 7.92 171 4.218 8.114 172 4.316 8.311 173 4.415 8.511 174 4.515 8.716 175 4.618 8.924 176 4.723 9.137 177 4.829 9.353 178 4.937 9.574 179 5.048 9.798 180 5.16 10.027 181 5.274 10.259 182 5.391 10.496 183 5.509 10.738 184 5.629 10.983

大气压力随海拔高度变化的规律 资料2008-09-10 22:14:50 阅读476 评论0 字号:大中小订阅 一个地方气压值经常有变化→其上空大气柱中空气质量的多少→大气柱厚度和密度改变的反映:大气柱厚度和密度与空气质量应该是成正比关系 任何地方的气压值总是随着海拔高度的增加而递减。据实测,在地面层中,高度每升100 m,气压平均降低12.7 hPa,在高层则小于此数值。 确定空气密度大小与气压随高度变化的定量关系,一般是应用静力学方程和压高方程。 1、静力学方程 具体太长,我简单说明下: 假使大气相对于地面处于静止状态,则某一点的气压值等于该点单位面积上所承受空气柱的重量。 公式是:h≈8000(1+t/273)/P(m/hPa) 其中h是气压高度差,t是摄氏温标,P是气压 从公式可以看出 ①在同一气压下,气柱的温度越高,密度越小,气压随高度递减越慢,单位气压高度差越大。 ②在同一温度下,气压值越大的地方,空气密度越大,气压随高度递减越快,单位高度差越小。 通常,大气处于静力平衡状态,当气层不太厚和要求精度不太高时,这公式可粗略估算气压与高度的定量关系。如果研究的气层高度变化范围很大,气柱中上下层温度、密度变化显著时,该公式就不适合用了,这时候可以用压高方程。 2、压高方程 为了精确地获得气压与高度的对应关系,通常将静力学方程从气层底部到顶部进行积分,即得出压高方程,然后再将之替换简化为: Z2-Z1=18400(1+t/273)log( P1/P2) 式中P1、P2分别是高度Z2、Z1的气压值,t是摄氏温标 从公式可以看出 ①气压随高度增加按指数规律递减

②高度越高,气压减小得越慢 这公式是将大气当成干空气处理的,但当空气中水汽含量较多时,就必须用虚温代替式中的气温。这就不详细再说了,太复杂了,你应该也不需要用到这么复杂的公式吧! 大气压与海拔高度的关系式计算的:P=760(e^-(a/7924))。 其中假定海平面的大气压是760mmHg,会受天气影响略微变动。P(单位mmHg)是海拔a米处的大气压;e是自然对数的底。 当然,结果的不确定度比较大! 一个地方气压值经常有变化→其上空大气柱中空气质量的多少→大气柱厚度和密度改变的反映:大气柱厚度和密度与空气质量应该是成正比关系 任何地方的气压值总是随着海拔高度的增加而递减。据实测,在地面层中,高度每升100m,气压平均降低12.7hPa,在高层则小于此数值。 确定空气密度大小与气压随高度变化的定量关系,一般是应用静力学方程和压高方程。 1、静力学方程 具体太长,我简单说明下: 假使大气相对于地面处于静止状态,则某一点的气压值等于该点单位面积上所承受空气柱的重量。 公式是:h≈8000(1+t/273)/P(m/hPa) 其中h是气压高度差,t是摄氏温标,P是气压 从公式可以看出 ①在同一气压下,气柱的温度越高,密度越小,气压随高度递减越慢,单位气压高度差越大。

海拔高度与大气密度和温度间的换算关系 1根据大气压力和空气密度计算公式,以及空气湿度经验公式,可得出大气压、空气密度、湿度与海拔高度的关系。 注:标准状态下大气压力为1,相对空气密度为1,绝对湿度为11g/m0 从表中可以看出,海拔高度每升高1000m,相对大气压力大约降低12%,空气密度降低约10%, 绝对湿度随海拔高度的升高而降低。 绝对湿度是指每单位容积的气体所含水分的重量,用mg/L或g/m3表示;相对湿度是指 绝对湿度与该温度饱和状态水蒸气含量之比用百分数表达。 2、空气温度与海拔高度的关系 在无热源、无遮护的情况下,空气温度随海拔高度的增高而降低。一般研究所采集的温度与海 从表中可以看出:空气温度在一般情况下,海拔高度每升高1000m,最高温度会降低5C,平 均温度也会降低5C。 大气密度(atmosphericdensity ) 单位容积的大气质量。 空气密度在标准状况( 0°C( 273k),101KPa)下为1.293g L-1 o 空气的密度大小与气温等因素有关,我们一般采用的空气密度是指在0摄氏度、绝对标准指标下,密度为1.297千克每立方米(1.297kg/m3). 大气压力随海拔高度而变化,由经验公式P=P0( 1-0.02257h ) 5.256 (kPa)式中h — 海拔高度(kn).用上面公式,算出压力,然后根据密度二P*29/(8314*T),其中P的单位是帕,T的单位是K,通常也就是273.15+t 不同温度下干空气算公式:

空气密度=1.293(实际压力/标准物理大气压)*(273/实际绝对温度),绝对温度=+273 通常情况下, 即30摄氏度时,取1.165KG/M3 -60摄氏度时,取1.65KG/M3

书山有路勤为径,学海无涯苦作舟 对地球大气密度随高度分布规律的讨论 以NASA 大气模式MS 1、由玻耳兹受能分布律导出的大气密度随高度分布1687 年牛顿发表了万有引力定律, 1859 年麦克斯韦导出了平衡态下气体分子的速率分布定律,尔后,玻耳兹曼发展了麦克斯韦的分子运动学说,证明了在有势的力场中处于热平衡态的分子速度分布定律,即玻耳兹曼能量分布律。麦克斯韦-玻耳兹曼分布律是对相互作用可忽略的大量同类气体分子的集合,采用概率统计的方法导出的川。玻耳兹曼能量分布律的表达式为: 2、由大气模式得到的大气密度随高度分布2.1、大气层的温度分布大气 层可以被粗略地表征为环绕地球从海平面到大约1000Km 高度的区域,其间电中性气体可以被检测。50Km 以下该大气可以被假定为均匀混合的而且可以被当做一种理想气体。80Km 以上该流体静力学平衡因扩散而逐渐崩溃且垂直输运变得重要。在上层大气中主要的气体种类是N2,O,O2,H,He。按温度的垂直分布可将大气层分为对流层,从海平面直到大约10Km,其间温度逐渐降低,同温层,从10Km 直到大约45Km,其间温度逐渐上升,中间层,从45Km 直到大约95Km,其间温度再次逐渐降低,热层,从95Km 直到大约400Km,其间温度再次逐渐上升;而外逸层,大约在400Km 以上,其间温度是常数。 限于篇幅,文章第二章节的部分内容省略,详细文章请到论坛下载:对 地球大气密度随高度分布规律的讨论。 5、结论(1)MS (2)关心大气成分的数密度时,玻耳兹曼能量分布律仅适用于几公里至几十公里高度以内的分子态气体包括无所谓原子态还是分子态的惰性气体,但不包括

空气密度表 绝对压力空气温度空气密度Mpa 摄氏度Kg/m3 0.1 25 1.1691 0.2 25 2.3381 0.3 25 3.5073 0.4 25 4.6764 0.5 25 5.8455 0.6 25 7.0146 0.7 25 8.1837 0.8 25 9.3528 0.9 25 10.522 1 25 25 11.691 1.1 25 1 2.860 1.2 25 14.029 1.3 25 15.198 1.4 25 16.367 1.5 25 17.537 1.6 25 18.706 1.7 25 19.875 1.8 25 21.044 1.9 25 2 2.213

2.0 25 2 3.382 2.1 25 2 4.551 2.2 25 2 5.720 2.3 25 2 6.889 2.4 25 28.058 2.5 25 29.228

饱和蒸汽密度表 绝对压力饱和蒸汽温度饱和蒸汽密度Mpa 摄氏度Kg/m3 0.1 99.7 0.5883 0.2 120.1 1.1288 0.3 133.4 1.6507 0.4 143.5 2.1628 0.5 151.8 2.6683 0.6 158.8 3.1692 0.7 164.9 3.6665 0.8 170.4 4.1616 0.9 174.3 4.6544 1.0 179.9 5.1451 1.1 184.1 5.6367 1.2 187.9 6.125 1.3 191.6 6.6143 1.4 195.0 7.1038 1.5 198.3 7.5928 1.6 201.4 8.082 1.7 204.3 8.5718

海拔与大气密度和温度间的换算关系 公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

海拔高度与大气密度和温度间的换算关系 1、根据大气压力和空气密度计算公式,以及空气湿度经验公式,可得出大气压、空气密度、湿度与海拔高度的关系。 注:标准状态下大气压力为1,相对空气密度为1,绝对湿度为11 g/m3。 从表中可以看出,海拔高度每升高1000 m,相对大气压力大约降低12%,空气密度降低约10%,绝对湿度随海拔高度的升高而降低。 绝对湿度是指每单位容积的气体所含水分的重量,用mg/L或g/m3表示;相对湿度是指绝对湿度与该温度饱和状态水蒸气含量之比用百分数表达。 2、空气温度与海拔高度的关系 在无热源、无遮护的情况下,空气温度随海拔高度的增高而降低。一般研究所采集的温度与海拔高度的关系: 从表中可以看出:空气温度在一般情况下,海拔高度每升高1000 m,最高温度会降低5℃,平均温度也会降低5 ℃。 大气密度(atmospheric density) 单位容积的大气质量。 空气密度在标准状况(0℃(273k),101KPa)下为·L-1。 空气的密度大小与气温等因素有关,我们一般采用的空气密度是指在0摄氏度、绝对标准指标下,密度为千克每立方米m3).

大气压力随海拔高度而变化,由经验公式 P=P0()(kPa)式中 h一海拔高度(km). 用上面公式,算出压力,然后根据密度= P *29/(8314*T),其中 P的单位是帕,T的单位是K,通常也就是+t 不同温度下干空气算公式: 空气密度 =(实际压力 /标准物理大气压) *(273/实际绝对温度),绝对温度 = + 273通常情况下, 即 30摄氏度时,取 M3 -60摄氏度时,取 M3

3 温度密度压力 100?0.6?1.103 101?0.611?1.05 102?0.639?1.088 103?0.66?1.127 104?0.682?1.167 105?0.705?1.208 106?0.728?1.25 107?0.752?1.294 108?0.776?1.339 109?0.801?1.385 110?0.827?1.433 111?0.853?1.482 112?0.88?1.532 113?0.908?1.583 114?0.936?1.636 115?0.965?1.691 116?0.995?1.747 117?1.025?1.804 118?1.057?1.863 119?1.089?1.923 120?1.122?1.985 121?1.155?2.049 122?1.19?2.115

123?1.225?2.182 124?1.261?2.25 125?1.298?2.321 126?1.336?2.393 127?1.375?2.468 128?1.415?2.544 129?1.455?2.622 130?1.497?2.701 131?1.539?2.783 132?1.583?2.867 133?1.627?2.953 134?1.672?3.041 135?1.719?3.131 136?1.766?3.223 137?1.815?3.317 138?1.864?3.414 139?1.915?3.513 140?1.967?3.614 141?2.019?3.717 142?2.073?3.823 143?2.129?3.931 144?2.185?4.042 145?2.242?4.155 146?2.301?4.271 147?2.361?4.398 148?2.422?4.51 149?2.484?4.634 150?2.548?4.76 151?2.613?4.889 152?2.679?5.021 153?2.747?5.155 154?2.816?5.292 155?2.886?5.433 156?2.958?5.577 157?3.032?5.732 158?3.106?5.872 159?3.182?6.025 160?3.26?6.181 161?3.339?6.339 162?3.42?6.502 163?3.502?6.667 164?3.586?6.836 165?3.671?7.008 166?3.758?7.183

【最新整理,下载后即可编辑】 海拔高度与大气密度和温度间的换算关系 1、根据大气压力和空气密度计算公式,以及空气湿度经验公式,可得出大气压、空气密度、湿度与海拔高度的关系。 m3。 从表中可以看出,海拔高度每升高1000 m,相对大气压力大约降低1 2%,空气密度降低约10%,绝对湿度随海拔高度的升高而降低。 绝对湿度是指每单位容积的气体所含水分的重量,用mg/L或g/m 3表示;相对湿度是指绝对湿度与该温度饱和状态水蒸气含量之比用百分数表达。 2、空气温度与海拔高度的关系 在无热源、无遮护的情况下,空气温度随海拔高度的增高而降低。一般研究所采集的温度与海拔高度的关系:

,最高温度会降低5 ℃,平均温度也会降低5 ℃。 大气密度(atmospheric density) 单位容积的大气质量。 空气密度在标准状况(0℃(273k),101KPa)下为1.293g·L-1。 空气的密度大小与气温等因素有关,我们一般采用的空气密度是指在0摄氏度、绝对标准指标下,密度为1.297千克每立方米(1.297kg/m3).

大气压力随海拔高度而变化,由经验公式P=P0(1-0.02257h)5.256(kPa)式中h一海拔高度(km). 用上面公式,算出压力,然后根据密度= P *29/(8314*T),其中P的单位是帕,T的单位是K,通常也就是273.15+t 不同温度下干空气密度计算公式:

空气密度=1.293(实际压力/标准物理大气压) *(273/实际绝对温度),绝对温度=摄氏度+ 273通常情况下, 即30摄氏度时,取1.165KG/M3 -60摄氏度时,取1.65KG/M3

大气压力与海拔高度转换一个地方气压值经常有变化→ 其上空大气柱中空气质量的多少→大气柱厚度和密度改变的反映:大气柱厚度和密度与空气质量应该是成 正比关系任何地方的气压值总是随着海拔高度的增加而递减。据实测,在地面层中,高度每升100m ,气压平均降低12.7hPa ,在高层则小于此数值。确定空气密度大小与气压随高度变化的定量关系,一般是应用静力学方程和压高方程。1、静力学方程假使大气相对于地面处于静止状态,则某一点的气压值等于该点单位面积上所承受空气柱的重量。 公式是:h≈8000(1+t/273 ) /P ( m/hPa ) 其中h 是气压高度差,t 是摄氏温标,P 是气压从公式可以看出 ①在同一气压下,气柱的温度越高,密度越小,气压随高度递减越慢,单位气压高度差越大。 ②在同一温度下,气压值越大的地方,空气密度越大,气压随高度递减越快,单位高度差越小。 通常,大气处于静力平衡状态,当气层不太厚和要求精度不太高时,这公式可粗略估算气压与高度的定量关系。如果研究的气层高度变化范围很大,气柱中上下层温度、密度变化显著时,该公式就不适合用了,这时候可以用压高方程。 2、压高方程为了精确地获得气压与高度的对应关系,通常将静力学方程从气层底部到顶部进行积分,即得出压高方程,然后再将之替换简化为: Z2-Z1=18400 ( 1+t/273 )log( P1/P2) 式中P1 、P2分别是高度Z2 、Z1的气压值,t是摄氏温标从公式可以看出 ①气压随高度增加按指数规律递减②高度越高,气压减小得越慢这公式是将大气当成干空气处理的,但当空气中水汽含量较多时,就必须用虚温代替式中的气温。 大气密度与海拔高度和温度间的换算1、根据大气压力和空气密度计算公式,以及空气湿度经验公式,可得出大气压、空气 注:标准状态下大气压力为1,相对空气密度为1,绝对湿度为11 g/m3 。从表中可以看出,海拔高度每 升高 1 000 m,相对大气压力大约降低12%,空气密度降 低约10%,绝对湿度随海拔高度的升高而降低。 2、空气温度与海拔高度的关系 在无热源、无遮护的情况下,空气温度随海拔高度的增高而降低。一般研究所采集的温

一、气压随高度的变化 一个地方的气压值经常有变化,变化的根本原因是其上空大气柱中空气质量的增多或减少。大气柱质量的增减又往往是大气柱厚度和密度改变的反映。当气柱增厚、密度增大时,则空气质量增多,气压就升高。反之,气压则减小。因而,任何地方的气压值总是随着海拔高度的增高而递减。如图4·1所示,甲气柱从地面到1000m和从1000m到 2000m,虽然都是减少同样高度的气柱,但是低层空气密度大于高层,因而低层气压降低的数值大于高层。据实测,在地面层中,高度每升100m,气压平均降低12.7hPa,在高层则小于此数值。确定空气密度大小与气压随高度变化的定量关系,一般是应用静力学方程和压高方程。

(一)静力学方程 假设大气相对于地面处于静止状态,则某一点的气压值等于该点单位面积上所承受铅直气柱的重量。见图4·2,在大气柱中截取面积为1cm2,厚度为△Z的薄气柱。设高度Z1处的气压为P1,高度Z2 处的气压为P2,空气密度为ρ,重力加速度为g。在静力平衡条件下,Z1面上的气压P1和Z2面上的气压P2间的气压差应等于这两个高度面间的薄气柱重量,即 P2-P1=-△P=-ρg(Z2-Z1)=-ρg△Z 式中负号表示随高度增高,气压降低。若△Z趋于无限小,则上式可写成 -dP=ρgdZ (4.1) 上式是气象上应用的大气静力学方程。方程说明,气压随高度递减的快慢取决于空气密度(ρ)和重力加速度(g)的变化。重力加速度(g)随高度的变化量一般很小,因而气压随高度递减的快慢主要决定于空气的密度。在密度大的气层里,气压随高递减得快,反之则递减得慢。实践证明,静力学方程虽是静止大气的理论方程,但除在有强烈对流运动的局部地区外,其误差仅有1%,因而得到广泛应用。将(4·1)式变换

海拔与大气密度和温度间的换算关系 标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]

海拔高度与大气密度和温度间的换算关系 1、根据大气压力和空气密度计算公式,以及空气湿度经验公式,可得出大气压、空气密度、湿度与海拔高度的关系。 注:标准状态下大气压力为1,相对空气密度为1,绝对湿度为11 g/m3。 从表中可以看出,海拔高度每升高1000 m,相对大气压力大约降低12%,空气密度降低约10%,绝对湿度随海拔高度的升高而降低。 绝对湿度是指每单位容积的气体所含水分的重量,用mg/L或g/m3表示;相对湿度是指绝对湿度与该温度饱和状态水蒸气含量之比用百分数表达。 2、空气温度与海拔高度的关系

在无热源、无遮护的情况下,空气温度随海拔高度的增高而降低。一般研究所采集的温度与海拔高度的关系: 从表中可以看出:空气温度在一般情况下,海拔高度每升高1000 m,最高温度会降低5 ℃,平均温度也会降低5 ℃。 大气密度(atmospheric density) 单位容积的大气质量。 空气密度在标准状况(0℃(273k),101KPa)下为·L-1。 空气的密度大小与气温等因素有关,我们一般采用的空气密度是指在0摄氏度、绝对标准指标下,密度为千克每立方米m3).

大气压力随海拔高度而变化,由经验公式 P=P0()(kPa)式中 h一海拔高度(km). 用上面公式,算出压力,然后根据密度= P *29/(8314*T),其中 P的单位是帕,T的单位是K,通常也就是+t 不同温度下干空气算公式: 空气密度 =(实际压力 /标准物理大气压) *(273/实际绝对温度),绝对温度 = + 273通常情况下, 即 30摄氏度时,取 M3 -60摄氏度时,取 M3

变温大气压强与海拔高度关系公式推导

变温大气压强与海拔高度关系公式推导 bwdqy 有些网上朋友提问关于大气压与海拔高度的关系、公式及推导。回答各有所长,为了互相交流、互补,特写本文。 提到大气压与高度关系,自然想到相关的等温气压方程,网上朋友也多次提到它,下面就从它的推导过程说起。 一、等温气压方程推导 理想气体状态方程式 nRT pV = 将M m n =代入上式得 RT M m pV = 式中:m —气体质量;M —气体分子量(或摩尔质量)。将上式引入气体密度ρ的定义式中得 RT pM V m ==ρ 在流体中,压强随高度的变化率是 g dh dp ρ-= 将ρ式代入上式得 RT g M p dh dp ??-= 或 dh RT g M p dp ??-= 上式(T 为衡量)积分后得 )h (h RT g M p p ln 1212-?-= 这就是众所周知的“气压方程”。 二、等温气压方程分析 现在从解决我们的问题角度考虑,对这个气压方程进行分析,它有以下几个特点: (1)气压方程没考虑气温的影响,因为它是用于高空同温层的公式。而我们关心的是同温层以下温度有变化的区间,所以该式不能直接使用,必须加以温度校正。

(2)气压方程采取定积分形式,出现四个变量,用起来不方便。平常只需要含有气压和高度两个变量的公式,因此应该预先定位,而且对于我们的问题也有条件预先定位。 (3)推导该式使用气压和高度的微小变化量列出方程,以求得非直线函数,方法合理可以采纳。 (4)推导该式基于液体压强计算公式h g p ??ρ=,用于气体时因密度随气压而变,需要代入经过气压校正的密度。该推导为了用气压校正密度,从nRT pV =、M m n =和V m =ρ三式开始,导出了用分子量和气压共同计算密度的式子(前面的ρ式),终于把密度和气压联系到一起了,但是同时也把计算压强的起点从密度转移到了分子量。而空气是一种混合物没有现成的分子量,反倒是密度容易被测 定,数据较为原始,并能用它计算出(平均)分子量,现在又要从分子量算回密度,显得有些反复。但正好提示了这个气压校正密度的方法可能不是唯一的,应该还有从密度起算的另一种方法。 (5) 气压校正密度的另一种方法 前面的ρ式 RT pM = ρ -------------------------------------------------1 变换成 p T R M ??ρ= 将已知的一组数值——密度1.293 kg / m 3、温度0℃和气压101325 Pa 代入上式得 10132515.273314.8293.1M ??= (= 0.02898 kg / mol ) 将式1代入数值得 101325 15.273314.8293.115.273314.8p ????=ρ 约简后得 101325p 293.1? =ρ ----------------------------------------------2 这就是从1大气压下的密度(1.293)起算,配以校正系数进行气压校正密度的式子(式2)。它是从气压方程使用的校正式(式1)演变过来的,所以校正密度的两种方法是等同的,但式2简捷得多,且物理意义明显。

相关文档
最新文档