噪声常用计算公式整汇总情况

噪声常用计算公式整汇总情况
噪声常用计算公式整汇总情况

目录

一、相关标准及公式 (3)

1)基本公式 (3)

2)声音衰减 (4)

二、吸声降噪 (5)

1)吸声实验及吸声降噪 (6)

2)共振吸收结构 (7)

三、隔声 (8)

1)单层壁的隔声 (8)

2)双层壁的隔声 (9)

3) 隔声测量.................................. 错误!未定义书签。

4)组合间壁的隔声及孔、缝隙对隔声的影响 (10)

5)隔声罩 (10)

6)隔声间 (10)

7)隔声窗 (11)

8)声屏障 (11)

9)管道隔声量 (12)

四、消声降噪 (12)

1)阻性消声器 (12)

2)扩张室消声器 (14)

3)共振腔式消声器 (15)

4)排空放气消声器 (13)

压力损失 (13)

气流再生噪声 (13)

五、振动控制 (16)

1)基本计算 (16)

2)橡胶隔振器(软木、乳胶海棉) (16)

3)弹簧隔振器 (18)

重要单位: 1N/m=1kg/s2 1r/min=1/60HZ 标准大气压1.013*105 气密度

5273.2=1.29 1.01310P

T ρ?

??

基准声压级Po=10*105 基准振动加速度10-6m/s2 1Mpa=1000000N/m2

倍频程测量范围: 中心频率两侧70.7%带宽;1/3倍频程测量范围: 中心频率两侧23.16%带宽 一、相关标准及公式 1)基本公式

声速331.50.6c t =+ 声压与声强的关系2

2P I=cv c

ρρ= 其中v wA =,单位:W/m 2

声能密度和声压的关系,由于声级密度I c

ε=,则2

2P c ερ= J/m 3

质点振动的速度振幅p I

v c p

ρ=

= m/s

《环境影响噪声控制工程—洪宗辉P11》 A 计权响应与频率的关系见下表《注P350》

等效连续A 声级0.1110lg

10

Ai

L eq ti ti

i

L =??∑∑ ti ?第i 个A 声级所占用的时间

昼夜等效声级0.10.1(10)5310lg 10108

8

d

n

L L dn L +??=+????

22:00~7:00为晚上

本底值90L ,2

109050()60Aeq

L L L L -=+

如果有N 个相同声音叠加,则总声压级为110lg p p L L N =+ 如果有多个声音叠加10

110lg(10)PI

L N

p i L ==∑

声压级减法10

10

10lg(10

10

)PT PB L L PS L =-

背景噪声(振动)修正值

2)声音衰减 (1)点声源

常温时球面声波扩散的表达式

2

10lg

4p w Q

L L r

π=+ 半径分别为r 1和r 2两点的扩散声压级差21

20lg d r A r = 自由空间120lg 11p w L L r =-- 半自由空间120lg 8p w L L r =--

(2)线声源

声压级:110lg 3p w L L r =--

半径分别为r 1和r 2两点的扩散声压级差2

1

10lg d r A r = 声屏障计算规范 (3)有限长线声源

如果测得在0r 处的声压级为0()P L r ,设线声源长为l 0,那么距r 处的声压: 当000r l r l >>且时,可近似简化为()0()()20/P P o L r L r r r =-,即在有限长线声源的远场,有限长线声源可当作点声源处理。

当000/3/3r l r l <<且时,可近似简化为()0()()10/P P o L r L r r r =-,即在有限长线声源的近场,有限长线声源可当作线声源处理。

当00000/3/3l r l l r l <<<<且时,可近似简化为()0()()15/P P o L r L r r r =- (4)面声源

b>a 预测点和面声源中心距离衰减 0a r a

r r b3 b6 ππππ?

?<

?

?

(5)室内外

126NR L L TL =-=+

TL :窗户的隔声量,DB ; NR : 室内和室外的声级差。或称插入损失,DB

10.111()10lg(10

)p ij

n

L p i j L T ==∑ LP:室内围护结构处的倍频带声压级 N声源总数

i倍频带

12()10lg w L L T S =+ S透声面积

二、吸声降噪 1)吸声实验及吸声降噪

房间的总吸声量i i A S α=∑;房间的平均吸声系数i i

i

S S

αα=

∑∑

降噪系数25050010002000

4

NRC αααα+++=

吸声量A S α= 驻波管max 22c d f λ

=

min

22c

l f λ≥= 对于圆形管道,上限频率0.586/u f c D = D 管道截面直径,m 对于矩形管道,上限频率1/2u f c l = l 1管道最大尺寸边长,m 下限频率/2l f c l = l 管道长度,m 房间总的吸声量i i i

i

A S A α=+∑∑

当吸收系数α<0.2时,可用赛宾公式600.163V

T S

α=, 《注P355》 而当α>0.2时,用艾润公式600.163ln(1)

V

T S α=-- 此公式适用于频率小于

1000Hz ,

如果频率大于1000 Hz ,需考虑空气的吸收,赛宾—努特生600.1634V

T S mV

α=+,

艾润公式—努特生600.16355.2ln(1)4ln(1)4V v

T S mV cS mVc

αα=

=--+--+

空气吸声系数4m 可参考《注P356》 房间系数1S R α

α

=

-式中i i S S αα=∑

(扁平房间6db/距离加倍,降噪量 3.3+2.7x 分贝)

假设房间处理前后的吸声系数为1α和2α,可得吸声处理前后室内声压差

2212

44

10lg(

)10lg()44Q Q L r R r R θθππ?=+-+ α远小于 1的时候,可以作简单计算时可用下式计算

2212112110lg

10lg 10lg 10lg p R A T L R A T α

α?====

临界范围内,声压级表示2

4

10lg(

)4P W Q L L r R

θπ=++

临界半径0r r ==扁平房间

(1)(5.49lg )40.25

P L r x α=-+>≥ α平顶吸声系数; 距离r 小于半高度h/2

时,声场仍由直达声决定, 距离加倍,声压级降低6DB ; 距离大于h/2,小于8h 时,近似值为3.3+2.7α。 2)共振吸收结构 1.薄膜与薄板

共振频率0f =

0ρ为空气密度,kg/m 3

;0M 为膜的面密度,kg/m 2

2.穿孔板共振吸声结构

(1)单腔共振器的共振频率

0f =

其中:S 为孔颈开口面积,m 2;V 为空腔容积,m 3;t 孔颈深度,m ;δ修正值,对于圆形0.84d

d πδ=

(2)穿孔板共振吸声结构

0f =

则()2

02f p D t c πδ??

=+ ???

其中:D 为板后空气厚度,m ;P 为穿孔率(穿孔率小于20%),圆孔正方形

排列2

2

4d P B π=

,圆孔等边三角形排列2

P =

,狭缝平行排列d

P B

=

,d 为孔径或缝宽,B 为孔(缝)中心距

当穿孔板用于吊顶时,背后空气层很大,其共振频率可用下式进行计算

0f =

由于空气层厚度大,在低频将出现共振吸取,若在板后设多孔材料会使中、高频也有良好的吸收。《噪声与振动控制工程手册 P429》

微穿孔版,孔径<1mm,穿孔率<5%,空腔5-20cm ;频带宽。 (3)帘幕《噪声与振动控制工程手册 P424》 设帘幕距刚性壁的距离为L ,吸收峰频率

()214n c f L

-=

式中:L 空气层厚度,m ;n 正整数

三、隔声

1)计权隔声量测量

试验样品的隔声量:0

1210lg

S R L L S

α=-+ 式中:L 1发声室中的平均声压级;L 2接收室的平均声压级;S 0试验样品的面积,m 2;α接收室的平均吸声系数;S 接收室的总内表面积,m 2; 2)单层壁的隔声 1.质量定律

声波垂直入射到单层壁上的隔声量(对应10LG (1/t ))实际隔声量要加上5DB 。

前提:声源频率大于共振频率

020lg 42.5R mf =- m 壁的面密度,kg/m 2

;f 波频率,Hz

实际隔声量可用经验公式

14.5lg 26R mf =-

对于工程上经常关心的频率范围为100~3150Hz 的平均隔声量

14.5lg 10R m =+

而在《环境噪声控制工程 洪宗辉》

13.5lg 14R m =+ (m ≤200kg/m2) 16lg 8R m =+ (m >200kg/m2)

2.吻合效应

产生吻合效应条件

sin p λ

λθ=

p λ=为板厚,m 产生吻合效应的最低效率,称为临界频率

2

0.551c p

c f hc =

而在《环境噪声控制工程 洪宗辉P152》

c f =

=m ρ构件材料的密度(注意不是面密度),kg/m 3

,E 构件材料的静态弹性模

量,N/m 2;h 板的厚度,m ;M 板的面密度,kg/m 2,B 板的劲度,31

12

B Eh =; 3)双层壁的隔声 1.有关计算

双层壁作为整体振动系统的共振频率

0f =

为空气层厚m ,m kg/m 2

;ρ空气密度。

(0f =

E 为填充材料的弹性系数,d 应该为填充发泡材料

的厚度P270)

双层壁的隔声量

0/c M f f ρπ<<时 20lg 42.5R Mf =- M=m 1+m 2

0/2f f c d π<<时 1220lg 2R R R kd =++ 其中波数 2k π

λ

=

/2f c d π>时,126R R R =++

4c

f d

>

,且空气层内有吸声材料, 12110lg 4W

S

R R R S

α??

=+-+ ? ??

?

《环境工程手册-环境噪声控制卷 P156》 式中:W S 单片墙的面积,m 2;S α两板之间空气层内的吸声量,m 2;

高阶共振频率2n nc

f d

= n 为常数;d 空气层厚度,m 《噪声与振动控制技术 袁昌明P81》

4)组合间壁的隔声及孔、缝隙对隔声的影响

平均透射系数及平均隔声量

112212n n

n S S S S S S ττττ++???+=

++???+,110log R τ

= 得0.110R τ-=

当结构的隔声量很大和0/1c S S <<时,结构的实际隔声值为0

10lg

C

S R S = 5)隔声罩

罩内外声压级差 10lg A NR R S

=+ A 室内吸声量 S 为罩内表面积。 室内罩外的插入损失11

111110lg

10lg IL R αταττ+==++ 均为罩内值 隔声罩透声很小时,隔声插入损失近似10lg IL R α=+ 6)隔声间

10lg

IL A D R S

=+ 式中10.11

10lg

10

N

i i N

R

i

i S

R S =-==∑∑ 1

N

i i i A S α==∑

1.隔声间隔声量计算

罩内外声压级差 10lg A NR R S

=+ A 室内吸声量 S 为罩内表面积。 室内罩外的插入损失11

111110lg

10lg IL R αταττ+==++ 均为罩内值 2.多层复合隔声门的计算也叫室内消声器《噪声与振动控制工程手册P318》

声闸隔声效果2

1

10lg

cos 12IL D S d

A φαπ=-??+ ???

S 门斗内表面面积,m 2;α门斗内平均吸声系数;A 门斗内吸声量;d 两门中心距离,m ;φ两门中心连线与门的法线的夹角 7)隔声窗

窗的隔声量1210lg

S

R L L A

=-+ 式中:S 为窗的面积,m 2;A 为室内吸声量,m 2;L 1、L 2室内外声级; 8)声屏障

1.隔声计算方法二《环境工程手册-环境噪声控制卷 P32》

22

1

310s d

p p N

=+ 式中:P s 衍射声场的有效声压,P d 直达声场的有效声压 1

10lg

310IL D N

=-+ 2/N δλ=

10lg

320IL i

D d λ

λ=+ 式中:i d 声程差,m ;λ波长,m

N=0 : 5db 一般8-12,不超过15

2.室内隔声计算方法一《噪声与振动控制工程手册 P372》

2

12

24410lg 44IL Q r R D QD r

R ππ??

+ ???

=??

+ ???

式中声波的衍射系数3

1

320i i

D λ

λδ==+∑

`δ声程差(有三个方向)

9)管道隔声量 自鸣频率:100L

r C f d

π=

L C 纵波传播速度 自鸣频率以上按质量定律算 马P360

管道包扎的共振频率0f =s M 不透气隔声材料的面密度kg/m2;D 柔软吸声材料的厚度m. 四、消声降噪 1)管道

1阻性消声器——彼洛夫公式()

0Pl L S ?α?= 得()0L S l P

?α?= 式中:P 消声器通道断面周长,l 消声器有效长度;S 消声器通道横截面积,

0α法向吸声系数(

)0?α=

2.上限失效频率

上限失效频率(高频失效频率) 1.85

c c

f D

= D 消声器通道的当量直径,其中圆形管道取直径,矩形管道取边长平均值

频率高于上限失效频率时,'33

n

L L -?=? 'L ?高于失效频率的消声量 L ?失效频率处的消声量

n 为高于陪频程的频带数

幕帘距离刚性壁: ()1

214c f n l

=+ l 为空气层厚度 3管道排气消声 排空放气消声器

4510lg 80lg W L S v =-++ S 喷口面积 v 喷口流速

离喷口1m 处的排气噪声2

(1)8020lg 20lg 0.5

p R L d R -=++- 0s P R P = 喷口内驻压与环

境大气压力之比值。 D 喷口直径 节流减压 马书P513 小孔喷注

'3410lg

3A A L X π

?= A X 当小孔喷口处和原喷口处流速均为声速时,00.165A d X d = d

小孔直径 d 01mm d<1mm '27.530lg A L d ?=- 管道内的声场条件 马P526

10lg w p L L S =+H 风管内全压

4管道压损、气流再生噪声 压力损失

+P P P 动全静= 阻力系数P P 动ξ?= P ?为全压损失值 2

102v P g

动ρ=

2

10102l l v P P d d g

v 摩摩摩

e e ρξξ?== 气流再生噪声

60lg 10lg w L a v S =++ a(管式:-5~-10) (片式:-5~5) (阻抗复合:5~15) (折板

式:15~20)

v 气流流速 S 气流通道面积

1L L M

??=

+ L ?气流速度为v 时的消声量 0L ?静态条件时的消声量 M (马赫数)=v/c

2)扩张室消声器 1.有关计算

由2sin kl =1,可得(21)/2kl n π=+=1,相应的最大消声频率为

()max 1214c f n l

=

+ 最大消声量2TL 1

1D 10lg[1()]4

m m

=+- 因此,一节扩张室消声器的长度max

14c

L f =?

当2sin kl =0时,kl n π=,些时,D TL =0,此时频率min 2nc f l

= 当m 大于5时,可近似地取20lg 6TL D m =- m 为面积比值

上表见《噪声与振动控制工程手册P490》 2.截止频率

扩张室上限截止频率 1.22h c f D

=,D 为扩张室直径

0(0f 共振频率)作为有效消声的下限频率

l f =

连接管的截面积,m2;l 1连接管长度,m ;V 扩张室容积,m 3。

3)共振腔式消声器 1.共振频率及消声量

共振式消声器频率选择性较强,即仅在低频或中频的某一较宽的频率范围内具有较好的消声效果

共振腔式消声器共振频率r f =

=

S 0孔径的截面积 t 内管厚度

/全面积)

通常把传导率()

2

00.840.8S d G t d t d π==

++ d 小孔直径,t 小孔长度 2210lg 1(//)TL r r K D f f f f ??=+??-??

其中K = S 气流通道的截面积(和上面的S 0不一样,计算时要注意)

对于倍频带,其消声量210lg(12)TL D K =+

对于1/3倍频带,其消声量210lg(120)TL D K =+

2.共振腔容积及传导率

共振腔容积r c

V KS f π=

传导率22(

)r f G V c

π=? 对于穿孔板(或穿孔管)来说,传导率G 可以进行估算

14

Z z nS G t d

π

=

+

n 为孔数;S 1z 每个穿孔截面积,d 小孔直径

(穿孔板r f =

穿孔板用于吊顶时r f =

P

为穿孔面积

五、 振动控制 1)基本计算

当系统无阻尼振动时,()

()2

2

0011

1//1

f T f f f f ==

--

振动级差0120lg

20lg f

F L F T ?==

确定固有振动频率0f f

=

对于钢弹簧0f =

0f =; 阻尼比001

v av

A In f t A ζ= kN/m v A 衰减前的振动位移 av A 衰减后的振动位移 t 衰减时间

阻尼系数C 0/c C C ζ=

临界阻尼c C = C

为选择的阻尼器的阻尼系数

2C ζ=

2)橡胶隔振器(软木、乳胶海棉)

1.有关计算一

竖向动刚度()2

02Zd W K f g π=

或0f =

式中:K zd 垂直动刚度,N/m ,W 设备质量,N ;

竖向静刚度zd

zs d

K K n =

动态系数d n 是动、静弹性模量之比(/d S E E ) 隔振器的竖向静变形s ZS

W

K δ=

由0f =

可推导行到2

00.25d

s n f δ=?

s δ m 隔振器高度(5~6.7)s H δ= 或由s

H δε

=

ε相对变形 2.有关计算二《环境工程手册-环境噪声控制卷 P258、259

》f =

0f =

式中:fo 软木固有频率,Hz ;d E 动态弹性模量,MPa ;σ应力,MPa ;H ,软木厚度,m 。

多层橡胶隔振垫的固有频率0on f f =,式中:n 隔振垫层数。

同一类型的减振器,只要压缩量相同,体系的自振频率相同。两个减振器串联使用时,在同样的重量下变形增大一倍,刚度降低50%,自振频率则为单

个的1/3.有关计算三《噪声控制技术—潘仲鳞P165、166》 d d d

HW H

E S E δσ=

=,其中d δ单位为m ,H 为材料厚度(m ),W 为载荷(N ),S 为受力面积(m 2), d E 为动态弹性模量(pa ),Mg

S

σ=为应力(pa )。 静刚度S zs E S

K H

=

式中:S 为承压面积,m 2;H 为软木板厚度,m ;K zd 垂直动刚

度,N/m ,E d ,Pa

d d s

d s s d

K E n K E δδ=

==

3)弹簧隔振器

《噪声与振动控制工程手册 P673》 1.弹簧的旋绕比C(又称弹簧指数)

2

D C d

=

式中D 2弹簧中径;d 弹簧钢丝直径 2.弹簧钢线直径d

d =(mm )

式中:曲线系数410.615

44C k C C

-=

+-;W 隔振体系的全部载荷,KN ;[]τ容许切应力,MPa ;注意:手册上公式错误,载荷应该是KN 才对。(以上公式使用国标单位也行,只要去掉1000系数即可)

而在《噪声控制及应用实例P273》

d =

式中:d 弹簧丝直径,m ;P 弹簧承受的载荷,N ;D2弹簧圈的平均直径,

m ;[]τ材料许用剪应力,Pa ; 3.弹簧有效圈数n

4

33

88z z Gd Gd n k C k D ==

G 弹簧钢材的切变模量,MPa ;d 弹簧钢丝直径,mm ;Kz 弹簧的垂向刚度,kN/m (备注以上公式如果单位使用国标单位也行) 4.弹簧的静变位

3

24

810001000

Z

WD n W Gd K ???== ?弹簧的静变位,mm ;W 承受的静载荷,KN ;Kz 垂向刚度,kN/m

三、时间平均声级或等效连续声级Leq A 声级能够较好地反映人耳对噪声的强度和频率的主观感觉,对于一个连续的稳定噪声,它是一种较好的评价方法。但是对于起伏的或不连续的噪声,很难确定A 声级的大小。例如我们测量交通噪声,当有汽车通过时噪声可能是75d B ,但当没有汽车通过时可能只有50dB ,这时就很难说交通噪声是75dB 还是50dB 。又如一个人在噪声环境下工作,间歇接触噪声与一直接触噪声对人的影响也不一样,因为人所接触的噪声能量不一样。为此提出了用噪声能量平均的方法来评价噪声对人的影响,这就是时间平均声级或等效连续声级,用Leq 表示。这里仍用A 计权,故亦称等效连续A 声级L Aeq 。 等效连续A 声级定义为:在声场中某一定位置上,用某一段时间能量平均的方法,将间歇出现的变化的A 声级以一个A 声级来表示该段时间内的噪声大小,并称这个A 声级为此时间段的等效连续A 声级,即: ()??????? ??????????=?dt P t P T L T A eq 2001lg 10 =??? ? ???T L dt T A 01.0101lg 10 (2-4) 式中:p A (t )是瞬时A 计权声压;p 0是参考声压(2×10-5 Pa );L A 是变化A 声级的瞬时值,单位dB ;T 是某段时间的总量。 实际测量噪声是通过不连续的采样进行测量,假如采样时间间隔相等,则: ??? ??=∑=n i L eq Ai N L 11.010 1lg 10 (2-5) 式中:N 是测量的声级总个数,L A i 是采样到的第i 个A 声级。 对于连续的稳定噪声,等效连续声级就等于测得的A 声级。 四、昼夜等效声级 通常噪声在晚上比白天更显得吵,尤其对睡眠的干扰是如此。评价结果表明,晚上噪声的干扰通常比白天高10dB 。为了把不同时间噪声对人的干扰不同的因素考虑进去,在计算一天24h 的等效声级时,要对夜间的噪声加上10dB 的计权,这样得到的等效声级为昼夜等效声级,以符号L dn 表示;昼间等效用L d 表示,指的是在早上6点后到晚上22点前这段时间里面的等效值,可以将在这段时间内的Leq 通过下面的公式计算出来;夜间等效用L n 表示,指的是在晚上22点后到早上6点前这段时间里面的等效值,可以将在这段时间内的Leq 通过下面的公式计算出来:

临床医学常用计算公式十 常用医学计算公式 医学资料 1. 补钠计算 男性可选用下列公式 应补钠总量(mmol)=[142-病人血Na+(mmol/L)]×体重(kg)×0.6 应补氯化钠总量(g)=[142-病人血Na+(mmol/L)] ×体重(kg) ×0.035 应补生理盐水(ml)=[142-病人血Na+(mmol/L)] ×体重(kg)×3.888 应补3%氯化钠=[142-病人血Na+(mmol/L)] ×体重(kg)×1.1666 应补5%氯化钠(ml) =[142-病人血Na+(mmol/L)] ×体重(kg)×0.7 女性可选用下列公式 应补钠总量(mmol) =[142-病人血Na+(mmol/L)] ×体重(kg)×0.5 应补氯化钠总量(g)=[142-病人血Na+(mmol/L)] ×体重(kg)×0.03 应补生理盐水(ml) =[142-病人血Na+(mmol/L)] ×体重(kg)×3.311 应补3%氯化钠(ml)=[142-病人血Na+(mmol/L)] ×体重(kg)×3.311 应补5%氯化钠(ml)=[142-病人血Na+(mmol/L)] ×体重(kg)×0.596 注:①上述式中142为正常血Na+值以mmol/L计。

②按公式求得的结果一般可先总量的1/2~1/3然后再根据临床情况及检验结果调整下一步治疗方案。 ③单位换算: 钠:mEq/L×2.299=mg/dlmg/dl×0.435=mEq/L mEq/L×1/化合价=mmol/L 氯化钠:g×17=mmol或mEq,(mmol)×0.0585=g/L 2.补液计算 (1)根据血清钠判断脱水性质: 脱水性质血Na+mmol/L 低渗性脱水>130 等渗性脱水130~150 高渗性脱水>150 (2)根据血细胞比积判断输液量: 输液量=正常血容量×(正常红细胞比积/患者红细胞比积) (3)根据体表面积计算补液量: 休克早期800~1200ml/(m2·d); 体克晚期1000~1400ml(m2·d); 休克纠正后补生理需要量的50~70%。 (4)一般补液公式: 补液量=1/2累计损失量+当天额外损失量+每天正常需要量

噪声系数的计算及测量方法 噪声系数(NF)是RF系统设计师常用的一个参数,它用于表征RF放大器、混频器等器件的噪声,并且被广泛用作无线电接收机设计的一个工具。许多优秀的通信和接收机设计教材都对噪声系数进行了详细的说明. 现在,RF应用中会用到许多宽带运算放大器和ADC,这些器件的噪声系数因而变得重要起来。讨论了确定运算放大器噪声系数的适用方法。我们不仅必须知道运算放大器的电压和电流噪声,而且应当知道确切的电路条件:闭环增益、增益设置电阻值、源电阻、带宽等。计算ADC的噪声系数则更具挑战性,大家很快就会明白此言不虚。 公式表示为:噪声系数NF=输入端信噪比/输出端信噪比,单位常用“dB”。 该系数并不是越大越好,它的值越大,说明在传输过程中掺入的噪声也就越大,反应了器件或者信道特性的不理想。 在放大器的噪声系数比较低的情况下,通常放大器的噪声系数用噪声温度(T)来表示。 噪声系数与噪声温度的关系为:T=(NF-1)T0 或NF=T/T0+1 其中:T0-绝对温度(290K) 噪声系数计算方法 研究噪声的目的在于如何减少它对信号的影响。因此,离开信号谈噪声是无意义的。 从噪声对信号影响的效果看,不在于噪声电平绝对值的大小,而在于信号功率与噪声功率的相对值,即信噪比,记为S/N(信号功率与噪声功率比)。即便噪声电平绝对值很高,但只要信噪比达到一定要求,噪声影响就可以忽略。否则即便噪声绝对电平低,由于信号电平更低,即信噪比低于1,则信号仍然会淹没在噪声中而无法辨别。因此信噪比是描述信号抗噪声质量的一个物理量。 1 噪声系数的定义 要描述放大系统的固有噪声的大小,就要用噪声系数,其定义为

一、给药剂量的计算 药品规格与剂量单位换算重量单位五级:千克(kg)、克(g)、毫克(mg)、微克(μg)和纳克(ng)。 容量单位三级:升(L)、毫升(ml)、微升(μl) 二、滴速计算 滴系数:每毫升溶液所需要的滴数。

滴系数一般记录在输液器外包装上。常用的输液器滴系数有10、15、20三种型号。即1毫升有10、15、20滴! 输入时间(min)=要输入的液体总量(ml)*滴系数/每分钟的滴数

三、抗生素及维生素换算 1、抗生素换算: 理论效价:系指抗生素纯品的质量与效价单位的折算比率,多以其有效部分的1μg作为1IU(国际单位)。如链霉素、土霉素、红霉素等以纯游离碱1μg作为1IU。少数抗生素则以其某一特定1μg的盐或一定重量作为1IU,如青霉素G 钠盐以0.6μg为1IU;青霉素G钾盐以0.6329μg为1IU;盐酸四环素和硫酸依替米星以1μg为1IU。 原料含量的标示是指抗生素原料在实际生产中混有极少的但质量标准许可的杂质,不可能为纯品。如乳糖酸红霉素的理论效价是1mg为 672 IU,但《中华人民共和国药典》规定1mg效价不得少于610IU,所以产品的效价在 610-672IU之间,具体效价需在标签上注明,并在调配中进行换算。

2、维生素类药物换算: 维生素A的计量常以视黄醇当量(RE)表示,每1U维生素A相当于RE0.344μg。即:1U维生素A=0.3RE。 维生素D:每40000U=1mg。 维生素E:以生育酚当量来表示。 维生素E 1U相当于:1mg dl-α生育酚酰醋酸,相当于0.7mg dl-α生育酚,相当于0.8mg d-α生育酚酰醋酸。

第一章 医学统计中的基本概念 1、医学统计学是研究医学数据的收集、整理、分析、解释和呈现其结果的一门学科。 2、个体:研究的基本观察单位。 3、变量:用于观察研究对象的指标。 4、观察值:个体变量的数值。 5、资料:又称为数据,由变量的观察值构成。 变异:个体观察值之间具有 的差异。 变异和同质是对统计学数据 的要求! 变异是统计学研究的真正对 象! 统计学是研究变异规律的科 学! 同质:个体观察值之间的变 异在允许范围内。 异质:个体观察值之间的变 异超出允许范围。 一、总体、抽样、样本、参数、统计量 总体:同质的个体所构成的全体研究对象。总体同时具有同质和变异两个特点。 有限总体:总体中的个体 数量是有限的。 无限总体:总体中的个体 数量是无限的。 样本:从总体中随机抽取 的部分个体。 样本量:样本所包含的个

体数目。 参数:刻画总体特征的指标。 统计量:刻画样本特征的指标。 抽样:从总体中随机抽取部分个 体的过程。抽样具有代表性、随机性、可靠性、可比性; 原则:代表性:样本能充分反映 总体特征。 随机性:保证总体中每个个体都有相同的几率被抽样。 随机性是代表性的保证; 生活中随机性的例子(思考题); 计数资料计量资料 (分类资料)资料 等级资料(有序多分类资料) 二分类资料 无序多分类资料 计量资料:由连续变量的观察值构成的资料。对每个观察对象的观察指标用定量方法测定其数值大小 所得的资料,一般有度量衡单位,例如年龄、身高、 血糖。 计数资料:由离散变量的观察值构成的资料。先将 观察对象的观测指标按性 质或类别进行分组,然后 计数各组的数目所得的资料,例如性别、患病、血型。 等级分组资料:由等级变量的观测值构成的资料。具有计数资料的特征,同

式计算同年龄每日需水量不每日需水量计算式年龄 体重(kg)×40(ml) 成人 80(ml)] 体重(kg)×[50~10~14岁体重(kg)×[70~100(ml)] 8~9岁 体重(kg)×[90~110(ml)] 4~7岁 (ml)] ~3岁体重(kg)×[100~1102体重(kg)×[120~160(ml)] 1~2岁 肌酐清除率计算Cockcroft公式:(1) Scr(mg/dl) ] 或=(140-年龄)×体重(k g)/[72×Ccr Scr(umol/L)] (k g)]/[× Ccr=[(140-年龄)×体重注意肌酐的单位,女性计算结果×岁以后逐渐减低。正常值:108±min·40有些医院考虑到环孢肾毒性,,病人内生肌酐清除率如大于50则正常,最佳值是大于70肾移植后且稳定,也属正常。如大于45 公式:(2)简化MDRD) ×女性×(年龄)GFR(ml/=186×(Scr));年龄以岁为单位;体为肾小球滤过率;Scr为血清肌酐(mg/dl注:Ccr为肌酐清除率;GFR 重以kg为单位。 3)标准24小时留尿计算法:(mol/L) 血浆肌酐浓度(μ尿肌酐浓度(μmol/L)×每分钟尿量(ml/min)/ 肥胖与瘦弱(cm)-100 ①身高>165cm:身高标准体重(kg)::身高(cm)-105(男)身高<165cm -100(女))身高(cm+50 cm-150)×②北方人=(身高+48 cm-150)×南方人=(身高×正常体重:=SW±SW ×(~)超重:=SW+SW ×~轻度:=SW+SW 中度: =SW+SW×(~)肥胖重度:=SW+SW×(~)×~弱:=SW-SW瘦 = SW-SW严重瘦弱:×(及其以上)体重指数(kg)/BSA(m2) =体重体重指数:男20~25,女19~24(超过此指数为肥胖)正常值体表面积计算 中国成年男性 BSA=+ 中国成年女性BSA=+ BSA=+ 小儿体表面积 (W-30)*+ 新 30公斤以上:W*+ 30公斤以下:静息能量消耗计算计算公式:Harris-Benedict=655++ 女性:REE(Kcal/d)=66++ 男性:REE(Kcal/d)] 年龄(岁)H=身高(cm);A=[W=体重(Kg);糖尿病饮食计算即焦耳)作为热1kcal每日饮食总热量,据病人体重及活动强度来决定。按营养学常以1千卡(热量。量单位,每克碳水化合物或蛋白质在体内产生4kcal,每克脂肪产生9kcal按此公式计-105)体重指理想体重而言,简易计算公式:理想体重(公斤)=身高(厘米)(1为消瘦,肥胖或消瘦均不利于健康。算,超过理想体重20%以上为肥胖,低于标准20%人体对热量需求受劳动强度影响最大,不同体型糖尿病人每公斤体重所需热)活动强度:(2公斤)能表:单位(千卡/正常肥胖劳动强度消瘦 20~25 15~20 15 卧床休息 35 30 20~25 轻体力劳动 40 35 30 中体力劳动 45~50 40 35 重体力劳动电解质补充计算 (kg)×mmol/L-测得mmol/L)×体重某种电解质缺少的总量:mmol/L=(正常低渗性脱水(缺钠)的补钠计算式男性可选用下列公式 (kg)×病人血Na+(mmol/L)]×体重应补钠总量(mmol)=[142- (kg) ×)]×体重)=[142-病人血Na+(mmol/Lg应补氯化钠总量(×]×体重(kg)=[142-病人血Na+(mmol/L)ml应补生理盐水()×]×体重(kg)病人血Na+(mmol/L)=[142-应补3%氯化钠××体重(kg)Na+病人血(mmol/L)]应补5%氯化钠(ml)=[142- 女性可选用下列公式××体重(kg)(mmol/L)]Na+应补钠总量(mmol)=[142-病人血 (kg)×mmol/L)]×体重Na+应补氯化钠总量(g)=[142-病人血( (kg)×mmol/L)]×体重应补生理盐水(ml) =[142-病人血Na+(×]×体重

执业医师考试:儿科计算公式大全 1. 小儿体重的计算 1~6个月:出生体重+月龄X0.7 7~12个月:体重=6+月龄X0.25 2~12岁:年龄X2+8 注:出生体重平均为3kg,生后3~4个月时体重约为出生时的2倍。一岁时约为3倍,2岁时约为4倍。 2.小儿身高的计算 出生时约为50cm,半岁时约为65cm,一岁时75cm,2岁时87cm。 2~12岁身高=年龄×7+70(或75)。 注:身高低于正常的百分之三十即为异常。 3.头围 出生时约为33~34cm,一岁以内增长最快。 1岁时46cm,2岁时48cm,5岁时50cm。15岁接近成人54~58cm。 注:头围测量在2岁前最有价值。 4.胸围 出生时平均32cm。一岁时头围与胸围大致相等。约46cm。 5.牙齿 乳牙计算公式:月龄- 4(或6) 注:出生后4~10个月乳牙开始萌出,12个月未萌出者为出牙延迟。 6.囟门 出生时为1.5~2cm,1~1.5岁(12~18个月)应闭合。 7.全脂奶粉配比 全脂奶粉按重量配置时,其比例1:8;按容积1:4。

1岁内小儿每日每千克体重需要8%的糖牛乳110ml 例如:小儿,3个月,5kg,每日需要8%的糖牛乳的量为多少?即5×110=550 8.小儿药物的剂量计算 (1)按体重:每日(次)剂量=患儿体重kg×每日(次)每公斤体重所需药量 (2)按体表面积:体重小于等于30kg,小儿体表面积=体重X0.035+0.1 体重>30,小儿体表面积=【体重—30】×0.02+1.05 (3)按成人剂量折算:小儿剂量=成人剂量×小儿体重÷50 9.血压 2岁以后收缩公式 收缩压=年龄×2+80mmhg(年龄×0.27+10.67kpa) 舒张压=收缩压×2/3 注:新生儿收缩压平均为60~70mmhg,1岁以内70~80mmhg,测血压时,袖带宽度约为上臂长度的三分之二为宜。 10.小儿烧伤面积计算 (1)小儿头部烧伤面积为:9+(12-年龄): (2)双上肢: 9×2(双上臂7%、双前臂6%、双手5%); (3)躯干:9×3(前13%、后13%、会阴1%); (4)双下肢:小儿双下肢面积为46-(12-年龄) 11.补液生理需求量 第一个24小时补液计算=体重(KG)×烧伤面积(%)×1.8(ml)加2000ml生理需要量。

点声源随传播距离增加引起的衰减 在自由声场(自由空间)条件下,点声源的声波遵循着球面发散规律,按声功率级作为点声源评价量,其衰减量公式为:.。.。..文档交流 (8—1) 式中: △L—-距离增加产生衰减值,dB; r——点声源至受声点的距离,m. 在距离点声源,r1处至r2处的衰减值: △L=20 lg(r1/r2)(8-2) 当r2=2 r1时,△L=—6dB,即点声源声传播距离增加1倍,衰减值是6 dB. 点声源的几何发散衰减实际应用有两类: a.无指向性点声源几何发散衰减的基本公式是: L(r)=L(r0)-20 lg(r/r0)(8—3) 式中:L(r),L(r0)—-分别是r,r0处的声级。 如果已知r0处的A声级,则式(8-4)和式(8-3)等效: L A(r)=L A(r0)-20 lg(r/r0) (8—4) 式(8-3)和式(8-4)中第二项代表了点声源的几何发散衰减: A div=20 lg(r/r0) (8-5)

如果已知点声源的A声功率级L WA,且声源处于自由空间,则式(8—4)等效为式(8—6): L A(r)=L WA-20 lgr—11 (8—6) 如果声源处于半自由空间,则式(8—4)等效为式(8—7): L A(r)=L WA-20 lgr-8 (8—7) b.具有指向性声源几何发散衰减的计算见式(8-8)或式(8-9): L(r)=L(r0)-20 lg(r/r0)(8-8) L A(r)=L A(r0)—20 lg(r/r0)(8—9) 式(8-8)、式(8-9)中,L(r)与L(r0),LA(r)与L A(r0)必须是在同一方向上的声级.。..。.。文档交流 文档交流感谢聆听

心脏学公式 体循环阻力 体循环阻力(dyne×sec)/cm5=80×(MAP-RAP)/C.O. MAP=平均动脉压 RAP=右心房压 C.O.=心输出量 正常值=900-1300(dyne×sec)/ cm5 平均动脉压(MAP) MAP(平均动脉压)=舒张压+[1/3(收缩压-舒张压)] 心输出量 心输出量(L/min)= BSA=体表面积(M2) Hb=血红蛋白(g/100ml) SaO2&SvO2=动脉血氧饱和度—静脉血氧饱和度。

心脏指数是心输出量以个体为单位计算的 心脏指数=心输出量/体表面积(L/min/M2) 总外周血管阻力(SVR) SVR=(平均动脉压-中心静脉压)÷心排出量×80 正常值为100-130kpa.s/L 杜克平板测验分数 杜克平板测验分数= 未出现心绞痛:测试持续时间(min)-5.0×最大ST段下降(mm) 持续心绞痛:测试持续时间(min)-5.0×最大ST段下降(mm)-4.0×1 测试因心绞痛中止:测试持续时间(min)-5.0×最大ST段下降(mm)-4.0×2 风险级别: 高风险:杜克平板实验分数<-5 高风险:杜克平板实验分数>10 校正的QT间期 校正的QT间期=测量的QT间期(sec)÷sqrt(R-R间期) 正常值:校正的QT间期不应该超过: 0.45(婴儿<6个月) 0.44(儿童) 0.425(青少年和成人) 氧供应(DO2)

DO2=1.34×[SaO2(动脉血氧饱和度)×Hb(血红蛋白)]×CO×10 氧消耗(VO2) VO2=1.34×[(CaO2(动脉血氧含量)×CvO2(静脉血氧含量))×CO×10 CaO2=1.34×SaO2×Hb CvO2=1.34×SvO2×Hb 氧耗量(给定心输出量) 氧耗量(ml/min)=心输出量(C.O.)×(13×Hgb)×(SaO2-SvO2) SaO2=动脉血氧饱和度 SvO2=静脉血氧饱和度 正常值=110-160ml/min/M2 若平均体表面积为1.73M2,则正常值=190-275ml/min 肺脏学公式 动脉血CO2分压(PaCO2) PaCO2=0.863×VCO2/VA VCO2为CO2排出量(ml/min) Va为每分钟肺泡通气量(L/min) 0.863为使气体容量(ml)变为Kpa(mmHg)的转换因子 动脉血氧分压(P a O2) 坐位: P a O2=104.2-0.27×年龄

临床医学常用计算公式 一、补液 补液原则:先快后慢、先胶后晶、先浓后浅、先盐后糖、见尿补钾、却啥补啥。注:休克时先晶后胶。 补液量=1/2累计损失量当天额外损失量每天正常需要量。 粗略计算补液量=尿量+500ml。若发热病人+300ml×n 1.补钾: 补钾原则:①补钾以口服补较安全。②补钾的速度不宜快。一般<20 mmol/h。 ③浓度一般1000ml液体中不超过3g。④见尿补钾。尿量在>30ml/h。 细胞外液钾离子总含量仅为60mmol左右,输入不能过快,一定要见尿补钾。 ⑤低钾不宜给糖,因为糖酵解时消耗钾。100g糖=消耗2.8g 钾。 轻度缺钾3.0——3.5mmol/L时,全天补钾量为6——8g。 中度缺钾2.5——3.0mmol/l时,全天补钾量为8——12g。 重度缺钾<2.5 mmol/l时,全天补钾量为12——18g。 2. 补钠:血清钠<130 mmol/L时,补液。先按总量的1/3——1/2补充。 公式: 应补Na+(mmol)=[142-病人血Na+(mmol/L)]×体重(kg)×0.6<女性为0.5> 应补生理盐水=[142-病人血Na+(mmol/L)] ×体重(kg)×3.5<女性为3.3> 氯化钠=[142-病人血Na+(mmol/L)] ×体重(kg) ×0.035<女性为0.03> 或=体重(kg)×〔142-病人血Na+(mmol/L)〕×0.6<女性为0.5>÷17 3.输液速度判定

每小时输入量(ml)=每分钟滴数×4 每分钟滴数(gtt/min)=输入液体总ml数÷[输液总时间(h)×4] 输液所需时间(h)=输入液体总ml数÷(每分钟滴数×4) 4.静脉输液滴进数计算法 每h输入量×每ml滴数(15gtt) ①已知每h输入量,则每min滴数=------------------------------------- 60(min) 每min滴数×60(min) ②已知每min滴数,则每h输入量=------------------------------ 每min相当滴数(15gtt) 5. 5%NB(ml)=〔CO2CP正常值-病人CO2CP〕×体重(kg)×0.6。 首日头2——4小时补给计算量的1/2。CO2CP正常值为22——29%。 如未测定二氧化碳结合力,可按5%碳酸氢钠每次溶液5ml/kg计算 (此用量可提高10容积%)。必要时可于2~4 小时后重复应用。 二、20%甘露醇8克静点正常情况下能带出液体为100毫升。 三、热量(能量)的计算 正常成人一般每日约需热量(能量):25——30kcal/kg/日 成人每天基础热量(能量):1kcal×24×体重(kg) 三大产热营养素:蛋白质 4.1kcal/g 脂类(脂肪)9.3kcal/g 碳水化合物(糖类) 4.1kcal/g 注:卡路里(cal)的定义:将1克水在1大气压下提升1摄氏度所需要的热量。热量单位换算公式: 1kcal=1000cal

目录 一、相关标准及公式 (3) 1)基本公式 (3) 2)声音衰减 (4) 二、吸声降噪 (5) 1)吸声实验及吸声降噪 (6) 2)共振吸收结构 (7) 三、隔声 (8) 1)单层壁的隔声 (8) 2)双层壁的隔声 (9) 3) 隔声测量.................................. 错误!未定义书签。 4)组合间壁的隔声及孔、缝隙对隔声的影响 (10) 5)隔声罩 (10) 6)隔声间 (10) 7)隔声窗 (11) 8)声屏障 (11) 9)管道隔声量 (12) 四、消声降噪 (12) 1)阻性消声器 (12) 2)扩张室消声器 (14) 3)共振腔式消声器 (15) 4)排空放气消声器 (13)

压力损失 (13) 气流再生噪声 (13) 五、振动控制 (16) 1)基本计算 (16) 2)橡胶隔振器(软木、乳胶海棉) (16) 3)弹簧隔振器 (18)

重要单位: 1N/m=1kg/s2 1r/min=1/60HZ 标准大气压1.013*105 气密度 5273.2=1.29 1.01310P T ρ? ?? 基准声压级Po=10*105 基准振动加速度10-6m/s2 1Mpa=1000000N/m2 倍频程测量范围: 中心频率两侧70.7%带宽;1/3倍频程测量范围: 中心频率两侧23.16%带宽 一、相关标准及公式 1)基本公式 声速331.50.6c t =+ 声压与声强的关系2 2P I=cv c ρρ= 其中v wA =,单位:W/m 2 声能密度和声压的关系,由于声级密度I c ε=,则2 2P c ερ= J/m 3 质点振动的速度振幅p I v c p ρ= = m/s 《环境影响噪声控制工程—洪宗辉P11》 A 计权响应与频率的关系见下表《注P350》

'' 1.体循环阻力: 体循环阻力(dyne×sec)/cm5=80×(MAP-RAP)/C.O. MAP=平均动脉压 RAP=右心房压 C.O.=心输出量 正常值=900-1300(dyne×sec)/ cm5 2.平均动脉压(MAP): MAP(平均动脉压)=舒张压+[1/3(收缩压-舒张压)] 3.心输出量: 心输出量(L/min)= BSA=体表面积(M2) Hb=血红蛋白(g/100ml) SaO2&SvO2=动脉血氧饱和度—静脉血氧饱和度。 心脏指数是心输出量以个体为单位计算的 心脏指数=心输出量/体表面积(L/min/M2) 4.总外周血管阻力: SVR=(平均动脉压-中心静脉压)÷心排出量×80 正常值为100-130kpa.s/L 5.杜克平板测验分数:

杜克平板测验分数= 未出现心绞痛:测试持续时间(min)-5.0×最大ST段下降(mm) 持续心绞痛:测试持续时间(min)-5.0×最大ST段下降(mm)-4.0×1 测试因心绞痛中止:测试持续时间(min)-5.0×最大ST段下降(mm)-4.0×2 风险级别: 高风险:杜克平板实验分数<-5 高风险:杜克平板实验分数>10 6.校正的QT间期: 校正的QT间期=测量的QT间期(sec)÷sqrt(R-R间期) 正常值:校正的QT间期不应该超过: 0.45(婴儿<6个月) 0.44(儿童) 0.425(青少年和成人 7.氧供应(DO2): DO2=1.34×[SaO2(动脉血氧饱和度)×Hb(血红蛋白)]×CO×10 8.氧消耗(VO2): VO2=1.34×[(CaO2(动脉血氧含量)×CvO2(静脉血氧含量))×CO×10 CaO2=1.34×SaO2×Hb CvO2=1.34×SvO2×Hb 9.氧耗量(给定心输出量): 氧耗量(ml/min)=心输出量(C.O.)×(13×Hgb)×(SaO2-SvO2) SaO2=动脉血氧饱和度 SvO2=静脉血氧饱和度 正常值=110-160ml/min/M2 若平均体表面积为1.73M2,则正常值=190-275ml/min 10.动脉血CO2分压: PaCO2=0.863×VCO2/VA VCO2为CO2排出量(ml/min) Va为每分钟肺泡通气量(L/min) 0.863为使气体容量(ml)变为Kpa(mmHg)的转换因子 11.动脉血氧分压(PaO2): 坐位:

医学计算公式资料 1.体循环阻力: 体循环阻力(dyne×sec)/cm5=80×(MAP-RAP)/C、O、 MAP=平均动脉压 RAP=右心房压 C、O、=心输出量 正常值=900-1300(dyne×sec)/ cm5 2、平均动脉压(MAP): MAP(平均动脉压)=舒张压+[1/3(收缩压-舒张压)] 3、心输出量: 心输出量(L/min)= BSA=体表面积(M2) Hb=血红蛋白(g/100ml) SaO2&SvO2=动脉血氧饱与度—静脉血氧饱与度。 心脏指数就是心输出量以个体为单位计算的 心脏指数=心输出量/体表面积(L/min/M2) 4、总外周血管阻力: SVR=(平均动脉压-中心静脉压)÷心排出量×80 正常值为100-130kpa、s/L 5、杜克平板测验分数: 杜克平板测验分数= 未出现心绞痛:测试持续时间(min)-5、0×最大ST段下降(mm) 持续心绞痛:测试持续时间(min)-5、0×最大ST段下降(mm)-4、0×1 测试因心绞痛中止:测试持续时间(min)-5、0×最大ST段下降(mm)-4、0×2 风险级别: 高风险:杜克平板实验分数<-5 高风险:杜克平板实验分数>10 6、校正的QT间期: 校正的QT间期=测量的QT间期(sec)÷sqrt(R-R间期) 正常值:校正的QT间期不应该超过: 0、45(婴儿<6个月) 0、44(儿童)

7、氧供应(DO2): DO2=1、34×[SaO2(动脉血氧饱与度)×Hb(血红蛋白)]×CO×10 8、氧消耗(VO2): VO2=1、34×[(CaO2(动脉血氧含量)×CvO2(静脉血氧含量))×CO×10 CaO2=1、34×SaO2×Hb CvO2=1、34×SvO2×Hb 9、氧耗量(给定心输出量): 氧耗量(ml/min)=心输出量(C、O、)×(13×Hgb)×(SaO2-SvO2) SaO2=动脉血氧饱与度 SvO2=静脉血氧饱与度 正常值=110-160ml/min/M2 若平均体表面积为1、73M2,则正常值=190-275ml/min 10.动脉血CO2分压: PaCO2=0、863×VCO2/V A VCO2为CO2排出量(ml/min) Va为每分钟肺泡通气量(L/min) 0、863为使气体容量(ml)变为Kpa(mmHg)的转换因子 11、动脉血氧分压(PaO2): 坐位: PaO2=104、2-0、27×年龄 仰卧位: PaO2=103、5-0、42×年龄 12、动脉血氧含量: CaO2=0、003×PaO2+1、34×SaO2×Hb 13、动脉血氧饱与度(SaO2): SaO2=HbO2÷(HbO2+Hb)×100% HbO2就是血红蛋白结合的氧量 14、急性肺损伤比率: 急性肺损伤的氧合指数=动脉血氧分压/吸入气氧分数 氧合指数<300,诊断为急性肺损伤(ALI) 氧合指数<200,诊断为急性呼吸窘迫综合症(ARDS) 15、肺泡-动脉血氧分压差 (P(A-aa)O2): (1)吸入气氧分压PIO2=(大气压—PH2O)×吸入氧浓度% (2)肺泡气PO2(PAO2)=PIO2—PCO2×1、25 (3)肺泡动脉氧分压差(P(A-a)O2)=PAO2—PaO2 将(2)的结果代入(3)中即可得P(A-a)O2 16、肺泡气公式: 肺泡氧分压(PaO2)(mmHg)=[FIO2(%)×(大气压-PH2O)]-(PaCO2×1、25)] FIO2=吸入气浓度(%) PH2O=气道水蒸气压力,通常为6、3Kpa,即47mmHg PaCO2=动脉血二氧化碳分压 17、肺顺应性: 肺顺应性(Cdyn)=潮气量÷(最大气道压-呼气末正压) 18、尿HCO3 ̄排泄率:

临床医学常用的8大类计算公式 一、补液 补液原则:先快后慢、先胶后晶、先浓后浅、先盐后糖、见尿补钾、缺啥补啥。 注:休克时先晶后胶。 补液量=1/2累计损失量当天额外损失量每天正常需要量。 粗略计算补液量=尿量+500ml。若发热病人+300ml×n 1.补钾: 补钾原则:①补钾以口服补较安全。 ②补钾的速度不宜快。一般<20mmol/h。 ③浓度一般1000ml液体中不超过3g。 ④见尿补钾。尿量在>30ml/h。细胞外液钾离子总含量仅为60mmol 左右,输入不能过快,一定要见尿补钾。 ⑤低钾不宜给糖,因为糖酵解时消耗钾。100g糖=消耗2.8g钾。 轻度缺钾3.0——3.5mmol/L时,全天补钾量为6——8g。

中度缺钾2.5——3.0mmol/l时,全天补钾量为8——12g。 重度缺钾<2.5mmol/l时,全天补钾量为12——18g。 2.补钠: 血清钠<130mmol/L时,补液。先按总量的1/3——1/2补充。公式:应补Na+(mmol)=[142-病人血Na+(mmol/L)]×体重(kg)×0.6<女性为0.5> 应补生理盐水=[142-病人血Na+(mmol/L)]×体重(kg)×3.5<女性为3.3> 氯化钠=[142-病人血Na+(mmol/L)]×体重(kg)×0.035<女性为0.03> 或=体重(kg)×〔142-病人血Na+(mmol/L)〕×0.6<女性为0.5>÷17 3.输液速度判定 每小时输入量(ml)=每分钟滴数×4 每分钟滴数(gtt/min)=输入液体总ml数÷[输液总时间(h)×4]输液所需时间(h)=输入液体总ml数÷(每分钟滴数×4)

集中趋势的描述 算术均数: 频数表资料(X0为各组段组中值) n fX f fX x O O ∑∑∑== 几何均数: n n X X X G ...21= 或 ) log ( log 1 n X G ∑-= 频数表资料: ? ?????=????????=∑∑∑--n X f f X f G log lg log log 11 中位数:(1)* 2 1 +=n X M (2) ) (21* 12*2++= n n X X M 百分位数 ?? ? ??-?+ =L X X f n X f i L P 100其中:L 为欲求的百分位 数所在组段的下限 , i 为该组段的组距 , n 为总频数 , X f 为 该组段的的频数 , L f 为该组段之前的累计频数 方差: 总体方差为:式(1); 样本方差为 式(2) (1) N X 2 2 )(μσ-∑= (2) 1)(2 2--∑= n X X S 标准差: 1)(2--∑= n X X S 或 1/)(22-∑-∑= n n X X S 频数表资料计算标准差的公式为 1/)(22-∑∑∑-∑= f f fx fx S 变异系数:当两组资料单位不同或均数相差较大时,对变异 大小进行比较,应计算变异系数 %100?= X S CV 常用的相对数指标 (一)率 (二)相对比(三)构成比 1.直接法标准化 N p N p i i ∑= ' ∑=i i p N N p )(' 2.间接法标准化 预期人数实际人数= SMR ∑=i i P n r SMR S M R P P ?=' 正态分布:密度函数: )2/()(2221)(σμπ σ--= X e X f 分布函数: 小于X 值的概率,即该点正态曲线下左侧面积 )()(x X P x F <= 特征:(1)关于x=μ对称。(2)在x=μ处取得该概率密度函数的最大值,在σμ±=x 处有拐点,表现为钟形曲线。(3)曲线下面积为1。(4)μ决定曲线在横轴上的位置,σ决定曲线的形状 。(5)曲线下面积分布有一定规律 标准正态分布:对任意一个服从正态分布的随机变量,作如下标准化变换 σ μ-= X u ,u 服从总体均数为0、总体标准 差为1的正态分布。 u 值左侧标准正态曲线下面积为标准正态分布函数,记作 )(u Φ 医学参考值的确定方法:(1)百分位法:双侧(P 25,P 975),单侧P 95以下或P 5以上,该法适用于任何分布型的资料。(2)正态分布法:若X 服从正态分布,双侧医学参考值范围为 S X 96.1± 样本均数标准误的估计值为 X s = t 分布的概念:小样本总体标准差未知时,服从自由度为n-1 的t 分布 X X X t s μ-= 总体均数可信区间的计算: 大样本或总体标准差已知:式(1); 小样本:式(2) (1)n S X ? ±96.1 (2)n S n t t ?±-)1(,05.0(前一个t 表示均数) 单样本t 检验: n S X t /0 μ-= 自由度为 n-1; 配对样本t 检验: 检验统计量: n S d t d /0-= 自由度为n-1(n 为对子数) 两样本t 检验:检验统计量: ) 11(2 12 1n n S X X t c +-= (错: Sc 的平方) 2 )()(2)1()1(21222211212 222112-+-+-= -+-+-= ∑∑n n X X X X n n S n S n S c 方差齐性检验:H 0:两总体方差齐,H 1:两总体方差不齐,α=0.1 检验统计量: (较小)(较大)2 2 2 1 S S F = 分子自由度为n 1-1,分母自由度为n 2-1 方差分析的基本思想: 1、总变异:总离均差平方和: 2() 1 T ij i j SS SS X X N νν=-==-∑∑总总= ∑∑-=N X X ij ij /)(22 ∑=N X C ij /)( 2 2. 组间变异:组间变异反映了处理因素的影响(如处理确实有作用),同时也包括了随机误差(含个体差异和测量误差)。 21() 1 B i i i SS SS n X X k νν-==-∑组间组间== = C n X i i ij -∑ ∑2 )( 3. 组内变异:组内变异仅反映随机误差(含个体差异和测量误差),故又称误差变异。 222()(1) W E ij i i i i j i SS SS SS X X n S N k νν===-=-==-∑∑∑组内组内 2()(1) W E ij i i i i j i SS SS SS X X n S N k νν===-=-==-∑∑∑组内组内 1(1)()N k N k ννν=-=-+-=+总组间组内 组间均方与组内均方比值一般地服从分子自由度为ν1,分母 自由度为ν2的F 分布 12 1 MS F k N k MS νννν= ==-==-组间 组间组内组内 , 二项分布的概率函数P (X ): X n X X n C X P --=)1()(ππ; )! (!!X n X n C X n -= 二项分布的均数和标准差:进行n 次独立重复试验,出现X 次阳性结果 X 的总体均数为πμn = 总体方差为)1(2ππσ-=n 总体标准差为)1(ππσ -=n 如果将阳性结果用频率表示 n X p = 率的总体均数 π μ=p 标准差 n p ) 1(ππσ-= n p p n p p S p )1(1 ) 1(-≈--= 又称率的标准误它反映率的抽样误差的大小。 单侧累积概率计算:出现阳性的次数至多为k 次的概率为 ∑∑ ==---==≤k X k X X n X X n X n X P k X P 0 0)1()! (!! )()(ππ 出现阳性的次数至少为k 次的概率 ∑∑ ==---==≥n k X n k X X n X X n X n X P k X P )1()! (!! )()(ππ 率的可信区间的估计 正态近似法:当)1(,p n np - 均大于等于5时 n p p p n p p P )1(96.1,)1(96.1-+-? - 样本率与总体率的比较: 检验假设H 0:π=π0,H 1:π≠π0 1 . 满足正态近似时,计算检验统计量 ) 1(000 πππ--= n n X Z 或 n p Z ) 1(000 πππ--= 2. 不满足正态近似时用直接概率计算法 两样本率的比较:H0:π1=π2,H1:π1≠π2, 检验统计量: ) 1 1)(1(| |2121n n p p p p Z c c +--= 2121n n X X p c ++= Poisson 分布的概率函数为 ! )(X e X P X λλ -= POISSON 分布的应用: 单侧累计概率计算:稀有事件发生次数至多为k 次的概率为 ∑∑==-==≤k X k X X X e X P k X P 0 ! )()(λλ 发生次数至少为k 次的概率为 )1(1)(-≤-=≥k X P k X P 总体均数的区间估计:正态近似法 95%总体均数的可信区间为X X X X 96.1,96.1+- 样本率和总体率的比较 正态近似法: 当满足正态近似条件时, 对检验假设 H0:λ=λ0,H1:λ≠λ0, 检验统计量为 λ λ-= X Z 两组独立样本资料的Z 检验 :当两总体均数都大于20时, 对检验假设H0:λ1=λ2, H1:λ1≠λ2,当两样本观测单

一 资料的描述性统计 (一)算术均数(mean) (1)简单算术平均值定义公式为(直接法): (2)利用频数表计算均数(加权法): (二)方差(即标准差的平方) (三)变异系数 二 参数估计与参考值范围 (一)均数的标准误 (二)样本率的标准误 (p 为样本率) (三)T 分布 (u 为总体均数) (四)总体均数的区间估计 (一般要求 计算95%或99%的可信区间) (五)总体率的区间估计 (六)参考值范围估计 双侧1-a 参考值范围: s u x a 2/± 单侧1-a 参考值范围: s u x a ->或s u x a +< (可信区间计算是用标准误,参考值范围计算用标准差,百分位数法大家自己看书) 三 T 检验与方差分析 (一)T 检验 (1)单样本T 检验 n x n x x x x x n ∑= ++++= 321∑∑= ++++++++=f fx f f f f x f x f x f x f x k k k 3213322111 )(2 2--= ∑n x x s 22 2()/1 x x n s n -= -∑∑%100?= x s CV n s s x = n p p s p ) 1(-=n s x t μ-=x x s t x s t x ναναμ,2/,2/+<<-p p s u p s u p 2/2/ααπ+<<-

检验假设: (假设样本来自均数为0 u 的正态总体) 统计量t 值的计算: (2)配对T 检验 检验假设: 统计量t 值的计算: (d 为两组数据 的差值,Sd 为差值的标准差) (3)两样本T 检验 检验假设: 统计量t 值的计算: 其中 两样本方差齐性检验 (即为两样本方差的比值) (二)单因素方差分析 SS MS F SS MS νν= = B B B W W W (1)完全随机设计资料的方差分析 这里 (T 即为该组数据之和) (2)随机单位组设计资料的方差分析 SS 总=SS 处理+SS 区组+SS 误差 V 总=V 处理+V 区组+V 误差 μμ=:H 1 ,/0 0-=-=-= n n s x s x t x νμμ0210==-μ μμ:H d d t s μ-== 1 -=n ν210μμ=:H 2 1)()(2121x x s x x t ----=μμ2 21-+=n n ν ? ??? ??+=-2121121n n s s C x x 2)()(112222112-+∑-∑+-=n n x x x x s C 2221s s F =111-=n ν1 2 2-=n ν组内组间总SS SS SS +=组内 组间总ννν+=2()/C x N =∑ij j T x = ∑

体循环阻力(dyne×sec)/cm5=80×(MAP-RAP)/. MAP=平均动脉压 RAP=右心房压 .=心输出量 正常值=900-1300(dyne×sec)/ cm5 平均动脉压(MAP) MAP(平均动脉压)=舒张压+[1/3(收缩压-舒张压)] 心输出量 心输出量(L/min)= BSA=体表面积(M2) Hb=血红蛋白(g/100ml) SaO2&SvO2=动脉血氧饱和度—静脉血氧饱和度。 心脏指数是心输出量以个体为单位计算的 心脏指数=心输出量/体表面积(L/min/M2) 总外周血管阻力(SVR) SVR=(平均动脉压-中心静脉压)÷心排出量×80 正常值为L 杜克平板测验分数 杜克平板测验分数=

未出现心绞痛:测试持续时间(min)-×最大ST段下降(mm) 持续心绞痛:测试持续时间(min)-×最大ST段下降(mm)-×1 测试因心绞痛中止:测试持续时间(min)-×最大ST段下降(mm)-×2风险级别: 高风险:杜克平板实验分数<-5 高风险:杜克平板实验分数>10 校正的QT间期 校正的QT间期=测量的QT间期(sec)÷sqrt(R-R间期) 正常值:校正的QT间期不应该超过: (婴儿<6个月) (儿童) (青少年和成人) 氧供应(DO2) DO2=×[SaO2(动脉血氧饱和度)×Hb(血红蛋白)]×CO×10 氧消耗(VO2) VO2=×[(CaO2(动脉血氧含量)×CvO2(静脉血氧含量))×CO×10 CaO2=×SaO2×Hb CvO2=×SvO2×Hb 氧耗量(给定心输出量) 氧耗量(ml/min)=心输出量(.)×(13×Hgb)×(SaO2-SvO2) SaO2=动脉血氧饱和度 SvO2=静脉血氧饱和度 正常值=110-160ml/min/M2

相关文档
最新文档