水下油气生产系统控制模块组成及应用

水下油气生产系统控制模块组成及应用
水下油气生产系统控制模块组成及应用

龙源期刊网 https://www.360docs.net/doc/e62480785.html,

水下油气生产系统控制模块组成及应用

作者:李文祥王琨郭骏

来源:《科学与信息化》2017年第05期

摘要本文以南海某气田工程项目为背景,介绍了水下采油树控制模块在油气田开发中的使用情况,简单分析了水下控制模块的工作原理、组成结构以及控制方式,为今后水下油气生产系统中电液复合控制系统的使用提供实践参考。

关键词复合电液控制;水下生产系统;控制系统;水下控制模块

前言

南海某气田位于中国南海东部珠江口盆地,距香港东南约250公里,水深最深约350米。该气田依靠气田自身压力,通过水下采油树利用海底管道接到PY中心平台,然后接到LW中心平台,与气田群生产的天然气混合后,外输至陆地终端。

1 水下生产控制系统

目前海洋油气开发工程中,水下生产控制系统大致分为三类:全液压控制系统(直接液压、先导液压、顺序液压);电液控制系统(直接电控液压系统、复合电液控制系统、光电复合液压控制系统)和全电式控制系统[1]。该气田控制系统采用了复合电液控制系统,将多个

水下控制模块连接到同一根脐带缆的终端上,在平台或浮体上的控制室可以操作水下设备的阀门及获取工作状态。其特点是响应速度快、传输距离长、易实现集中控制。

2 水下控制模块系统

水下控制模块是复合电液控制方式的重要组成部分,水下控制模块(SCM)用于采集水下设施的数据、井下数据,控制水下阀门的开启、闭合。主要完成内部压力传感器、节流阀位置指示器、下游压力/温度传感器、环空压力传感器、井下压力/温度传感器、上游压力/温度传感器、多相流量计、化学药剂注入计量阀、腐蚀监测器及砂传感器等的数据采集,并将信息发送至水面主控站,典型外部连接图见图1。

2.1 水下电子模块(SEM)系统

水下电子模块(SEM)是水下采油树控制模块的核心部件,采用冗余设计。主要功能是接收水面主控站的控制信号,完成电磁阀的换向,从而引导液压液的流向来驱动阀门执行器;另外,采集水下采油设备上的传感器数据,经过处理后传送到水面主控站,实现水下油气生产的检测作用,保证水下生产的顺利进行。

基于开源软件Ardusub的水下机器人ROV控制系统

基于开源软件Ardusub的水下机器人ROV控制系统 摘要:随着海洋资源开发以及水下领域作业任务的增加,水下机器人在水下作 业中发挥着越来越重要的作用。ROV作为水下作业的重要工具,对运动控制算法 要求较高,采用开源软件ArduSub,结合一种模糊串级PID控制算法实现ROV控 制系统的设计,重点对ArduSub的特点、适应配置及PID控制算法原理,包含运 动和姿态方面进行了阐述,能够良好实现ROV的水下控制。 1引言 随着海洋资源开发以及水下领域作业任务的增加,水下机器人在水下作业中 发挥着越来越重要的作用。其中ROV续航持久,成本相对较低,逐渐成为水下作 业的重要工具。ROV工作于水下环境,具有非线性、易受环境影响等特点,对运 动控制算法要求较高,同时要求整个控制系统要有较好的实时性和可靠性。 2开源软件ArduSub简介 ArduSub水下机器人的控制器是一个完整的开源解决方案,提供远程操作控 制(通过智能潜水模式)和全自动的执行任务。作为DroneCode软件平台的一部分,它能够无缝地使用地面控制站的软件,可以监控车辆遥测和执行强大的任务规划 活动。它还受益于DroneCode平台的其他部分,包括模拟器,日志分析工具,为 车辆管理和控制和更高层次的api。 其主要特点在于以下几个方面: 反馈控制和稳定性:ArduSub控制器基于多旋翼自动驾驶系统,具有精确的 反馈控制,可主动维持方向。 深度保持:使用基于压力的深度传感器,ArduSub控制器可以将深度保持在 几厘米内。 航向保持:默认情况下,ArduSub在未命令转动时自动保持其航向。 相机倾斜:通过操纵杆或游戏手柄控制器与伺服或万向节电机进行相机倾斜 控制。 灯光控制:通过操纵杆或游戏手柄控制器控制海底照明。 无需编程:ArduSub控制器适用于各种ROV配置,无需任何自定义编程。大 多数参数可以通过地面控制站轻松更改。 兼容性好:ArduSub兼容许多不同的ROV框架,支持PWM输出。 由于以上特征,使得ArduSub成为一款可以很好适用于水下机器人RPV控制 系统的开源软件。 ArduSub兼容基于串行和以太网的通信接口。使用的硬件自动驾驶仪必须支 持选择的选项。Pixhawk仅支持串行连接,但可以通过配套计算机连接到以太网。其他autopilots原生支持以太网。ArduSub软件主要用于通过ArduSub进行接口,ArduSub是一种开源的跨平台用户界面,适用于所有类型的无人机。该接口通过 系绳连接到ArduSub控制器并显示车辆状态信息,并允许更新参数和设置。最重 要的是,QGC与用于指挥车辆的操纵杆或游戏手柄控制器连接。 ArduSub包含一个高级的电机库,支持多个框架,例如具有6自由度推进器 定位的BlueROV配置(图1所示)、带有并排垂直推进器的矢量ROV(图2所示)、采用单垂直推进器的ROV(图3所示)等等。 在传感器和执行器方面,除了标准的板载传感器(IMU,指南针),ArduSub

各种消防报警模块的参数特点及使用方法(精)

各种消防报警模块的参数、特点及使用方法 1特点 GST-LD-8321中继模块采用DC24V供电,总线信号输入与输出间电气隔离,完成了探测器总线的信号隔离传输,可增强整个系统的抗干扰能力,并且具有扩展探测器总线通讯距离的功能。GST-LD-8321中继模块主要用于总线处在有比较强的电磁干扰的区域及总线长度超过1000m需要延长总线通讯距离的场合。 2主要技术指标 (1)总线输入距离≤1000m (2)总线输出距离≤1000m (3)电源电压:DC18V~DC27V (4)静态工作电流≤20mA (5)带载能力及兼容性:可配接1~242点总线设备,兼容所有总线设备 (6)隔离电压:总线输入与总线输出间隔离电压≥1500V (7)使用环境: 温度:-10℃~+50℃ 相对湿度≤95%,不结露 (8)外形尺寸: 85mm×128mm×56mm 采用隔离方式进行总线信号传输,安装在总线上,用于总线长度超过1000米时扩展总线距离,或现场存在强电磁干扰时进行总线隔离。

1特点 GST-LD-8300型输入模块用于接收消防联动设备输入的常开或常闭开关量信号,并将联动信息传回火灾报警控制器(联动型)。主要用于配接现场各种主动型设备如水流指示器、压力开关、位置开关、信号阀及能够送回开关信号的外部联动设备等。这些设备动作后,输出的动作信号可由模块通过信号二总线送入火灾报警控制器,产生报警,并可通过火灾报警控制器来联动其它相关设备动作。输入端具有检线功能,可现场设为常闭检线、常开检线输入,应与无源触点连接。本模块可采用电子编码器完成编码设置。当模块本身出现故障时,控制器将产生报警并可将故障模块的相关信息显示出来。 2主要技术指标 (1)工作电压:总线24V (2)工作电流≤1mA (3)线制:与控制器的信号二总线连接 (4)出厂设置:常开检线方式 (5)使用环境: 温度:-10℃~+55℃ 相对湿度≤95%,不结露 (6)外壳防护等级:IP30 (7)外形尺寸: 86mm×86mm×43mm(带底壳) 电子编码,可接收设备常开或常闭开关量信号。

GB T 21412.4 《水下井口装置和采油树设备》目录(等同于ISO 13628.4-1999)

GB/T21412《石油天然气工业水下生产系统的设计与操作》分为九个部分: ---第1部分:总要求和建议; ---第2部分:水下和海上用软管系统; ---第3部分:过出油管(TFL)系统; ---第4部分:水下井口装置和采油树设备; ---第5部分:水下控制管缆; ---第6部分:水下生产控制系统; ---第7部分:修井和(或)完井立管系统; ---第8部分:水下生产系统远程作业机器人(ROV)接口; ---第9部分:远程作业工具(ROT)维修系统。 本部分为GB/T21412的第4部分,对应于ISO136284:1999《石油和天然气工业水下生产系统的设计与操作第4部分:水下井口装置和采油树设备》(英文第1版)。本部分等同翻译ISO136284:1999,为了便于使用,本部分做了下列编辑性修改: ---ISO13628的本部分改为GB/T21412的本部分或本部分; ---用小数点.代替作为小数点的逗号,; ---将ISO136284:1999中的ISO10423和ISO10423:1994统一为ISO10423:1994; ---在第2章引用文件中,用ISO13533、ISO13625、ISO13628 3 分别代替APISpec16A、APISpec16R、APIRP17C 并增加了标准中文名称; ---对表面粗糙度值进行了转换; ---表7(A)中转换了螺栓直径并增加了螺栓孔直径公制尺寸值;表9(B)和表10(B)中增加了螺栓孔直径公制尺寸值; ---表G.1中增加了螺栓直径和螺距公制尺寸值; ---删除了ISO136284:1999的前言和引言; ---增加了本部分的前言。 本部分的附录E、附录G 和附录H 为规范性附录,附录A、附录B、附录C、附录D、附录F和附录I为资料性附录。 本部分由全国石油钻采设备和工具标准化技术委员会(SAC/TC96)提出并归口。 本部分负责起草单位:宝鸡石油机械有限责任公司。 本部分参加起草单位:中国海洋石油总公司、石油工业井控装置质量监督检验中心。 本部分主要起草人:杨玉刚、范亚民、李清平、张斌。 目录 前言Ⅴ 1 范围1 2 规范性引用文件3 3 术语、定义、符号和缩略语3 3.1 术语和定义3 3.2 符号和缩略语8 4 使用条件和产品规范级别9 4.1 使用条件9 4.2 产品规范级别PSL 9 5 系统一般要求10

AUV水下机器人运动控制系统设计(李思乐)

中国海洋大学工程学院 机械电子工程研究生课程考核论文 题目:AUV水下机器人运动控制系统研究报告 课程名称:运动控制技术 姓名:李思乐 学号:21100933077 院系:工程学院机电工程系 专业:机械电子工程 时间:2010-12-26 课程成绩: 任课老师:谭俊哲

AUV水下机器人运动控制系统设计 摘要:以主推加舵控制的小型自治水下机器人为研究对象,建立了水下机器人的数学模型并进行了分析。根据机器人结构的特点,对模型进行了必要的简化。设计了机器人的运动控制系统。以成功研制的无缆自治水下机器人(AUV) 为基础,对其航行控制和定位控制方法进行了较详细的分析. 同时介绍了它的推进器布置、控制系统结构、推力分配等方法。最后展示了它的运行实验结果。 关键词:水下机器人;总体设计方案;运动控制系统;电机仿真 1 引言 近年来国外水下机器人技术发展迅速,技术水平较高。其中,具有代表性的产品有:美国Video Ray 公司开发出的Scout、Explorer、Pro 等系列遥控式水下机器人,美国Seabotix公司研发的LBV-ROV 系列,英国AC-CESS 公司的AC-ROV系列。 随着海洋开发、探测的需求越来越强,水下机器人成为全世界研究的热门课题。小型自治水下机器人具有低成本、小型化、操作灵活等特点成为近年来国内外研究的热点。自治水下机器人(Autonomous Underwater Vehicles, AUV),载体采用模块化设计思想, 可根据需要适当增减作业或传感器模块, 载体采用鱼雷状流线外形, 总长约2 m, 外径25 cm, 基本模块包括推进器模块、能源模块、电子舱模块、传感器模块以及GPS、无线电通讯模块, 基本传感器有姿态传感器、高度计、深度计和视觉传感器, 支持光纤通讯, 载体可外挂声学设备, 通过光纤系统进行遥控操作可实现其半自主作业, 也可在预编程指令下实现自主作业。系统基本模块组成设计如图1-1 所示[1]。它具有开放式、模块化的体系结构和多种控制方式(自主/半自主/遥控),自带能源。这种小型水下机器人可在大范围、大深度和复杂海洋环境下进行海洋科学研究和深海资源调查,具有更广泛的应用前景。在控制系统的设计过程中充分考虑了系统的稳定性和操纵性。控制器具有足够的鲁棒性来克服建模误差,以及水动力参数变化。 图1-1 系统基本模块组成设计 2 机器人物理模型 2.1 AUV 物理模型 为了研究AUV 的运动规律,确定运行过程中AUV 的位置和姿态,需要建立AUV

火灾自动报警系统中消防模块的作用

火灾自动报警系统中消防模块的作用 消防模块大致可以分为输入模块,输出模块,输入输出模块,隔离模块,中继模块,切换模块,多线控制模块等等类型。下面简单介绍下各个模块的作用。 1. 输入模块用于接收信号输入将输入的设备作为火灾报警系统的一部分,有些生产厂家称之为中继模块,根据输入信号的不同输入模块又可分为开关量输入和模拟量输入两种。 开关量输入就是接收一个无源触点信号,通过该信号的输入接入到系统中,一般的输入模块可以用于接收水流指示器、压力开关、信号阀等等设备的报警、反馈信号;由于消防系统中各个厂家设备的通信协议有区别,所以不同厂家的设备要简单的联网可以通过这种方式进行连接,目前市场上的输入模块有一种只可以接收常开信号输入(如松江云安的HJ-1750),还有的经过参数的设定可以接收常开或者常闭信号输入(如海湾的GST-LD-8300),还有的双输入模块、多输入模块等等。

模拟量输入模块一般用于接收电流量或者电压量信号,一般厂家的非编码探测器报警时输出的就是电流量信号用于接本厂家的编址接口模块,输入到系统中(如海湾的GST-LD-8319)。 2. 输出模块用于控制某些设备的启停或者切换,不接收信号输入一般用于控制无信号反馈的设备,比如广播(如海湾的GST-LD-8305)、

声光警报器、警铃等等设备。 3. 输入输出模块在有的场合也称为控制模块,在有控制要求时可以输出信号,或者提供一个开关量信号,使被控设备动作,同时可以接收设备的反馈信号,以向主机报告,是火灾报警联动系统中重要的组成部分,市场上的输入输出模块都可以提供一对无源常开/常闭触点,用以控制被控设备,部分厂家的模块可以通过参数设定,设置成有源输出(如海湾GST-LD-8301),相对应的还有双输入输出模块、多输入输出模块等等。

6水下生产控制系统

水下生产控制系统验证测试 水下生产控制系统应进行质量鉴定试验以验证设备在特定工作条件下的性能。作为替代,制造商应提供与工业实际(设备按指定要求即将完成的)相一致的证明文件或其他客服证据。 这一条款规定了用来鉴定产品设计的质量鉴定试验。用于设计鉴定的设备或工装夹具应该是在设计,尺寸和材料方面具有代表性的生产模型。 如所设计产品的安装,形式,功能或材料上有任何变化,制造厂应文字记录这些变化对产品性能的影响。重大的设计变动就成为一个新的设计需要重新认证(重大变动是指由制造厂确定的影响产品在其作业环境中性能的变化)。如材料的适应性能通过其他方法实现,材料的变化不需要重新认证。 应对SEM进行形型式试验以鉴定温度循环和振动相关的设计。 进行所有试验时应考虑人员安全和对周围区域潜在的破坏。 宜进行综合实验程序以确保满足控制系统的性能要求。 1.质量鉴定试验 1.1净水压力试验(内部和外部) 作为质量鉴定试验的一部分,宜对所有的受压组件或装备进行静水压力试验。额定压力小于或等于103.4MPa(15000 psi)时应在1.5倍的设计压力下进行静水压力试验。额定工作压力超过103.4MPa(15000 psi)时的内部净水压力试验应在1.25倍设计压力下进行。外部静水压力试验应在1.1倍设计围压下进行。 试验压力应在任何组件,管线或节点没有外部流体泄露的情况下最少保持10min。 试验期间所有的液压蓄能器应与回路隔离。 控制设备的低压部分,如适用,包括储液罐,低压过滤器,泵吸入管线和系统返回管线,都不进行静水压力(试验压力)试验。 1.2 最小和最大温度试验 应进行质量鉴定试验以证明小于或等于最小额定工作温度,大于或等于最大额定工作温度时的设备性能。 1.3 周期试验 对具有周期操作性能的设备应进行模拟长期现场作业的质量鉴定试验。试验周期应等于或超过指定应用的周期。 2.出厂验收试验(FA T)

常用海湾消防模块接线图

常用海湾消防模块接线图 沃特消防网/ 2012-09-27 本文将重点介绍海湾品牌的常用消防模块接线图,包括:输入输出模块、输入模块、输出模块等。 一、GST-LD-8319输入模块 对外接线端子图如图1-33: 图中端子说明如下: Z1、Z2:接控制器二总线,无极性 D1、D2:接直流24V,无极性 O-、O+:输出,有极性 GST-LD-8319输入模块与非编码探测器串联连接时,探测器的底座上应接二极管1N5819,且输出回路终端必须接GST-LD-8320或GST-LD-8320A终端器,终端器可当探测器底座使用,即在此终端器上可安装非编码探测器,其系统构成图如图1-34: 当终端器不作为探测器底座使用时,应加装上盖,系统构成图如图1-35:

二、GST-LD-8300输入模块 本模块的外形及结构与GST-LD-8319输入模块相同,安装方法也相同,其对外端子示意如图2-29 其中: Z1、Z2:与控制器信号二总线连接的端子 I、G:与设备的无源常开触点(设备动作闭合报警型)连接;也可通过电子编码器设置为常闭输入模块与具有常开无源触点的现场设备连接方法如图2-30所示。模块输入设定参数设为常开检线。

模块与具有常闭无源触点的现场设备连接方法如图2-31所示,模块输入设定参数设为常闭检线。 三、GST-LD-8301输入输出模块 GST-LD-8301模块的外形尺寸及结构与GST-LD-8319输入模块相同,安装方法也相同,其对外端子示意图如图2-32:

其中: Z1、Z2:接火灾报警控制器信号二总线,无极性 D1、D2:DC24V电源输入端子,无极性 G、NG、V+、NO:DC24V有源输出辅助端子,出厂默认为有源输出:G和NG短接、V+和NO短接当需无源常开输出:应将G、NG、V+、NO之间的短路片断开。 I、G:与被控制设备无源常开触点连接,用于实现设备动作回答确认(也可通过电子编码器设为常闭输入或自回答) COM、S-:有源输出端子,启动后输出DC24V,COM为正极、S-为负极 COM、NO:无源常开输出端子 模块输入端如果设置为“常开检线”状态输入,模块输入线末端(远离模块端)必须并联一个4.7kΩ的终端电阻;模块输入端如果设置为“常闭检线”状态输入模块输入线末端(远离模块端)必须串联一个4.7kΩ的终端电阻。模块为有源输出时,G和NG、V+、NO应该短接,COM、S-有源输出端应并联一个4.7kΩ的终端电阻,并串联一个IN4007二极管。 a.模块通过有源输出直接驱动一台排烟口或防火阀等(电动脱扣式)设备的接线示意图如图2-33(无源常开检线输入)、图2-34所示(无源常闭检线输入):

水下清洁机器人运动控制系统设计研究

? 117 ? ELECTRONICS WORLD? 技术交流 本文主要结合相关的研究背景设计了一种水下清洁机器人,作为一种水下设备的清洁维护的机器人,保障水下设备的正常运行。文章首先在引言部分对本文的研究背景及意义进行阐述,然后重点提出了水下清洁机器人运动控制系统的总体设计方案,并对其运动模型进行设计和仿真。 1 引言 海洋开发逐渐向特殊领域以及高深度领域转变,难度越来越大,人力开发已经完全不能够满足开发的需求,机器人开发已经成为了新趋势。本文主要在此背景下分析和研究水下清洁机器人的运动控制系统的设计。本文设计的水下清洁机器人主要是用于对水下的一些大型设备,例如海底搜救设备、勘测设备、取样设备等进行水下维护和修复等,能够在水下特殊环境中对海底设备进行维护和处理,能够较大程度上的促进海底开发技术的发展。 2 水下清洁机器人运动控制系统总体设计 2.1 水下清洁机器人运动控制流程 本文设计的水下清洁机器人的控制系统主要由主机、控制算法、控制电路、指令转换、机器人载体、采样设备等组成,具体的控制流程为:主机控制算法进行水下机器人的动力分配,并结合指令转换算法进行整理转换,结合控制电路开启操控箱,下达操作指令,机器人载体接到命令驱动机器人进行采样,采集样本之后将样本信息传递到主机处理系统当中,进行处理。 2.2 模拟运动控制平台结构设计 水下机器人的运动控制平台主要包括六个部分:步进电机、云台、安装板、推进器、U型板以及轴承等。其中云台主要实现的是2自由度的运动,包括水平和横向两个方向。本文模拟的控制平台主要实现的是3自由度的运动控制,除了上述2自由度之外,还包括前后摇摆自由度。由于多了一个自由度,因此需要对运动进行定位,该运动平台的定位主要由带套轴承和法兰轴组成固定左侧,由带套轴承和电机轴固定右侧,右侧的电机由法兰固定,由此就设计出了一个6自由度的模拟运动控制平台(边宇枢,高志慧,贠超,6自由度水下机器人动力学分析与运动控制:机械工程学报,2007)。 2.3 地面操控台结构设计 地面操控台主要是对上述的模拟运动控制平台进行控制,地面操控台主要包括显示器、操纵杆、按钮以及指示灯等。其中操纵杆有2个,一个用来控制云台的摄像机,一个用来控制模拟运动平台,面板主要是结合人体舒适度进行设计,角度定为70°(裴文良,郭映言,陈金山,申龙,水下机器人的研发及其应用:制造业自动化,2018)。 3 水下机器人运动模型及仿真分析 该部分主要对上述设计的水下机器人的运动模型以及仿真进行分析: 3.1 水下机器人的运动学建模 为了便于我们对机器人参数和变量的统一管理,可以定义以下 状态变量: 其中 ,,即用η1和η2分别表示稳定系下水下机器人的位置向量和方向向量,用v1和v2分别表示动态系下水下机器人的线速度和角度,用τ1和τ2表示在动态系下作用于水下机器人的力和力矩向量。 水下机器人的速度变量由稳定系转换成为动态系,从而通过动态控制器实现对运动的控制,同时要获得水下机器人的静态位置和姿态就必须要将水下机器人的速度变量由动态系转换成为稳定系,从而得到水下机器人的位置矢量。由此可知,在研究水下机器人状态时,需要分析和研究机器人速度变量的动态和静态的转变。 3.2 基于神经网络的轨迹控制器 本文主要设计了基于神经网络模型的水下机器人的运动轨迹控制器,具体的控制流程如下:当机体接收到信号后,传递到控制器,再通过执行器作用于机体,做出相应的动作,机器人本身还具有抗干扰的功能。输出与控制器之间用RBF网络连接。(朱大奇,陈亮,刘乾,一种水下机器人传感器故障诊断与容错控制方法:控制与决策,2009) 3.3 水下机器人神经网络轨迹控制的仿真 结合上述设计的基于神经网络模型的水下机器人的运动轨迹控制器,采用MATLAB进行仿真如下。该控制器设计的目的是实现对水下机器人运动状态的识别和跟踪,通过分析水下机器人的水下运动情况,结合轨迹参考实现了未知动力学的局部精确逼近和部分神经网络权值的收敛,从而奠定一定的学习控制器基础。 结合神经网络的训练实验得到,在神经网络权值的训练过程中,一些神经网络的权值最终收敛,可以作为神经网络的常数权值存储。在自适应神经网络控制器的作用下,将被控系统未知动态分量的局部精确逼近。 水下清洁机器人运动控制系统设计研究 (下转第121页)

消防联动 原理 说明书 各子模块功能

火灾自动报警系统: 1.防护等级:本工程火灾自动报警系统的保护对象分级按———— 级设置。 2.消防控制室: 1)本工程消防控制室设在————,并设有————出口。 2)消防控制室的报警控制设备由火灾报警控制主机,联动控制台,CRT显示器,打印机,应急广播设备,消防直通对讲电话设备,电气火灾报警主机,电梯监控盘和电源设备等组成。 3)消防控制室可接收感烟.感温.火焰.可燃气体等探测器的火灾自动报警信号及水流指示器.信号阀.压力开关.手动报警按钮.消火栓按钮.电气火灾的动作信号。 4)消防控制室可显示消防水池.消防水箱的报警水位,显示消防水泵的电源及运行状况。 5)消防控制室可联动控制所有与消防有关的设备。 3.火灾自动报警系统: 1)本工程采用——集中——报警控制系统。消防自动报警按两总线环路设计,任一点断线不影响报警系统。 2)探测器:——燃气表间.厨房——等处设置防爆燃气探测器,————场所设置感温探测器,大空间设置线性红外感烟探测器,电缆桥架上设———缆式感温探测器,其他场所——设置感烟探测器。——大型通信及计算机机房设空气采样极早期烟雾探测报警系统。 3)探测器与灯具的水平净距应大于0.2m;与送风口的水平净距应

大于 1.5m;与多孔送风顶棚孔口或条形送风口的水平净距应大于0.5m;与嵌入式扬声器的净距应大于0.3m,与自动喷水头的净距应大于0.3m;与墙或其他遮挡物的距离应大于0.5m。 4)在本建筑物适当位置设手动报警按钮及消防对讲电话插孔。手动报警按钮及对讲电话插孔底距地——1.4m。 5)在消火栓箱内设消火栓报警按钮。接线盒设在消火栓的开门侧上部。 6)——在各层楼梯间及疏散楼梯前室走道侧,——设置火灾声光报警显示装置。安装高度——不低于2.2m。 4.消防联动控制 1)火灾报警后,消防控制室应根据火灾情况控制相关层的正压送风阀及排烟阀.电动防火阀.并启动相应加压送风机.排烟风机.排烟阀280°C熔断关闭,防火阀70°C熔断关闭,阀.风机的动作信号要反馈至消防控制室。 2)在消防控制室,对消火栓泵.自动喷洒泵.加压送风机.排烟风机.既可以通过现场模块进行自动控制也可以在联动控制台上直接手动控制,并接收其反馈信号。 3)消火栓泵控制应满足下列要求: 3).1:平时压力开关自动控制稳压泵维持管网压力,管网压力过低时,直接启动主泵。 3).2:消火栓按钮动作后,经消防控制室直接启动消火栓泵,消防控制室能显示报警部位并接收其反馈信号。

海上油气开采工程与生产系统教程

海上油气开采工程与生产系统 中海工业有限公司 第一章海上油气开采工程概述 海底油气资源的存在是海洋石油工业得以进展的前提。海洋石油资源量约占全球石油资源总量的34%,全球海洋石油蕴藏量约1000多亿吨,其中已探明的储量约为380亿吨。世界对海上石油寄予厚望,目前全球已有100多个国家在进行海上石油勘探,其中对深海进行勘探的有50多个国家。 一、海上油气开采历史进程、现状和今后 一个多世纪以来,世界海洋油气开发经历如下几个时期: 早期时期:1887年~1947年。1887年在墨西哥湾架起了第一个木质采油井架,揭开了人类开发海洋石油的序幕。到1947年的60年间,全世界只有少数几个滩海油田,大多是结构简单的木质平台,技术落后和成本高昂困扰着海洋石油的开发。 起步时期:1947年~1973年。1947年是海洋石油开发的划时代开端,美国在墨西哥湾成功地建筑了世界上第一个钢制固定平台。此后钢平台专门快就取代了木结构平台,并在钻井设备上取得突破性进展。到20世纪70年代初,海上石油开采已遍及世界各大洋。 进展时期:1973年~至今。1973年全球石油价格猛涨,进一步推进了海洋石油开发的历史进程,特不是为了应对恶劣环境的北海和深水油气开发的需要,人们不断采纳更先进的海工技术,建筑能够抵御更大风浪并适用于深水的海洋平台,如张力腿平台(TLP)、浮式圆柱型平台(SPAR)等。海洋石油开发从此进入大规模开发时

期,近20年中,海洋原油产量的比重在世界总产油量中增加了1倍。进军深海是近年来世界海洋石油开发的要紧技术趋势之一。 二、海上油气开采流程 海上油气田开采可划分为勘探评价、前期研究、工程建设、油气生产和设施弃置五个时期: 勘探评价时期:在第一口探井有油气发觉后,油气田就进入勘探评价时期,这时开发方面的人员就开始了解该油气田情况,开展预可行性研究,将今后开发所需要的资料要求,包括销售对油气样品的要求,提交勘探人员。 前期研究时期:一般情况,在勘探部门提交储量报告后,才进人前期研究时期。前期研究时期要紧完成预可行性研究、可行性研究和总体开发方案(ODP)。前期研究时期也将决定油气田开发基础,方案的优化是最能提高油气田经济效益的手段。因此,在可行性研究和总体开发方案 ( ODP )上都要组织专家进行审查,并得到石油公司高级治理层的批准。 工程建设时期:在工程建设时期,油藏、钻完井和海洋工程方面的要紧工作是成立各自的项目组,建立有效的组织结构和治理体系,组织差不多设计编写并实施,对工程质量、进度、费用、安全进行全过程的治理和操纵,使之达到方案的要求。油藏项目组要紧进行随钻分析和井位、井数等方面调整;钻完井项目组紧密与油藏项目组配合进行钻井、完井方案的实施;海洋工程项目组负海上生产设施的建筑;生产方面的人员也会提早介入,并进行投产方面的预备。

AUV水下机器人运动控制系统方案设计书(李思乐)

封面

作者:PanHongliang 仅供个人学习 中国海洋大学工程学院 机械电子工程研究生课程考核论文 题目: AUV水下机器人运动控制系统研究报告

课程名称:运动控制技术姓名:李思乐 学号: 21100933077 院系:工程学院机电工程系专业:机械电子工程 时间:2010-12-26 课程成绩: 任课老师:谭俊哲

AUV水下机器人运动控制系统设计 摘要:以主推加舵控制的小型自治水下机器人为研究对象,建立了水下机器人的数学模型并进行了分析。根据机器人结构的特点,对模型进行了必要的简化。设计了机器人的运动控制系统。以成功研制的无缆自治水下机器人(AUV) 为基础,对其航行控制和定位控制方法进行了较详细的分析. 同时介绍了它的推进器布置、控制系统结构、推力分配等方法。最后展示了它的运行实验结果。关键词:水下机器人;总体设计方案;运动控制系统;电机仿真 1 引言 近年来国外水下机器人技术发展迅速,技术水平较高。其中,具有代表性的产品有:美国Video Ray 公司开发出的Scout、Explorer、Pro 等系列遥控式水下机器人,美国Seabotix公司研发的LBV-ROV 系列,英国AC-CESS 公司的AC-ROV系列。 随着海洋开发、探测的需求越来越强,水下机器人成为全世界研究的热门课题。小型自治水下机器人具有低成本、小型化、操作灵活等特点成为近年来国内外研究的热点。自治水下机器人(Autonomous Underwater Vehicles, AUV),载体采用模块化设计思想, 可根据需要适当增减作业或传感器模块, 载体采用鱼雷状流线外形, 总长约2 m, 外径25 cm, 基本模块包括推进器模块、能源模块、电子舱模块、传感器模块以及GPS、无线电通讯模块, 基本传感器有姿态传感器、高度计、深度计和视觉传感器, 支持光纤通讯, 载体可外挂声学设备, 通过光纤系统进行遥控操作可实现其半自主作业, 也可在预编程指令下实现自主作业。系统基本模块组成设计如图1-1所示[1]。它具有开放式、模块化的体系结构和多种控制方式(自主/半自主/遥控),自带能源。这种小型水下机器人可在大范围、大深度和复杂海洋环境下进行海洋科学研究和深海资源调查,具有更广泛的应用前景。在控制系统的设计过程中充分考虑了系统的稳定性和操纵性。控制器具有足够的鲁棒性来克服建模误差,以及水动力参数变化。 图1-1 系统基本模块组成设计 2机器人物理模型 2.1 AUV 物理模型 为了研究AUV 的运动规律,确定运行过程中AUV 的位置和姿态,需要建立AUV 的动力学模型。为了便于分析,建立适合于描述AUV 运动的两种参考坐标系,即固定坐标系Eξηζ 和运动坐标系Oxyz,如图2-1 所示:包含5 个推进器,分别是艉部的2 个主推进器、艉部的1 个垂向推进器和艏部的2 个垂向推进器。左右对称于纵中剖面,上和下、前和后都不对称[2]。 图2-1AUV水下机器人物理模型 1.2微小型水下机器人动力学分析 微小型水下机器人总长 1.5m,采用锂电池作为能源,尾部为一对水平舵和一对垂直舵,单桨推进,可携带惯导设备、探测声纳、水下摄像机、深度计等设备,设计巡航速度约 2 节。首先建立适合描述水下机器人空间运动的坐标

消防报警中输入输出模块的工作原理

消防报警中输入输出模块的工作原理 问题1消防报警中输入输出模块的工作原理,能说清控制器与输入输出模块、前端设备之间信息交换的步骤最好。 回答: 用4个设备来说明:烟感、控制器、输入输出模块、消防泵。 烟感测到有火情时传输信息给控制器,控制器通过输入输出模块的输出端,给消防泵信号, 启动消防泵,消防泵启动后通过输入输出模块的输入端将启动信息传送给控制器。 问题2消防报警:模块怎么区分。控制模块?输出模块?输出输入模块,输入模块。在预算中怎么计算啊? 回答:控制模块:通过他控制现场设备的,但不接受反馈信号,也就是输出模块。输入输出:控制现场设备,同时接收其反馈信号。输入模块:也称监视模块,只接收反馈信号,起监视 作用。预算的话,你得找个设备厂家让他们报价格,厂家不一样价格也不一样! 问题3:消防控制柜主机如何扩容? 回答:监控主机里面有回路卡,一个回路卡带128点,多于128点就增加一个回路卡就可以了……回路卡是什么东西,能不能详细点,或者那个公司有买的,拉。回路卡这东西我也不好跟你解释,你可以把它理解成电脑的内存条,想提高电脑的处理性能就需要增加内存条来,那话又说回来,你想扩展监控点数你就要增加回路卡。

我补充一下我上面说的,准确的说回路卡的监控点数有128和256两种,如果监控点数大于128个点的话,你可以选择增加一个带128点的回路卡,也可以直接选择一个带256点的回路卡就可以了…… 供应商会提供回路卡的,在帮你报价的时候就已经根据监控的点数帮你选择了…… 问题4 :烟感器、声光报警器、报警按钮、输入输出模块、消防联动泵等需要穿几根线,都是什么线,哪些是接在一起的? 回答: 烟感器:带地址码的两根控制线,需要供电的加两根24V电源线; 声光报警器:两根电源线至输出模块; 报警按钮:两根控制线至输入模块; 输入模块:两根线至消防主机控制线,两根线至24V电源(可选),两根线至被监视设备; 输出模块:两根线至消防主机控制线,两根线至24V电源,两根线至被控制设备;消防联动泵:按钮两根线至消防泵控制器启动,两根线至泵房启动监视,泵房两根线至监视; 模块监视启泵状态:两根线至控制模块联动启泵; 问题5:消防模块中双输入输出模块为什么要有两个地址编码? 回答: 其实就是两个输入输出模块合在一起罢了,这样方便点,功能跟两个单输入输出模块一样,

消防报警中输入输出模块的工作原理

消防报警中输入输出模块的工作原理 问题1:消防报警中输入输出模块的工作原理,能说清控制器与输入输出模块、前端设备之间信息交换的步骤最好。 回答:用4个设备来说明:烟感、控制器、输入输出模块、消防泵。 烟感测到有火情时传输信息给控制器,控制器通过输入输出模块的输出端,给消防泵信号,启动消防泵,消防泵启动后通过输入输出模块的输入端将启动信息传送给控制器。 问题2:消防报警:模块怎么区分。控制模块?输出模块?输出输入模块,输入模块。在预算中怎么计算啊? 回答:控制模块:通过他控制现场设备的,但不接受反馈信号,也就是输出模块。输入输出:控制现场设备,同时接收其反馈信号。输入模块:也称监视模块,只接收反馈信号,起监视作用。预算的话,你得找个设备厂家让他们报价格,厂家不一样价格也不一样! 问题3:消防控制柜主机如何扩容? 回答:监控主机里面有回路卡,一个回路卡带128点,多于128点就增加一个回路卡就可以了……回路卡是什么东西,能不能详细点,或者那个公司有买的,谢拉。 回路卡这东西我也不好跟你解释,你可以把它理解成电脑的内存条,想提高电脑的处理性能就需要增加内存条来,那话又说回来,你想扩展监控点数你就要增加回路卡。 我补充一下我上面说的,准确的说回路卡的监控点数有128和256两种,如果监控点数大于128个点的话,你可以选择增加一个带128点的回路卡,也可以直接选择一个带256点的回路卡就可以了…… 供应商会提供回路卡的,在帮你报价的时候就已经根据监控的点数帮你选择了…… 问题4:烟感器、声光报警器、报警按钮、输入输出模块、消防联动泵等需要穿几根线,都是什么线,哪些是接在一起的? 回答: 烟感器:带地址码的两根控制线,需要供电的加两根24V电源线; 声光报警器:两根电源线至输出模块; 报警按钮:两根控制线至输入模块;

第一篇海上油气田生产系统(了解篇).(DOC).doc

第一篇 海上油气田生产系统(了解篇) 一、海上生产设施的类型 海上生产设施是指建立在海上的建筑物。由于海上设施是用于海底石油开发及采油工作,加上海洋水深及海况的差异、油藏面积的不同、开采年限不一,因此海上生产设施类型众多。基本上可分为三大类:海上固定式生产设施、浮式生产设施及水下生产系统。在此三大类中又可细分如下: 典型的海上生产设施如图1-2-1至1-2-7所示: 1.固定式生产设施 固定式生产设施是用桩基、座底式基础或其它方法固定在海底,并具有一定稳定性和承载能力的海上结构物。海上固定式生产设施有各种各样的形式,按其结构形式可分为桩基式平台、重力式平台和人工岛以及顺应型平台;按其用途可分为井口平台、生产处理平台、储油平台、生活动力平台以及集钻井、井口、生产处理、生活设施于一体的综合平台。 (1)桩基式固定平台 桩基式固定平台通常为钢质固定平台,是目前海上油(气)生产中应用最多的一种结构形式 1)钢质固定平台的结构形式 桩基式 重力式 人工岛 顺应式平台 半潜式 张力腿式 浮式生产储油船 干式 湿式

钢质固定平台中最多的是导管架式平台,主要由四大部分组成:导管架、桩、导管架帽和甲板模块。但在许多情况下,导管架帽和甲板模块合二为一,所以这时仅为三部分。如图1-2-8所示。 ①导管架:系钢质桁架结构,由大直径、厚壁的低合金钢管焊接而成。钢桁架的主柱(也称大腿)作为打桩时的导向管,故称导管架。其主管可以是三根的塔式导管架,也有四柱式、六柱式、八柱式等,视平台上部模块尺寸大小和水深而定。导管架腿之间由水平横撑与 斜撑、立向斜撑作为拉筋,以起传递负 荷及加强导管架强度作用。 ②桩:导管架依靠桩固定于海底,它有主桩式,即所有的桩均由主腿内打入;也有裙桩式,即在导管架底部四周布置桩,裙桩一般是水下桩。 ③导管架帽:导管架帽是指导管架以上,模块以下带有甲板的这部分结构。它是导管架与模块之间的过渡结构。 ④模块:也称组块。由各种组块组成平台甲板。平台可以是一个多层甲板组成的结 构,也可以是单层甲板组成的结构,视平台规模大小而定。如钻井区域的模块可称为钻井模块;采油生产处理区称为生产模块;机械动力区可称为动力模块;生活区称为生活模块等。 2)钢质固定平台的施工 图1-2-1 桩基式固定平台 图1-2-2 重力式混凝土台

常用海湾消防模块接线图

常用海湾消防模块接线图 、GST-LD-8319 输入模块对 外接线端子图如图1-33 : T 1-J3 图中端子说明如下: Z1、Z2 :接控制器二总线,无极性 D1、D2 :接直流24V,无极性 O-、O+ :输出,有极性 GST-LD-8319输入模块与非编码探测器串联连接时,探测器的底座上应接二极管1N5819,且输岀回路终端必须接GST-LD-8320 或GST-LD-8320A 终端器,终端器可当探测器底座使用,即在此终端器上可安装非编码探测器,其系统构成图如图1-34 : 二密 二极管 输 入 模 坟 1 1-34 当终端器不作为探测器底座使用时,应加装上盖,系统构成图如图1-35 :

非编码探测器 非編码探测器 缪箱器 S 1 35 二、GST-LD-8300 输入模块 本模块的外形及结构与 GST-LD-8319 输入模块相同,安装方法也相同,其对外端子示意如图 2-29 21 Z2 I G 图 2- 29 其中: Z1、Z2 :与控制器信号二总线连接的端子 I 、G :与设备的无源常开触点(设备动作闭合报警型)连接;也可通过电子编码器设置为常闭输入 模块与具有常开无源触点的现场设备连接方法如图 2-30所示。模块输入设定参数设为常开检线。 二极管 二根管 o O 輸入模块 GST-LD-S315

Z\ Z2 E 2- 30 模块与具有常闭无源触点的现场设备连接方法如图2-31所示,模块输入设定参数设为常闭检线。 --------------------------- ' Z1 Z2 I G 1卍苫屯忑k 常耐触授现场设 备 5 2-31 三、GST-LD-8301 输入输出模块 GST-LD-8301模块的外形尺寸及结构与GST-LD-8319输入模块相同,安装方法也相同,其对外端子示意图如图2-32 :

消防模块分类

消防模块分类 需要将被监视的开关量信号转换为报警主机可识别的报警信号,就要用输入模块,需要联动控制或启动其它设备,就要用输出模块,模块的输入是相对于报警主机而言,模块的输出是相对于被控制的设备而言的。模块大致可以分为输入模块,输出模块,输入输出模块,隔离模块,中继模块,多线控制模块等类型。 1、LD-8300型监视(单输入)模块 LD-8300型智能编码单输入模块可将现场各种主动型设备如:水流指示器、压力开关、破玻按钮等接入到火灾报警控制器的信号总线上,这些设备动作后,输出的开关信号将由LD-8300送入火灾报警控制器,产生报警,并通过控制器来联动其它设备动作。此模块采用电子编码,可通过编码器实现其地址设置。此模块所需信号为常开或常闭开关信号,一旦开关信号动作,LD-8300将此开关信号通过信号总线送入控制器,控制器产生报警并显示出动作设备的地址号,同时使模块动作指示灯点亮。当模块本身出现故障时,控制器也将产生报警并将模块编号显示出来。本模块外形尺寸很小,安装非常方便。用于接收信号输入将输入的设备作为火灾报警系统的一部分,有些生产厂家称之为中继模块,根据输入信号的不同输入模块又可分为开关量输入和模拟量输入两种。目前市场上的输入模块有有一种只可以接收常开信号输入(如松江云安的HJ-1750),还有的经过参数的设定可以接收常开或者常闭信号输入(如海湾的GST-LD-8300),还有的双输入模块、多输入模块等等。模拟量输入模块一般用于接收电流量或者电压

量信号,一般厂家的非编码探测器报警时输出的就是电流量信号用于接本厂家的编址接口模块,输入到系统中(如海湾的GST-LD-8319)。 2、输出模块: 用于控制某些设备的启停或者切换,不接收信号输入一般用于控制无信号反馈的设备,比如广播模块(如海湾的GST-LD-8305)、声光警报器、警铃等等设备。 LD-8304型编码消防电话模块 LD-8304模块是一种编码模块,直接与火灾报警控制器总线连接,并需要接上DC24V电源总线。另外,为实现电话语音信号的传送,还需要接入消防电话总线。LD-8304型模块上有一个电话插孔,可直接供总线制电话分机使用。 与控制器的信号二总线和电源二总线连接;与总线制消防电话主机的电话二总线连接;若需接入电话插座,与其采用四根线连接。LD-8305编码消防广播切换模块 LD-8305型编码消防广播切换模块专门用于总线制消防广播系统中各防火分区内正常广播与消防广播之间的现场切换控制。模块设有自回答功能,当模块动作后,将产生一个报警信号送入控制器产生报警,表明切换成功。 3、输入输出模块:在有的场合也称为控制模块,在有控制要求时可以输出信号,或者提供一个开关量信号,使被控设备动作,同时可以接收设备的反馈信号,以向主机报告,是火灾报警联动系统中重要的组成部分,市场上的输入输出模块都可以提供一对无源常开/常

水下生产系统知识讲解

水下生产系统 第一章:水下生产系统发展概述 1、从浅水走向深水 原因 ?对能源需求的增长 ?陆上及浅水资源开发已经到达成熟期,并开始减少。 ?高油价,降低开发成本 ?深水技术的快速发展(深水钻井技术、水下增压和分离技术等) 水深、环境条件、油气田位置和油气输送成本等综合因素决定了油田的开发方案 为何采用水下生产系统? ?能将井口布置在现有平台有效钻井范围以外的地方; ?高油价,降低开发成本; ?深水技术的快速发展(深水钻井技术、水下增压和分离技术等) 2、水下生产系统组成 立管和海管、水下采油树、水下增压系统、水下分离系统、回注系统、水下管汇、跨接管、管道终端、连接器 3、我国水下生产系统发展展望 1)国外规范和成熟经验是重要参考资料 2)但由于中国南海海域的特殊条件(台风频繁、较强的内波流作用、复杂海底 地形、油田离岸距离远等),相关的技术不可能完全照搬,必须针对南海的独特海况与离岸距离,做出创新性的研究与设计。 3)采油树结构复杂,涉及机械、力学、密封、材料、控制、安全、钻井、海洋 工程等学科。一旦具备了水下采油树的设计、制造、安装和测试能力,就可以设计制造其他水下产品,突破国外技术封锁,自主开发深水油气田。 第二章:立管系统 立管主要功能 ?生产立管:将流体从地底油藏传输到海面浮式设施 ?注入立管:回注气体或液体到地底油藏 ?外输立管:将处理过的油气传输到陆上或穿梭油轮 ?钻井立管:钻井工具通道

立管类型 从本身的特点可分为钢悬链线立管(SCR)、顶部张紧立管(TTR)、柔性立管(FR)、混合立管(HR) 深水立管的主要挑战: ?立管系统的费用对水深非常敏感; ?立管系统的安装费用对水深也非常敏感; ?安装时需要具有足够能力的特殊安装船舶; ?对于焊接和检验质量的要求高; ?在立管设计中的主要考虑因素为重量和疲劳寿命。 立管的组装 ?柔性立管和脐带缆通过陆上组装而成; ?SCR通过立管安装船舶焊接作业线组装而成; ?TTR通过连接法兰或连接接头组装而成。 SCR容易发生破坏的部位 顶部柔性接头和底部触地点 TTR顶部张紧系统形式 浮筒式和张紧器式 FR优点 ?无VIV ?连接和解脱方便 ?疲劳寿命长 ?管线在海底覆盖面积小 ?可重复利用 ?抗腐蚀性能好 FR类型 UN-BONDED PIPE 和BONDED PIPE 混合立管特性 ?经济有效 ?具有独立的浮筒 ?对浮式平台的负载小 ?紧凑构型–占地面积小 ?在有限的空间内能容纳多根立管 ?消除了单独垂直立管的相互影响 ?无管土相互作用影响 立管设计考虑因素

相关文档
最新文档