排气系统设计指南

排气系统设计指南
排气系统设计指南

编制日期:2004-05-08 编者:王许华、贤

飞华、倪强

版次:00 第1 页共22 页

排气消声系统设计指南

编制:

校对:

审核:

批准:

汽车工程研究院

编制日期:2004-05-08 编者:王许华、贤

飞华、倪强

版次:00 第2 页共22 页目录

一、主题与适用范围

1、主题

2、适用范围

二、排气消声系统的总成说明及功用

三、设计应用

1、设计规则和输入

2、设计参数的设定

2.1 尺寸及重量

2.2 排气背压

2.3 功率损失比

2.4 净化效率

2.5 加速行驶车外噪声

2.6 插入损失以及传递函数

2.6.1 插入损失

2.6.2 传递函数

2.7 尾管噪声

2.8 振动

3、系统及零部件的设计

3.1 系统布置

3.1.1 布置原则

3.1.2 间隙要求

3.1.3 吊钩位置的选取

3.2 消声器的容积确定

3.3 排气管径的选取

3.4 消声器

3.4.1 消声器的截面形状

3.4.2 消声器内部结构

3.5 净化装置

3.6 补偿器

3.6.1 波纹管

3.6.2 球形连接

3.7 橡胶吊环

3.8 隔热部件

3.9 材料选择

3.9.1 排气管、消声器内组件

编制日期:2004-05-08 编者:王许华、贤

飞华、倪强

版次:00 第3 页共22 页

3.9.2 消声器外壳体

四、排气消声系统的设计开发流程

五、参考文献列表

编制日期:2004-05-08

编者:王许华、贤

飞华、倪强

版次:00

第 4 页 共 22 页

一、主题与适用范围

1、 主题

本指南规定了与汽车发动机相匹配的排气消声系统的系统匹配,零部件设计以及开发的流程等。

2、 适用范围

本指南适用于奇瑞所有装汽油或柴油发动机的M1类车的排气消声系统设计

二、排气消声系统的总成说明及功用

排气系统包括排气歧管、排气管、排气净化装置、排气消声装置等。一般地,排气系统具有以下一些功用:

1、引导发动机排气,使各缸废气顺畅的排出;

2、由于排气门的开闭与活塞往复运动的影响,排气气流呈脉动形式,排气门打开时存在一定的压力,具有一定的能量,气体排出时会产生强烈的排气噪声,因此在排气系统装有排气消声器来降低排气噪声;

3、降低排气污染物CO,HC,NO X 等的含量,达到排气净化的作用;

注:在本指南中,我们将只介绍排气管和排气消声装置的详细设计,对排气歧管的详细设计具体见发动机设计科编制的排气歧管设计指南,对于排气净化装置的详细设计具体见电控科编制的排气净化设计指南。 典型的排气消声系统如图1所示:

图1 三、设计应用

1、设计规则和输入

1.1 排气系统能很好的将废气顺畅排出,满足发动机的排气背压,功率损失比的要求。

排气管 排气净化装置 副消声器 主消声器

编制日期:2004-05-08 编者:王许华、贤

飞华、倪强

版次:00 第5 页共22 页

1.2 排气系统设计能满足现行中华人民共和国法规要求,具体如下:

QC/T 57-93 汽车匀速行使车内噪声测量方法

GB16170-1996 汽车定置噪声限制

QC/T 631-1999 汽车排气消声器技术条件

QC/T 630-1999 汽车排气消声器性能试验方法

GB1495-2002 汽车加速行使车外噪声限值及测量方法

QC/T 58-93 汽车加速行使车外噪声测量方法

GB18352 轻型汽车污染物排放限值及测量方法

GB14365-93 汽车定置噪声限制及其测量方法

1.3 排气系统零部件必须能经受1000℃的高温要求以及气流冲击,并保

证排气系统可靠性达到10万公里或者三年(先到者为准)的要求。

1.4 排气系统必须满足顾客对噪声的要求。

2、设计参数的设定

2.1 尺寸及重量

尺寸和重量需根据产品所要达到的性能要求以及底盘空间位置来确定,但是在满足性能要求的基础上,做到尽量小为最好。

2.2 排气背压

排气背压指发动机装上整套排气系统后,按QC/T 524设定测点测得的压强。排气背压越高,排气阻力越大,充气效率也就越低,发动机功率、扭矩损失也越大。一般来说,考虑到发动机的功率和扭矩要求,会对排气系统提出一个具体的排气背压要求。

对自然吸气发动机,排气背压一般设定在30±5kPa。

对增压发动机,排气背压一般设定在40±10kPa。

对于我公司开发的A VL发动机,具体的数值见表一

表一:

发动机型号排气背压目标值

1.6L CBR VVT <350mbar@rated speed

1.6L Low Cost <350mbar@rated speed

2.0L TCI GDI <500mbar@rated speed

2.0L TCI MPI <500mbar@rated speed

2.0L CBR VVT <350mbar@rated speed

2.0L Low Cost <350mbar@rated speed

3.0L V6 CBR VVT <350mbar@rated speed

2.4L V6 CBR VVT <350mbar@rated speed

编制日期:2004-05-08 编者:王许华、贤

飞华、倪强

版次:00 第6 页共22 页

4.0L V8 CBR VVT <350mbar@rated speed

1.3L CBR VVT <350mbar@rated speed

1.3L Low Cost <350mbar@rated speed

1.0L CBR VVT <350mbar@rated speed

0.8L CBR VVT <350mbar@rated speed

1.9L TCI HSDI <300mbar@rated speed

1.9L TC HSDI <300mbar@rated speed

1.9L NA HSDI <250mbar@rated speed

1.3L TCI HSDI <300mbar@rated speed

2.9L TCI HSDI <300mbar@rated speed

2.3 功率损失比

消声器的功率损失比是发动机在标定工况下,使用消声器前后的发动机功率的差值和没有使用消声器时功率值的百分比。

γ=[(P1-P2)/ P1]×100%

对于γ值,QC/T 631-1999《汽车排气消声器技术条件》规定为<8%,我们一般设定为<5%。

2.4 净化效率

根据尾气排放标准的要求,一般要求排气系统对发动机排气的净化率(净化前后排气的污染物HC、CO、NOx含量之比)要求在90%以上。(具体内容见电控科编制《三元催化器设计指南》)

2.5 加速行驶车外噪声

汽车加速行驶车外噪声需满足现行中华人民共和国的法规规定要求,其具体测量方法和限值见GB1495-2002《汽车加速行使车外噪声限值及测量方法》和QC/T 58-93《汽车加速行使车外噪声测量方法》。汽车加速行使车外噪声是一个整车噪声衡量标准,影响汽车加速行使车外噪声的因素主要有三个:发动机本体噪声,进气系统噪声和排气系统噪声。各系统在满足各自的要求的基础上尽量做到更好的噪声水平。

2.6 插入损失以及传递函数

2.6.1插入损失

消声器的插入损失为装置消声器前后,通过排气口辐射声功率级之差。

D=L1-L2

对于D值,由于各发动机的噪声水平以及整车类型不同,所以插入损失的目标值也不同。QC/T 631-1999《汽车排气消声器技术条件》规定为>28dB,我们要

编制日期:2004-05-08 编者:王许华、贤

飞华、倪强

版次:00 第7 页共22 页

求在发动机各个转速下的插入损失均大于30 dB。

2.6.2 传递函数

排气系统传递函数是指空气介质传播所引起的声功率的差值,主要是评价消声器的消声效果。具体测量方法如下:

图2

排气系统由排气管,副消声器、主消声器组成,如果有三元催化器,则应该同时带上

激励体声源(能发出频率为20Hz-20000Hz的声源)放置于排气管的入口端,并用橡胶管与排气管相连。

参考麦克风放置与前端橡胶管上,并在内部接受体声源发出的声功率级

接收麦克风放置于消声器的尾部,接收经过排气系统传递后的声功率级

两个麦克风所测数值的差值即为排气系统的传递函数的值。

对于传递函数的目标值,根据整车对噪声水平的要求,其设定值也不相同,一般的,我们设定按图3:

编制日期:2004-05-08

编者:王许华、贤

飞华、倪强

版次:00

第 8 页 共 22 页

0500100015002000

Frequenz - Hz

-80 -70

-60

-50

-40

-30

-20

-10

dBA 图3

图中红线为传递损失的限值,在每个频率下的传递函数的值均在红线下部。

根据整车的噪声水平和发动机的类型不同,可对该红线位置进行调整。

2.7 尾管噪声

排气系统尾管噪声是衡量排气系统消声效果的一个主要性能指标。 尾管噪声的测量方法见图4:

图4

编制日期:2004-05-08 编者:王许华、贤

飞华、倪强

版次:00 第9 页共22 页

1、在急加速和急减速的情况下,整车载荷为70KgX2,按上述方法进行测量的尾管噪声见图5:当发动机转速为1000-2000rpm时,噪声值为82 dB(A),当发动机转速为5000rpm时,噪声值为92 dB(A),当发动机转速为6000rpm时,噪声值为97 dB(A)。

图5

3、在急加速和急减速的情况下,整车载荷为70KgX2,按上述方法进行测量

的二阶尾管噪声见图6,四阶尾管噪声见图7,六阶尾管噪声见图8,八阶尾管噪声见图9。

图6

编制日期:2004-05-08 编者:王许华、贤

飞华、倪强

版次:00 第10 页共22 页

图7

图8

图9

编制日期:2004-05-08 编者:王许华、贤

飞华、倪强

版次:00 第11 页共22 页

对于以上尾管噪声曲线,可以根据不同车型所要达到的噪声水平的不同进行调整。

2.8 振动

排气系统由于受到排气流的剧烈冲击,产生强烈振动,因此隔振是降低振动噪声很重要的一方面,本部分内容将在吊钩位置的选择和橡胶吊环的选择上进行介绍。

同时,在进行排气系统设计时,要避免与整车固有频率范围重合,应尽量做到差距越大越好,一般地,车身固有频率在25Hz-34Hz之间,因此排气系统振动频率不能设计在这个范围内。

3 系统及零部件的设计

3.1、系统布置

3.1.1布置原则

对一个完整的排气系统,从前到后,一般布置次序是:预催化器、补偿器(波纹管)、主催化器、前消声器、后消声器。

排气管用于连接以上不同部件。排气管分段以及连接方式主要根据安装和维修方便确定。

如果补偿器采用球面法兰,一般不把球面法兰布置在催化器之前。

对于满足欧Ⅱ及以下排放标准的排气系统,由于欧Ⅱ标准不涉及冷启动阶段的排放限制,所以一般可不采用预催化器而只采用一个主催化器。对于满足欧Ⅲ及以上排放标准的排气系统,一般在排气歧管出口处布置预催化器(即CCC,Closed Couple Catalyst)或者在预催化器前的排气管段采取良好的保温措施。主催化器一般布置在车身底板下,所以又叫底板下催化器(Under Floor Catalyst)。

消声器有一级、二级、三级之分。二级消声应用最多,SUV、跑车等追求动力性的车辆一般才采用一级消声器。对于二级消声,我们将其分别称为前消声器

主消声器

副消声器

编制日期:2004-05-08 编者:王许华、贤

飞华、倪强

版次:00 第12 页共22 页

3.1.2 间隙要求

排气系统与各相邻部件地间隙关系见图11:

图11

各相邻部件耐温在150℃以下的越远离排气系统越好,相对产生运动部件最少保证与排气系统的间隙大于25mm。

3.1.3吊钩位置的选取

排气系统吊钩位置的选择遵循以下原则:

(1)、吊钩应该位于振动的节点上;

(2)、吊钩应该在纵向能够延伸;

(3)、吊耳应该位于车身结构的刚性处。

对于排气系统吊钩位置的选取必须借助CAE分析来进行,首先对排气系统进行各阶模态分析(见图12)来确定排气系统上的最佳吊钩位置,根据此位置来确定车身吊钩位置,并增加车身吊钩位置处的刚性。

编制日期:2004-05-08 编者:王许华、贤

飞华、倪强

版次:00 第13 页共22 页

3.2消声容积的确定

消声容积指排气系统所有消声器的容积之和。消声器的容积决定了其消声量,因此容积确定的正确与否,将直接影响到整车的噪声水平。由于消声器的容积主要根据发动机的最大功率和扭矩决定,我们通常采用以下公式:

Vm=k×P

Vm=消声器的容量(L)K=0.14 P=输出功率(Ps)

根据不同车型对噪声的要求水平,K可选0.10~0.20之间不同的值。图13为消声器容积与发动机功率之间的关系。我们尽量将消声器的容积控制在红线附件,不能超出蓝线范围。

图13

3.3排气管径的选取

为获得良好的噪声和低的背压,在排气管和消声器内的排气流速应分别低于0.35c和0.25c(c——声速)。我们可根据此要求来计算排气管的最小管径。

假设某发动机最大排气流量为m(kg/h),排气温度为T (K),压力为P(Pa),在温度T和下气流密度为ρ(kg/m3),声速为c(m/s)。则排气管最小流通面积Smax 为:

Smax=m/900cρ。

排气管最小内径为d= 4Smax/π。

3.4、消声器

消声器一般要求有大的消声量和消声频率范围,小的排气阻力(即排气背压)和良好的耐久性(3年或者10万公里无异常)。

3.4.1消声器的截面形状

消声器的截面形状尽量避免扁平状,并尽可能往圆形靠近,其设计方案的选

编制日期:2004-05-08 编者:王许华、贤

飞华、倪强

版次:00 第14 页共22 页

择如图14的规则

图14

3.4.2消声器内部结构

消声器内部结构的设计是一个很复杂的课题。

按消声器的消声机理,可分为阻性消声器、抗性消声器和阻抗复合型消声器三类。

阻性消声器是利用在管道内适当的布置吸声材料,部分的吸收管道中传播的声能,类似电路中的电阻的作用。这类消声器的特性是在中、高频范围内有良好的消声效果。

抗性消声器是利用各种形状、尺寸的管道或共振腔内发生反射或干涉,从而降低所输出的声能。抗性消声器的消声频带较窄,在中、低频消声效果较好,高频较差。

阻抗复合型消声器是将阻性和抗性消声器结合起来,故从低频到高频都有较好的消声效果。

目前的汽车消声器的设计中,主要结构采用抗性消声原理,而在其中某些结构则采用阻性原理。典型如图15所示

编制日期:2004-05-08 编者:王许华、贤

飞华、倪强

版次:00 第15 页共22 页

3.5、净化装置

具体见电控科编制排气净化设计指南

3.6、补偿器

补偿装置是排气系统减振降噪的一个重要部件,同时也是提高排气系统使用寿命的重要部件。它把由发动机引起的振动及扭转进行吸收,从而降低排气系统的振动传递,同时改善排气系统的受力,提高使用寿命。我们常见的补偿器有两种形式:波纹管和球形连接。

3.6.1波纹管

典型的波纹管如图16所示:

悬挂系统分为两种,一种是断耦式,另一种是半断耦式。

断耦式,就是采用柔性极高的波纹管(如采用0.25mm/层×2层的波纹管结构或者波纹管相当长)将发动机与排气系统的振动和晃动完全阻隔开。断耦式的波纹管不起承载作用,所以波纹管后段的排气系统需设计前后左右上下六方向位移皆有极好限制作用的悬挂。比如我公司生产的B11轿车就是一个典型的断耦式排气悬挂系统。

半断耦式,就是采用强度较大的承载式波纹管(如采用0.4mm/层×2或3层

编制日期:2004-05-08 编者:王许华、贤

飞华、倪强

版次:00 第16 页共22 页

的波纹管结构),发动机的振动和晃动有部分传递到排气系统。采用半断耦式的排

)

图17

编制日期:2004-05-08 编者:王许华、贤

飞华、倪强

版次:00 第17 页共22 页

图18

图19

球形连接具有空间小的特点,同时能很好的起到补偿作用,现越来越被广泛采用。对于球形连接的设计,必须满足以下的技术要求;

1、在49 kPa {0.5 Kgf/cm2}.压力下,漏气量小于0.79L/min。

2、在振动角为± 6?,振动频率为2.5Hz,所受振动力为980 ±98N,温度为

700± 10?C的条件下,完成振动次数为100 ? 104 次。

3.7 橡胶吊环

图20所示为汽车排气系统常用橡胶吊环。

编制日期:2004-05-08

编者:王许华、贤

飞华、倪强

版次:00

第 18 页 共 22 页

图20

橡胶吊环有如下作用: 1、将排气系统与车身相连

2、尽可能的将排气系统的振动隔离,使之尽可能少的传递到车身上。 鉴于此,一般地,橡胶吊环采用材料为EPDM,其特性选择见表二 表二:

图21

Z

X

Y 0

5

10

1520

25110100频率弹性系数

P方向Q 方向R 方向对数 (P方向)

Z 方向

X 方向 Y 方向振动条件 1W ±0.40㎜

Y 向:6.7N/㎜ X 向:3.4N/㎜ 21、22

编制日期:2004-05-08

编者:王许华、贤

飞华、倪强

版次:00

第 19 页 共 22 页

图22

3.8 隔热部件

如果需要,根据具体位置选取隔热装置,一般采用镀铝隔热板,其性能达到的要求为:隔热板两边的温差达到150℃。

3.9 材料选择

3.9.1排气管、消声器内组件

由于汽油燃烧后产生NO X ,硫化物,水等,冷却后将形成酸,并部分积蓄在消声器内,对排气系统容易产生腐蚀,因此,排气管、消声器端盖、内部隔板、内部消声管以及消声器筒体内层最常用的材料是SUH 409和SUH 409L 。 SUH 409的主要成分含量:

C%≤0.08 Si%≤1.00 Mn%≤1.00 P%≤0.040 S%≤0.03 Cr:10.50-11.45 Ti:6×C%-0.75

SUH 409L 的主要成分含量:

C%≤0.03 Si%≤1.00 Mn%≤1.00 P%≤0.040 S%≤0.03 Cr:10.50~11.45 Ti:6×C%-0.75

SUH 409的机械性能:

抗拉强度≥360N/mm 2 屈服强度≥175N/mm 2

05

10

152025110100

频率

弹性系数

P方向Q 方向R 方向

对数 (P方向) Z 方向

X 方向 Y 方向振动条件

1W ±0.0.05㎜

Y 向:6.7N/㎜ X 向:3.4N/㎜

编制日期:2004-05-08 编者:王许华、贤

飞华、倪强

版次:00 第20 页共22 页

伸长率≥22%

SUH 409和SUH 409L类似于ISO的1Ti,美国AISI的409,德国的X6CrTi12

3.9.2 消声器外壳体

考虑到耐腐蚀性的要求比内层低,以及重量和经济性,消声器筒体外层一般采用镀铝板SAID-80.

四.排气消声系统的设计开发流程

步骤责任方交付物交付时间用途

设计输入

发动机数据奇瑞数据

底盘数据(底盘通道走向)奇瑞数据

厂家资源需求(发动机、整车等)奇瑞厂家所需资源

技术要求(背压、噪声、可靠性)奇瑞数据

边界条件(比如边界模型)奇瑞数据

催化器数据(催化器对系统的背压、噪

声影响)奇瑞数据

系统预开发

系统背压分析厂家分析报告(Flow

master之类软件分

析)

根据设计方案,预见性的分

析系统的背压值。若无分析

软件,请外委其他公司做

系统布置厂家三维数模(UG/Catia/Proe)

噪声预开发厂家消声方案以及方

案分析报告根据经验设计首套消声方案

消声系统开发

1a样件设计厂家设计方案报告1a样件制作厂家手工样件2套

1a样件试验厂家试验报告背压测试、噪声测试以及频谱图

确定排气系统的背压、传递函数,签订奇瑞背压、传递函数

排气系统消声器设计技术规范标准

排气消声系统设计技术规范 目录 一、主题与适用范围 1、主题 2 、适用范围 二、排气消声系统的总称说明及功用 三、设计应用 1 、设计规则和输入 2 、设计参数的设定 2.1 尺寸及重量 2.2 排气背压 2.3 功率损失比

2.4 净化效率 2.5 加速行驶车外噪声 2.6 插入损失及传递函数 2.6.1 插入损失 2.6.2 传递函数 2.7 尾管噪声 2.8 定置噪声 2.9 振动 3 、系统及零部件的设计

3.1 系统布置 3.1.1 布置原则 3.1.2 间隙要求 3.1.3 吊钩位置的选取 3.1.4 氧传感器孔的布置 3.2 消声器的容积确定 3.3 排气管径的选取 3.4 消声器 3.4.1 消声器的截面形状 3.4.2 消声器内部结构 3.5 补偿器 3.5.1 波纹管 3.5.2 球形连接 3.6 橡胶吊环 3.7 隔热部件 3.8 材料选择 3.8.1 排气管、消声器内组件 3.8.2 消声器外壳体四、参考文献列表

一、主题与适用范围 1、主题: 本指南规定了与汽车发动机相匹配的排气消声系统的系统匹配,零部件设计。 2、适用范围: 本指南适用于装汽油M1 、N1 类车的排气消声系统设计。 二、排气消声系统的总成说明及功用 排气系统包括排气歧管、排气管、排气净化装置、排气消声装置、隔热部件、弹性吊块等。一般地,排气系统具有以下一些功用: (1) 引导发动机排气,使各缸废气顺畅的排出; (2) 由于排气门的开闭与活塞往复运动的影响,排气气流呈脉动形式,排气门打开时存在一定的压力,具有一定的能量,气体排出时会产生强烈的排气噪声,气体和声波在管道中摩擦也会产生噪声,因此在排气系统装有排气消声器来降低

新排风系统设计说明书

工程文件第 1 页贵州省铜仁市皇玛浴都中央空调工程项目新排风系统设计说明一、工程概况本工程位于贵州省铜仁市建筑功能用途为洗浴中心空调区域为本建筑负一第一层。其中负一层为休息大厅包房和浴室二层休息包房。负一层男浴室面积为330平方女浴面积为140平方米根据甲方提供的建筑平面图估算浴室不考虑空调其它功能房间均设计空调空调面积为1750平方入户大厅空调面积为130平方一层为休息包房空调面积为600平方。入户大厅为负一层与一层之间的夹层。负一层洗浴区由于在使用时产生大量的水蒸汽客人在里面消费时会很不舒服同时水蒸汽会串向其它房间为了把洗浴区的水蒸汽排出故设计新排风系统由于包房没有外窗室内空气较闷故需设计新排风系统。二、新排风系统设计洗浴区排风按换气次数法进行设计每小时进行8次排风新风设计必须保证洗浴区内与周围房间形成负压的形式不让洗浴区内的水蒸汽串入其它房间。负一层男洗浴区设计排风量为8000m3/h 余压为200Pa的轴流风机一台进行排风为了保证洗浴区内形成负压不让水蒸汽串入其它房间同时保证洗浴区空气的舒适度故新风设计5000m3/h 余压180Pa的轴流风机一台供男洗浴区的新风女洗浴区设计排风量为4000m3/h 余压为70Pa的轴流风机一台进行排风为了保证洗浴区内形成负压不让水蒸汽串入其它房间同时保证洗浴区空气的舒适度故新风设计2500m3/h 余压70Pa的轴流

风机一台供男洗浴区的新风包房和休息大厅的新风设计按每人30m3/h进行设计排风采用夹层负压法进行排风也就用排气扇将房间空气排到夹层然后采用轴流风机将夹层的空气排出室外。从面节省排风管节省工程的投资。根据设计计算负一层包房新风量为8000m3/h由于新风进口位置的限制新风管的阻力很大如果采用普通的轴流风机无法将新风送入房间故设计8000m3/h 余压400Pa的风机箱一台给负一层包房送新风负一层排风采用4000m3/h的轴流风机3台从夹层排风同时采用排气扇从房间进行排风将房间空气排至夹层。根据设计计算一层包房新风量为6000m3/h由于新风进口位置的限制和房间分布情况新风管的阻力很大故设计3000m3/h 余压300Pa的风机箱二台即两个新风系统给一层包房送新风一层排风采用6500m3/h的轴流风机从夹层排风同时采用排气扇从房间进行排风将房间空气排至夹层。新风口采用双层百叶风口下送风的形式室外新风进口采用防雨百叶工程文件第2 页贵州省铜仁市皇玛浴都中央空调工程项目风口带过滤网室内排风采用单层百叶风口或排气扇排至排风排风管由排风机排出室外从面保证房间的舒适。

车辆排气系统设计规范

车辆排气系统设计规范

车辆排气系统设计规范 1、目的 随着环保法规对车辆排放的要求越来越高,排气系统在车辆的系统组成和系统设计中,越来越占有重要的地位。为使排气系统满足各阶段国家及地方法规的要求,提高对排气系统的设计和制造质量水平,需对车辆的排气系统的设计提出较规范的要求,以便在设计和制造过程中,参照执行。 2、设计规范 2.1 排气系统及消声器的设计输入 2.1.1 车辆产品的排气系统的配置和走向,依所配车辆的总体结构布置的需要来设计。而消声器的性能开发则需要依所配发动机及其对排气系统的具体要求。在初步设计选型时,应将发动机的有关性能参数及其上的关键件的基准要素等(如曲轴箱后端面与曲轴主轴线的交点坐标、动力线偏移量及倾角等),作为设计条件输入设计,作为消声器选型及性能开发的依据之一。并根据国家、地方及企业有关法规和标准的要求,对系统和消声器的性能设计目标提出要求,见附录1。 2.1.2 排气系统及其消声器在进行初步选型设计时,必须对系统进行结构方案分析和匹配计算分析,并提供选型设计分析报告,见附录2。 2.2 设计原则 2.2.1 排气系统及其消声器的设计,应使排气阻力尽可能的小,以使其对发动机的功率损失尽可能小。 2.2.2 排气系统及其消声器要有较好的音质和较低的音强,即应有较大的插入损失。 2.2.3 排气系统及其消声器要有较好的外观和内在质量及较长的使用寿命。 2.3 排气系统的设计要求和布置 2.3.1 排气管内径的确定在结构布置允许的情况下,排气管内径应尽可能大些,以降低管道内得气流速度,减少气流阻力产生的功率损失和再生噪声。一般应≥发动机排气歧管出口内径。或根据发动机排量等参数,按公式(1) 计算初步确定排气管内径。 D=2 √Q/(πV) (1) 式中:Q—发动机排量;V—气流速度,一般取50~60 m/s 。 2.3.2 排气管的布置和转弯,应使排气尽可能顺畅。管的中心转弯半径一般应≥(1.5~2)D,其折弯成型角应大于90o,以大于120o为宜。整个系统的管道转弯数应尽可能少,一 1

GT-Power 进排气系统设计

摘要采用目前最新发展的商用发动机一维模拟软件GT—Power建立了EQ491电喷发动机工作过程计算模型,并对软件的模拟精度和可靠性进行验证,在此基础上对EQ491电喷发动机的进排气系统进行了优化计算。计算结果可以用来指导EQ491发动机的改型设计。 关键词:电喷发动机进排气系统工作过程数值模拟优化计算计算流体力学 EQ491发动机是东风汽车集团从德国福特公司引进的化油器式发动机,主要用于轻型载货(客)车。为了满足我国将于2000年实施的新的排放法规,采用电控燃油喷射(EFI)加三效催化器(TWC)已势在必行。为保证化油器式发动机改电喷机型后不但排放水平要达标,而且动力性和经济性也要有一定程度的提高,根据国外经验,必须重新设计原发动机的进排气系统。 过去的经验设计法是一种试凑法,设计周期长,消耗大,难以得出最佳设计方案,无法满足现代内燃机设计要求。近年来,随着计算机技术的发展,计算流体力学(CFD)软件在发动机工作过程的研究中得到广范应用[1],大大缩短了发动机的研究开发周期。本文采用的GT—Power 是一个基于Window操作系统的适合分析各种发动机性能的CFD软件[2],它以一维流体动力学为基础,用有限体积法进行数值计算,充分考虑了因可燃混合气的组份不同导致其热力学性质的差异,而且能用于研究一些进排气系统结构因素(如分歧、合流和弯曲等部分)对流动的影响;此外它应用数学优化方法进行参数寻优,使得对发动机进行不需要人为经验控制的优化设计成为可能。本文利用该软件对EQ491电喷发动机的进排气系统结构参数进行了匹配优化计算,以期从理论上指导发动机的改型设计。 1模型的建立 GT—Power采用模块结构建立发动机工作过程计算模型。发动机的元件(如气缸、空滤器、催化器、管接头和管道等)模块用方形图框表示,而元件之间必须用圆形图框的连接件连接。发动机的所有结构参数和特性参数在相应的元件模块和连接件模块中定义,连接件可以有具体的物理定义(如气阀连接件和喷嘴连接件等),也可以只具有象征意义(如发动机与气缸连接件、管道之间的连接件等)。图1为EQ491电喷发动机整个进排气系统的计算模块。它主要由气缸、进气和排气系统3大部分组成。模块参数详细的定义和选择可参考有关文献[2,3]。这里仅对电喷发动机进排气系统的建模进行简要说明。 图1EQ491电喷发动机进排气系统计算模块结构 电喷发动机进气系统主要由空气滤清器(cleaner)、喉口(throttle)、稳压谐振腔(inman 1~4)和进气歧管(inr1~4)等模块组成。因为软件中没有现成的空气滤清器模型,所以需要利用其它模块来构造。这里把空气滤清器当作一个管道处理,管道的当量长度根据实际空气滤清器的阻力确定。为了计算进气歧管长度对发动机性能的影响,在inr1~4模块中将进气歧管长度设定为可变参数。排气系统主要由歧管(exp2-3、exp1-4)、总管(takedown)和催化器(catal)等模块组成。目前,汽车上安装的催化器载体几乎都是陶瓷蜂窝载体,它由许多大小相等的小通道组成,因此蜂窝载体可以定义为多管道模型,而载体两端的过渡管接头可以由流动分叉(fsplit1~2)元件来定义。为了计算排气歧管长度对发动机性能的影响,在exp1-4和exp2-3模块中将排气歧管长度定义为可变参数;为了研究催化器位置对发动机性能的影响,在takedown模块中将排气总管的长度定义为可变参数。 2模型的验证

汽车排气系统CADCAE集成开发方法

汽车排气系统CAD/CAE集成开发方法 华中科技大学张杰金国栋钟绍华傅强 摘要:本文探讨了一种新颖的汽车排气系统CAD/CAE 集成开发的思路和方法,此法将传统的经验设计理论与先进的专业软件应用结合起来。首先明确系统的需求和目标,然后建立起排气系统集成开发的环境,运用软件工程的思想进行整体规划和程序开发的模块化,这种设计方法在很大程度上提高了设计精度和功效。文中以消声器为例给出了其设计方法和在软件上实现的流程图。 关键词:排气系统集成开发催化转换器消声器 1 排气系统开发现状分析 日益严格的排放法规和人类环境意识的增强对汽车节能净化提出了高标准的要求,而排气系统作为现代内燃机动力汽车的一个重要总成,其性能直接决定了发动机排气损失以及污染物和气动噪声的排放量,因此如何对排气系统进行有效的设计分析,如何使其与发动机合理匹配等,就成为现代汽车节能与净化的关键技术之一。 在我国长期以来,汽车排气系统的开发仍然停留在各部件单一设计,依赖简单理论估算、经验设计和大量试验的基础上[1],这样不仅费时费力,给排气系统结构和性能的进一步优化带来困难;而且,单独对消声器或催化器局部分散设计不能完全反映排气系统的整体耦合特征,难以设计出令人满意的产品。随着计算机软硬件技术以及计算流体力学(CFD)等仿真分析软件的飞速发展,一些商用软件逐渐完善,成为研究设计人员的有效工具。例如通过对催化器和消声器进行数值模拟研究其阻力特性等[2],这一方面为结构优化提供充分的理论指导,另一方面也大大降低了实际试验的工作量,缩短设计周期,并且可以探索多种可能设计。 然而单一的商用软件往往不能满足复杂系统的整体开发,而需要选择相关软件进行二次开发和科学集成。目前针对整个排气系统进行集成开发研究的还未见报道。为满足排气系统模块供应商产品开发的需要,我们选择了一些有专业特点的设计与分析软件,以数据库管理系统为纽带,以VC++为开发语言,对这些软件进行了集成和二次开发,初步完成了汽车排气系统CAD/CAE 软件,使其能在一个用户界面下完成整个排气系统的设计(CAD)与分析(CAE)功能,使传统的经验设计向精确的理论设计过渡,很大程度上提高了设计精度和功效。 2 排气系统CAD/CAE 系统的任务和功能 2.1 任务要求

发动机排气系统设计规范

发动机排气系统设计规范 1 范围 本规范规定了柴油车发动机排气系统的设计。 本标准适用于所有新开发的带发动机的车型。 2 规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅所注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB 13094-2017 《客车结构安全要求》 GB 7258-2017 《机动车运行安全技术条件》 JB/T 1094 《营运客车安全技术条件》 3 定义 本文件所指排气系统,其定义为搭载传统汽、柴油或者天然气发动机的发动机排气系统,包括混合动力车型的发动机排气系统。 发动机排气系统由排气管路、催化消声器、后处理系统(包含尿素泵、填蓝罐、填蓝加热电磁阀、氮氧化物传感器等部件)、消声器悬置系统等组成。随着环保法规对车辆排放的要求越来越高,排气系统在车辆的系统组成和系统设计中,越来越占有重要的地位。为使排气系统满足各阶段国家及地方法规的要求,提高对排气系统的设计和制造质量水平,需对车辆的排气系统的设计提出较规范的要求,以便在设计和制造过程中,参照执行。 3.1 催化消声器 用于汽车尾气处理,是集气体净化、气体减噪等多功能于一体的设备。一般情况下,设备前部设置曲面造型多孔盘片将会有利于降低气动噪音;而尾气净化(即NOx脱除),则依赖于尿素溶液喷雾蒸发和后部催化剂层的共同作用下的SCR反应工艺。 3.2 插入损失 对于消音器来说,插入损失是指空间某固定点所测得的安装消声器前后的声压级或者声功率级之差。 3.3 排气背压 指发动机排气的阻力压力。一般在增压器废气口至消声器入口的管段处测得。 4 要求

排气系统设计开发指南

汽车有限公司 . 01 页次:1/7 版次:

1. 主题与适用范围 1.1 主题 本指南制订了与汽车发动机相匹配的消声排气系统的开发流程及设计指南; 1.2 适用范围 本指南适用于汽车消声排气系统的设计开发 2. 参考标准和相关文件 QC/T 631—1999 汽车排气消声器技术条件 QC/T 630—1999 汽车排气消声器性能试验方法 QC/T 58—1993 汽车加速行驶车外噪声测量方法 QC/T 10125—1997人造气氛腐蚀试验盐雾试验 3.定义 3.1 排气消声器 排气消声器是具有吸声衬里或特殊形式的气流管道,可有效的降低气流噪声的装置。 3.2 插入损失 消声器的插入损失为装消声器前后,通过排气口辐射的声功率级之差。 3.3 排气背压 按QC/T524设置排气背压测量点,当分别带消声器和带空管时,测点处的相对压力值之差。 3.4 功率损失比 消声器的功率损失比是指发动机在标定的工况下,使用消声器前后的功率差值和没有使用消声器时功率的百分比。 4.开发流程及设计指南 4.1 接受产品开发任务并做好开发前的准备工作 开发之初,需要了解如下信息,作为设计输入: 1、发动机的排量、额定功率、额定扭矩等相关参数; 2、整车底盘走向,空间布局; 3、发动机对排气背压、功率损失比的要求; 4、噪声标准的制定; (1)、插入损失大于35dB; (2)、整车车外加速噪声小于74 dB;

4.2 方案设计 1、消声器的容量设计计算 消声器的容量关系到发动机的功率和扭矩,因此容量的设计将决定整车的动力性。一般地,消声器的容量有如下的计算公式: Vm=k×P Vm=消声器的容量(L) K=0.14 P=输出功率(Ps) 2、消声器的位置确定

排气系统设计开发指南

1.1 主题 本指南制订了与汽车发动机相匹配的消声排气系统的开发流程及设计指南; 1.2 适用范围 本指南适用于汽车消声排气系统的设计开发

2. 参考标准和相关文件 QC/T 631—1999 汽车排气消声器技术条件 QC/T 630—1999 汽车排气消声器性能试验方法 QC/T 58—1993 汽车加速行驶车外噪声测量方法 QC/T 10125—1997 人造气氛腐蚀试验盐雾试验 3.定义 3.1 排气消声器 排气消声器是具有吸声衬里或特殊形式的气流管道,可有效的降低气流噪声的装置。 3.2 插入损失 消声器的插入损失为装消声器前后,通过排气口辐射的声功率级之差。 3.3 排气背压 按QC/T524设置排气背压测量点,当分别带消声器和带空管时,测点处的相对压力值之差。 3.4 功率损失比 消声器的功率损失比是指发动机在标定的工况下,使用消声器前后的功率差值和没有使用消声器时功率的百分比。 4.开发流程及设计指南 4.1 接受产品开发任务并做好开发前的准备工作 开发之初,需要了解如下信息,作为设计输入: 1、发动机的排量、额定功率、额定扭矩等相关参数; 2、整车底盘走向,空间布局; 3、发动机对排气背压、功率损失比的要求; 4、噪声标准的制定; (1)、插入损失大于35dB; (2)、整车车外加速噪声小于74 dB; 4.2 方案设计 1、消声器的容量设计计算 消声器的容量关系到发动机的功率和扭矩,因此容量的设计将决定整车的动力性。一般地,消声器的容量有如下的计算公式: Vm=k×P Vm=消声器的容量(L) K=0.14 P=输出功率(Ps) 2、消声器的位置确定

设计说明书

油壶盖模具设计说明书

目录 一、塑件成型工艺分析 1、塑料成型特性 2、塑件的结构工艺性 3、计算塑件的体积和重量 4、确定型腔数目 5、塑件注射工艺参数的确定 二、注射模的结构设计 1、确定分型面 2、浇注系统的设计 (1)主流道设计 (2)分流道的设计 (3)点浇口设计 (4)冷料穴设计 3、型腔、型芯的结构设计 4、推出机构的确定 5、冷却系统的设计论证 三、主要零部件的设计计算 1、成型零件的成型尺寸计算 2、模具型腔壁厚的确定 3、模具型腔模板总体尺寸的确定 4、标准模架的确定 四、塑料注射机有关参数的校核 1、模具闭合高度的确定 2、模具闭合高度的校核 3、模具安装部分的校核 4、模具开模行程的校核 5、注射量的校核 五、小结

一、塑件成型工艺分析 1、塑料成型特性 低密度聚乙烯(LDPE)又称高压聚乙烯,为支链型线型分子结构的热塑性塑料。结晶度为45%~65%,相对分子质量较小,密度为0.91~0.94g/cm3,压缩比为1.84~2.3,比热容为2.30J/(g﹒℃)。低密度聚乙烯的化学稳定性较高,能耐大多数酸、碱及盐的侵蚀,但不耐强氧化性酸的腐蚀,除苯及汽油外,一般不溶于有机溶剂。耐低温性能好,在-60℃下仍具有较好的力学性能,但使用温度不高,LDPE的使用温度在80℃以下。低密度聚乙烯在热、光及氧的作用下会发生老化变脆,力学性能和电性能下降。在成型时,氧化会引起熔体黏度下降和变色,产生条纹,影响塑件质量。因此,需添加抗氧剂及紫外线吸收剂等。 低密度聚乙烯的成型特性为: (1)成型性好,可用注射、挤出及吹塑等成型加工方法。 (2)熔体黏度小,流动性好,溢边值为0.02mm;流动性对压力敏感,宜用较高压力注射。 (3)质软易脱模,当塑件有浅侧凹(凸)时,可强行脱模。本塑件的螺纹成型即采用强行脱模方式。 (4)易产生应力集中,严格控制成型条件,塑件成型后退火处理,消除内应力;塑件壁厚宜小,避免有尖角,脱模斜度宜取1°~3°。 (5)可能发生熔体破裂,与有机溶剂接触可发生开裂。 (6)冷却速度慢,必须充分冷却,模具设计时应有冷却系统。 (7)成型温度范围:169~240℃.熔融温度低、熔体黏度小且塑件的质量小,塑件可采用柱塞式塑料注射机成型。严格控制模具温度,一般在35~65℃为宜,模具应采用调质处理。 (8)收缩率大且波动范围大,方向性明显(取向),不宜采用直浇口,易翘曲,结晶度及模具冷却条件对收缩率影响大,应控制模温,保证冷却均匀稳定。 (9)吸湿性小,成型前可不干燥。 2、塑件的结构工艺性 产品如下图: 三维模型图

发动机排气管设计原理

发动机消音排气管设计 活塞式发动机排气系统主要由排气管、消音器、触媒转换器及其他附属元件构成。 工作原理和功能: 一般排气管材质大多为铁管,但在高温及湿度的反复作用下容易氧化生锈。而排气管属于外观部件,所以大都在表面喷上耐热的高温漆或者电镀。但是无行之中也增加了重量,因此现在许多改用不锈钢材质,甚至是竞技用钛合金排气管。 四冲程多缸发动机大多采用集合型式排气管,就是将各缸的排气管集结,再由一支尾管排出废气。 以四缸车举例,通常用4 in 1的型式,优点不仅是可以扩散消音更可以利用各缸的排气惯性提高排气效率来增加马力输出。 但这一效果只能在某个转速范围内有明显的发挥。因此必须从骑乘的需求目的来设置集合管实际发挥发动机马力的转速区域。 早期多缸摩托车的排气设计均采用各缸独立的排气系统。以此避免各缸的排气干涉,利用排气惯性与排气脉冲来提高效率。缺点是:在所设定的转速范围以外,扭力值下降比集合管更多。这是独立排气系统被集合管取代的最大之原因。 排气干涉 集合管在整体上表现优于独立管,但在设计上要有更高的技术含量来降低各缸的排气干涉。通常做法是先把点火相对缸(1~4;2~3)的两支排气管集中在一起,再集合两组点火相对缸的排气管。就是4 in 2 in 1型式,这是避免排气干涉的基本的设计方式。 理论上4 in 2 in 1比4 in 1要更有效率,外观上也不同。但实际上两者的排气效率区别很小,因为4 in 1的排气管里有导向隔离板,所以使用效果区别不大。不管是怎样设计都是为了使发动机有更大的马力输出和更宽广的动力范围。 4 in 2 in 1形式排气管 排气惯性 气体在流动过程中具有一定惯性,排气惯性比进气惯性来的大。因此可以利用排气惯性的能量来提高排气效率,在高性能发动机上排气惯性具有很大的作用。一般人认为废气是在排气行程时由活塞推挤出去的,当活

汽车电气系统设计说明书

电气系统设计说明书 一、设计依据 根据奇瑞MMPV运动型多功能轿车开发目标的要求及其系列配置的要求,参考国内同类型的车型,结合奇瑞公司的生产制造能力进行开发设计。 二、达到目标 该车型的电气设计从按整车的最高配置进行设计,设计过程中把所有的电气选装件都纳入设计范围内,从而满足该车型的从经济型到豪华型的系列配置。 三、设计方案 根据设计任务书的要求,结合电气系统的分类,就整车的电气系统进行以下方案的确定。首先把电气系统按基本配置和选装配置进行分类确定。 (一)、基本配置: 1、电源启动系 电源起动系主要是确定起动机、蓄电池、发电机、电压调节器等电器件的类型和型号型号和规格大小。 (1)起动机的确定 a、起动机类型的确定 首先根据选定的发动机确定启动机(如果发动机未带启动机),起动机按控制装置一般分为: ①接操纵式起动机发动机 ②电磁操纵式起动机 我们选用流行的电磁操纵式起动机。 b、起动机功率的确定 选定后我们可以根据以下的计算公式确定启动机的大小: P=Mn/716.2(马力) (1马力=735W) 起动机的输出功率P可以通过测量电枢轴上的输出转矩M和电枢的转速n来确定。 M是发动机的起动阻力矩,单位Kg.m(1Kg.m=9.8N.m),也可以通过发动机的工作容积V求出,其经验公式为: 汽油发动机:M=(3.5~4)V 但目前的发动机大多直接配带起动机,因此需要选型的较少。

(2)蓄电池的确定 a、蓄电池类型的确定 蓄电池的主要作用是向起动机提供大的起动电流、整车用电器供电和在发电机发电时蓄能。蓄电池分为普通蓄电池和改进型铅(酸)蓄电池。我们根据该车型的特点选用免维护铅蓄电池。 b、蓄电池容量的确定: 现起动机的额定功率为P S k W,根据经验公式 Q20=(500-600)P S/U得知, Q20MAX=500×P S /12×735= (A.h) Q20MIN=600×P S /12×735= (A.h) 根据初步选用的DA465 16M/C1发动机我们可以却动确定起动机功率为0.8k W。蓄电池容量为45A.h (3)发电机的确定 a、发电机类型的确定 发电机是汽车的主要电源,其功用是:在发动机正常工作转速范围内,向汽车的用电设备(起动机除外)供电,当蓄电池的电量不足时向蓄电池供电。目前汽车上的发电机大都采用交流发电机,交流发电机可分为普通型和改进型两大类。改进型的如内装调节器(整体式)、带泵型、永磁型等。根据该类型车的特点及整车电器件的情况我们选用整体式交流发电机(JFZ型)。 b、发电机功率大小的确定 根据整车用电设备功率的大小,为了保证整车的电量平衡,我们需要确定发电的功率大小,此外还要考虑发电机的大小,使发电机能得到合理的利用。 发电机的功率确定主要按以下方式进行: 1)、首先测定所有持久耗电和长期耗电电器在14V时的功率需用量。根

排气再循环(EGR)系统原理说明

排气再循环系统(EGR) 燃烧原理:燃烧温度越高,NOx产生越多,在最适合于燃烧的点火时期点火及最经济的空燃比时,产生的NOx最多。为了减少NOx的排放,应该考虑不利于燃烧的空燃比及点火时期,可是这样又容易产生不完全燃烧,增加HC及CO的排放,还会使发动机的功率下降。可以较好地解决这一矛盾的技术称为排气再循环技术 (Exhaust Gas Recirculation),缩写为EGR。EGR可使发动机排出气体的一部分重新进入进气系统,引入不活性气体(主要是CO2)到燃烧室,增加燃烧室内气体的热容量,使最高燃烧温度下降,故可抑制 NOx的生成。 下面简单介绍一下EGR系统的工作原理: EGR(废气再循环系统),主要用来降低废气中氮氧化合物的排放量。其原理如上图所示。

ECU根据发动机转速、负荷(节气门开度)、温度、进气流量、排气温度控制电磁阀适时地打开,进气管真空经电磁阀进入EGR阀真空膜室,膜片拉杆将EGR阀门打开,排气中的少部分废气经EGR阀进入进气系统,与混合气混合后进入气缸参与燃烧,降低了燃烧时气缸中的温度,因NOx是在高温富氧的条件下生成的,故抑制了NOx的生成,从而降低了废气中的NOx 的含量。EGR系统的主要元件是位于进气歧管上的EGR阀。在发动机暖机运转和转速超过怠速时,EGR阀开启,使少量的废气进入进气歧管,与可燃混合气一起进入燃烧室;当发动机在怠速、低速、小负荷、及冷机时,为了避免发动机的动力性能受到影响,ECU控制EGR阀关闭。 EGR阀中有一与其做成一体的EGR阀位置传感器(EVP Sensor),该传感器是一电位计式位移传感器,用于检测EGR阀的实际位置,输出相应电压信号给控制器,控制器据此判断阀门是否对ECU的指令做出正确响应。同时,它的信号输出也是发动机ECU计算废气再循环流量的依据。通常,EVP 传感器是一个三线传感器,一条是发动机ECU提供的电源电压,另外一条是传感器的接地线,第三条是传感器给发动机ECU的反馈信号输出线;在EGR 阀关闭时产生1V以下的电压,在EGR阀打开时产生5V以下的电压。它是EGR系统中的重要传感器,一个损坏的EVP传感器会造成喘车现象、发动机产生爆震、怠速不良和其他行驶性能故障,甚至检查维护(I/M)尾气测试也不正常。 过度的废气参与再循环,将会影响混合气的着火、性能,从而影响发动机的动力性,特别是在发动机怠速、低速、小负荷及冷机时,再循环的废气会明显地影响发动机性能。所以,当发动机在怠速、低速、小负荷及冷机时,电脑控制废气不参与再循环,避免发动机性能受到影响;当发动机超过一定的转速、负荷及达到一定的温度时,电脑才控制少部分废气参与再循环。而且,参与再循环的废气量根据发动机转速、负荷、温度及废气温度的不同而不同,以达到废气中的NOx最低。

汽车排气系统设计原则分析

汽车排气系统设计原则分析 摘要:汽车排气系统是传统燃油发动机管理系统的重要组成部分之一。排气系统承担了控制排气污染、降低排气噪声的重要功能,同时排气系统承受着500℃到900℃的高温,是汽车构造中最主要的热源之一。为了减少排气系统高温对周边件功能、耐久性能的影响,文章从总布置设计角度出发,分析了排气系统与周边件间隙确定方法及周边件隔热防护措施,从而避免了由于间隙过小及隔热防护不到位引发的火烧车现象和周边件功能、耐久性能失效问题。 关键词:排气系统;周边件;隔热防护;间隙 1引言 汽车排气系统是传统燃油发动机管理系统的重要组成部分之一,其负责将发动机工作过程中燃烧的废气排放到大气中,对尾气净化、噪声降低起着非常关键的作用[1]。排气系统与发动机增压器出口相连,布置在底盘下方,且承受着500℃到900℃的高温,是汽车构造中最主要的热源之一。排气系统主要分为热端和冷端。热端由三元催化转化器总成、颗粒捕捉器和支架等组成。冷端由消声器总成、连接管路和橡胶吊挂等组成。排气系统热端与增压器出口相连,最高温度可达到900℃以上,排气系统冷端通过法兰与热端相连,温度相对较低,但靠近热端处的最高温度也可达到500℃以上。排气系统周边件复杂多样,汽车工作时,排气系统表面温度很高,由于受到车身、底盘等系统的影响,排气系统周边难免会布置一些耐受温度较低的零部件。受周边件耐热、耐久性能要求的影响,周边件与排气系统的设计间隙在排气系统设计布置中至关重要。间隙过小,排气系统辐射到周边件上的温度超过其耐温要求易导致周边件功能失效、耐久老化,严重者可引发火烧车问题。间隙过大,易造成布置空间的浪费。为了更好地避免由于间隙问题及隔热防护不到位引发的火烧车现象和周边件功能、耐久性能失效问题,本文着重阐述了总布置设计时,排气系统与周边件间隙确定原则及周边件隔热防护措施。 2排气系统与周边件设计间隙确定原则 2.1设计要求对标法。总布置设计初期,排气系统与周边件间隙应满足保安防灾要求,如表1所示[2]。排气系统与周边件间隙要求主要是经过前期大量的设计验证及对标标杆车并参考各大车企设计要求总结而来。总布置设计初期,保安防灾要求是校核并确定数据设计间隙的第一依据。 2.2温度场仿真分析法。总布置设计初期,由于受整车布置空间的影响,排气系统与周边件间隙无法满足设计要求的方案是不可避免的。为了保证方案的可行性,需进行温度场仿真分析,以验证排气系统辐射到周边件上的温度是否满足其耐温要求,确保周边功能件正常

柴油机的进排气系统结构设计

柴油机的进排气系统结构设计 由于柴油产生的功率大,价格也相对便宜,因此在我们日常生活中使用的工程机械都倾向于使用柴油机。但柴油机也存在一些问题,诸如排放不达标,这包括废气和噪声排放,功率能耗等,这都与柴油机的进排气系统有关。因此我们有必要对柴油机aa升整个柴油机的性能,降低它的噪声和废气的排放,在满足排放标准的同时提升柴油机的功率能耗。 标签:柴油机;进排气系统;设计 1 进气系统设计 1.1 进气系统的组成及其作用 进气系统主要空气滤清器和进气支管组成。 1.2 空气滤清器设计 1.2.1 作用 燃油燃烧的时候需要消耗大量的空气,以一般的柴油机为例,每消耗一升柴油大概要消耗6000-10000L空气。这么多的空气,里面的杂质诸如灰尘等肯定会很多,如果不把这些杂质清除,一定会加速气缸的部件的磨损,缩短整个发动机的寿命。有实验表明,如果不加装滤清器,发动机的寿命大概缩短三分之二,所以空气滤清器是很重要的。 为了保证柴油机气缸的寿命,我们决定采用干式滤清器。 1.2.2 进气导流管的设计 在现在的这个柴油机车上,为了增强进气效果,可以利用发动机的谐振,这需要空气滤清器的进气导管有交大的容积,来增强发动的谐振,提高进气效能,但进气导管又不能做的太粗,否则在里面流动的新鲜空气的流速太低,反而不利于进气,为了使效果最佳,本次设计的柴油机的导流管应该做的又细又长。 1.2.3 进气支管的设计 进气支管对于柴油机或者气道燃油喷射式发动机来说,进气支管必须把新鲜的空气分配到各个气缸的进气道里面来,而且是均匀的分配,从这个要求考虑,进气支管必须是等长的,而且为了保证空气具有较高的流速,进气支管的内壁的应该尽可能的光滑,以便提高进气能力。一般进气道使用合金铸铁制造,但车辆轻量化是汽车的重点发展方向之一,为了配合这种趋势,近来也采用铝合金制造的进气支管,这种进气支管具有质量轻,导热性能优良的特点,随着科技的进步

排气系统设计开发指南

在对本指南进行任何复印之前必须查阅有效程序清单,确认本程序版次的有效性。 1. 主题与适用范围 1.1主题 本指南制订了与汽车发动机相匹配的消声排气系统的开发流程及设计指南; .专业

汽车有限公司 版次: 01 页次: 2/8 1.2适用范围 本指南适用于汽车消声排气系统的设计开发 2. 参考标准和相关文件 QC/T 631 —1999汽车排气消声器技术条件 QC/T 630 —1999汽车排气消声器性能试验方法 QC/T 58 —1993 汽车加速行驶车外噪声测量方法 QC/T 10125 —1997 人造气氛腐蚀试验盐雾试验 3.定义 3.1排气消声器 排气消声器是具有吸声衬里或特殊形式的气流管道,可有效的降低气流噪声的装置。 3.2插入损失 消声器的插入损失为装消声器前后,通过排气口辐射的声功率级之差。 3.3排气背压 按QC/T524设置排气背压测量点,当分别带消声器和带空管时,测点处的相对压力值之 差。 3.4功率损失比 消声器的功率损失比是指发动机在标定的工况下,使用消声器前后的功率差值和没有使用 消声器时功率的百分比。 4.开发流程及设计指南 4.1接受产品开发任务并做好开发前的准备工作 开发之初,需要了解如下信息,作为设计输入: 1、发动机的排量、额定功率、额定扭矩等相关参数; 2、整车底盘走向,空间布局; 3、发动机对排气背压、功率损失比的要求; 4、噪声标准的制定;

汽车有限公司 版次: 01 页次: 3/8 (1)、插入损失大于35dB ; (2)、整车车外加速噪声小于74 dB ;

汽车有限公司 版次: 01 页次: 4/8 4.2方案设计 1、消声器的容量设计计算 消声器的容量关系到发动机的功率和扭矩,因此容量的设计将决定整车的动力性。一般地,消声器的容量有如下的计算公式: V m = k x P V m =消声器的容量(L) K= 0.14 卩=输出功率(Ps) 2、消声器的位置确定 根据声学原理,消声器摆放在不同的位置,将产生不同的消声效果,一般地,推荐如下的消声器摆放位置: 3、消声器的截面形状的设计 消声器的截面形状尽量避免扁平状,并尽可能往圆形靠近,推荐长度和截面积之比为 L/D=3-4 ■■■ 三元催化器预消声器主消声器 IL

汽车排气系统毕业设计

汽车排气系统毕业设计 篇一:车辆排气系统设计规范 车辆排气系统设计规范 车辆排气系统设计规范 1、目的 随着环保法规对车辆排放的要求越来越高,排气系统在车辆的系统组成和系统设计中,越来越占有重要的地位。为使排气系统满(本文来自:小草范文网:汽车排气系统毕业设计)足各阶段国家及地方法规的要求,提高对排气系统的设计和制造质量水平,需对车辆的排气系统的设计提出较规范的要求,以便在设计和制造过程中,参照执行。 2、设计规范 2.1 排气系统及消声器的设计输入 2.1.1 车辆产品的排气系统的配置和走向,依所配车辆的总体结构布置的需要来设计。而消声器的性能开发则需要依所配发动机及其对排气系统的具体要求。在初步设计选型时,应将发动机的有关性能参数及其上的关键件的基准要素等(如曲轴箱后端面与曲轴主轴线的交点坐标、动力线偏移量及倾角等),作为设计条件输入设计,作为消声器选型及性能开发的依据之一。并根据国家、地方及企业有关法规和标准的要求,对系统和消声器的性能设计目标提出要求,

见附录1。 2.1.2 排气系统及其消声器在进行初步选型设计时,必须对系统进行结构方案分析和匹配计算分析,并提供选型设计分析报告,见附录2。 2.2 设计原则 2.2.1 排气系统及其消声器的设计,应使排气阻力尽可能的小,以使其对发动机的功率损失尽可能小。 2.2.2 排气系统及其消声器要有较好的音质和较低的音强,即应有较大的插入损失。 2.2.3 排气系统及其消声器要有较好的外观和内在质量及较长的使用寿命。 2.3 排气系统的设计要求和布置 2.3.1 排气管内径的确定在结构布置允许的情况下,排气管内径应尽可能大些,以降低管道内得气流速度,减少气流阻力产生的功率损失和再生噪声。一般应≥发动机排气歧管出口内径。或根据发动机排量等参数,按公式 (1) 计算初步确定排气管内径。 D=2 Q/(πV) ????????????????????(1) 式中:Q—发动机排量; V—气流速度,一般取 50~60 m/s 。 2.3.2 排气管的布置和转弯,应使排气尽可能顺畅。

紧急避险系统设计说明书

紧急避险系统设计说明书 一、设计依据 1、《煤矿井下紧急避险系统建设管理暂行规定》; 2、《煤矿井下安全避险“六大系统”建设完善基本规范(试行)》。 3、《煤矿安全规程》。 二、设计方案 (一)基本方案 1、第一级避险系统 现在15分钟化学氧自救器更换为45分钟压缩氧自救器,重新购置压缩氧自救器1800台发放到每个下井职工手中,并留有备用。 2、第二级避险系统 拟在井下设置永久避难硐室2个,分别设置在:三采区改造石门至三采区上部车场挂口处、+475东翼边界放水巷。 设置临时避难硐室3个,分别设置在:二采区226车场、三采区中部车场、1321放水巷下平巷。 (二)紧急避险系统类型 煤矿井下紧急避险系统设计中的紧急避险设施建设主要包括永久避难硐室及临时避难硐室建设,由于我公司矿井井下区域已施工的巷道在设计之初时未考虑摆放可移动式救生舱,造成已掘巷道断面尺寸不够,因此在此次设计中,

只考虑了设计硐室作为永久避难硐室和临时避难硐室建设。紧急避险系统建设的主要内容包括为入井人员提供自救器、建设井下紧急避险设施、合理设置避灾路线、科学制定应急预案等。紧急避险设施应具备安全防护、氧气供给保障、有害气体去除、环境监测、通讯、照明、人员生存保障等基本功能。 (三)紧急避险设施分布地点依据 1、紧急避险设施布置依据 根据安监总煤装【2011】15号文件《国家安全监管总局国家煤矿安监局关于印发煤矿井下紧急避险系统建设管理暂行规定的通知》中第5条“永久避难硐室是指设置在井底车场、水平大巷、采区(盘区)避灾路线上,具有紧急避险功能的井下专用巷道硐室,服务于整个矿井、水平或采区,服务年限一般不低于5年;临时避难硐室是指设置在采掘区域或采区避灾路线上,具有紧急避险功能的井下专用巷道硐室,主要服务于采掘工作面及其附近区域,服务年限一般不大于5年”的规定。另外考虑到避难硐室不宜设置在变电所、火药库或者停车点,因为它们存在火灾隐患;避难硐室还应该远离各种地质构造区域,如断层、岩层断裂破碎带,大的地下位移如地震有可能破坏避难硐室及其内部设备;避难硐室的位置还要考虑不能设置在井下容易积水的地点,避免水患,要选择在足够强度的煤层或者岩层中,并且要有足够的非可燃物保护厚度。 2、下井人员统计 根据现有人员定位系统和井口考勤人员校对,每班最大

进气系统设计计算

进气口位置: 进气系统的设计须满足以下条件: ●避免机舱内热空气吸入 ●避免雨滴和雾气直接吸入 ●避免排气灰尘吸入 ●从空滤器至涡轮增压器入口之间的进气管必须由耐蚀材料制成 ●进气系统使用的分离式接头(如罩与空滤器外壳的接头)必须位于空滤器上部 ●进气系统必须能够进行定期维护,且进行维护时不需要打开空滤器和涡轮增压器之间进气系统的任何部件 ●尽可能低的系统阻力,以保证最大限度的利用柴油机功率 ●进气系统部件之间的接头和其它接合处,比如与空压机的接头,必须保持有效密封,避免灰尘或其它污染物进入过滤空气中。 进气口尺寸应设计得足够大,且没有锐弯和面积改变,为减小阻力,还应有平滑的转换导管来与进气管相连。发动机舱应充分通风,来发散出这些热量。为保护热敏元件,发动机连续运转时机舱内的最高温度不允许超过(推荐) 空滤器的选择及布置: 一、根据发动机厂家推荐在2200rpm是所需空气流量为1500m3/h,结合以下计算: 1发动机性能参数: 发动机型号:L340 额定功率Ne(kW):2505 额定转速n(r/min):2200: 排量Vh(L):8.9(C系统8.3) 空滤器流量VG(m3/h)的确定 ⑴增压后发动机所需的空气流量V(m3/h)的确定 V=Vh×n/2×60/1000=8.9×2200/2×60/1000=587.4(m3/h) ⑵发动机所需理想状态空气量Vo(m3/h)的确定(汽车设计理论) V o=ε×(ToT)0.75×V×ηvo×ψs 式中:V o-发动机所需理想状态空气量(m3/h) 大气环境温度(k)取313(273+40);T-增压中冷后气体温度(k)取333(273+60)(要求不高于环境温度的20);ηvo-充气效率取0.87(推荐);ψs-扫气效率取1.05 ε-增压比2.18 V o=2.18×(313333)0.75×587.4×0.87×1.05=1116.67(m3/h) ⑶空压机流量Vk(m3/h)的确定(推荐为320L/min) bVk=Vkh×nk×601000 式中:Vkh-空压机公称排量(L);nk-空压机的转速(r/min); Vk=0.229×1400×601000=19.2(m3/h) ⑷空滤器流量VG的确定(空滤器流量上述设计的储备流量) VG=1.066×(V o+Vk)=1.066×(1116.67+19.2)=1212(m3/h) L考虑到以后布置功率加大380马力发动机 结合两者得出按照发动机厂家的推荐空滤器流量≥1500 m3/h5 二、流通面积的确定 在确定了空滤器容积大小的同时,还应校核一下系统中所允许的气流流速。进气系统内的气流流速不宜超过30m/s,因为过高的气流流速会产生很大的流阻和进气噪声,对发动机会造成过大的功率损失。依据这一原则,在结构设计前先要确定空滤器进口、出口及连接管等部位允许的最小流通面积。 最小流通面积Smin=V o/(3.6×Vmax)×10-3(m2)

发动机进排气系统

汽车构造教案

空气滤清分为三种基本的滤清方法: 空气滤清器有惯性式、油浴式、过滤式三类。 惯性式是利用空气中所含尘土与杂质密度比空气大的特点,在空气吸入气缸的途径中使其急速旋转或改变方向,在离心力或惯性力的作用下,将尘土与杂质甩到外围而与空气分离; 油浴式它利用油浴把空气流在转折时甩出的尘土与杂质粘住,避免二次尘土与杂质吸入; 过滤式是引导气流通过带有细小孔的滤芯把尘土与杂质挡在滤芯外面,如纸质滤芯,金属丝滤芯.纤维,多孔瓷等。 惯性式空气滤清器以惯性原理构成的旋流器,它对清除空气中较大颗粒的尘土特别有效,其滤清效率约50%一60%,常用作多尘土地区工作的车用燃机上的空气粗滤器。 油浴式原理构成的油浴式空气滤清器,综合了惯性式和过滤式两种滤清原理,其滤清效率达95%~97%; 过滤式原理构成的纸质等空气滤清器,是在汽车,特别是在小轿车上用得十分广泛的一种,其滤清效率可达99.5%以上,且性能稳定。 纸质空气滤清器在标准含尘条件下正常使用寿命为2一5万千米。 二、进气管 1.进气管是连接空气滤清器和气缸盖进气道之间的管子。在汽油机上,有时把化油器或电子喷射节气门阀体与气缸盖进气道间的管子称为进气管。 进气管,特别是自然吸气车用高速燃机进气管,对燃机的油耗、功率、扭矩、排放等有重要。 2.分类:因而出现多种结构型式。大致可归结为:简单进气管、共振式进气管和带谐振腔的进气管三种(图6—13)。 简单进气管常用在车用柴油机和前几年的汽油机上,这种进气管结构简单,但

由于进入各气缸的气流阻力、路程长短和气流方向、速度的差异,致使各气缸进气不均匀。在电控喷射汽油机上由于喷油器直接在进气门附近喷射汽油,喷射的油雾颗粒细小,进气管无需采取预热措施。 共振式进气管较细长,与各气缸相连的各个管于长度大体一致,能很好的匹配。共振式进气管与各气缸单独连接,可利用进气气流的脉动效应以增强进气效果。进气效果的强弱取决于进气管长度,直径和燃机转速。 带谐振腔的进气管如图5-2c所示,有一个容积较大的谐振腔和无需过长的进气管,就可得到较低的谐振频率。它与共振式进气管的区别在于其谐振频率不必与进气冲程频率相同(或整数倍),但与谐振腔相连的各个短的进气管间的进气间隔必须相等。改变谐振腔的容积,可调节燃机的最大扭矩和相应的转速,但不可能在燃机整个转速围增加扭矩。带谐振腔的进气管还能降低进气噪声。 5.2.2排气消声器 1.组成; 排气系统常由排气歧管、排气总管、催化反应器、排气消声器、排气尾管等组成。 目前在轿车上流行的排气消声器(图5—4)由前消声器2,中消声器4和后消声器6以及连接管等组成,并焊接成一个整体,以保持消声器的坚固性。 2.消音器原理: 前消声器采用谐振原理(图5-4a).由三个大小不同的谐振室,彼此由穿孔管8贯通。穿孔管、隔板和断面的突变是谐振室的基本声学元件,它们作为声源的发射体.彼此间利用声波的相互干涉和在谐振室传播的声波又向这些声源反射,从而达到消声的效果。谐振器对抑制低频声波特别有效。中消声器采用谐振器和吸声原理(图5-4b)。两室之间为突然膨胀,从反射孔流出的气体再在穿孔管中折返后排出。采用吸声原理的后消声器(图5—4c),在穿孔管外面装填了吸声材料。轿车和载货汽车排气消声器的总容积分别相当于燃机排量的4~10倍和3~8倍燃机排

相关文档
最新文档