细胞信号转导的研究及其医学应用论文

细胞信号转导的研究及其医学应用论文
细胞信号转导的研究及其医学应用论文

细胞信号转导的研究及其医学应用

摘要:细胞信号转导是指细胞通过胞膜或胞内受体感受信息分子的刺激,经细胞内信号转导系统转换,从而影响细胞生物学功能的过程。水溶性信息分子及前列腺素类(脂溶性)必须首先与胞膜受体结合,启动细胞内信号转导的级联反应,将细胞外的信号跨膜转导至胞内;脂溶性信息分子可进入胞内,与胞浆或核内受体结合,通过改变靶基因的转录活性,诱发细胞特定的应答反应。在启动细胞内信号转导的过程中都能激活蛋白激酶,同时细胞内还存在与它们作用相反的蛋白磷酸酶,通过对蛋白质的磷酸化或去磷酸化的作用控制信号的转导或终止;信号的发散或整合,最终完成对胞外信号的反应。因此蛋白质的磷酸化或去磷酸化是信号转导过程中的共同通路是细胞生长、发育、凋亡、癌变的调控中心。通过对细胞信号转到的研究可以解学医学上的问题。

关键词:细胞信号转导蛋白激酶膜受体细胞凋亡

Cell signal transduction and its medical applications

Abstract: Cellular signal transduction refers to the cell membrane or intracellular receptors through signal molecules stimulate feelings by intracellular signal transduction system conversion, thus affecting the biological function of the process. Water-soluble molecules and prostaglandins information (fat soluble) and membrane receptors must first start the intracellular signal transduction cascade, the extracellular signal transduction to the intracellular; fat-soluble molecules can be information into the intracellular, and cytoplasmic or nuclear receptors, by changing the transcriptional activity of target genes to induce cell-specific responses. Start cells in the process of signal transduction can activate protein kinase,

At the same time there with their intracellular protein phosphatase opposite effect, by protein phosphorylation or to phosphorylation control of signal transduction or termination; signals divergence or the integration of extracellular signals the end to complete the reaction. Therefore, protein phosphorylation or dephosphorylation of signal transduction pathway is a common cell growth, development, apoptosis, cancer of control center. Go through the study of cell signaling can solve the problem of medical school. Keywords: Cellular signal transduction Protein kinase Membrane receptor Apoptosis

细胞信号转导是指细胞外因子通过与受体(膜受体或核受体)结合,引发细胞内的一系列生物化学反应以及蛋白间相互作用,直至细胞生理反应所需基因开始表达、各种生物学效应形成的过程.

现已知道,细胞内存在着多种信号转导方式和途径,各种方式和途径间又有多个层次的交叉调控,是一个十分复杂的网络系统。

高等生物所处的环境无时无刻不在变化,机体功能上的协调统一要求有一个完善的细胞间相互识别、相互反应和相互作用的机制,这一机制可以称作细胞通讯。在这一系统中,细胞或者识别与之相接触的细胞,或者识别周围环境中存在的各种信号(来自于周围或远距离的细胞),并将其转变为细胞内各种分子功能上的变化,从而改变细胞内的某些代谢过程,影响细胞的生长速度,甚至诱导细胞的死亡。这种针对外源性信号所发生的各种分子活性的变化,以及将这种变化依次传递至效应分子,以改变细胞功能的过程称为信号转导(Signal Transduction),其最终目的是使机体在整体上对外界环境的变化发生最为适宜的反应。在物质代谢调节中往往涉及到神经-内分泌系统对代谢途径在整体水平上的调节,其实质就是机体内一部分细胞发出信号,另一部分细胞接收信号并将其转变为细胞功能上的变化的过程。所以,阐明细胞信号转导的机理就意味着认清细胞在整个生命过程中的增殖、分化、代

谢及死亡等诸方面的表现和调控方式,进而理解机体生长、发育和代谢的调控机理信号转导并非是传统想象中的一维的,直线的,单一的模式,而且非常复杂的,不仅是直线的,而且是曲线的,网络的,甚至混沌的,同时还包括很强的定位和定量特性。所谓曲线,因为机体内蛋白质相互作用十分复杂,一个信号不可能是单一传导,而且有许多其它蛋白质或信号去增强它,抑制它,构成了一个信号反馈网络,从而保证了信号传导的精确性。如果将信号比作为一个大型机器,它在每一级传导过程中,都会有相应的检测机制,通过正负反馈的调节使信号定量和定位地传导下去。本期Science上发表文章认为NF-KB信号由于正负反馈的调控,存在明显的震荡现象。信号转导的震荡是一种普遍现象,正负反馈地调节决定了震荡存在的必然性,而且这种震荡还不是我们想象中这样简单,信号传导的每一级都会形成一个小的反馈环,而整个信号又会形成一个大的反馈环,通过不断地调控和震荡,使信号精确传导下去。可以相信,在未来几年内,会出现一个理想的数学模型研究信号传导的机理,它将极大推动人类对信号转导的认识。信号转导中还存在一个定位传导问题。细胞接受外界信号,细胞内蛋白质传导这一信号,但信号并非遍布整个细胞,而是局限于细胞的局部。而且同一信号在细胞的不同部位,最终产生的效应也将是不同的,这种信号转导的定位特征,使信号转导变得更为复杂而有趣。目前有关信号的定位研究还仅仅局限于神经细胞和心肌细胞的信号研究,但相信这种现象同样存在于所有的细胞类型中。

1细胞信号转导的研究

1.1信号转导受体

受体位于细胞膜上或细胞内,核受体包括甾体激素受体、甲状腺素受体、维甲酸受体。存在于细胞浆和核内。当其与配体结合后发生构象变化,能与核内靶基因中的激素反应元件结合,激活或抑制靶基因,调节机体的生长、发育、生殖与参与体内的免疫与炎症反应。能特异性识别生物活性分子并与之结合,进而引起生物学效应的特殊蛋白质,膜受体多为镶嵌糖蛋白:胞内受体全部为DNA结合蛋白。受体在细胞信息传递过程中起极为重要的作用。信号转导受体分为膜受体和保内受体,其中膜受体非为环状受体,蛇型受体,单跨膜α-螺旋受体。而保内手提名于胞液或胞核,结合信号分子后,受体表现为反式作用因子,可结合DNA顺式作用元件,活化基因转录及表达。包括类固醇激素受体、甲状腺激素受体等。 胞内受体都是单链蛋白,有4个结构区:①高度可变区②DNA结合区③激素结合区④绞链区。

1.2细胞信号转导的主要途径

1.2.1.G蛋白介导的信号转导途径G蛋白可与鸟嘌呤核苷酸可逆性结合。由 、 和γ亚基组成的异三聚体在膜受体与效应器之间起中介作用。小G蛋白只具有G蛋白 亚基的功能,参与细胞内信号转导。信息分子与受体结合后,激活不同G蛋白,有以下几种途经:(1)腺苷酸环化酶途径通过激活G蛋白不同亚型,增加或抑制腺苷酸环化酶(AC)活性,调节细胞内cAMP浓度。cAMP可激活蛋白激酶A(PKA),引起多种靶蛋白磷酸化,调节细胞功能。(2)磷脂酶途径激活细胞膜上磷脂酶C(PLC),催化质膜磷脂酰肌醇二磷酸(PIP2)水解,生成三磷酸肌醇(IP3)和甘油二酯(DG)。IP3促进肌浆网或内质网储存的Ca2+释放。Ca2+可作为第二信使启动多种细胞反应。Ca2+与钙调蛋白结合,激活Ca2+/钙调蛋白依赖性蛋白激酶或磷酸酯酶,产生多种生物学效应。DG与Ca2+能协调活化蛋白激酶C(PKC)。 1.2.2.受体酪氨酸蛋白激酶(RTPK)信号转导途径受体酪氨酸蛋白激酶超家族的共同特征是受体本身具有酪氨酸蛋白激酶(TPK)的活性,配体主要为生长因子。RTPK 途径与细胞增殖肥大和肿瘤的发生关系密切。配体与受体胞外区结合后,受体发生二聚化后自身具备(TPK)活性并催化胞内区酪氨酸残基自身磷酸化。RTPK的下游信号转导通过多种丝氨酸/苏氨酸蛋白激酶的级联激活:(1)激活丝裂原活化蛋白激酶(MAPK),(2)激活蛋白激酶C(PKC),(3)激活磷脂酰肌醇3激酶(PI3K),从而引发相应的生物学效应。1.2.3.非受体酪氨酸蛋白激酶途径此途径的共同特征是受体本身不具有TPK活性,配体

主要是激素和细胞因子。其调节机制差别很大。如配体与受体结合使受体二聚化后,可通过G蛋白介导激活PLC-β或与胞浆内磷酸化的TPK结合激活PLC-γ,进而引发细胞信号转导级联反应。

1.2.4.受体鸟苷酸环化酶信号转导途径一氧化氮(NO)和一氧化碳(CO)可激活鸟苷酸环化酶(GC),增加cGMP生成,cGMP激活蛋白激酶G(PKG),磷酸化靶蛋白发挥生物学作用。

细胞内受体分布于胞浆或核内,本质上都是配体调控的转录因子,均在核内启动信号转导并影响基因转录,统称核受体。核受体按其结构和功能分为类固醇激素受体家族和甲状腺素受体家族。类固醇激素受体(雌激素受体除外)位于胞浆,与热休克蛋白(HSP)结合存在,处于非活化状态。配体与受体的结合使HSP与受体解离,暴露DNA结合区。激活的受体二聚化并移入核内,与DNA上的激素反应元件(HRE)相结合或其他转录因子相互作用,增强或抑制基因的转录。甲状腺素类受体位于核内,不与HSP结合,配体与受体结合后,激活受体并以HRE调节基因转录。

1.3细胞凋亡

细胞凋亡是一个主动的信号依赖过程,可由许多因素诱导,如放射线照射、缺血缺氧、病毒感染、药物及毒素等。这些因素大多可通过激活死亡受体而触发细胞凋亡机制。死亡受体存在于细胞表面。属于肿瘤坏死因子受体超家族,它们与相应的配体或抗体结合而活化后,其胞浆区即可与一些信号转导蛋白结合,其中重要的是含有死亡结构域的胞浆蛋白。它们通过死亡结构域一方面与死亡受体相连,另一方面与下游的capase蛋白酶结合,使细胞膜表面的死亡信号传递到细胞内。capase蛋白酶家族作为细胞凋亡的执行者,它们活化后进一步剪切底物,如多聚(ADP-核糖)聚合酶(PARP)该酶与DNA修复及基因完整性监护有关,PARP被剪切后,失去正常的功能,使受其抑制的核酸内切酶活性增高,裂解核小体间的DNA,最终引起细胞凋亡。这个过程可概括为:死亡受体含有死亡结构域的胞浆蛋白—capase 蛋白酶家族—底物PARP—染色体断裂—细胞凋亡。不同种类的细胞在接受不同的细胞外刺激后引起凋亡的形态学改变是高度保守的,但是它们并不是遵循同一种固定的或有规律的模式进行,而是通过各自的信号转导途径来传递胞膜上的死亡

2.细胞信号转导异常与疾病

指细胞通过胞膜或胞内受体感受信息分子的刺激,经细胞内信号转导系统转换,从而影响细胞生物学功能的过程。水溶性信息分子及前列腺素类(脂溶性)必须首先与胞膜受体结合,启动细胞内信号转导的级联反应,将细胞外的信号跨膜转导至胞内;脂溶性信息分子可进入胞内,与胞浆或核内受体结合,通过改变靶基因的转录活性,诱发细胞特定的应答反应。导致信号转到特意的因素分别有生物学因素;理化因素;遗传因素;免疫学因素和内环境因素无论是受体,配体或者受体后信号转到通路的任何一个环节出现故障都可能会影响到最终效应,使细胞曾之,分化,凋亡,代谢或者功能失常,并导致疾病 2.1.信息分子异常指细胞信息分子过量或不足。如胰岛素生成减少,体内产生抗胰岛素抗体或胰岛素拮抗因子等,均可导致胰岛素的相对或绝对不足,引起高血糖。

2.2.受体信号转导异常指受体的数量、结构或调节功能改变,使其不能正确介导信息分子信号的病理过程。原发性受体信号转导异常,如家族性肾性尿崩症是ADH受体基因突变导致ADH受体合成减少或结构异常,使ADH对肾小管和集合管上皮细胞的刺激作用减弱或上皮细胞膜对ADH的反应性降低,对水的重吸收降低,引起尿崩症。

继发性受体异常指配体的含量、pH、磷脂环境及细胞合成与分解蛋白质等变化引起受体数量及亲和力的继发性改变。如心力衰竭时,β受体对儿茶酚胺的刺激发生了减敏反应,β受体下调,是促进心力衰竭发展的因素之一。

2.3.G蛋白信号转导异常如假性甲状旁腺机能减退症(PHP)是由于靶器官对甲状旁腺激素(PTH)的反应性降低而引起的遗传性疾病。PTH受体与Gs耦联。PHP1A型的发病机制是由于编码Gsα等位基因的单个基因突变,患者GsαmRNA可比正常人降低50%,导致PTH受体与腺苷酸环化酶(AC)之间信号转导脱耦联。

2.4.细胞内信号的转导异常细胞内信号转导涉及大量信号分子和信号蛋白,任一环节异常均可通过级联反应引起疾病。如Ca2+是细胞内重要的信使分子之一。在组织缺血-再灌注损伤过程中,胞浆Ca2+浓度升高,通过下游的信号转导途径引起组织损伤。

2.5.多个环节细胞信号转导异常在疾病的发生和发展过程中,可涉及多个信息分子影响多个信号转导途径,导致复杂的网络调节失衡。以非胰岛素依赖性糖尿病(NIDDM)为例加以说明。胰岛素受体属于TPK家族,受体后可激活磷脂酰肌醇3激酶(PI3K),启动与代谢和生长有关的下游信号转导过程。NIDDM发病涉及胰岛素受体和受体后多个环节信号转导异常:(1)受体基因突变使受体合成减少或结构异常,受体与配体的亲和力降低或受体活性降低。(2)受体后信号转导异常:PI3K基因突变可产生胰岛素抵抗,使胰岛素对PI3K 的激活作用减弱。

2.6.同一刺激引起不同的病理反应同一刺激作用于不同的受体,从而引起不同的反应。例如感染性休克发病过程中,在同一刺激源(内毒素)作用下使交感神经兴奋,若作用于α受体,则引起动脉收缩表现为冷休克; 若交感神经兴奋激活β受体,使动、静脉短路开放,则表现为暖休克。

2.7.不同刺激引起相同的病理反应不同的信号途径之间存在广泛交叉,不同刺激常可引起相同的病理反应或疾病。例如心肌肥大的发病过程中,心肌负荷过重引起的机械刺激,神经体液调节产生的去甲肾上腺素、血管紧张素等,可通过不同的信号转导蛋白的传递,最终引起相同的病理反应—心肌肥大。

3.细胞信号转导异常性疾病防治的病理生理学基础

3.1.调整细胞外信息分子的水平如帕金森病患者的脑中多巴胺浓度降低,通过补充其前体L-多巴,可起到一定的疗效。

3.2.调节受体的结构和功能针对受体的过度激活或不足,可分别采用受体抑制剂或受体激动剂达到治疗目的。

3.3.调节细胞内信使分子或信号转导蛋白目前临床应用较多的有调节胞内钙浓度的钙通道阻滞剂,维持细胞cAMP浓度的β受体阻滞剂和cAMP磷酸二酯酶抑制剂。

3.4.调节核转录因子的水平如NF-κB的激活是炎症反应的关键环节,早期应用抑制NF-κB活化的药物,对控制一些全身炎症反应过程中炎症介质的失控性释放,改善病情和预后可能是有益的。

4细胞信号转到的医学应用

细胞间的协调、细胞与环境的相互作用也是由信号转导来完成的。细胞增殖和凋亡的不平衡导致癌症等重大疾病的发生,细胞癌变的本质是细胞信号转导的失调。现在,分子肿瘤学的发展使人们认识到,癌变是因为调控细胞的分子信号从细胞表面向核内转导的过程中某些环节发生病变,使细胞失去正常调节而发生的。以这些病变环节为靶点的信号转导阻遏剂有望成为高效低毒的抗癌药物,因为从理论上它们可以区分癌细胞和正常细胞,干扰引起癌变的根本环节,起到选择性治疗作用。

与电信号传导类似,细胞信号转导也有其统一性和复杂性。细胞信号转导的多样性和重要性也成为后基因组学和功能基因组学研究的最重要方面。在正常情况下,细胞增殖与死亡处于动态平衡中,这种平衡受到外环境和内在因子通过细胞信号转导分子传递的变化影响。如肿瘤细胞的原癌基因过度表达以及抑癌基因失活等使该平衡破坏,细胞无限增殖而形成肿瘤。阻断肿瘤相关基因的信号转导途径,能诱导细胞凋亡,抑制肿瘤生长有四条细胞信号转

导途径的异常与肿瘤的发生有密切关系,它们包括TGF-周期素途径、p19-p53途径、端粒酶途径和Ras-MARP途径。这些信号转导途径既独立又相互影响,以这些信号转导途径中的分子为靶点可寻找新型特异性抗肿瘤药物。除此之外,还有其他一些信号转导途径与肿瘤的发生和发展有关。TGF-β及其相关生长因子(如BMP、Activin等)参与调节多种生命过程,影响多种细胞增殖、分化和凋亡。一方面,TGF-β通过诱导细胞G1期的阻断而引起细胞周期的停止,从而抑制表皮细胞的增殖;另一方面,TGF-β能诱导多种肿瘤细胞,如淋巴瘤、肝癌、多发性骨髓瘤细胞的凋亡。此外,TGF-β还能刺激细胞外基质的产生而促进成纤维细胞的生长。近几年的研究表明,在肿瘤发展的不同阶段,TGF-β会抑制或促进肿瘤的发展。

端粒酶的功能是把TTAGGG重复序列加到端粒上,以稳定人干细胞、生殖细胞和肿瘤细胞端粒的长度。端粒酶阴性细胞分裂时,往往会有一些端粒序列丢失。端粒缩短后,细胞进入不可逆的生长阻止状态,称为“复制衰老”。研究表明,端粒酶存在于大多数肿瘤细胞中,正常细胞将端粒酶限制在细胞核内一特定区域,只有在细胞分裂、DNA端粒需要修补时,才释放出来。细胞信号转导分子是寻找新型抗肿瘤药物的重要切入点,当前研究较多的这些药物作用靶分子主要包括蛋白酪氨酸激酶、蛋白激酶C、磷脂酰肌醇激酶、丝裂原活化蛋白激酶、法尼基转移酶、细胞周期调控因子和核转录因子NF-KB等。通过对它们的调控,可以抑制肿瘤生长或提高其他抗癌药物的疗效,这些调控剂可作为新型特异性抗癌药物。随着新世纪的来临,分子靶点药物的研究逐渐深入,细胞信号转导的某些突破性研究成果使得特异性抗癌新药的开发成为可能,且已经有许多品种进入临床研究,并取得可喜的疗效。另外,以p53为靶点的肿瘤基因治疗也是研究的热点之一。临床前研究表明,腺病毒转染p53基因,能抑制小鼠肿瘤生长,诱导肿瘤细胞凋亡,与化疗药物顺铂合用能增强疗效,而且不影响成纤维细胞的生长。临床应用细胞信号转导治疗药物要注意,其抗肿瘤谱不同,对不同肿瘤治疗效果不同。功能基因组学和蛋白质组学的展开,必将发现特异性更高的细胞信号转导分子靶点,使得抗肿瘤细胞信号转导药物的研究快速发展,最终达到治愈肿瘤的目的参考文献

1. Claire M.Wells,Arie Abo and Anne J.Ridley.PAK4 is activated via P13K in HGF-stimulated epithelial cells.Journal of Cell Science,2002,115:3947-3956.

2. R.Hugh Daniels and Gary M.Bokoch.P21-Activated protein kinase:a crucial component of morphological signaling? Elsevier Science Ltd.0968-0004/99/$-See front matter 1999.

3. Marinella G. Callow,Felix Clairvoyant,Shirley Zhu,et.al.Requirement for PAK4 in the Anchorage-independent Growth of Human Cancer Cell Lines. The Journal of Biological Chemistry,

2002,277(1):550-558.

4. Chuntao Dan,Niharika Nath,Muriel Liberto,et al.PAK5,a New Brain-Specific Kinase,Promotes Neurite Outgrowth in NIE-115 Cells. Molecular And Cellular Biology,2002,567-577

5.Ge Wang Micheal WV. Preliminary study on helical CT algorithms forpati

ent motion estimation and compensation .IEEE Trans. Medical Imaging,1995,14(2) :205

6.Minn H, Lapela M, Klemi PJ et al. Predication of surviva l with

fuorin-18-fluoro deoxyglucose and PET in head and neck caner. J Nucl M ed,

1997,38:1907

7.Scheinman MM. Catheter Ablation. Circulation, 1991, 83:1489 -1498

9.Katircioglu F , Yamak B,Battalogla B, et al .Long term re sults ofmitral

valve replacement with preservation of the posterior leaflet. JHeart Valve Dis,

1996,5(3):302

10.Peredina A, Allen A. Telemedicine technology and clinical app lication.

JAMA,1995,273:483-488

11. Yick-Pang Ching,Veronica Y.L.Leong,Chi-Ming Wong,et.al.Identification of an Autoinhibitory Domian of p21-activated Protein Kinase 5. The Journal of Biological Chemstry,2003,278(36):33621-33624 12. Shubha Bagrodia and Richard A.Cerione.PAK to the future. CELL BIOLOGY. V ol.9,Sep 1999.

13. Hongquan Zhang,Zhilun Li,Eva-Karin Viklund,et al.p21-activated kinase 4 interaces with integrinαvβ5 and regulatesαvβ5–mediated cell migration. The Journal of Cell Biology,2002,158(7):1287-1297

14.AN QU,MARTA S.CAMMARANO,QING SHI,et al.Activated PAK4 Regulates Cell Adhesion and Anchorage-Independent Growth. Molecular and cellular biology,2001,3523-3533.

15. 方福德.真核基因表达调控(修订版),北京:高等教育出版社、施普林格出版社,1997,12. 论文

16. 实践教学中双语教学问题之探讨——以生物工程专业实验选修课为例陈蔚青; 陈虹; 柯薇

浙江树人大学学报(人文社会科学版) 2008-05-15 期刊0 1

17. 19具有中医药特色的生物工程专业培养模式的实践和思考丁兴红; 赵伟春; 刘文洪中医教育2007-09-30 期刊0 28

18..杨于彬,生物医学工程与介入性诊疗技术,世界医疗器械,1997,3(9 ):50-52

19. 周君莉,马力耕,孙大业;G-蛋白和cGMP在光敏色素介导的尾穗苋苋红素合成中的作用[J];中国科学C辑;1998年02期

21. 宋水山;杨文香;李亚宁;刘大群;;植物G蛋白与植物防卫反应[J];中国生物工程杂志;2006年03期

22. 马力耕,崔素娟,徐小冬,孙大业;G蛋白在细胞外钙调素启动花粉萌发和花粉管伸长中的作用[J];自然科学进展;1997年06期

23. 廖星昊;赵洁;;植物胞外钙调素与信号转导[J];细胞生物学杂志;2006年05期

细胞信号通路大全

1 PPAR信号通路:过氧化物酶体增殖物激活受体( PPARs) 是与维甲酸、类固醇 和甲状腺激素受体相关的配体激活转录因子超家族核激素受体成员。它们作为脂 肪传感器调节脂肪代谢酶的转录。PPARs由PPARα、PPARβ和PPARγ 3种亚型组成。PPARα主要在脂肪酸代谢水平高的组织,如:肝、棕色脂肪、心、肾和骨骼肌表达。他通过调控靶基因的表达而调节机体许多生理功能包括能量代谢、生 长发育等。另外,他还通过调节脂质代谢的生物感受器而调节细胞生长、分化与 凋亡。PPARa同时也是一种磷酸化蛋白,他受多种磷酸化酶的调节包括丝裂原激活蛋白激酶( ERK-和p38.M APK) ,蛋白激酶A和C( PKA,PKC) ,AM PK和糖原合成酶一3( G SK3) 等调控。调控PPARa生长信号的酶报道有M APK、PKA和G SK3。PPARβ广泛表达于各种组织,而PPAR γ主要局限表达在血和棕色脂肪,其他组织如骨骼肌和心肌有少量表达。PPAR-γ在诸如炎症、动脉粥样硬化、胰岛素抵抗和糖代谢调节,以及肿瘤和肥胖等方面均有着举足轻重的作用, 而其众多生物学效应则是通过启动或参与的复杂信号通路予以实现。鉴于目前人 们对PPAR—γ信号通路尚不甚清,PPARs通常是通过与9-cis维甲酸受体( RXR)结合实现其转录活性的。 2 MAPK信号通路:mapk简介:丝裂原激活蛋白激酶(mitogen—activated protein kinase,MAPK)是广泛存在于动植物细胞中的一类丝氨酸/苏氨酸蛋白激酶。作用主要是将细胞外刺激信号转导至细胞及其核内,并引起细胞的生物化学反应(增殖、分化、凋亡、应激等)。 MAPKs家族的亚族 :ERKs(extracellular signal regulated kinase):包括ERK1、ERK2。生长因子、细胞因子或激素激活此通路,介导细胞增殖、分化。 JNKs(c-Jun N-terminal kinase)包括JNK1、JNK2、JNK3。此亚族成员能使 Jun转录因子N末端的两个氨基酸磷酸化而失活,因此称为Jun N末端激酶(JNKs)。物理、化学的因素引起的细胞外环境变化以及致炎细胞因子调节此通路。P38 MAPKs:丝氨酸/络氨酸激酶,包括p38 α、p38β、p38γ、p38δ。p38 MAP K参与多种细胞内信息传递过程 ,能对多种细胞外刺激发生反应,可磷酸化其它细胞质蛋白,并能从胞浆移位至细胞核而调节转录因子的活性来改变基因的表达水平 ,从而介导细胞生长、发育、分化及死亡的全过程。 ERK5:是一种非典型的MAPK通路,也叫大MAPK通路,只有一个成员。它可被各种刺激因素激活。不仅可以通过磷酸化作用使底物活化,并且通过C端的物理性结合作用激活底物。 3 ERBB信号途径:ErbB 蛋白属于跨膜酪氨酸激酶的 EGF 受体家族成员。ErbB 的命名来源于在禽红白血病 B( v-Erb-B) 发现的 EGF 受体的突变体,因而 EGF 受体 亦称为“ ErbB1”。人源 ErbB2 称为HER2, 特指人的 EGF 受体。ErbB 家族的

细胞生物学课程论文

无限增殖的小鼠胚胎成纤维细胞系胰高血糖素样免疫反应的 建立及特性描述 XXX 湖北师范学院生命科学学院生物科学专业 1101班 201111XXXXXXX 摘要 1.背景: Hh信号是一种保守的形态形成通路,它在胚胎发育中扮演至关重要的角色,新兴的证据也支持这一角色在治疗和修复过程以及肿瘤发生中的作用。胰高血糖素样免疫反应性家族的转录因子(Gli1,2和3)通过调节下游靶基因的表达来调解刺猬形态形成的信号。我们以前用来自小鼠胰高血糖素样免疫反应性的一系列胚胎成纤维细胞来描述Gli蛋白在Hh目标基因调节中的个体与合作的角色。 2.结果: 本文中,我们描述了缺乏单个和多个Gli基因自发地无限增值的老鼠胚胎成纤维(iMEF)细胞系的建立。这些非无性繁殖系的细胞系概括了独特的配体介导的转录响应早期的MEFs。然而许多Gli1对目标基因的诱导不起作用,已发现的Gli2空细胞会减弱目标基因的感应而Gli3空细胞表现出提高基底部并促进配体诱导的表达。在Gli1 - / 2 - / - iMEFs中的目标基因反应严重地降低而Gli2 - / 3 / - iMEFs 不能引发转录反应。然而,我们发现Gli1 / 2 - / -和Gli2 / 3 - / - iMEFs对Hh配体都表现出强劲的白三烯依赖性的综合迁移,这证明了这种反应不是依赖性的转录。

3.结论: 本研究提供了一系列Gli-null iMEFs转录和非转录的Hh反应的基本特征。向前推移,在Hh 反应程控中,这些细胞系被证明是一套有价值的工具,用来研究独特功能的调控。 背景 对于多种多样的生物过程,包括发育模式和器官形成,Hh信号通路是一个至关重要的调控子。这条路径从上游的Hh配体结合起始,到跨膜转运受体的碎片蛋白(Ptc1)。这减轻了碎片蛋白介导对Smoothened(Smo)的抑制,引发了复杂的下游信号级联(综述[1]]。Gli1和Ptc1是保守的Hh目标基因并且其表达水平被认为是路径活动的可靠指标。大多数Hh信号介导的生物学效应似乎都是通过Hh目标基因的转录调控被调节的,就连最近的一个非转录反应也被确定[2、3]。 在确定Hh在生长和组织与器官的形态发生中发放信号的角色时,空小鼠模型是至关重要的。在探索在通路调节中个体Hh信号介质的功能时,这些模型也被证明是很有价值的。在细胞分析中,Gli1的过度表达已经被发现可以诱导Hh目标基因的表达。小鼠的Gli1 发育正常的这一发现,推断Gli1的功能对于正常发育是可有可无的[4]。小鼠的Gli2 表现出神经管缺陷并且证明减退的Hh目标基因表达在几个组织中[5 - 7]。它支持来自基于细胞分析的研究结果[8],即把Gli2的功能作为一个关键的目标基因的激活剂。对于Gli3空小鼠,在来自于野生型的器官中,增加的目标基因的表达暗示,Gli3的功能是抑制转录。

TCR细胞通路研究进展

TCR信号通路研究新进展 T细胞相关免疫疗法在近期的癌症研究中大放异彩,“主力部队”是CAR-T和TCR-T这两种技术。相对于 CAR-T细胞疗法,TCR-T疗法的关注度相对低些,但是这两种细胞疗法都属于利 用患者自身的 T淋巴细胞治疗癌症的前沿基因疗法。研究发现,在实体瘤治疗方面,TCR疗 法可能比CAR疗法更有优势。 T细胞在免疫系统中具有重要作用,可以攻击病原体和肿瘤细胞。T细胞受体(TCR)能识别 不同的广泛亲和力的配体,参与激活多种生理过程。TCR细胞疗法定制功能性TCR,具有最 佳的抗原识别特性,利用人体免疫系统来对抗癌症。那么,这种疗法的分子机制是什么呢? 与之相关的TCR信号通路的分子调控机制有怎样的研究进展呢?本文将对这些问题进行综 合性讲述。 TCR蛋白结构 图一TCR复合物结构 T细胞作为适应性免疫应答的主要组成部 分,其抗原识别受体结构以被证实,克隆获得的TCR 由α-链和β-链构成异源二聚体。TCR异源二聚体主要与CD3的多个信号转导亚基结合,如 图所示,CD3γ、CD3δ和CD3ε异源二聚体以及CD3δ同源二聚体。在CD3的不同亚基含 有免疫受体酪氨酸的活化基序-ITAM,但是每个亚基的数量不 同,CD3γ、CD3δ和CD3ε分 别含有一个,而CD3δ含有三个串联的ITAM,这样就使的每个T细胞受体可以产生10个ITAM。酪氨酸磷酸化的ITAM可以使TCR与胞内信号转导通路发生偶联,向TCR募集含有SH2结构 域的蛋白质,如酪氨酸激酶ZAP70。但是现在还没有解决为什么TCR复合物包含这么多的信 号转导亚基和ITAM的问题,主要有两种假说,一种是CD3分子或单独的ITAM可能通过募 集独特的效应分子,执行不同的信号转导功能;另一种是 多个ITAM的主要功能是放大TCR 信号。 TCR识别与抗原递呈细胞(APC)呈递的可以结合MHC分子(pMHC)的肽。单独的TCR能够识别具有广泛亲和力的不同配体(自身肽和外来 肽)。TCR参与触发不同的功能输出。在 胸腺中,pMHC与TCR信号结合强度决定了细胞发育与分化过程。当结合力在最小值到最大 值之间时,促进胸腺细胞的存活,并转化 成CD4+CD8-或CD4-CD8+的成熟阶段;如果TCR与pMHC太低或太高,细胞会发生凋亡。在外围,自体pMHC对TCR的低亲和力结合提供了维

第七章 细胞信号转导异常与疾病-卢建

总字数:19,361 图:5 表:0 第七章细胞信号转导异常与疾病 第一节细胞信号转导系统概述 一、受体介导的细胞信号转导通路 二、细胞信号转导通路调节靶蛋白活性的主要方式 第二节信号转导异常发生的环节和机制 一、细胞外信号发放异常 二、受体或受体后信号转导异常 第三节与信号转导异常有关的疾病举例 一、胰岛素抵抗性糖尿病 二、肿瘤 三、心肌肥厚和心衰

第七章细胞信号转导异常与疾病 细胞信号转导系统(signal transduction system或cell signaling system)由能接收信号的特定受体、受体后的信号转导通路以及其作用的靶蛋白所组成。细胞信号转导系统具有调节细胞增殖、分化、代谢、适应、防御和凋亡等作用,它们的异常与疾病,如肿瘤、心血管病、糖尿病、某些神经精神性疾病以及多种遗传病的发生发展密切相关。受体和细胞信号转导分子异常既可以作为疾病的直接原因,引起特定疾病的发生;亦可在疾病的过程中发挥作用,促进疾病的发展。细胞信号转导异常可以局限于单一成分(如特定受体)或某一环节,亦可同时或先后累及多个环节甚至多条信号转导途径,造成调节信号转导的网络失衡。对信号转导系统与疾病关系的研究不仅有助于阐明疾病的发生发展机制,还能为新药设计和发展新的治疗方法提供思路和作用靶点。 第一节细胞信号转导系统概述 信号转导过程包括细胞对信号的接受,细胞内信号转导通路的激活和信号在细胞内的传递。激活的信号转导通路对其靶蛋白的表达或活性/功能的调节,如导致如离子通道的开闭、蛋白质可逆磷酸化反应以及基因表达改变等,导致一系列生物效应。 一、受体介导的细胞信号转导通路 细胞的信号包括化学信号和物理信号,物理信号包括射线、紫外线、光信号、电信号、机械信号(摩擦力、压力、牵张力以及血液在血管中流动所产生的切应力等)以及细胞的冷热刺激等。已证明物理信号能激活细胞内的信号转导通路,但是与化学信号相比,目前多数物理信号是如何被细胞接受和启动细胞内信号转导的尚不清楚。 化学信号又被称为配体(ligand),它们包括:①可溶性的化学分子如激素、神经递质和神经肽、细胞生长因子和细胞因子、局部化学介质如前列腺素、细胞

世界最杰出的生物医学论文

世界最杰出的生物医学论文 千名生物学家(Faculty of 1000 Biology)和千名医学家(Faculty of 1000 Medicine)是英国BioMed Central出版集团,所建立的两个医学生物学论文数据库。它是由美国哈佛大学和英国剑桥大学等近5000多名世界顶级生物医学同行专家,所推荐和评选出的世界医学和生物学的最新发表的论文所组成。 论文依据创新性、新理论、新发现、新技术、科学价值和实际应用前景等原则,从世界上几千种重要的医学生物学杂志,成千上万篇论文中,实时进行筛选和评定,评选出F1000因子,并进行分级排序,分为杰出(Exceptional 9分)、必读(Must Read 6分)和推荐(Recommend 3分)三个级别,并写有简短的评语。再向医学生物学界进行推荐和发布,以提供世界上最重要、最优秀的生物医学论文信息和最新研究成果与发展趋势。 F1000只重视论文的实际科学价值和临床应用前景,不考虑期刊的状况和论文在何处发表,影响因子(I F)值也仅仅作为辅助参考指标。被推荐出的论文不足SCI发表论文的千分之二,其中杰出的论文仅占所推荐论文的5%。F1000还依据不同的科学领域,适时评选出最近和最受关注(Must-Viewed)的10篇最佳论文,称为“Top 10”,并不断更新。此外还邀请世界上最知名和权威的领域科学家,编写生物医学最近的进展、评论和综述,刊登在“F1000 Reports上”。 F1000是一个新的医学生物学论文数据库,是一个新的生物医学论文评价工具,是一个新的医学论文评估的专家系统。它不仅可以帮助我们来快速检索世界上最“杰出”、“必须阅读”和“值得推荐”的生物医学论文;还可以了解每篇发表论文的专家评价观点和意见,使我们可以节时、高效、全面认识和了解当今世界上生物医学最新研究成果和发展动向,引导和促进生物医学科学的发展。研究论文能为F1000所收录和推荐,成为F1000“杰出”论文,代表着该论文的极高的科学水平和重要的科学价值。 目前我国每年被SCI收录的医学生物学论文已逾万篇,成为“论文大国”,但能为F1000收录为“杰出”的论文却寥寥。以2009—2010年为例,在F1000收录和推荐出1017篇“杰出”论文中,中国只有11篇,其中还有4篇是台湾和香港的。从2000—2010年F1000共评出近5000篇“杰出”论文,中国(包括台湾和香港)总共只有25有篇。反应出我国现在医学生物学研究“跟”多“创”少,重“量”不重“质” ;一般资料性的工作多,有创新性、有实际应用价值、有重要理论和应用前景的论文少的潜在而深刻的危机。 我们必须在原始创新和实际应用上再上一层楼!我们要发表SCI论文,要发表高IF影响因子论文;我们更要多发表F1000“杰出”论文,发表创新性强,有重要理论价值和实际应用前景的科学论文,这才能成为真正的科技强国。 这里我们收集了2009-2010年心血管、肿瘤、细胞生物学、分子生物学、免疫学、神经科学等领域F1000的“杰出”论文供大家参考,更多的F1000论文,可在F1000Biology和F1000Medicine网站上搜索。 ? Biochemistry ? Bioinformatics ? Biotechnology ? Cancer Biology ? Cardiovascular Biology ? Cell Biology ? Chemical Biology ? Developmental Biology ? Ecology ? Evolutionary Biology ? Gastrointestinal Biology ? Genomics & Genetics

(完整版)细胞信号转导研究方法

细胞信号转导途径研究方法 一、蛋白质表达水平和细胞内定位研究 1、信号蛋白分子表达水平及分子量检测: Western blot analysis. 蛋白质印迹法是将蛋白质混合样品经SDS-PAGE后,分离为不同条带,其中含有能与特异性抗体(或McAb)相应的待检测的蛋白质(抗原蛋白),将PAGE胶上的蛋白条带转移到NC膜上此过程称为blotting,以利于随后的检测能够的进行,随后,将NC膜与抗血清一起孵育,使第一抗体与待检的抗原决定簇结合(特异大蛋白条带),再与酶标的第二抗体反应,即检测样品的待测抗原并可对其定量。 基本流程: 检测示意图:

2、免疫荧光技术 Immunofluorescence (IF) 免疫荧光技术是根据抗原抗体反应的原理,先将已知的抗原或抗体标记上荧光素制成荧光标记物,再用这种荧光抗体(或抗原)作为分子探针检查细胞或组织内的相应抗原(或抗体)。在细胞或组织中形成的抗原抗体复合物上含有荧光素,利用荧光显微镜观察标本,荧光素受激发光的照射而发出明亮的荧光(黄绿色或桔红色),可以看见荧光所在的细胞或组织,从而确定抗原或抗体的性质、定位,以及利用定量技术测定含量。 采用流式细胞免疫荧光技术(FCM)可从单细胞水平检测不同细胞亚群中的蛋白质分子,用两种不同的荧光素分别标记抗不同蛋白质分子的抗体,可在同一细胞内同时检测两种不同的分子(Double IF),也可用多参数流式细胞术对胞内多种分子进行检测。 二、蛋白质与蛋白质相互作用的研究技术 1、免疫共沉淀(Co- Immunoprecipitation, Co-IP)

Co-IP是利用抗原蛋白质和抗体的特异性结合以及细菌蛋白质的“protein A”能特异性地结合到免疫球蛋白的FC片段的现象而开发出来的方法。目前多用精制的protein A预先结合固化在agarose的beads 上,使之与含有抗原的溶液及抗体反应后,beads上的prorein A就能吸附抗原抗体达到沉淀抗原的目的。 当细胞在非变性条件下被裂解时,完整细胞内存在的许多蛋白质-蛋白质间的相互作用被保留了下来。如果用蛋白质X的抗体免疫沉淀X,那么与X在体内结合的蛋白质Y也能沉淀下来。进一步进行Western Blot 和质谱分析。这种方法常用于测定两种目标蛋白质是否在体内结合,也可用于确定一种特定蛋白质的新的作用搭档。缺点:可能检测不到低亲和力和瞬间的蛋白质-蛋白质相互作用。 2、GST pull-down assay GST pull-down assay是将谷胱甘肽巯基转移酶(GST)融合蛋白(标记蛋白或者饵蛋白,GST, His6, Flag, biotin …)作为探针,与溶液中的特异性搭档蛋白(test protein或者prey被扑获蛋白)结合,然后根据谷胱甘肽琼脂糖球珠能够沉淀GST融合蛋白的能力来确定相互作用的蛋白。一般在发现抗体干扰蛋白质-蛋白质之间的相互作用时,可以启用GST沉降技术。该方法只是用于确定体外的相互作用。

细胞生物学论文

细胞生物学概述 摘要:细胞生物学是以细胞为研究对象,从细胞的整体水平、亚显微水平、分子水平等三个层次,(斯。诺。美。A11-走在生物医学的最前沿)以动态的观点,研究细胞和细胞器的结构和功能、细胞的生活史和各种生命活动规律的学科。细胞生物学是现代生命科学的前沿分支学科之一,主要是从细胞的不同结构层次来研究细胞的生命活动的基本规律。从生命结构层次看,细胞生物学位于分子生物学与发育生物学之间,同它们相互衔接,互相渗透。 英文摘要:Cell biology is to cell as the research object, from the three levels of the overall level of the sub microscopic level, cells, molecular level (,. Connaught. Beauty. A11- in the forefront of biomedical) from the dynamic point of view, the structure and function of cells, cell and organelle of the life history and various life activities of the discipline. Cell biology is one of the frontier branch of modern life science, mainly is the basic rule to study cell from different hierarchy of life activities of cells. From the life structure and arrangement, and developmental biology is located between cell biology molecular biology, their mutual connection, mutual penetration. 关键字:细胞学说显微技术遗传物质 前言:细胞是生命的基本单位,细胞的特殊性决定了个体的特殊性,因此,对细胞的深入研究是揭开生命奥秘、改造生命和征服疾病的关键。在我国基础学科发展规划中,细胞生物学与分子生物学,神经生物学和生态学并列为生命科学的四大基础学科。 主体:细胞生物学(cell biology)是研究细胞结构、功能及生活史的一门科学。现代细胞生物学从显微水平,超微水平和分子水平等不同层次研究细胞的结构、功能及生命活动。细胞生物学是现代生命科学的前沿分支学科之一,主要是从细胞的不同结构层次来研究细胞的生命活动的基本规律。从生命结构层次看,细胞生物学位于分子生物学与发育生物学之间,同它们相互衔接,互相渗透。一、细胞生物学简史 从研究内容来看细胞生物学的发展可分为三个层次,即显微水平、超微水平和分子水平。i从时间纵轴来看细胞生物学的历史大致可以划分为四个主要的阶段:

【生物医学论文】生物医学本科生教育分析

生物医学本科生教育分析 一、生物医学工程学科特点 生物医学工程学科是运用现代自然科学和工程技术原理与方法,从工程学的角度研究生物体(特别是人体)的结构、功能及其相互关系,揭示生命现象、探索生命本质,研究和开发用于防病治病、人体功能辅助及卫生保健的人工材料、制品、装置、系统和工程技术的一门综合性学科[1],是理工类学科与生物医学学科深度交叉、高度融合的边缘性学科,所涵盖的领域十分广泛,具有“覆盖广、交叉深、发展快、变化多”等其他学科不具有的特点。根据研究侧重点,生物医学工程学科可分为信息技术型、材料技术型、生物技术型、生物医学研究型、医疗器械产业型、临床生物医学工程、军事生物医学工程等7类[2]。当前讨论和研究的热点领域主要有:生物医学材料、生物力学、医疗信息技术、生物芯片与传感技术、组织工程及再生医学、介入医学工程、医疗器械等7个方面[3]。 二、医科院校生物医学工程学科专业教育现状分析 高等医科院校生物医学工程学科和临床医学结合紧密,

医学大背景很深厚,具备丰富的医学类学科教学资源和优越的临床设备实践条件等优势,但同时因学科体系不完善、教学师资力量比较薄弱、专业实验室建设投资大等影响因素,一定程度上制约了生物医学工程学科专业的高效快速发展。 1.理工学科体系不完善。生物医学工程专业学科涵盖面非常广,广到什么程度呢?可以用四个字形容———“包罗万象”,如果用“学科频谱”来描述学科涵盖面宽度,生物医学工程无疑是88个一级学科中“频谱宽度”最宽的学科。目前大多数开设生物工程学的高等医科院校,物理、数学、化学等基础学科相比理工科院校比较薄弱,而且缺乏材料、自动化等重要工程学科的有力支撑,这些支撑学科的缺少会导致相应课程设置不完善以及综合性实践训练平台缺乏,学生无法系统地学习工程类课程,得不到系统扎实的工程技术训练,影响人才培养目标的整体实现。 2.复合型师资比较缺乏。要实现培养医工结合与交叉的复合型高级工程技术人才目标,首先需建设一支医工结合与交叉的复合型师资队伍方阵。在高等医科院校,生物医学工程专业师资队伍中具有理工科教育背景和医学教育背景的教师比较多,而既懂医学又懂工程技术,能将工程技术与医学需求紧密结合起来的复合型、交叉型、融合型师资比较缺

细胞生物学论文 收获 感悟

<细胞--一个和谐的社会>学期总结 xxxxxxxxxxxx 收获 (一)对细胞的认识 细胞生物学是现代生命科学的重要基础学科,它联系着生物科学的许多分支学科,尤其是与分子生物学、遗传学、生物化学等学科联系密切。从1665年英国人胡克发现第一个植物细胞后,历经170多年的研究探索,科学家们创立了被认为是19世纪的三大发现之一的细胞学说,细胞学说的创立对细胞学的发展起着极大的推动作用,在19世纪的最后25年的时间里,人们相继发现了有丝分裂、无丝分裂、减数分裂等细胞生命现象,同时还发现了染色体和多种细胞器,这段时间是细胞学的经典时期。1876年,亨特等发现了动物细胞的受精现象,于是实验细胞学得以迅速发展,人们广泛应用实验手段与分析方法来研究细胞学中的一些根本问题,于是开始出现了细胞遗传学、细胞生理学、细胞化学等生物学分支。20世纪50年代以来,电子显微镜与超薄切片技术相结合,产生了细胞超微结构这一新兴领域,大大地加深与拓宽了人们对细胞的认识,不仅对已知的细胞结构,诸如线粒体、高尔基体、细胞膜、核膜、核仁、染色体结构的了解出现了全新的面貌,而且发现了一些新的重要的细胞结构,如内质网、核糖体、溶酶体、核孔复合体与细胞骨架体系等,为细胞生物学学科早期的形成奠定了良好的基础。在这时期,生物化学与细胞学的相互渗透与结合,使人们对细胞结构与功能相结合的研究水平达到了前所未有的高度。20世纪60年代,“细胞生物学”以一门新的学科出现,70年代随着分子生物学的兴起,细胞生物学对细胞的研究由细胞、亚显微结构进入了分子水平。透射电子显微镜、扫描电子显微镜与扫描隧道显微镜的发明为细胞生物学学科的建立以及发展起着重要的推动作用。PCR技术的应用及序列分析手段的改进,使人类基因组计划得以提前5年完成。 (二)加深理解和拓宽了细胞生物学的理论知识 通过一学期的学习,我从知识的深度和广度上都有较大的提高。以下几方面是本人对新知识的理解和收获。 细胞通讯 细胞的生命活动是由通讯引发的一系列生理活动现象。细胞通讯有三种方式:通过信号分子传递信息、通过相邻细胞表面分子的黏着相联系、通过细胞与胞外基质的黏着发生关系。其中通过信号分子的细胞通讯是主要的方式,也是发现最早研究最深入的细胞通讯。信号分子按组成分有激素、局部介质和神经递质三种类型。细胞内受体主要位于细胞核内,有两个不同的结构域,一个是与DNA结合的结构域,另一个是激活基因转录的N端结构域。信号在转导过程中,具有级联放大效应,细胞在接收信号之后,通过信号分子水解、受体钝化、受体减量调节以及磷酸酶作用使信号分子终止,以维持细胞正常的生命活动。 蛋白质的合成和分选机理 蛋白质的合成和分选运输是细胞中最重要的生命活动之一。核糖体是蛋白质合成的场所,其中糙面内质网上合成的蛋白质提供给内膜系统、细胞质膜以及细胞外,而内膜系统外的部分所需蛋白质则由游离核糖体合成的蛋白质提供。核糖体上合成的蛋白质为其一级结构,在导肽、信号肽的指导下,具一级结构的蛋白质以核孔运输、跨膜运输或小泡运输的方式分选定位到细胞特定部位。在蛋白质运输经过内质网、高尔基体时,在分子伴侣的帮助下进行蛋白质的加工修饰和拆叠,形成特定的蛋白质空间构象。 细胞周期调控

蛋白质组学方法在细胞内信号转导研究中的应用

生物技术通讯 LETTERSINBIOTECHNOLOGYVol.18No.2Mar.,2007 综述 文章编号:1009-0002(2007)02-0336-03 蛋白质组学方法在细胞内信号转导研究中的应用 李敏,周慧,崔银秋 吉林大学生命科学学院生物大分子实验室,吉林长春130021 [摘要]蛋白质组学的新技术为我们研究细胞内的信号转导过程提供了更广泛和崭新的思路,它克服了传统技术的局限 性,实现了对蛋白的高通量分析。简要综述了蛋白质组学技术在信号转导过程中信号分子的确定、定量,磷酸化等翻译后修 饰的识别,以及蛋白质之间相互作用研究等方面的应用。 [关键词]蛋白质组学;信号转导 [中图分类号]Q25FQ503[文献标识码]A ApplyingProteomicMethodstoCellularSignalTransductionResearch LIMin,ZHOUHui,CUIYin-qiu BiomacromoleculeLab,CollegeofLifeScience,JilinUniversity,Changchun130021,China [Abstract]Improvedtechnologiesthathaveemergedinproteomicsprovideusmuchmorecomprehensiveandnewin- sightsintocellularsignaltransductionresearch.Ithasovercomethelimitationsoftraditionalmethodsandrealizedthe high-throughputproteinanalysismode.Inthisletter,theapplyingofproteomictechnologiesindefiningandquantitating signalingmolecules,identifyingpost-translationalmodificationssuchasphosphorylation,andprotein-proteininteractionsre- searchduringcellularsignaltransductionwerereviewed. [Keywords]proteomicsFsignaltransduction 20世纪90年代以来,对细胞内信号转导途径的研究逐渐成为国内外生物学界广泛关注的热点。由于信号的传递在细胞的增殖、分化和生存等过程中都起着十分关键的作用,因而逐渐成为解决许多重要理论及实践问题的基本思路和有力武器。近年来有关细胞信号转导研究的方法层出不穷。传统地,人们主要利用RNA干扰技术、抗体免疫沉淀、32P标记结合蛋白质印迹法(Westernblotting)、SDS-聚丙烯酰胺凝胶电泳(SDS-PAGE)等方法来检测和鉴定信号传递过程中差异表达的信号分子及关键蛋白的磷酸化。这些方法和技术能够做小量的分析,但无法进行大规模的研究。随着双向电泳(twodimensionalelectrophoresis,2-DE)和质谱技术的不断完善与发展,蛋白质组学方法越来越多地被用于研究胞内信号转导过程。它弥补了传统方法的不足之处,实现了高通量大规模的研究模式。近年来,蛋白质组学方法应用于信号转导的研究,主要在对蛋白表达谱的检测和定量、翻译后修饰的识别,以及蛋白质之间相互作用图谱的绘制等方面。蛋白质组学方法为我们完整地绘制细胞内信号转导网络图提供了更为可靠的依据。以下就近年来该领域的一些新技术及应用做一简要综述。 1信号蛋白的寻找和确定 细胞受到外界的刺激后,首先吸引许多锚定蛋白、衔接蛋白的结合,引起蛋白的相互作用,并随之引发胞内的一系列信号蛋白的改变(如级联磷酸化事件的发生),最终信号传递到核基因,表达或阻抑表达一些特征蛋白,或者作用于某些特定的细胞器,引发其他生物学效应。由此可见,要了解一种信号途径的具体过程,首先要对该过程的特征信号分子及下游所表达的蛋白进行确定。目前,二维电泳结合质谱技术(MALDI-TOF-MS或ESI-MS)已经成为蛋白质组学的首选工具,来获得不同状态下的细胞全蛋白质组。许多研究通过选择性抑制或激活信号通路并筛选2-DE的效应分子成功地鉴定了信号转导过程中的靶标。本文作者所在研究室[1]利用2-DE结合MALDI-TOF-MS,对处于不同生理条件下的NIH3T3细胞的全细胞裂解液进行双向电泳分离及软件分析。在我们筛选的aFGF拮抗剂小肽存在的条件下,鉴定出3种表达量下调、1种表达量上升的蛋白,其中鸟苷酸结合蛋白α-11亚单位和1C型核因子分别参与胞内aFGF信号传导以及转录调控。近来人们又开发出许多以2-DE为基础的改进方法,包括从样本制备、分离到染色等各方面,来对蛋白进行更好的分离分析,如亚细胞分离、差异凝胶电泳(DIGE)技术等[2]。 2-DE的优势是能够更直观地提供信号蛋白的相对分子质量、等电点、相对表达丰度等信息,但它在分离一些pI过大或过小、疏水性强的低丰度蛋白时有很大的困难。最近研究较多的多维蛋白质鉴定技术(multidimensionalproteinidentificationtech-nique,MudPIT)[3]弥补了上述缺陷。MudPIT能够更有效地检测疏水蛋白,且在分析来自胞内细胞器的蛋白时具有更高的效率。最常用的是二维液相色谱(2D-LC),它首先对蛋白复合物进行酶 [收稿日期]2006-08-30 [基金项目]吉林省科技发展计划项目(20040411-3) [作者简介]李敏(1982-),女,硕士研究生 [通讯作者]崔银秋,(E-mail)cuiyq@jlu.edu.cn 336

【生物医学论文】本科生角度谈生物医学数据的建模心得

本科生角度谈生物医学数据的建模心得 摘要:由于生物医学研究领域数据的复杂性,高效的统计建模尤为重要。笔者以肺癌全基因组关联研究为例,结合建立肺癌风险预测模型的切身体会,建议研究者需要重视数据质量控制体系、反复推敲建模方法和策略、培养熟练的软件操作技能。 关键词:生物医学数据;统计建模;预测模型;心得体会 随着生物信息技术的飞速发展,生物医学研究领域的数据呈几何级增长。近年来,生物医学大数据受到学者们的广泛关注。生物医学大数据具有典型的“4V”特征:体量巨大(volume)、种类繁多(variety)、实时更新(velocity)、价值隐藏(value)[1];“3H”特点:高维(highdimension)、高度计算复杂性(highcomplexity)、高度不确定性(highuncertainty)[2]。因此,综合利用生物学、医学、数学、流行病学、统计学、计算机学等多个学科的方法和手段,从中挖掘“有价值”的信息,为生物医学研究提供确凿有效的证据,显得尤为重要。笔者以肺癌全基因组关联研究(genome-wideas-sociationstudy,GWAS)为例,结合理论

学习和案例实践的切身体会,浅谈利用GWAS数据建立肺癌风险预测模型的心得体会。 一、严谨的数据质量控制体系不容忽视 由于存在检测、观察、填写或录入错误,未经数据质控的原始数据极可能含有一些异常,甚至错误的观测值。在研究设计之初,便要尽可能考虑规避产生错误数据。另外,统计建模之前,仍然必须对原始数据再次进行质量控制。在GWAS中,要同时对行(样本)、列(位点)进行质量评价。例如,删除次等位基因频率低于5%、缺失率超过5%或哈代不平衡的位点;删除分型失败率超过5%、问卷性别与遗传性别不一致、存在血缘关系、属于离群值的样本[3]。另外,同时需要对流行病学问卷及临床数据进行核查。只有对数据进行清理后,才能用于后续关联分析、统计建模。 二、合理的建模方法和策略值得精雕细琢 对于GWAS高维数据,合理的方法和策略不仅要考虑统计学性能(一类错误、检验效能、预测精度),还需要考虑分析效率(计算速度)。因此,研究者应该要深入思考,为研究项目量身定制一套“合理”的方法和策略。然而,现有

细胞信号转导

植物Ca2+信号的研究进展 摘要 为了适应环境,调节自身代谢和生长, 在植物的生长发育过程中,需要对各种外界环境刺激以及植物内部生理信息做出反应,因此,植物产生了自己的信号系统。Ca2+作为一种信号分子,它几乎参与了生命体所有的生理生化活动,在植物细胞的信号系统中也起着举足轻重的作用。钙是植物生长发育必需的大量元素之一,在细胞水平上, 钙在细胞分裂、极性形成、生长、分化、凋亡等过程中均有重要的调节功能, 能维持细胞壁, 细胞膜及膜结合蛋白的稳定性并参与调节和控制植物的许多生理生化反应, 是植物代谢的重要调节者。针对国内外对植物Ca2+信号的研究情况,综述了Ca2+信号的产生、Ca2+信号参与的各种植物生理过程、Ca2+信号的检测以及其研究的最新进展。 关键词:植物; Ca2+信号; 检测; 研究进展

钙元素广泛存在于自然界和各种生物体内, 而游离态的Ca2+更是在生命活动中扮演着举足轻重的角色, 它几乎参与了生命体所有的生理生化活动。作为一种信号分子, Ca2+在受精、胚胎发育、基因表达、细胞分化、组织形成、代谢调控等过程中都有参与, 可以说, Ca2+信号无处不在[1]。1967年, Ridg-wang和Ashley通过向藤壶肌纤维中微注射水母发光蛋白, 第一次测定静息态胞内钙离子浓度[Ca2+]以来, 对于Ca2+信号的研究即风生水起。虽然植物Ca2+信号的研究起步较动物细胞晚, 但依然取得了一些成果。对植物Ca2+信号的研究, 不但能揭示生命的奥秘, 同时能帮助我们更加清楚地了解各种生命活动。为此, 针对国内外对植物Ca2+信号的研究情况, 笔者对Ca2+信号的生理功能、信号的产生、Ca2+信号参与的各种植物生理过程、以及其研究的最新进展进行了综述。 1.Ca2+的功能 Heilbrunn在1937~1952年发表的著作中, 提出了Ca2+在生物系统中复杂和多功能性的观点。认为利用Ca2+是所有活细胞的基本特征。在他提出的“细胞刺激理论”中认为:当细胞受到各种刺激时, 细胞内原来浓度很低的Ca2+水平明显增高。Heilbrunn提出Ca2+的一些细胞效应有:(1)促进细胞黏合和胞间通讯;(2)影响酶活性, 如ATP酶酯酶等;(3)调节细胞分裂;(4)控制细胞的代谢活动;(5)调节细胞溶质中溶胶-凝胶状态转变;(6)高浓度Ca2+可能造成细胞死亡, 溶质中Ca2+浓度如果太高, 会与细胞内的磷酸根产生沉淀, 而磷酸根是细胞能量及物质代谢所必须的;(7)调节细胞膜的透性。钙在维持细胞膜方面有着重要作用, 电镜观察表明, 缺钙导致细胞膜解体, 加钙又恢复常态。可见钙有稳定细胞膜结构, 防止细胞膜损伤的作用。有机酸是植物代谢的中间产物, 钙能和有机酸结合成为可溶性的钙盐结晶, 其中最为普遍的就是草酸钙。据报道, 在外源Ca2+诱导下, 细胞内可形成草酸钙结晶移去外源Ca2+, 结晶会消失。草酸钙的形成有以下生理作用:(1)消除有机酸在植物体内的过多积累。(2)草酸钙的形成过程是可逆的,植物体内钙离子过多形成草酸钙, 消除过量钙对植物的伤害, 当钙离子浓度不能满足植物需要时,草酸钙释放出Ca2+以满足植物的需要。 2.植物Ca2+信号的产生和终止 高度区域化的植物细胞内结构中, 在质膜液泡膜内质网膜上都存在着跨膜的钙离子电化学梯度, 细胞质和细胞核内游离钙离子也呈现不均匀分布, 这些梯度分布在静止状态是相对稳定的, 在受到刺激时会发生变化。钙离子梯度是钙信号产生的基础,即植物细胞Ca2+空间分布的不均衡性是产生Ca2+信号的生物基础。植物细胞中, 静息态的胞内Ca2+浓度([Ca2+] i)为100~200nM, 而细胞外(细胞壁)和细胞内(内质网、液泡、线粒体、高尔基体、细胞核)钙离子库中钙离子浓度却是胞内的数十倍, 达到了1~10mM[2,3]。当细胞受到信号刺激时, Ca2+从钙离子库中释放, 使胞内Ca2+浓度瞬间升高,激活Ca2+依赖蛋白和激酶CPKs引起细胞代谢以及基因表达的改变。当Ca2+重新进入细胞内钙离子库或流出细胞进入胞外钙离子库时, 信号得以终止。钙离子浓度的调节是通过各种钙离子通道, 钙离子泵和钙离子转运来实现的[4]。 3.植物Ca2+信号的多样性 Ca2+信号几乎参与了各种植物生理过程, 包括花粉管生长、细胞分裂、受精等;同时, Ca2+信号还参与植物的抗逆反应和对光线的感知。由此可见, Ca2+

细胞生物学论文

细胞自噬 2016年10月3日诺贝尔生理学奖授予日本科学家大隅良典,以表彰他发现并阐释了细胞自噬的机理,在细胞自噬研究方面做出了杰出贡献。日本东京工业大学分子细胞学教授大隅良典所带领的研究小组成功的探明了细胞自噬的启动 机制,他的研究为理解许多机体生理过程中自体吞噬的重要性奠定了坚实的基础,为揭示生命进程的发展做出了巨大的推动作用。 一、自噬的发现 20世纪50年代中期,科学家观察到细胞里的一个新的专门“小隔间”(这 种隔间的学名是细胞器),包含消化蛋白质,碳水化合物和脂质的酶。这个专门隔间被称作“溶酶体”,相当于降解细胞成分的工作站。比利时科学家克里斯汀·德·迪夫(Christian de Duve)在1974年因为溶酶体和过氧化物酶体的发现,被授予诺贝尔生理学或医学奖。 克里斯汀·德·迪夫,1974年获得诺贝尔生理学或医学奖,“自噬”这个词的命名人。 60年代的新观察表明,在溶酶体内部有时可以找到大量的细胞内部物质,乃至整个的细胞器。因此,细胞似乎有将大量的物质传输进溶酶体的策略。进一步的生化和显微分析发现,有一种新型的囊泡负责运输细胞货物进入溶酶体进行降解(图1)。发现溶酶体的科学家迪夫,创造了自噬(auotophagy)这个词来描述这一过程。这种新的囊泡被命名为自噬体。 我们的细胞有不同的细胞“小隔间”,承担不同的作用。溶酶体就是这样一种隔间,里面有用于消化细胞内容物的消化酶。人们在细胞内又观察到了一种新型的囊泡,叫做自噬体。自噬体形成的时候,逐渐吞没细胞内容物,例如受损的蛋白质和细胞器;然后它与溶酶体相融,其中的内容被降解成更小的物质成分。这一过程为细胞提供了自我更新所需的营养和材料。 在20世纪70年代和80年代,研究人员集中研究阐明用于降解蛋白质的另 一个系统,即“蛋白酶体”。在这一研究领域,阿龙·切哈诺沃(Aaron Ciechanover),阿夫拉姆·赫什科(AvramHershko)和欧文·罗斯(Irwin Rose)因为“泛素介导的蛋白质降解的发现”被授予2004年诺贝尔化学奖。蛋白酶体降解蛋白质的效率很高,一个个单个降解蛋白质,但这个机制没有解释细胞是怎么解决更大的蛋白质复合物以及破旧的细胞器的。[ 2016年诺贝尔生理学或医学奖得主大隅良典曾经活跃于多个研究领域,但 自从1988年建立了自己的实验室之后,他就主要研究蛋白质在液泡中降解的过程了。液泡也是一种细胞器,它在酵母中的地位和人体中溶酶体的地位类似。酵

【生物医学论文】SERS生物医学论文

SERS生物医学论文 1表面增强拉曼的原理 1.1SERS闪烁和摆动 有文献报道在单颗粒和纳米聚集体上发现了不连续表面增强拉曼散射现象。典型的闪烁时间间隔从毫秒到秒不等。最近的研究发现SERS闪烁包括了热激活和光诱导两个部分。许多证据显示这种SERS信号的波动是由于热激活分子在颗粒表面的扩散而产生的。利用波长分辨光谱进而发现信号波动来自增强拉曼散射,而不是光致发光或者瑞利散射。测量的信号强度包含了拉曼和背景信号在557–663nm 的波段的总和。另一个重要的特征是SERS光谱包含了很强的背景信号。这种背景信号并不是R6G的荧光而是SERS的连续发射信号。在SERS闪烁的“Off”阶段,光数量很少,这说明SERS信号和背景信号是成正相关的,而且是同时波动的。Michaels等发现SERS强度和背景信号随时间成高度相关。大量的数据统计发现在0.1mW激光激发下,SERS闪烁的On-time大约是80ms。另一个有趣的发现是SERS光谱摆动现象,就是SERS信号会突然改变他们的频率。这种现象首先由Nie和Emory报道。他们发现拉曼信号的频率变化可

以有10cm-1的改变。SERS光谱波动的另一个来源是含碳基团和其他光解化合物。实验过程中需要把单分子SERS信号与污染分子的信号区分开来。有研究发现环境中的氧气在SERS闪烁中扮演了重要的角色。在含氧环境中SERS闪烁的频率很快,波动的幅度更大。其它的理论和实验则认为SERS 闪烁来自于颗粒本身而不是吸附分子的扩散,因为在无吸附物的条件下如银粉和气相沉积银膜,同样观察到了闪烁现象。 1.2SERS活性位点 一个关键问题是关于颗粒表面的活性位点的结构和性质。之前的研究发现SERS活性位点很可能是吸附原子、原子簇和颗粒尖端。这些位置可以通过共振电荷转移和类似共振拉曼增强方式进行化学增强。换句话说,吸附分子和活性位点之间的耦合可以产生新的金属配体或者配体金属之间的电荷转移,这种状态可以用可见光激发。Hildebrandt等认为SERS活性位点是高亲和性结合位点。为了进一步研究这些SERS活性位点,Doering等使用了一种整合流动注射和光谱装置来研究吸附分子被其他分子置换现象。在加入卤化物之前,SERS光谱经常包含很宽的背景和柠檬酸根的微弱信号,但是没有R6G的信号。在加入卤化物之后,他们发现R6G

相关文档
最新文档