自考线性代数(经管类)重点考点

自考线性代数(经管类)重点考点
自考线性代数(经管类)重点考点

线性代数(经管类)考点逐个击破

第一章 行列式

(一)行列式的定义

行列式是指一个由若干个数排列成同样的行数与列数后所得到的一个式子,它实质上表示把这些数按一定的规则进行运算,其结果为一个确定的数.

1.二阶行列式

由4个数)2,1,(=j i a ij 得到下列式子:

11122122

a a a a 称为一个二阶行列式,其运算规则为

2112221122

211211a a a a a a a a -=

2.三阶行列式

由9个数)3,2,1,(=j i a ij 得到下列式子:33

323123222113

1211a a a a a a a a a

称为一个三阶行列式,它如何进行运算呢?教材上有类似于二阶行列式的所谓对角线法,我们采用递归法,为此先要定义行列式中元素的余子式及代数余子式的概念.

3.余子式及代数余子式

设有三阶行列式 33

323123222113

12113a a a a a a a a a D =

对任何一个元素ij a ,我们划去它所在的第i 行及第j 列,剩下的元素按原先次序组成一个二阶行列式,称它为元素ij a 的余子式,记成ij M

例如 33

32232211a a a a M =

,33

32131221a a a a M =

,23

22131231a a a a M =

再记 ij j

i ij M A +-=)1( ,称ij A 为元素ij a 的代数余子式.

例如 1111M A =,2121M A -=,3131M A = 那么 ,三阶行列式3D 定义为

我们把它称为3D 按第一列的展开式,经常

简写成∑∑=+=-==

3

1

1113

1

11

3)1(i i i i i i i M a A a

D

4.n 阶行列式

31

312121111133

323123222113

12113A a A a A a a a a a a a a a a D ++==

一阶行列式 11111a a D ==

n 阶行列式 1121211111212222111211n n nn

n n n n

n A a A a A a a a a a a a a a a D +++==

其中(,1,2,,)ij A i j n = 为元素ij a 的代数余子式.

5.特殊行列式

上三角行列式

11

1212221122000n n nn nn a a a a a a a a a =

下三角行列式

11221122120

00

nn n n nn a a a a a a a a a =

21 对角行列式

112211220

000

nn nn

a a a a a a =

(二)行列式的性质

性质1 行列式和它的转置行列式相等,即T D D =

性质2 用数k 乘行列式D 中某一行(列)的所有元素所得到的行列式等于kD ,也就是说,行列式可以按行和列提出公因数.

性质3 互换行列式的任意两行(列),行列式的值改变符号.

推论1 如果行列式中有某两行(列)相同,则此行列式的值等于零.

推论2 如果行列式中某两行(列)的对应元素成比例,则此行列式的值等于零. 性质4 行列式可以按行(列)拆开.

性质5 把行列式D 的某一行(列)的所有元素都乘以同一个数以后加到另一行(列)的对应元素上去,所得的行列式仍为D.

定理1(行列式展开定理)

n 阶行列式n

ij

a D =等于它的任意一行(列)的各元素与其对应的代数余子式的乘积的和,即

),,2,1(2211n i A a A a A a D in in i i i i =+++=

或),,2,1(2211n j A a A a A a D nj nj j j j j =+++=

前一式称为D 按第i 行的展开式,后一式称为D 按第j 列的展开式.

本定理说明,行列式可以按其任意一行或按其任意一列展开来求出它的值.

定理2 n 阶行列式n

ij a D =的任意一行(列)各元素与另一行(列)对应元素的代数余子式的乘积之和等于零.

即)(02211k i A a A a A a kn in k i k i ≠=+++

或)(02211s j A a A a A a ns nj s j s j ≠=+++

(三)行列式的计算

行列式的计算主要采用以下两种基本方法:

(1)利用行列式性质,把原行列式化为上三角(或下三角)行列式再求值,此时要注意的是,在互换两行或

两列时,必须在新的行列式的前面乘上(-1),在按行或按列提取公因子k 时,必须在新的行列式前面乘上k.

(2)把原行列式按选定的某一行或某一列展开,把行列式的阶数降低,再求出它的值,通常是利用性质在某

一行或某一列中产生很多个“0”元素,再按这一行或这一列展开:

例1 计算行列式 5

207232512131

4124-=

D

解:观察到第二列第四行的元素为0,而且第二列第一行的元素是112=a ,利用这个元素可以把这一列其它两个

非零元素化为0,然后按第二列展开.

421412141

562

31212115062

150

52321050

3(2)1725

025

7025

5312

3122511

081

375

7375

D -+?=

---+-?+?=行行按第二列展开行行7 列列按第二行展开

例2 计算行列式 a

b b b b a b b b b a b b

b b a D =

4

解:方法1 这个行列式的元素含有文字,在计算它的值时,切忌用文字作字母,因为文字可能取0值.要注意观

察其特点,这个行列式的特点是它的每一行元素之和均为b a 3+(我们把它称为行和相同行列式),我们可以先把后三列都加到第一列上去,提出第一列的公因子b a 3+,再将后三行都减去第一行:

3131(3)

31311

000

(3)

000

a b b b a b b b b b b b b a b b a b a b b a b b a b b b a b a b b a b b a b b b b a

a b b b a

b b a

b b b a b a b a b a b

++=

=+++-=+--

3))(3(b a b a -+=

方法2 观察到这个行列式每一行元素中有多个b ,我们采用“加边法”来计算,即是构造一个与4D 有相同值

的五阶行列式:

112345

411

010

00100

0100001

0b b b b b b b b a b b b a b b b a b b a b b D b a b b a b b b a b b b a b a b b b b a

b b b a

a b

?-+--=

==

------行(),,,行

这样得到一个“箭形”行列式,如果b a =,则原行列式的值为零,故不妨假设b a ≠,即0≠-b a ,把后四列的

b

a -1

倍加到第一列上,可以把第一列的(-1)化为零. 4410000

400001()(3)()0000

b b b b b a b a b b a b a b a b a b a b a b a b

3

+--??=-=+-=+- ?-??

--

例3 三阶范德蒙德行列式 ))()((1

11

2313122

3

2

22

132

1

3x x x x x x x x x x x x V ---==

(四)克拉默法则

定理1(克拉默法则)设含有n 个方程的n 元线性方程组为

1111221121122222

1122,,n n n n n n nn n n

a x a x a x

b a x a x a x b a x a x a x b +++=??+++=??

??+++=? 如果其系数行列式0≠=n

ij

a D ,则方程组必有唯一解:n j D

D x j j ,,2,1, ==

其中j D 是把D 中第j 列换成常数项n b b b ,,,21 后得到的行列式. 把这个法则应用于齐次线性方程组,则有

定理2 设有含n 个方程的n 元齐次线性方程组

1111221211222211220,0,0

n n n n

n n nn n a x a x a x a x a x a x a x a x a x +++=??+++=??

??+++=? 如果其系数行列式0≠D ,则该方程组只有零解:021====n x x x

换句话说,若齐次线性方程组有非零解,则必有0=D ,在教材第二章中,将要证明,n 个方程的n 元齐次线性

方程组有非零解的充分必要条件是系数行列式等于零.

第二章 矩阵

(一)矩阵的定义

1.矩阵的概念

由n m ?个数),,2,1;,,2,1(n j m i a ij ==排成的一个m 行n 列的数表

????

??

? ??=mn m m n n a a a a a a a a a A

212222111211 称为一个m 行n 列矩阵或n m ?矩阵

当n m =时,称()

n

n ij

a A ?=为n 阶矩阵或n 阶方阵

元素全为零的矩阵称为零矩阵,用n m O ?或O 表示

2.3个常用的特殊方阵:

①n 阶对角矩阵是指形如 ?

?????? ?

?=nn a a a A

00000022

11的矩阵 ②n 阶单位方阵是指形如 ????

??

?

??=100010001 n E 的矩阵

③n 阶三角矩阵是指形如 ?

???

??? ????????? ?

?nn n n nn n n a a a a a a a a a a a a

2122211122211211000,000的矩阵 3.矩阵与行列式的差异

矩阵仅是一个数表,而n 阶行列式的最后结果为一个数,因而矩阵与行列式是两个完全不同的概念,只有一阶方阵是一个数,而且行列式记号“*”与矩阵记号“()*”也不同,不能用错.

(二)矩阵的运算

1.矩阵的同型与相等

设有矩阵n m ij a A ?=)(,λ?=k ij b B )(,若k m =,λ=n ,则说A 与B 是同型矩阵.若A 与B 同型,且对应元素相等,即ij ij b a =,则称矩阵A 与B 相等,记为B A =

因而只有当两个矩阵从型号到元素全一样的矩阵,才能说相等.

2.矩阵的加、减法

设n m ij a A ?=)(,n m ij b B ?=)(是两个同型矩阵则规定

n m ij ij b a B A ?+=+)( n m ij ij b a B A ?-=-)(

注意:只有A 与B 为同型矩阵,它们才可以相加或相减.

由于矩阵的相加体现为元素的相加,因而与普通数的加法运算有相同的运算律.

3.数乘运算

设n m ij a A ?=)(,k 为任一个数,则规定n m ij ka kA ?=)(

故数k 与矩阵A 的乘积就是A 中所有元素都乘以k ,要注意数k 与行列式D 的乘积,只是用k 乘行列式中

某一行或某一列,这两种数乘截然不同.

矩阵的数乘运算具有普通数的乘法所具有的运算律.

4.乘法运算

设k m ij a A ?=)(,n k ij b B ?=)(,则规定n m ij c AB ?=)(

其中kj ik j i j i ij b a b a b a c +++= 2211 ),,2,1;,,2,1(n j m i ==

由此定义可知,只有当左矩阵A 的列数与右矩阵B 的行数相等时,AB 才有意义,而且矩阵AB 的行数为A

的行数,AB 的列数为B 的列数,而矩阵AB 中的元素是由左矩阵A 中某一行元素与右矩阵B 中某一列元素对应相乘再相加而得到.

故矩阵乘法与普通数的乘法有所不同,一般地: ①不满足交换律,即BA AB ≠

②在0=AB 时,不能推出0=A 或0=B ,因而也不满足消去律.

特别,若矩阵A 与B 满足BA AB =,则称A 与B 可交换,此时A 与B 必为同阶方阵. 矩阵乘法满足结合律,分配律及与数乘的结合律.

5.方阵的乘幂与多项式方阵

设A 为n 阶方阵,则规定m A AA A =

m 个

特别E A =0

又若1

110()m

m m m f x a x a x

a x a --=++++ ,则规定

1110()m m m m f A a A a A a A a E --=++++

称)(A f 为A 的方阵多项式,它也是一个n 阶方阵

6.矩阵的转置

设A 为一个n m ?矩阵,把A 中行与列互换,得到一个m n ?矩阵,称为A 的转置矩阵,记为T A ,转置运

算满足以下运算律:

A A T =T )(,T T T

B A B A +=+)(,T T kA kA =)(,T T T A B AB =)(

由转置运算给出对称矩阵,反对称矩阵的定义

设A 为一个n 阶方阵,若A 满足A A T

=,则称A 为对称矩阵,若A 满足A A T -=,则称A 为反对称矩阵.

7.方阵的行列式

矩阵与行列式是两个完全不同的概念,但对于n 阶方阵,有方阵的行列式的概念.

设)(ij a A =为一个n 阶方阵,则由A 中元素构成一个n 阶行列式n

ij a ,称为方阵A 的行列式,记为A

方阵的行列式具有下列性质:设A ,B 为n 阶方阵,k 为数,则

①A A

T

=;

②A k kA n

= ③B A AB ?=

(三)方阵的逆矩阵

1.可逆矩阵的概念与性质

设A 为一个n 阶方阵,若存在另一个n 阶方阵B ,使满足E BA AB ==,则把B 称为A 的逆矩阵,且说A

为一个可逆矩阵,意指A 是一个可以存在逆矩阵的矩阵,把A 的逆矩阵B 记为1-A ,从而A 与1-A 首先必可交换,且乘积为单位方阵E.

逆矩阵具有以下性质:设A ,B 为同阶可逆矩阵,0≠k 为常数,则

①1-A 是可逆矩阵,且A A =--1

1)(;

②AB 是可逆矩阵,且111

)

(---=A B AB ;

③kA 是可逆矩阵,且111)(--=A k

kA ④T A 是可逆矩阵,且T T

A A )()

(11

--=

⑤可逆矩阵可从矩阵等式的同侧消去,即

设P 为可逆矩阵,则B A PB PA =?= B A BP AP =?=

2.伴随矩阵

设)(ij a A =为一个n 阶方阵,ij A 为A 的行列式n ij a A =中元素ij a 的代数余子式,则矩阵?

???

??? ??nn n

n n n A A A A A A A A A

212221212111称为A 的伴随矩阵,记为*A (务必注意*A 中元素排列的特点)

伴随矩阵必满足

E A A A AA ==** 1

*-=n A

A (n 为A 的阶数)

3.n 阶阵可逆的条件与逆矩阵的求法

定理:n 阶方阵A 可逆?0≠A ,且*

1

1A A

A

=

- 推论:设A ,B 均为n 阶方阵,且满足E AB =,则A ,B 都可逆,且B A =-1,A B =-1

例1 设???

? ??=d c b a A (1)求A 的伴随矩阵*

A

(2)a ,b ,c ,d 满足什么条件时,A 可逆?此时求1

-A

解:(1)对二阶方阵A ,求*

A 的口诀为“主交换,次变号”即???

?

?

?--=a c

b d A *

(2)由bc ad d

c b a A -==

,故当0≠-bc ad 时,即0≠A ,A 为可逆矩阵

此时???

?

??---==

-a c b d bc ad A A A

11*1

(四)分块矩阵

1.

分块矩阵的概念与运算

对于行数和列数较高的矩阵,为了表示方便和运算简洁,常用一些贯穿于矩阵的横线和纵线把矩阵分割成若干

小块,每个小块叫做矩阵的子块,以子块为元素的形式上的矩阵叫做分块矩阵.

在作分块矩阵的运算时,加、减法,数乘及转置是完全类似的,特别在乘法时,要注意到应使左矩阵A 的列分块方式与右矩阵B 的行分块方式一致,然后把子块当作元素来看待,相乘时A 的各子块分别左乘B 的对应的子块.

2.准对角矩阵的逆矩阵

形如 ??????

? ??r A A A 21的分块矩阵称为准对角矩阵,其中r A A A ,,,21 均为方阵空白处都是零块.

若r A A A ,,,21 都是可逆矩阵,则这个准对角矩阵也可逆,并且

?

?

???

?

?

??=??????

?

??----112

111

21r r A A A A A A

(五)矩阵的初等变换与初等方阵

1.

初等变换

对一个矩阵A 施行以下三种类型的变换,称为矩阵的初等行(列)变换,统称为初等变换,

(1)交换A 的某两行(列);

(2)用一个非零数k 乘A 的某一行(列);

(3)把A 中某一行(列)的k 倍加到另一行(列)上.

注意:矩阵的初等变换与行列式计算有本质区别,行列式计算是求值过程,用等号连接,而对矩阵施行初等变换是变换过程用“→”连接前后矩阵.

初等变换是矩阵理论中一个常用的运算,而且最常见的是利用矩阵的初等行变换把矩阵化成阶梯形矩阵,以至于化为行简化的阶梯形矩阵.

2.初等方阵

由单位方阵E 经过一次初等变换得到的矩阵称为初等方阵.

由于初等变换有三种类型,相应的有三种类型的初等方阵,依次记为ij P ,)(k D i 和)(k T ij ,容易证明,初等方阵都是可逆矩阵,且它们的逆矩阵还是同一类的初等方阵.

3.初等变换与初等方阵的关系

设A 为任一个矩阵,当在A 的左边乘一个初等方阵的乘积相当于对A 作同类型的初等行变换;在A 的右边乘一个初等方阵的乘积相当于对A 作同类型的初等列变换.

4.矩阵的等价与等价标准形

若矩阵A 经过若干次初等变换变为B ,则称A 与B 等价,记为B A ? 对任一个n m ?矩阵A ,必与分块矩阵???

?

??O O O E r 等价,称这个分块矩阵为A 的等价标准形.即对任一个n m ?矩阵

A ,必存在

n

阶可逆矩阵P

n

阶可逆矩阵

Q ,使得

???

?

??=O O O E PAQ r

5.用初等行变换求可逆矩阵的逆矩阵

设A 为任一个n 阶可逆矩阵,构造n n 2?矩阵(A ,E ) 然后 ),(),(1

-→A E E A

注意:这里的初等变换必须是初等行变换.

例2 求???

?

?

??----=421412311A 的逆矩阵

解:

()()()1

22113

211311213322

1131001131

00(,)214010012210124001011101101110100421012210010

412001*********

A E ?-+?+?+?-+?-+?+--????

?

?

=-→-- ?

? ? ?---???

?

---???? ?

?→--→- ? ? ? ?--???

?行行行行行行行行行行行行 则 ????

?

??----=-1132141241

A

例3 求解矩阵方程

????

? ??=????? ??----213411421412311X

解:令???

?

?

??=????? ??----=213411,421412311B A ,则矩阵方程为B AX =,这里A 即为例2中矩阵,是可逆的,在矩阵方

程两边左乘1-A ,得

???

?

?

??=????? ??????? ??----==-2052032134111132141241B A X

也能用初等行变换法,不用求出1

A -,而直接求

B A 1

-

),(201005201003001214213441211311),(1B A E B A -=???

?

?

??→????? ??----=

则 ????

? ??==-2052031

B A X

(六)矩阵的秩

1.

秩的定义

设A 为n m ?矩阵,把A 中非零子式的最高阶数称为A 的秩,记为秩)(A 或)(A r

零矩阵的秩为0,因而{}n m A ,min )(0≤≤秩,对n 阶方阵A ,若秩n A =)(,称A 为满秩矩阵,否则称为降秩矩阵.

2. 秩的求法

由于阶梯形矩阵的秩就是矩阵中非零行的行数,又矩阵初等变换不改变矩阵的秩.对任一个矩阵A ,只要用

初等行变换把A 化成阶梯形矩阵T ,则秩(A)=秩(T)=T 中非零行的行数.

3.与满秩矩阵等价的条件

n 阶方阵A 满秩?A 可逆,即存在B ,使E BA AB ==

?A 非奇异,即0≠A ?A 的等价标准形为E

?A 可以表示为有限个初等方阵的乘积 ?齐次线性方程组0=AX 只有零解

?对任意非零列向量b ,非齐次线性方程组b AX =有唯一解

?A 的行(列)向量组线性无关

?A 的行(列)向量组为n R 的一个基

?任意n 维行(列)向量均可以表示为A 的行(列)向量组 的线性组合,且表示法唯一. ?A 的特征值均不为零 ?A A T 为正定矩阵.

(七)线性方程组的消元法.

对任一个线性方程组???????=+++=+++=+++m

n mn m m n n n n b x a x a x a b x a x a x a b x a x a x a 22112

222212*********

可以表示成矩阵形式b AX =,其中n m ij a A ?=)(为系数矩阵,T

m b b b b ),,,(21 =为常数列矩阵,

T n x x x X ),,,(21 =为未知元列矩阵.

从而线性方程组b AX =与增广矩阵),(b A A =一一对应.

对于给定的线性方程组,可利用矩阵的初等行变换,把它的增广矩阵化成简化阶梯形矩阵,从而得到易于求

解的同解线性方程组,然后求出方程组的解.

第三章 向量空间

(一)n 维向量的定义与向量组的线性组合

1.

n 维向量的定义与向量的线性运算

由n 个数组成的一个有序数组称为一个n 维向量,若用一行表示,称为n 维行向量,即n ?1矩阵,若用一列表示,称为n 维列向量,即1?n 矩阵

与矩阵线性运算类似,有向量的线性运算及运算律.

2.向量的线性组合

设m ααα,,,21 是一组n 维向量,m k k k ,,,21 是一组常数,则称

m m k k k ααα+++ 2211

为m ααα,,,21 的一个线性组合,常数m k k k ,,,21 称为组合系数.

若一个向量β可以表示成

m m k k k αααβ+++= 2211

则称β是m ααα,,,21 的线性组合,或称β可用m ααα,,,21 线性表出.

3.矩阵的行、列向量组

设A 为一个n m ?矩阵,若把A 按列分块,可得一个m 维列向量组称之为A 的列向量组.

若把A 按行分块,可得一个n 维行向量组称之为A 的行向量组.

4.线性表示的判断及表出系数的求法.

向量β能用m ααα,,,21 线性表出的充要条件是线性方程组βααα=+++m m x x x 2211有解,且每一个解就是一个组合系数.

例1 问T

)5,1,1(-=β能否表示成T

)3,2,1(1=α,T

)4,1,0(2=α,T

)6,3,2(3=α的线性组合? 解:设线性方程组为 βααα=++332211x x x

对方程组的增广矩阵作初等行变换:

???

?

? ??-→????? ??-==110020101001564313121201),,,(),(321βαααβA

则方程组有唯一解1,2,1321-===x x x

所以β可以唯一地表示成321,,ααα的线性组合,且3212αααβ-+=

(二)向量组的线性相关与线性无关

1.

线性相关性概念

设m ααα,,,21 是m 个n 维向量,如果存在m 个不全为零的数m k k k ,,,21 ,使得

02211=+++m m k k k ααα ,则称向量组m ααα,,,21 线性相关,称m k k k ,,,21 为相关系数.否则,称向量

m ααα,,,21 线性无关.

由定义可知,m ααα,,,21 线性无关就是指向量等式02211=+++m m k k k ααα 当且仅当

021====m k k k 时成立.

特别 单个向量α线性相关?0=α;

单个向量α线性无关?0≠α

2.求相关系数的方法

设m ααα,,,21 为m 个n 维列向量,则m ααα,,,21 线性相关?m 元齐次线性方程组

02211=+++m m x x x ααα 有非零解,且每一个非零解就是一个相关系数?矩阵),,,(21m A ααα =的秩小

于m

例2 设向量组123(2,1,7),(1,4,11),(3,6,3)T

T

T

ααα=-==-,试讨论其线性相关性. 解:考虑方程组0332211=++αααx x x

其系数矩阵 ???

?

? ??-→????? ??--==0001102013117641312),,(321αααA

于是,秩32)(<=A ,所以向量组线性相关,与方程组同解的方程组为

??

?=-=+00

232

31x x x x 令13=x ,得一个非零解为1,1,2321==-=x x x 则02321=++-ααα

3.线性相关性的若干基本定理

定理1 n 维向量组m ααα,,,21 线性相关?至少有一个向量是其余向量的线性组合.即m ααα,,,21 线性无关?任一个向量都不能表示为其余向量的线性组合.

定理2 如果向量组m ααα,,,21 线性无关,又m αααβ,,,,21 线性相关,则β可以用m ααα,,,21 线性表出,且表示法是唯一的.

定理3 若向量组中有部分组线性相关,则整体组也必相关,或者整体无关,部分必无关. 定理4 无关组的接长向量组必无关.

(三)向量组的极大无关组和向量组的秩

1.向量组等价的概念

若向量组S 可以由向量组R 线性表出,向量组R 也可以由向量组S 线性表出,则称这两个向量组等价.

2.向量组的极大无关组

设T 为一个向量组,若存在T 的一个部分组S ,它是线性无关的,且T 中任一个向量都能由S 线性表示,则称部分向量组S 为T 的一个极大无关组.

显然,线性无关向量组的极大无关组就是其本身.

对于线性相关的向量组,一般地,它的极大无关组不是唯一的,但有以下性质:

定理1 向量组T 与它的任一个极大无关组等价,因而T 的任意两个极大无关组等价. 定理2 向量组T 的任意两个极大无关组所含向量的个数相同.

3.向量组的秩与矩阵的秩的关系

把向量组T 的任意一个极大无关组中的所含向量的个数称为向量组T 的秩.

把矩阵A 的行向量组的秩,称为A 的行秩,把A 的列向量组的秩称为A 的列秩.

定理:对任一个矩阵A ,A 的列秩=A 的行秩=秩(A )

此定理说明,对于给定的向量组,可以按照列构造一个矩阵A ,然后用矩阵的初等行变换法来求出向量组的秩和极大无关组.

例3 求出下列向量组的秩和一个极大无关组,并将其余向量用极大无关组线性表出:

)3,4,4,2(),3,4,1,2(),6,6,1,1(),9,2,,2,1(),7,2,1,1(54321==--=---=-=ααααα

解:把所有的行向量都转置成列向量,构造一个54?矩阵,再用初等行变换把它化成简化阶梯形矩阵

(

)

B A T

T T T T =??

?

?

?

?

?

??--→

???????

??------==10000

01100

01010

00

001

33697446224112122111,,,,5

4321ααααα

易见B 的秩为4,A 的秩为4,从而秩{

}4,,,,54321=ααααα,而且B 中主元位于第一、二、三、五列,那么相应地5321,,,αααα为向量组的一个极大无关组,而且324ααα--=

(四)向量空间

1.

向量空间及其子空间的定义

定义1 n 维实列向量全体(或实行向量全体)构成的集合称为实n 维向量空间,记作n R

定义2 设V 是n 维向量构成的非空集合,若V 对于向量的线性运算封闭,则称集合V 是n R 的子空间,也称为向量空间.

2. 向量空间的基与维数

设V 为一个向量空间,它首先是一个向量组,把该向量组的任意一个极大无关组称为向量空间V 的一个基,

把向量组的秩称为向量空间的维数.

显然,n 维向量空间n R 的维数为n ,且n R 中任意n 个线性无关的向量都是n R 的一个基.

3. 向量在某个基下的坐标

设r ααα,,,21 是向量空间V 的一个基,则V 中任一个向量α都可以用r ααα,,,21 唯一地线性表出,由r 个表出系数组成的r 维列向量称为向量α在此基下的坐标.

第四章 线性方程组

(一) 线性方程组关于解的结论

定理1 设b AX =为n 元非齐次线性方程组,则它有解的充要条件是)(),(A r b A r = 定理2 当n 元非齐次线性方程组b AX =有解时,即r A r b A r ==)(),(时,那么

(1)b AX =有唯一解?n r =; (2)b AX =有无穷多解?n r <.

定理3 n 元齐次线性方程组0=AX 有非零解的充要条件是n r A r <=)( 推论1 设A 为n 阶方阵,则n 元齐次线性方程组0=AX 有非零解?0=A 推论2 设A 为n m ?矩阵,且n m <,则n 元齐次线性方程组必有非零解

(二)齐次线性方程组解的性质与解空间

首先对任一个线性方程组,我们把它的任一个解用一个列向量表示,称为该方程组的解向量,也简称为方程

组的解.

考虑由齐次线性方程组0=AX 的解的全体所组成的向量集合

{}0==ξξA V

显然V 是非空的,因为V 中有零向量,即零解,而且容易证明V 对向量的加法运算及数乘运算封闭,即解向量的和仍为解,解向量的倍数仍为解,于是V 成为n 维列向量空间n R 的一个子空间,我们称V 为方程组0=AX 的解空间

(三)齐次线性方程组的基础解系与通解

把n 元齐次线性方程组0=AX 的解空间的任一个基,称为该齐次线性方程组的一个基础解系.

当n 元齐次线性方程组0=AX 有非零解时,即n r A r <=)(时,就一定存在基础解系,且基础解系中所含有线性无关解向量的个数为r n -

求基础解系与通解的方法是:

对方程组0=AX 先由消元法,求出一般解,再把一般解写成向量形式,即为方程组的通解,从中也能

求出一个基础解系.

例1 求???

??=-++=+-+=+-+0

022*********

43214321x x x x x x x x x x x x 的通解

解:对系数矩阵A ,作初等行变换化成简化阶梯形矩阵:

1

2212310341034321211110145111111110000A ????---?????? ? ? ?=-→-→- ? ? ? ? ? ?--??????

行(-1)+2行行(-1)+3行3行(-1)+1行

1行(-1)+2行

42)(<=A r ,有非零解,取43,x x 为自由未知量,可得一般解为??????

?==+-=-=44334

32431,54,

43x x x x x x x x x x 写成向量形式,令13k x =,24k x =为任意常数,则通解为????

??? ??-+??????? ??-=1054014321k k X 可见,??????

?

??-=???

???? ??-=1054,014321ξξ为方程组的一个基础解系. (四)非齐次线性方程组

1.

非齐次线性方程组与它对应的齐次线性方程组(即导出组)的解之间的关系

设b AX =为一个n 元非齐次线性方程组,0=AX 为它的导出组,则它们的解之间有以下性质:

性质1 如果21,ηη是b AX =的解,则21ηηξ-=是0=AX 的解

性质2 如果η是b AX =的解,ξ是0=AX 的解,则ηξ+是b AX =的解 由这两个性质,可以得到b AX =的解的结构定理:

定理 设A 是n m ?矩阵,且r A r b A r ==)(),(,则方程组b AX =的通解为

r n r n k k k X --++++=ξξξη 2211*

其中*

η为b AX =的任一个解(称为特解),r n -ξξξ,,,21 为导出组0=AX 的一个基础解系.

2.求非齐次线性方程组的通解的方法

对非齐次线性方程组b AX =,由消元法求出其一般解,再把一般解改写为向量形式,就得到方程组的通解.

例2 当参数a ,b 为何值时,线性方程组????

???-=+++=--+-=++=+++1232)3(1220432

1432432432

1ax x x x b x x a x x x x x x x x

有唯一解?有无穷多解?无解?在有无穷多解时,求出通解.

解:对方程组的增广矩阵施行初等行变换,把它化成阶梯形矩阵:

()()2342411111

01

1110

12210

1221(,)0132001013211012311

0111012210010100010A b a b a b a a a b a +?++?+???? ?

?

? ?=→ ? ?

----+ ?

?

-----????

---??

?

?→ ?

-+ ?

-??

行行1行-3行行行

2行-1行

当1≠a 时,4)(),(==A r b A r ,有唯一解; 当1,1≠=b a 时,3),(=b A r ,2)(=A r ,无解; 当1,1-==b a 时,2)(),(==A r b A r ,有无穷多解.

此时,方程组的一般解为 ???????=

=--=++-=443

34

324312211x x x x x x x x x x

令2413,k x k x ==为任意常数,故一般解为向量形式,得方程组通解为

??????

? ??-+??????? ??-+??????? ??-=10210121001121k k X

10月自考线性代数经管类试卷及答案

10月自考线性代数经管类试卷及答案

10月高等教育自学考试全国统一命题考试 线性代数(经管类) 试卷 (课程代码04184) 说明:在本卷中。A T表示矩阵A的转置矩阵。A* 表示矩阵A的伴随矩阵,E是单位矩阵, ︱A ︱表示方阵A的行列式,r(A)表示矩 阵A的秩。 第一部分选择题 一、单项选择题(本大题共5小题,每小题2分, 共10分) 在每小题列出的四个备选项中只有一个是符 合题目要求的,请将其选出并将“答题卡” 的相应代码涂黑。未涂、错涂或多涂均无分。 1.已知2阶行列式 A.-2 B.-l C.1 D.2 3.设向量组可由向量组线性 表出,则下列结论中 正确的是

A.若s≤t,则必线性相关 B.若s≤t,则必线性相关 C.若线性无关,则s≤t D.若线性无关,则s≤t 4.设有非齐次线性方程组Ax=b,其中A为m×n 矩阵,且r(A)=r 1,r(A,b)=r 2 ,则 下列结论中正确的是 A.若r 1 =m,则Ax=O有非零解 B.若r 1 =n,则Ax=0仅有零解 C.若r 2 =m,则Ax=b有无穷多解 D.若r 2 =n,则Ax=b有惟一解 5. 设n阶矩阵A满足︱2E-3A︱=0,则A必有一个特征值= 第二部分非选择题 二、填空题 (本大题共l0小题。每小题2分,共20分) 请在答题卡上作答。 6.设行列式中元素a ij 的代数余子式为 A ij (i,j=1,2),则a 11 A 21 +a 12 +A 22 =__________. 7.已知矩阵,则A2+2A+E=___________.

8.设矩阵,若矩阵A满足AP=B,则A=________. 9.设向量,,则由向量组线性表出的表示式为=____________. 10.设向量组a 1=(1,2,1)T,a 2 =(-1,1,0)T, a 3 =(0,2,k)T线性无关,则数k的取值应 满足__________. 11.设3元非齐次线性方程组Ax=b的增广矩阵(A,b)经初等行变换可化为 若该方程组无解,则数k=_________.12.设=-2是n阶矩阵A的一个特征值,则矩阵A—3E必有一个特征值是________. 13.设2阶矩阵A与B相似,其中,则数a=___________. 14.设向量a 1=(1,-l,0)T,a 2 =(4,0,1)T,则 =__________. 15.二次型f(x 1,x 2 )=-2x 1 2+x 2 2+4x 1 x 2 的规范形为

线性代数(经管类)-阶段测评1,2,3,4

线性代数(经管类)-阶段测评1 1.单选题 1.1 5.0 设矩阵 $A=((a_11,a_12),(a_21,a_22)),B=((a_21+a_11,a_22+a_12),(a_11 ,a_12)),P_1=((0,1),(1,0)),P_2=((1,0),(1,1))$,则必有() 您答对了a a $P_1P_2A=B$ b $P_2P_1A=B$ c $AP_1P_2=B$ d $AP_2P_1=B$ 考点:矩阵的行列变换,左乘行变,右乘列变。 1.2 5.0 设$A$为四阶矩阵,且$|A|=-3$,则$|A^(**)|$=() 您答对了 c ? a $-3$ ?

?b $9$ ? ?c $-27$ ? ?d $81$ ? $|A^(**)|=|A|^(n-1)=-3^3=-27$. 1.3 5.0 设$A,B$为$n$阶方阵,满足$A^2=B^2$,则必有() 您答对了 d ?a $A=B$ ? ?b $A=-B$ ? ?c $|A|=|B|$ ? ?d $|A|^2=|B|^2$ ? 方阵行列式的性质,特别是$|AB|=|A||B|$ 解1:因为$A^2=B^2$,故$|A^2|=|B^2|$,而因为$|AB|=|A||B|$,故$|A^2|=|A|^2,|B^2|=|B|^2$,所以$|A|^2=|B|^2$ 解2:取

$A=((1,0,0),(0,-1,0),(0,0,-1)),B=((1,0,0),(0,-1,0),(0,0,1))$,显然$A^2=B^2=E$,但选项A,B,C都不对,应用排除法知正确答案为D。 1.4 5.0 设3阶矩阵$A$的行列式$|A|=(1)/(3)$,则$|-3A^T|=$() 您答对了 d ?a 9 ? ?b 1 ? ?c -1 ? ?d -9 ? $|-3A^T|=(-3)^3|A^T|=-27|A|=-9$. 1.5 5.0 设矩阵$A=[[a,b],[c,d]]$,且已知$|A|=-1$,则$A^-1$=() 您答对了 b ?a $[[d,-b],[-c,a]]$ ? ?b $[[-d,b],[c,-a]]$ ? ?c $[[d,-c],[-b,a]]$

(完整版)自考本科线性代数(经管类)知识汇总

自考高数线性代数笔记 第一章行列式 1.1行列式的定义 (一)一阶、二阶、三阶行列式的定义 (1)定义:符号叫一阶行列式,它是一个数,其大小规定为:。 注意:在线性代数中,符号不是绝对值。 例如,且; (2)定义:符号叫二阶行列式,它也是一个数,其大小规定为: 所以二阶行列式的值等于两个对角线上的数的积之差。(主对角线减 次对角线的乘积) 例如 (3)符号叫三阶行列式,它也是一个数,其大小规定为 例如=0 三阶行列式的计算比较复杂,为了帮助大家掌握三阶行列式的计算公式,我们可以采用下面的对角线法记忆

方法是:在已给行列式右边添加已给行列式的第一列、第二列。我们把行列式左上角到右下角的对角线叫主对角线,把右上角到左下角的对角线叫次对角线,这时,三阶行列式的值等于主对角线的三个数的积与和主对角线平行的线上的三个数的积之和减去次对角线三个数的积与次对角线的平行线上数的积之和。 例如: (1) =1×5×9+2×6×7+3×4×8-3×5×7-1×6×8-2×4×9=0 (2) (3) (2)和(3)叫三角形行列式,其中(2)叫上三角形行列式,(3)叫下三角形行列式,由(2)(3)可见,在三阶行列式中,三角形行列式的值为主对角线的三个数之积,其余五项都是0,例如

例1a为何值时, [答疑编号10010101:针对该题提问] 解因为 所以8-3a=0,时 例2当x取何值时, [答疑编号10010102:针对该题提问] 解:. 解得0

线性代数经管类——重点难点总结

4184线性代数(经管类)——重点难点总结 1、设n 阶矩阵A 的各行元素之和均为0,且A 的秩为n -1,则齐次线性方程组Ax =0的通解为_K(1,1,1….1)T 2、设A 是n m ?矩阵,已知0=Ax 只有零解,则以下结论正确的是(A ) A .n m ≥ B .b Ax =(其中b 是m 维实向量)必有唯一解 C .m A r =)( D .0=Ax 存在基础解系 解:αααααααααααααααα 100 101 101)())(()())(()(T T T T T T T T ==, 由于)13(23)2,3(=??? ? ??=T αα, 所以10010010113)13()(==ααααT T ??? ? ??=???? ??=466913)2,3(2313100 100ααT (标准答案). 6、已知4321,,,αααα线性无关,证明:21αα+,32αα+,43αα+,14αα-线性无关. 证:设0)()()()(144433322211=-++++++ααααααααk k k k , 即0)()()()(443332221141=++++++-ααααk k k k k k k k ,

因为4321,,,αααα线性无关,必有??? ?? ??=+=+=+=-000043322141 k k k k k k k k , 只有04321====k k k k ,所以21αα+,32αα+,43αα+,14αα-线性无关. 7、设A 是n 阶方阵,若对任意的n 维向量x 均满足Ax =0,则() A.A =0/A/=0? B.A =E C.r (A )=n D.0

自学考试线性代数经管类资料重点考点

线性代数(经管类)考点逐个击破 第一章 行列式 (一)行列式的定义 行列式是指一个由若干个数排列成同样的行数与列数后所得到的一个式子,它实质上表示把这些数按一定的规则进行运算,其结果为一个确定的数. 1.二阶行列式 由4个数)2,1,(=j i a ij 得到下列式子: 11122122 a a a a 称为一个二阶行列式,其运算规则为 2112221122 211211a a a a a a a a -= 2.三阶行列式 由9个数)3,2,1,(=j i a ij 得到下列式子:33 323123222113 1211a a a a a a a a a 称为一个三阶行列式,它如何进行运算呢?教材上有类似于二阶行列式的所谓对角线法,我们采用递归法,为此先要定义行列式中元素的余子式及代数余子式的概念. 3.余子式及代数余子式 设有三阶行列式 33 323123222113 12113a a a a a a a a a D = 对任何一个元素ij a ,我们划去它所在的第i 行及第j 列,剩下的元素按原先次序组成一个二阶行列式,称它为元素ij a 的余子式,记成ij M 例如 33 32232211a a a a M = ,33 32131221a a a a M = ,23 22131231a a a a M = 再记 ij j i ij M A +-=)1( ,称ij A 为元素ij a 的代数余子式. 例如 1111M A =,2121M A -=,3131M A = 那么 ,三阶行列式3D 定义为 我们把它称为3D 按第一列的展开式,经常 31 312121111133 323123222113 12113A a A a A a a a a a a a a a a D ++==

自学考试试卷 线性代数(经管类)

2015年10月高等教育自学考试全国统一命题考试 线性代数(经管类) 试卷 (课程代码04184) 本试卷共3页,满分l00分,考试时间l50分钟。 考生答题注意事项: 1.本卷所有试题必须在答题卡上作答。答在试卷上无效,试卷空白处和背面均可作草稿纸。2.第一部分为选择题。必须对应试卷上的题号使用2B铅笔将“答题卡”的相应代码涂黑。3.第二部分为非选择题。必须注明大、小题号,使用0.5毫米黑色字迹签字笔作答。4.合理安排答题空间。超出答题区域无效。 说明:在本卷中。A T表示矩阵A的转置矩阵。A*表示矩阵A的伴随矩阵,E是单位矩阵,︱A ︱表示方阵A的行列式,r(A)表示矩阵A的秩。 第一部分选择题 一、单项选择题(本大题共5小题,每小题2分,共10分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其选出并将“答题卡”的相应代码涂黑。未涂、错涂或多涂均无分。 1.已知2阶行列式 A.-2 B.-l C.1 D.2 3.设向量组可由向量组线性表出,则下列结论中 正确的是 A.若s≤t,则必线性相关 B.若s≤t,则必线性相关 C.若线性无关,则s≤t D.若线性无关,则s≤t 4.设有非齐次线性方程组Ax=b,其中A为m×n矩阵,且r(A)=r1,r(A,b)=r2,则 下列结论中正确的是 A.若r1=m,则Ax=O有非零解 B.若r1=n,则Ax=0仅有零解 C.若r2=m,则Ax=b有无穷多解 D.若r2=n,则Ax=b有惟一解 5. 设n阶矩阵A满足︱2E-3A︱=0,则A必有一个特征值=

第二部分非选择题 二、填空题 (本大题共l0小题。每小题2分,共20分) 请在答题卡上作答。 6.设行列式中元素a ij的代数余子式为A ij(i,j=1,2),则a11A21+a12+A22=__________.7.已知矩阵,则A2+2A+E=___________. 8.设矩阵,若矩阵A满足AP=B,则A=________. 9.设向量,,则由向量组线性表出的表示式为=____________. 10.设向量组a1=(1,2,1)T,a2=(-1,1,0)T,a3=(0,2,k)T线性无关,则数k的取值应 满足__________. 11.设3元非齐次线性方程组Ax=b的增广矩阵(A,b)经初等行变换可化为 若该方程组无解,则数k=_________. 12.设=-2是n阶矩阵A的一个特征值,则矩阵A—3E必有一个特征值是________.13.设2阶矩阵A与B相似,其中,则数a=___________. 14.设向量a1=(1,-l,0)T,a2=(4,0,1)T,则=__________. 15.二次型f(x1,x2)=-2x12+x22+4x1x2的规范形为__________. 三、计算题(本大题共7小题,每小题9分,共63分) 请在答题卡上作答。 16. 计算行列式的值. 17. 已知矩阵,若矩阵x满足等式AX=B+X,求X.

线性代数(经管类)考试试卷及答案(一)

高等教育自学考试全国统一命题考试 线性代数(经管类)优化试卷(一) 说明:在本卷中,A T表示矩阵A的转置矩阵,A*表示矩阵A的伴随矩阵,E是单位矩阵,|A|表示方阵A的行列式. 一、单项选择题(本大题共10小题。每小题2分,共20分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内.错选、多选或未选均无分. 1.设A为3阶方阵,且|A|=2,则| 2A-l | ( ) A.-4 B.-1 C.1 D.4 2.设矩阵A=(1,2),B=,C=,下列矩阵运算中有意义的是( ) A.ACB B.ABC C.BAC D.CBA 3.设A为任意n阶矩阵,下列矩阵中为反对称矩阵的是( ) A.A+A T B.A - A T C.A A T D.A T A 4.设2阶矩阵A= ,则A*= ( ) 5.矩阵的逆矩阵是()

6.设矩阵A=,则A中( ) A.所有2阶子式都不为零 B.所有2阶子式都为零 C.所有3阶子式都不为零 D.存在一个3阶子式不为零 7.设A为m×n矩阵,齐次线性方程组Ax=0有非零解的充分必要条件是( ) A.A的列向量组线性相关 B.A的列向量组线性无关 C.A的行向量组线性相关 D.A的行向量组线性无关 8.设3元非齐次线性方程组Ax=b的两个解为,且系数矩阵A的秩r(A)=2,则对于任意常数k,k1,k2,方程组的通解可表为( ) 9.矩阵的非零特征值为( ) A.4 B.3 C.2 D.l

10.4元二次型的秩为( ) A.4 B.3 C.2 D.l 二、填空题(本大题共10小题.每小题2分.共20分) 请在每小题的空格中填上正确答案.错填、不填均无分. 11.若i=1,2,3,则行列式=_________________。 12.设矩阵A= ,则行列式|A T A|=_______________。 13.若齐次线性方程组有非零解,则其系数行列式的值为__________________。 14.设矩阵A= ,矩阵B=A – E,则矩阵B的秩r(B)=______________。 15.向量空间的维数为_______________。 16.设向量,则向量的内积=_______________。 17.设A是4×3矩阵,若齐次线性方程组Ax=0只有零解,则矩阵A的秩r(A)=____________。 18.已知某个3元非齐次线性方程组Ax=b 的增广矩阵经初等行变换化为: ,若方程组无解,则a的取值为___________。19.设3元实二次型f ( x1 , x2 , x3 ) 的秩为3,正惯性指数为2,则此二次型的规范形式_____________。 20.设矩阵A= 为正定矩阵,则a的取值范围是_______________。三、计算题(本大题共6小题,每小题9分.共54分)

自考04184线性代数(经管类)自考核心考点笔记自考重点资料

第一章行列式 1.1 行列式的定义 1.2 行列式行(列)展开 1.3 行列式的性质与计算 1.3 克拉默法则 第二章矩阵 2.1 线性方程组与矩阵的定义2.2 矩阵运算 2.3 分阵的逆矩阵 2.4 分块矩阵 2.5 矩阵的初等变换与初等方阵2.6 矩阵的秩 2.7 矩阵与线性方程组 第三章向量空间 3.1 n维向量概念及其线性运算 3.2 线性相关与线性无关 3.3 向量组的秩 3.4 向量空间 第四章线性方程组 4.1 齐次线性方程组 4.2 非齐次线性方程组 第五章特征值与特征向量 5.1 特征值与特征向量 5.2 方阵的相似变换 5.3 向量内积和正交矩阵 5.4 实对称矩阵的相似标准形 第六章实二次型 6.1 实二次型及其标准形 6.2 正这二次型和正定矩阵 … … (中间部分略) 完整版15页请—— QQ:1273114568 索取 第一部分行列式 本章概述 行列式在线性代数的考试中占很大的比例。从考试大纲来看。虽然只占13%左右。但在其他章。的试题中都有必须用到行列式计算的内容。故这部分试题在试卷中所占比例远大于13%。 1.1 行列式的定义 1.1.1 二阶行列式与三阶行列式的定义 一、二元一次方程组和二阶行列式 例1.求二元一次方程组 的解。 解:应用消元法得当 时。得 同理得 定义称 为二阶行列式。称 为二阶行列式的值。 记为 。 于是 由此可知。若 。则二元一次方程组的解可表示为: 例2 二阶行列式的结果是一个数。我们称它为该二阶行列式的 值。 二、三元一次方程组和三阶行列式 考虑三元一次方程组 希望适当选择 。使得当

消去。得一元一次方程若 ,能解出 其中 要满足为解出 。在(6),(7)的两边都除以 得 这是以 为未知数的二元一次方程组。 定义1.1.1 在三阶行列式 中,称 于是原方程组的解为 ; 类似地得 这就将二元一次方程组解的公式推广到了三元一次方程 组。 例3 计算 例4 (1)

自考线性代数(经管类)试题及答案解析2020年1月

1 全国2018年1月高等教育自学考试 线性代数(经管类)试题 课程代码:04184 试卷说明:在本卷中,A T 表示矩阵A 的转置矩阵;A*表示A 的伴随矩阵;秩(A )表示矩 阵A 的秩;|A|表示A 的行列式;E 表示单位矩阵。 一、单项选择题(本大题共10小题,每小题2分,共20分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1.设A 为三阶方阵且,2-=A 则=A A T 3( ) A.-108 B.-12 C.12 D.108 2.如果方程组?? ???=+=-=-+0404033232321kx x x x x kx x 有非零解,则 k =( ) A.-2 B.-1 C.1 D.2 3.设A 、B 为同阶方阵,下列等式中恒正确的是( ) A.AB=BA B.()111---+=+B A B A C.B A B A +=+ D.()T T T B A B A +=+ 4.设A 为四阶矩阵,且,2=A 则=*A ( ) A.2 B.4 C.8 D.12 5.设β可由向量α1 =(1,0,0)α2 =(0,0,1)线性表示,则下列向量中β只能是 A.(2,1,1) B.(-3,0,2) C.(1,1,0) D.(0,-1,0) 6.向量组α1 ,α2 ,…,αs 的秩不为s(s 2≥)的充分必要条件是( ) A. α1 ,α2 ,…,αs 全是非零向量

2 B. α1 ,α2, …,αs 全是零向量 C. α1 ,α2, …,αs 中至少有一个向量可由其它向量线性表出 D. α1 ,α2, …,αs 中至少有一个零向量 7.设A 为m n ?矩阵,方程AX=0仅有零解的充分必要条件是( ) A.A 的行向量组线性无关 B.A 的行向量组线性相关 C.A 的列向量组线性无关 D.A 的列向量组线性相关 8.设A 与B 是两个相似n 阶矩阵,则下列说法错误.. 的是( ) A.B A = B.秩(A )=秩(B ) C.存在可逆阵P ,使P -1AP=B D.λE-A =λE-B 9.与矩阵A =???? ??????200010001相似的是( ) A.???? ??????100020001 B.??????????200010011 C.??????????200011001 D.???? ??????100020101 10.设有二次型,x x x )x ,x ,x (f 232221321+-=则)x ,x ,x (f 321( ) A.正定 B.负定 C.不定 D.半正定 二、填空题(本大题共10小题,每小题2分,共20分) 请在每小题的空格中填上正确答案。错填、不填均无分。 11.若,02 11=k 则k=___________. 12.设A=???? ??????411023,B=,010201??????则AB=___________.

山东省自学考试线性代数(经管类)

线性代数(经管类)综合试题一 (课程代码 4184) 一、单项选择题(本大题共10小题,每小题2分,共20分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1.设D==M≠0,则D1== ( B ). A.-2M B.2M C.-6M D.6M 2.设A、B、C为同阶方阵,若由AB = AC必能推出B = C,则 A应满足 ( D ). A. A≠ O B. A = O C.|A|= 0 D. |A|≠0 3.设A,B均为n阶方阵,则( A ). A.|A+AB|=0,则|A|=0或|E+B|=0 B.(A+B)2=A2+2AB+B2 C.当AB=O时,有A=O或B=O D.(AB)-1=B-1A-1 4.二阶矩阵A,|A|=1,则A-1= ( B ). A. B. C. D. ,则下列说法正确的是( B ). A.若两向量组等价,则s = t .

B.若两向量组等价,则r()= r() C.若s = t,则两向量组等价. D.若r()=r(),则两向量组等价. 6.向量组线性相关的充分必要条件是( C ). A.中至少有一个零向量 B.中至少有两个向量对应分量成比例 C.中至少有一个向量可由其余向量线性表示 D.可由线性表示 7.设向量组有两个极大无关组与 ,则下列成立的是( C ). A. r与s未必相等 B. r + s = m C. r = s D. r + s > m 8.对方程组Ax = b与其导出组Ax = o,下列命题正确的是( D ). A. Ax = o有解时,Ax = b必有解. B. Ax = o有无穷多解时,Ax = b有无穷多解. C. Ax = b无解时,Ax = o也无解. D. Ax = b有惟一解时,Ax = o只有零解. 9.设方程组有非零解,则k = ( D ). A. 2 B. 3 C. -1 D. 1 10.n阶对称矩阵A正定的充分必要条件是( D ).

《线性代数(经管类)》综合测验题库

《线性代数(经管类)》综合测验题库 一、单项选择题 1.下列条件不能保证n阶实对称阵A为正定的是() A.A-1正定 B.A没有负的特征值 C.A的正惯性指数等于n D.A合同于单位阵 2.二次型f(x1,x2,x3)= x12+ x22+x32+2x1x2+2x1x3+2x2x3,下列说法正确的是() A.是正定的 B.其矩阵可逆 C.其秩为1 D.其秩为2 3.设f=X T AX,g=X T BX是两个n元正定二次型,则()未必是正定二次型。 A.X T(A+B)X B.X T A-1X C.X T B-1X D.X T ABX 4.设A,B为正定阵,则() A.AB,A+B都正定 B.AB正定,A+B非正定 C.AB非正定,A+B正定 D.AB不一定正定,A+B正定 5.二次型f=x T Ax经过满秩线性变换x=Py可化为二次型y T By,则矩阵A与B() A.一定合同 B.一定相似 C.即相似又合同 D.即不相似也不合同

— 6.实对称矩阵A的秩等于r,又它有t个正特征值,则它的符号差为() A.r B.t-r C.2t-r D.r-t 7.设 8.f(x1,x2,x3)= x12-2x1x2+4x32对应的矩阵是() 9.设A是n阶矩阵,C是n阶正交阵,且B=C T AC,则下述结论()不成立。 A.A与B相似 B.A与B等价 C.A与B有相同的特征值

— D.A与B有相同的特征向量 10.下列命题错误的是() A.属于不同特征值的特征向量必线性无关 B.属于同一特征值的特征向量必线性相关 C.相似矩阵必有相同的特征值 D.特征值相同的矩阵未必相似 11.下列矩阵必相似于对角矩阵的是() 12.已知矩阵有一个特征值为0,则() A.x=2.5 B.x=1 C.x=-2.5 D.x=0 13.已知3阶矩阵A的特征值为1,2,3,则|A-4E|=() A.2 B.-6 C.6 D.24 14.已知f(x)=x2+x+1方阵A的特征值1,0,-1,则f(A)的特征值为() A.3,1,1 B.2,-1,-2 C.3,1,-1

线性代数笔记

线性代数笔记 第一章行列式 (1) 第二章矩阵 (2) 第三章向量空间 (8) 第四章线性方程组 (11) 第五章特征值与特征向量......................................................................... 错误!未定义书签。第一章行列式 1.3.1 行列式的性质 给定行列式,将它的行列互换所得的新行列式称为D的转置行列式,记为或。 性质1 转置的行列式与原行列式相等。即 (这个性质表明:行列式对行成立的性质,对列也成立,反之亦然) 性质2 用数k乘行列式D的某一行(列)的每个元素所得的新行列式等于kD。 推论1 若行列式中某一行(列)的元素有公因数,则可将公因数提到行列式之外。 推论2 若行列式中某一行(列)的元素全为零,则行列式的值为0。 可以证明:任意一个奇数阶反对称行列式必为零。 性质3行列式的两行(列)互换,行列式的值改变符号。 以二阶为例 推论3 若行列式某两行(列),完全相同,则行列式的值为零。 性质4 若行列式某两行(列)的对应元素成比例,则行列式的值为零。 性质 5 若行列式中某一行(列)元素可分解为两个元素的和,则行列式可分解为两个行列式的和, 注意性质中是指某一行(列)而不是每一行。 性质6 把行列式的某一行(列)的每个元素都乘以加到另一行(列),所得的行列式的值不变。 范德蒙德行列式 例10 范德蒙行列式…… . =(x2-x1)(x3-x1)(x3-x2)

1.4 克莱姆法则 定理1.4.1 对于n阶行列式 定理1.4.2 如果n个未知数,n个方程的线性方程组的系数行列式D≠0,则方程组有惟一的解: 定理1.4.3 如果n个未知数n个方程的齐次方程组的系数行列式D≠0,则该方程组只有零解,没有非零解。 推论如果齐次方程组有非零解,则必有系数行列式D=0。 第二章矩阵 一、矩阵的运算 1、矩阵的加法 设A=(a ij)m×n ,B=(b ij)m×n ,则 A+B=(a ij+b ij)m×n 矩阵的加法适合下列运算规则: (1)交换律:A+B=B+A (2)结合律:(A+B)+C=A+(B+C) (3)A+0=0+A=A

2018年4月线性代数(经管类)试题

2018年4月高等教育自学考试全国统一命题考试 04184线性代数(经管类)试卷 一、单项选择题(本大题共5小题,每小题2分,共10分) 1. 设2阶行列式 121 21a a b b =-,则12 1212 12 a a a a b b b b +-=+- A. 2- B. 1- C. 1 D.2 2. 设A 为3阶矩阵,且||=0A a ≠,将A 按列分块为123(,,)A a a a = ,若矩阵122331(,,),B a a a a a a =+++则||=B A. 0 B. a C. 2a D.3a 3. 设向量组123,,a a a 线性无关,则下列向量组中线性无关的是 A. 123,2,3a a a C. 122331,,a a a a a a --- B. 1123,2,a a a a - D.1223123,,2a a a a a a a +-+- 4. 设矩阵300 00 00000120 02 2B ?? ? ? = ?- ??? ,若矩阵,A B 相似,则矩阵3E A -的秩为 A. 1 B. 2 C. 3 D.4 5. 设矩阵120240001A -?? ?=- ? ??? ,则二次型T x Ax 的规范型为 A. 222123z z z ++ B. 222123z z z +- C. 2212z z - D.2212z z + 二、填空题:本题共10小题,每小题2分,共20分。 6. 设3阶行列式11 1213 21 222312 2 2 a a a a a a = ,若元素ij a 的代数余子式为ij A ,则

313233++=A A A . 7. 已知矩阵(1,2,1),(2,1,1)A B =-=- ,且,T C A B = 则C = . 8. 设A 为3阶矩阵,且1||=3A -,则行列式1 * 132A A -??+= ??? . 9.2016 2017 001123010010456100=100789001?? ???? ? ??? ? ??? ? ????? ???? . 10. 设 向 量 (1 ,T β= 可由向量组 123(1,1,)(1,,1)(,1,1)T T T a a a ααα===,,线性表示,且表示法唯一,则 a 的取值应满足 . 11. 设向量组123(1,2,1)(0,4,5)(2,0,)T T T t ααα=-=-=,,的秩为2,则 t = . 12. 已知12(1,0,1)(3,1,5)T T ηη=-=-,是3元非齐次线性方程组Ax b = 的两个解,则对应齐次线性方程组Ax b =有一个非零解=ξ . 13.设2=3 λ- 为n 阶矩阵A 的一个特征值,则矩阵2 23E A - 必有一个特征值为 . 14.设2阶实对称阵A 的特征值为2,2- ,则2 A = . 15.设二次型22111211(,)4f x x x x tx x =+- 正定,则实数t 的取值范围是 . 三、计算题:本大题共有7小题,每小题9分,共63分。 16. 计算4阶行列式23001230 01230012 D --=-- .

自考04184线性代数(经管类)-自考核心考点笔记-自考重点资料

《线性代数(经管类)》刘吉佑、徐诚浩主编, 武汉大学出版社新版 第一章行列式 1.1 行列式的定义 1.2 行列式行(列)展开 1.3 行列式的性质与计算 1.3 克拉默法则 第二章矩阵 2.1 线性方程组与矩阵的定义 2.2 矩阵运算 2.3 分阵的逆矩阵 2.4 分块矩阵 2.5 矩阵的初等变换与初等方阵 2.6 矩阵的秩 2.7 矩阵与线性方程组 第三章向量空间 3.1 n维向量概念及其线性运算 3.2 线性相关与线性无关 3.3 向量组的秩 3.4 向量空间 第四章线性方程组 4.1 齐次线性方程组 4.2 非齐次线性方程组 第五章特征值与特征向量 5.1 特征值与特征向量 5.2 方阵的相似变换 5.3 向量内积和正交矩阵 5.4 实对称矩阵的相似标准形 第六章实二次型 6.1 实二次型及其标准形 6.2 正这二次型和正定矩阵 … … (中间部分略) 完整版15页请—— QQ:1273114568 索取 第一部分行列式 本章概述 行列式在线性代数的考试中占很大的比例。从考试大纲来 看。虽然只占13%左右。但在其他章。的试题中都有必须 用到行列式计算的内容。故这部分试题在试卷中所占比例 远大于13%。 1.1 行列式的定义 1.1.1 二阶行列式与三阶行列式的定义 一、二元一次方程组和二阶行列式 例1.求二元一次方程组 的解。 解:应用消元法得 当时。得 同理得 定义称为二阶行列式。称为二阶行 列式的值。 记为。 于是 由此可知。若。则二元一次方程组的解可表 示为: 例2 二阶行列式的结果是一个数。我们称它为该二阶行列式的 值。 二、三元一次方程组和三阶行列式 考虑三元一次方程组 希望适当选择。使得当 后将消去。得一元一次方程 若,能解出 其中要满足 为解出。在(6),(7)的两边都除以得 这是以为未知数的二元一次方程组。 定义1.1.1 在三阶行列式中,称 于是原方程组的解为; 类似地得 这就将二元一次方程组解的公式推广到了三元一次方程 组。 例3 计算 例4 (1) (2) 例5 当x取何值时,? 为将此结果推广到n元一次方程组。需先将二阶、三阶行 列式推广到n阶行列式。 1.1.2 阶行列式的定义 定义1.1.2 当n时,一阶行列式就是一个数。当时, 称 为n阶行列式。 定义(其所在的位置可记为的余子式 的代数余子式。 定义为该n阶行列式的值。即 。 容易看出,第j列元素的余子式和代数余子式都与 第j列元素无关;类似地,第i行元素的余子式和代数 余子式都与第i行元素无关。n阶行列式为一个数。 例6 求出行列式第三列各元素的代 数余子式。 例7(上三角行列式) 1.2 行列式按行(列)展开 定理1.2.1(行列式按行(列)展开定理) 例1 下三角行列式=主对角线元素的乘积。 例2 计算行列式 例3 求n阶行列式 小结 1.行列式中元素的余子式和代数余子式的定义。 2.二阶行列式的定义。 3.阶行列式的定义。即 。 4.行列式按行(列)展开的定理和应用这个定理将行列式 降阶的方法。 1.3 行列式的性质及计算 1.3.1 行列式的性质 给定行列式 将它的行列互换所得的新行列式称为D的转置行列式,记 为或。 性质1 转置的行列式与原行列式相等。即 性质2用数k乘行列式D的某一行(列)的每个元素所得 的新行列式等于kD。 推论1 若行列式中某一行(列)的元素有公因数,则可将 公因数提到行列式之外。 推论2 若行列式中某一行(列)的元素全为零,则行列式 的值为0。 … … (中间部分略) 完整版15页请—— QQ:1273114568 索取 性质3 行列式的两行(列)互换,行列式的值改变符号。 以二阶为例 设 推论3 若行列式某两行(列),完全相同,则行列式的值 为零。 证设中,第i行与第j行元素完 全相同,则 所以,D=0。

自学考试线性代数经管类试卷及答案

自学考试线性代数经管 类试卷及答案 SANY标准化小组 #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#

2015年4月高等教育自学考试全国统一命题考试 04184 线性代数(经管类)试卷 一、单项选择题(本大题共5小题,每小题2分,共10分) 在每小题列出的四个备选项中只有一个选项是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1、设行列式D 1= 22 11 b a b a ,D 2=2 22 111 3232a b a a b a --,则D 2= 【 】 2、若A=???? ??1x 1021,B =??? ? ??y 24202,且2A =B ,则 【 】 =1,y=2 =2,y=1 =1,y=1 =2,y=2 3、已知A 是3阶可逆矩阵,则下列矩阵中与A 等价的是 【 】 A.????? ??000000001 B.????? ??000010001 C.????? ??100000001 D.???? ? ??100010001

4、设2阶实对称矩阵A 的全部特征值味1,-1,-1,则齐次线性方程组 (E +A )x =0的基础 解系所含解向量的个数为 【 】 5、矩阵??? ? ??--3113有一个特征值为 【 】 二、填空题(本大题共10小题,每小题2分,共20分) 请在每小题的空格中填上正确答案。错填、不填均无分。 6、设A 为3阶矩阵,且A =3,则13-A = . 7、设A =??? ? ??5312,则A * = . 8、已知A =???? ??1201,B =??? ? ??-211111,若矩阵X 满足AX =B ,则X = . 9、若向量组=1α(1,2,1)T ,=2α(k-1,4,2)T 线性相关,则数 k= .

2018年10月全国自考线性代数(经管类)真题及答案

2014年10月全国高等教育自学考试 线性代数(经管类)试卷及答案 课程代码:04184 本试卷共8页,满分100分,考试时间150分钟。 说明:本试卷中,T A 表示矩阵A 的转置矩阵,*A 表示矩阵A 的伴随矩阵,E 是单位矩阵,A 表示方阵A 的行列式,()A r 表示矩阵A 的秩。 一、单项选择题(本大题共5小题,每小题2分,共10分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1.设3阶行列式111 2322 21131211 a a a a a a =2,若元素ij a 的代数余子公式为ij A (i,j=1,2,3),则=++333231A A A 【 】 A.1- B.0 C.1 D.2 2.设A 为3阶矩阵,将A 的第3行乘以21- 得到单位矩阵E , 则A =【 】 A.2- B.2 1- C.21 D.2 3.设向量组321,,ααα的秩为2,则321,,ααα中 【 】 A.必有一个零向量 B. B.任意两个向量都线性无关 C.存在一个向量可由其余向量线性表出 D.每个向量均可由其余向量线性表出 4.设3阶矩阵???? ? ??---=466353331A ,则下列向量中是A 的属于特征值2-的特

征向量为 【 】 A.????? ??-011 B.????? ??-101 C.????? ??201 D.???? ? ??211 5.二次型212322213214),,(x x x x x x x x f +++=的正惯性指数为 【 】 A.0 B.1 C.2 D.3 二、填空题(本大题共10小题,每小题2分,共20分) 请在每小题的空格中填上正确答案。错误、不填均无分、 6.设131 2)(--=x x f ,则方程0)(=x f 的根是 7.设矩阵??? ? ??=0210A ,则*A = 8.设A 为3阶矩阵,21- =A ,则行列式1)2(-A = 9.设矩阵???? ??=4321B ,??? ? ??=2001P ,若矩阵A 满足B PA =,则A = 10.设向量T )4,1(1-=α,T )2,1(2=α,T )2,4(3=α,则3α由21,αα线性表出 的表示式为 11.设向量组T T T k ),0,1(,)0,1,4(,)1,1,3(321===ααα线性相关, 则数=k 12.3元齐次线性方程组?? ?=-=+0 03221x x x x 的基础解系中所含解向量的个数 为 13.设3阶矩阵A 满足023=+A E ,则A 必有一个特征值为 14.设2阶实对称矩阵A 的特征值分别为1-和1,则=2A

自考线性代数(经管类)公式汇总(精髓版)

第一章 行列式 一.行列式的定义和性质 1. 余子式ij M 和代数余子式ij A 的定义 2.行列式按一行或一列展开的公式 1)1 1 ,1,2, ;(,1,2, )n n ij ij ij ij ij ij n n i j A a a A j n A a a A i n ========∑∑ 2)11 ; 00 n n ij ik ij kj i j k j k i A A a A a A k j k i ====??==??≠≠??∑∑ 测试点 行列式的任意一行(列)与另一行(列)元素的代数余子式的乘积之和为零. 3.行列式的性质 1).T A A = 2)用数k 乘行列式的某一行(列)所得新行列式=原行列式的k 倍.推论 3)互换行列式的任意两行(列)所得新行列式等于原行列式的相反数. 推论 4)如果行列式中两行(列)对应元素成比例,则行列式值为0. 5)行列式可以按任一行(列)拆开. 6)行列式的某一行(列)的k 倍加到另一行(列)上,所得新行列式与原行列式的值相等. 例 设行列式22 11 b a b a =1,22 11 c a c a =2,则2 22 1 11 c b a c b a ++=( 3 ) 二.行列式的计算 1.二阶行列式和三角形行列式的计算. 2. 对一般数字行列式,利用行列式的性质将其降阶以化成二阶行列式或三角形行列式的计算. 3.对行列式中有一行或一列中只有一个或两个非零元的情况,用这一行或一列展开. 4.行列式中各行元素之和为一个常数的类型. 5. 范德蒙行列式的计算公式 例(性质4) (1)(1)(2) (2)(1)(3) 123233 100 233 100203249 4992004992004090.367677 300677 300607 +-+-= = = 例(各行元素之和为常数的行列式的计算技巧)

自考04184线性代数(经管类)讲解第二章矩阵

第二章矩阵 2.1矩阵的概念 定义2.1.1由m×n个数a ij(i=1,2,…,m;j=1,2,…,n)排成一个m行n列的数表 用 大小括号表示 称为一个m行n列矩阵。 矩阵的含义是:这m×n个数排成一个矩形阵列。 其中a ij称为矩阵的第i行第j列元素 (i=1,2,…,m;j=1,2,…,n),而i 称为行标,j称为列标。第i行与第j列的变叉位置记为(i,j)。 通常用大写字母A,B,C等表示矩阵。有时为了标明矩阵的行数m和列数n,也可记为 A=(a ij)m×n或(a ij)m×n或A m×n

当m=n时,称A=(a ij)n×n为n阶矩阵,或者称为n阶方阵。n阶方阵是由n2个数排成一个正方形表,它不是一个数(行列式是一个数),它与n阶行列式是两个完全不同的概念。只有一阶方阵才是一个数。一个n阶方阵A中从左上角到右下角的这条对角线称为A的主对角线。n阶方阵的主对角线上的元素a11,a22,…,a nn,称为此方阵的对角元。在本课程中,对于不是方阵的矩阵,我们不定义对角元。 元素全为零的矩阵称为零矩阵。用O m×n或者O(大写字)表示。 特别,当m=1时,称α=(a1,a2,…,a n)为n维行向量。它是1×n矩阵。 当n=1时,称为m维列向量。 它是m×1矩阵。 向量是特殊的矩阵,而且它们是非常重要的特殊矩阵。 例如,(a,b,c)是3维行向量,

是3维列向量。 几种常用的特殊矩阵: 1.n阶对角矩阵 形如或简写 为(那不是A,念“尖”)的矩阵,称为对角矩阵, 例如,是一个三阶对角矩阵, 也可简写为。 2.数量矩阵 当对角矩阵的主对角线上的元n阶数量矩阵

相关文档
最新文档