复习指南:大坝安全监测

复习指南:大坝安全监测
复习指南:大坝安全监测

复习指南

1.水工建筑物的安全条件是什么?

答:建筑物能实现其自身应有的设计预期功能。

2.水工建筑物的安全监控意义是什么?

①有助于认识各种观测量的变化规律和成因机理,以确保水工建筑物的安全;②反馈水工建筑物设计、指导施工和运行,推动坝工理论的发展;③提高水工建筑物的运行综合效益。

3.大坝安全检测中的“大坝”仅指挡水建筑物吗?

答:否,大坝包括永久性挡水建筑物以及与其配合运用的泄洪、输水发电和过船等附属建筑物。

4.大坝安全设计的基本要求是什么?

答:①明确针对性和实用性;②充分的可靠性和完整性;③先进的监测方法和设施;④必要的经济性和合理性。

5.大坝安全检测的项目有哪些?

①现场检查,包括巡视检查和现场检测两项工作,现场检查分类⑴日常检查⑵年度检查⑶特别检查;

②仪器监测,包括仪器观测和资料分析。仪器监测分期为⑴施工期

⑵蓄水期⑶运行期。监测变形、渗流、应力、水文气象和水力学

6.大坝安全监测如何分期?蓄水期指什么?

答:分为施工期、蓄水期、运行期;

蓄水期指从首次开始蓄水至库水位达到或接近正常高水位共3年的时间内或水库放空后再次蓄水。

7.混凝土坝和土石坝的水平位移可以分别如何进行监测?(方法)

混凝土坝:引张线、视准线、激光准直法

土石坝:视准线法、大气激光、交会法

拱坝:视准线、导线、交会法

8.水平位移的三类观测点:位移标点工作基点和校核基点的作用分

别是什么?分别如何布置?

答:位移标点,为观测点所在地的点(测点);工作基点,观测标点的空间参考点;校准基点,校核工作基点(1)土石坝,在每个横断面和纵断面交点等处布设位移标点,一般每个横断面不少于3个。工作基点布设在两岸每一纵排标点的延长线上,两岸各布设1个。校核基点布设在两岸同排工作基点连线的延长线上,两岸各布设1 ~2个。

(2)混凝土坝,在观测纵断面上的每个坝段、每个垛墙或每个闸墩布设1个位移标点,对于重要工程也可在伸缩缝两侧各布设1个观测标点。校核基点可布设在两岸灌浆廊道内,也可采用倒垂线作为校核基点,此时校核基点与倒垂线的观测墩宜合二为一。

9.比较几种水平位移观测方法的优缺点和适用范围。

10.精密水准法测量的位移标点、工作基点和水准基点分别有何作用?

水准基点如何布置?

答:位移标点:观测点;工作基点:观测位移标点的起始点或终结点;水准基点:观测基准点。水准基点一般在大坝下游的1至3km处布设一组,或在两岸各布设一组三个水准基点,组成边长50~100m的等边三角形

11.静力水准仪有何作用?

答:用于测量两点或多点间的相对高程变化(各点的相对沉降)

12.沉降仪有哪些?横梁管式、水管式、电磁式、干簧管式、钢弦式

13.什么是综合标?答:同时作水平位移和竖直位移的位移标点。

14.什么是支持点法?

在垂线的最低点建立观测站安置仪器,在各测点处安装支持点,观测时把垂线分别夹在各支持点上,所得观测值减去首次观测值即为各测点与最低点观测站之间的相对挠度。

15.垂线监测可以分成哪些种类?采用垂线如何获得坝体的绝对水平

位移?

答:正垂线和倒垂线;将倒垂下端固定在基岩深处的孔底锚块上,上段与浮筒相连,在浮力作用下,沿铅直方向被拉紧并保持不动。在各测点布置观测墩,安放仪器进行观测,即可得各测点对于基岩深处的绝对挠度。正垂线通过上部固定,下端挂有重锤,通过竖井直接垂到坝底的基点,其与倒垂配合使用,沿着垂线在不同高程及基点设置多处观测段,利用固定在观测墩(正倒垂结合布置在同一观测墩)上的坐标仪测量各观测点相对于此垂线的相对位移值。每套垂线系统均由倒垂锚固点、正倒垂系统观测点、正垂固定点组成,绝对位移加相对位移获得坝体任意测点的绝对位移。

16.混凝土坝基扬压力监测有何重要意义?可以采用什么设备进行监

测?

答:坝基扬压力是坝体外荷载之一,是影响大坝稳定的重要因素,是评价大坝是否安全的重要指标之一;可以采取测压管和渗压计测量。

17.渗流量监测包括哪些内容?如何对混凝土坝的坝体和坝基渗流量

进行分区监测?

答:渗流量监测包括渗漏水的总流量、分区流量和水质监测。分区观测:在基础灌浆廊道内,坝体排水通过靠近上游面设置的排水管进行,坝基排水通过廊道下游测的排水孔进行。采用量水堰法分别测量两者渗流量。

18.大坝安全监测的环境量主要有:水位、气温、降雨、时效。

19.如何对水平位移和竖向位移的工作基点进行校核?

(1)廊道内引张线和准直线一般采用倒垂线校测。

(2)坝面附近视准线或交会法,工作基点用校核基点检测。

(3)对于H>70m的大坝,把工作基点与远离坝区的水平位移三角形网控制点联系起来,采用平面变形控制网来校测。

(4)廊道内静力水准仪系统一般采用双金属标校测。

(5)坝面垂直位移监测工作基点,采用高程控制网校测。

20.倾斜测量的方法有些哪些?

答:倾斜仪(气泡式和遥测式)、测斜仪、静力水准仪。

21.三向测缝计一般应用于一般面板堆石坝周边缝的监测。

测缝仪分为差动电阻式测缝计、振弦式测缝计和金属标点结构测缝装置。

22.有压测压管和无压测压管如何区分?

●水位高于管口高程为有压测压管,在管口安装压力表,测量测压

管内水压,再转换为水位。

●管水位低于管口高程为无压测压管,用水位计测量。

23.什么是绕坝渗流?如何进行监测?

答:库水环绕与大坝两岸坝肩连接的岸坡产生的流向下游的渗透水流。监测方法:在大坝两端沿流向方向或渗流较集中的透水层(带)各设1至2个观测断面,每个断面设置3至4条观测垂线,每个垂线的钻孔中设1至2个观测点,若需分层则需做好层间止水。在土石坝与混凝土建筑物接触面上布置1个断面,2~3条观测垂线,在垂线不同高程布设1~2个测点。

24.大坝渗流量的监测方法如何选择?

答:渗流观测有以下几种方法:当流量小于1 L/s 时,采用容积法;当

流量为1 ~300L/s时,采用量水堰法;当流量大于300L/s或受落差限值不能设量水堰时,应将渗流水引人排水沟中,采用流速仪法。

25.无应力计是用来监测什么?

答:自由体积变形(温度变形、湿度变形、自生变形)。

26.大坝上下游水位如何监测?

上游水位:坝前一个测点,特殊情况及施工期设临时性测点。宜布设在水面平稳、受风浪和泄流影响不大、便于安装和观测的稳定岸坡及永久建筑物上。

下游水位:布设在泄流汇合处的下游不受水跃和回流影响的地点。当河道无水时,用地下水位替代,与渗流监测结合布设测压管和渗压计。

27.混凝土坝和土石坝的变形监测有哪些内容?分别可以采用哪些方

法(列举至少三种)

●水平位移:引张线、视准线、激光准直、交会法

●垂直位移:精密水准法、三角高程、激光准直

●挠度:正垂线(多点观测站法、支持点法)和倒垂线

●倾斜:倾斜仪、静力水准仪、测斜仪

●接缝及裂缝:测微器、测缝计(单向、三向)

28.土石坝的浸润线如何监测?土石坝渗透压力监测的目的是什么? 答:在土石坝横断面打孔埋设测压管和渗压计,根据某一深度的渗透压力换算出水位,依次连线从而得到土石坝的浸润线。

(1)观测横断面宜选在能控制主要渗流情况的坝体横断面和预计可能发生问题的部位的横断面,如最大坝高处、合龙段和地质条件复杂处,一般布设三个,并尽量与位移监测断面相结合。

(2)根据坝型结构,断面大小和渗流特性,在观测横断面上,布设3~4条观测垂线。详见蓝皮P69。铅直线间距20~40m。

(3)在渗流段、出口段、渗流各向异形明显的土层,以及浸润线变幅较大处,应根据预计浸润线的最大变幅沿垂线不同高程布设测点,每条垂线的测点数一般为2~3个。

土石坝渗透压力观测的目的:确定断面上压力分布和浸润线位置。29.根据传感原理分类,大坝安全监测仪器可以分成哪些种类?振弦式

和差阻式传感器的基本工作原理如何?

大坝安全监测仪器分为振弦式传感器、差阻式传感器、电感式传感器、电阻应变片式传感器。

振弦式传感器:利用金属丝弦与传感器受力部件连接固定,利用钢弦的自振频率与钢弦所受的外加张力关系式测得各种物理量。

(振弦式读数仪读取模数B与温度,ε=KB=Kf2)

(举例:振弦式测缝仪、沉降仪、位移计、应变计、钢筋计)

差阻式传感器:①仪器受外界拉(压)变形→一根钢丝受拉,另一根钢丝受压→电阻比R1/R2变化而串联电阻R1+R2不变→测量

电阻比值R1/R2→求得变形△l②T改变→两钢丝同向变化→串联电阻R1+R2改变而电阻比R1/R2变化→测量串联电阻R1+R2→测得△T

30.根据实测的坝体混凝土应变计算坝体应力应注意哪些问题 ?

答:⑴减掉自由体积变形⑵考虑混凝土的徐变⑶应变平衡计算。

31.监测仪器现场检验的内容是什么?

答:1)出厂时仪器资料参数卡片是否齐全,仪器数量与发货单是否致。

(2)外观检查。仔细查看仪器外部有无损伤痕迹锈班等。(3)用万用表

测量仪器线路有无断线(4)用兆欧表测仪器本身的绝缘是否达到出厂值。(5用二次仪表试测一下仪器测值是否正常。

32.监测的基准值是什么含义? 一般如何确定(举三个例子)?

答:基准值也就是仪器安装埋设后开始工作前的观测值,(1)测缝计

基准值的确定,测缝计理设后,混凝土或水泥砂浆终凝时的测值可作为基准值。(2)钢筋计基准值的确定,一般取混凝土或砂浆固化后24 h,钢筋计能够跟随其周围材料变形时的测值(钢筋一段长度的平均应变)作为基准值。(3)压力计基准值的确定,压力计埋设后,其周围温度

达到均匀时的测值为基准值

33.测仪器编号的意义和原则是什么?

答:(1)仪器编号的意义。仪器编号是整个埋设过程中一项十分重要的工作,常常由于编号不当,难以分辨每支仪器的种类和埋设位置,造成观测不便,资料整理麻烦,甚至发生错乱。

(2) 仪器编号原则。仪器编号应能区分仪器种类、埋设位置,力求简单明了,并与设计布置图一致。

34.监测数据分析的内容和方法是什么?

内容:监测资料的收集、整理、分析、反馈和评判决策。

方法:定性分析(比较法、特征统计法、作图法),定量分析(模型分析),综合分析。

35.观测数据误差有哪三种?粗差处理的方法有哪些?

过失误差、偶然误差、系统误差;粗差处理的方法:人工判断法、包络线法、统计分析法。

36.水工建筑物的观测物理量有哪两类?

答:荷载集和荷载效应集。

37.什么是大坝安全监测的回归模型?

答:在寻找预报量与预报因子之间的关系式时,不可避免的要涉及许多因素,找出各个因素对某一预报量的影响,建立他们之间的数学表达式,即回归模型。

作用:①借此推算某一组荷载集时的预报量,并与其实测值比较,以判断建筑物的工作情况,对建筑物进行监控。

②分离方程中各个变量,用其变化规律,分析和估计建筑物的结构性态。

38.拱坝和重力坝安全监控统计模型中的水压力分量分别取上游水位

的几次项?

●重力坝中水压分量δ1H取H1、H2、H3;δ2H取H2、H3;δ3H取H

●拱坝中δ1H取H1、H2、H3、H4;δ2H取H2、H3、H4;δ3H仍取H

39.大坝安全鉴定的内容包括哪些?(2复核1评价3分析)

①洪水标准复核②抗震复核③质量分析评价④结构稳定和渗流稳定分析⑤运行情况分析⑥安全综合分析

40.一类二类三类坝的分类标准是什么?

一类坝:实际抗御洪水标准达到部颁规范规定,大坝工作状态正常;工程无重大质量问题,能按设计正常运行的坝;

二类坝:实际抗御洪水标准不低于部颁水利枢纽工程除险加固近期非常运用洪水标准,但达不到《防洪标准》;大坝工作状态基本正常,在一定控制运用条件下能安全运行的大坝;

三类坝:实际抗御洪水标准低于部颁水利枢纽工程除险加固近期非常运用洪水标准,或者工程存在较严重的安全隐患,不能按正常运行的

大坝。

41.大坝安全鉴定一般由组织进行?鉴定专家组成员应满足什么条

件?

答:由主管部门组织鉴定。

●大型水库的安全鉴定专家组一般由9名以上专家组成,其中高级

技术职称的专家人数比例不得少于6名。中型水库的专家组一般由7名以上专家组成,其中高级职称专家不少于3名。小型水库专家组一般由5名以上专家组成,其中高级职称专家不少于2名。

●专家组应包括下列各方面的人员: (1)大坝主管部门的技术负责

人;(2)大坝运行管理单位的技术负责人和有关运行管理单位的专家;双强型(3)有关设计和施工部门的专家;(4)有关科研单位或高等院校的专家; (5)有关大坝安全管理单位的专家。

●专家组中应含有水文、地质、水工、机电、金属结构等各方面的

专家。

42.病险水库主要问题是什么?

答:一是防洪标准低,二是工程质量存在严重问题。

大坝安全监测的内涵及扩展参考文本

大坝安全监测的内涵及扩 展参考文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

大坝安全监测的内涵及扩展参考文本使用指引:此安全管理资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 众所周知,大坝是一种特殊建筑物,其特殊性主要表 现在如下3个方面:①投资及效益的巨大和失事后造成灾 难的严重性;②结构、边界条件及运行环境的复杂性;③ 设计、施工、运行维护的经验性、不确定性和涉及内容的 广泛性。以上特殊性说明了要准确了解大坝工作性态,只 能通过大坝安全监测来实现,同时也说明了大坝安全监测 的重要性。事实上,大坝安全监测已受到人们的广泛重 视,我国已先后颁布了差阻式仪器标准及监测仪器系列型 谱、《水电站大坝安全检查实施细则》、《混凝大坝安全 监测技术规范》、《水库大坝安全管理条例》、《土石坝 安全监测技术规范》等,同时,国际大坝会议也多次讨论 过大坝安全问题[1]。

大坝安全监测是人们了解大坝运行性态和安全状况的有效手段。随着科学技术的发展、管理水平的提高及人们观念的转变,大坝安全监测的内涵也进一步加深。为此,笔者从分析影响大坝安全的因素入手,对大坝安全监测的若干问题进行探讨。 1 影响大坝安全的因素 影响大坝安全的因素很多,据国际大坝会议“关于水坝和水库恶化”小组委员会记录的1100座大坝失事实例,从1950年至1975年大坝失事的概率和成因分析中得出大坝失事的频率和成因分别为:30%是由于设计洪水位偏低和泄洪设备失灵引起洪水漫顶而失事;27%是由于地质条件复杂,基础失稳和意外结构事故;20%是由于地下渗漏引起扬压力过高、渗流量增大、渗透坡降过大引起;11%是由于大坝老化、建筑材料变质(开裂、侵蚀和风化)以及施

(安全监测)华光潭大坝安全监测报告(蓄水验收)

1. 概述 1.1 工程概况 华光潭梯级水电站工程位于浙江省临安市分水江干流昌化江上游的巨溪,为分水江流域综合规划推荐的一期建设项目,其主要任务为发电,兼有防洪作用。工程由二个梯级组成,总装机85MW。 华光潭一级水电站工程以发电为主,电站装机60MW,多年平均发电量1.27亿kw.h,水库总库容8257万m3,其中防洪库容1500万m3。工程具有年调节水库,既有发电、调峰功能,又有防洪减灾能力。坝址在昌北区的鱼跳乡华光潭村下游2km ,距临安县城87 km ,距杭州市140 km。厂址在荞麦村的巨溪右岸,距坝址约11 km 。大坝为混凝土拱坝,最大坝高103.85m。 1.2安全监测设施的设计与布置 安全监测的目的是监视大坝运行安全、掌握施工情况,以便及时采取措施,排除不安全因素。另一方面为设计反馈资料和为科研提供原型观测资料。为监测大坝施工运行时的状态,设计布置了垂直位移、水平位移、大坝挠度、扬压力、渗流量、绕坝渗流、坝体应力应变、基岩变位、坝体接缝、坝体温度、上下游水位等观测设施。 1.2.1垂直位移监测 大坝垂直位移观测采用精密水准测量,在坝顶和坝后桥布置测点,起测基点布置于下游侧上坝公路、老公路、临时施工道路的路边,水准基点布置于大坝下游1~2km,按三点一组设置(间距30~40m,能相互通视,便于校测),选择通视条件较好的路边。 一级大坝共计13个测点、2个起测基点和3个水准基点。 大坝垂直位移采用一等水准测量,要求使用与“NA2+GPM”同等精度的水准仪。位移量中误差限值为±1.0mm。 1.2.2水平位移监测 大坝水平位移采用边角交会观测。大坝共布置13个测点。另在左右岸坝肩近下游侧布置两个相互通视的工作基点。工作基点与坝顶测点能通视。 大坝左右岸的两个工作基点可作为永久谷幅测量的测点。 大坝施工期利用两岸坝肩的2个工作基点对坝体水平位移测点进行边角交会观测;垂线投入运行后,对三个垂直观测断面处测点的交会法观测应与垂线观测作短期的同步观测,以后可利用垂线对工作基点作不定期校测。 浙江省水利水电河口海岸研究设计院第1页

大坝安全监测仪器简介

大坝安全监测仪器简介 一、大坝安全监测仪器选型的基本原则 二、监测仪器的检验 三、监测仪器及监测系统的验收 四、监测仪器分类 五、两种主要监测仪器的基本原理 六、主要监测仪器简介 七、国内外数据自动化采集设备

一、大坝安全监测仪器选型的基本原则 1、总原则 大坝安全监测系统的监测项目、测点布置及系统的功能、性能应满足《土石坝安全监测技术规范》(SL60-94)、《土石坝安全监测资料整编规程》(SL169-96)和《混凝土坝安全监测技术规范》(DL/T5178-2003)要求,如建立自动化监测系统,还应满足《大坝安全自动化监测系统设备基本技术条件》(SL268-2001)的要求。 2、监测任务、测量范围的界定及仪器技术性能分析 首先,应明确监测仪器的任务,是变形监测,渗流监测,压力应力监测还是环境量监测?一次还是二次? 其次,应根据工程实际情况,预测并确定仪器的量程、范围;根据仪器量程范围、工程对监测精度的要求以及相关规范规定,确定仪器精度等级。 第三,选择仪器型式。仪器型式的选择最重要的是仪器的可靠性,在可靠性的前提下,再考虑仪器的精确度或准确度。 第四,技术经济评价。对不同型式的仪器、不同厂家的同类型仪器,比较其采购、运输、室内检测/校准、现场检验、安装方式、可维护性及维护程序、施工期观测及数据处理、(如建立自动化监测系统)占用系统资源等,进行技术、经济评价,选择合适的性价比。 3、监测设施的布设 首先,划分监测项目。 其次,根据监测项目及监测目的,确定监测设施安装/埋设位置(包括平面坐标、高程及相应层位),仪器、设施、设备工程编号(唯一性),并以表、平面图、断面图等形式逐一标注。 4、监测设施的安装/埋设 根据坝的性质(混凝土坝/土石坝?在建坝/已建坝?混凝土坝『重力坝、拱坝、砌石坝』?土石坝『均质坝、心墙坝<宽心墙坝、窄心墙坝?>、斜墙坝、堆石面板坝、复合坝型』?)设计合适的安装方式及施工工艺。 5、监测仪器选型原则 ①监测仪器应采用可靠性好,并经过长期现场考验的仪器设备;大坝安全监测和管理自动化系统,推荐采用分布式自动化数据采集系统。 ②监测仪器应尽可能实现人工比测。

大坝安全监测系统解决方案

大坝安全监测系统解决方案(此文档为word格式,下载后您可任意修改编辑!)

目录 第1章概论 (2) 1.1系统概览 (2) 1.2历史回望 (2) 1.3现状分析 (3) 1.4目标阐述 (3) 第2章总体设计 (4) 2.1设计原则及依据 (4) 2.2系统体系结构 (5) 2.3信息流程 (8) 2.4系统组成 (9) 2.5系统功能 (10) 第3章信息采集系统 (11) 3.1需求分析 (11) 3.2技术解决方案 (12) 第4章通信网络系统 (17) 4.1测控单元和监测中心之间的通信 (17) 4.2监测中心和监测分中心之间的网络.......................................................... 错误!未定义书签。第5章软件系统. (22) 5.1建设原则 (22) 5.2技术解决方案 (24)

第1章概论 1.1系统概览 大坝作为特殊的建筑,其安全性质与房屋等建筑物完全不同,大坝安全出现问题,将会引发大坝下游一定范围的人员和财产、环境损失。在加强水利建设的大环境下,提高水工建筑物的安全,特别是提高大坝安全监测水平,保证水库大坝的安全,是关系到国家利益和社会稳定的头等大事。大坝安全监测系统主要由观测传感器、遥测数据采集模块、工业控制网络和自动监测管理软件系统组成,通过计算机的工作,能够实现大坝观测数据自动采集、处理和分析计算,对大坝的性态正常与否作出初步判断和分级报警为监测对象提供早期安全预警报告的自动化系统。建立大坝安全自动监测系统,可以缩短数据采集周期,提高大坝观测的工作效率,减轻劳动强度;并能充分利用水库调蓄能力,使其在防洪和供水两方面发挥最大的效益,同时可提高水库管理水平,及时发现大坝隐患,为水库的安全运行提供有力的保障。 1.2历史回望 大坝安全监测系统在西方发达国家已有30多年的历史。如法国要求对高于20 m的大坝和库容超过1500万m3的水库,均需设置报警系统,并提出垮坝后库水的淹没范围、冲击波到达时间、淹没持续时间和相应的居民疏散计划等。而葡萄牙大坝安全条例(1990)也要求大坝业主提交有关溃坝所引起洪水波传播的研究报告,编制下游预警系统、应急计划和疏散计划。美国的《联邦大坝安全导则》和加拿大的《大坝安全导则》都强调要求采取险情预计、报警系统、撤退计划等应急措施,以便万一发生不测时,将损失减少到最小程度。1976年美国92.96 m高的堤堂坝(Teton)失事前,大坝管理机构根据大坝安全监测系统监测到的事故的发展状况及时通过下游的行政司法当局向可能被淹的群众发出警报,有组织地进行人员疏散,尽管大坝失事后堤堂河和斯内克河下游130km,约780 km2的地区遭洪水肆虐,造成25000人无家可归、损失牲畜约2万头的巨大物质损失,但人员死亡只有11人,初步体现了大坝安全监测系统的重要意义。

湖北省水库大坝安全监测现状及对策

第28卷第8期帅移海等:湖北省水库大坝安全监测现状及对策 ·71 · 有简易雨量筒,开展了坝前雨量观测。漳河水库(大1型)布设了位移观测点414处,坝体、坝基及绕坝孔隙水压力监测95处,渗流量监测6处,上下游水位监测4处,降雨量监测2处,大气压力监测2处,并通过系统开发,形成了数据采集及传输、数据库及管理、大坝安全实时评价、实时调度决策支持、系统信息管理等五大系统,为水库安全管理和风险管理提供了科学依据。漳河水库大坝安全监测系统通信结构框图如图1所示。 2水库大坝监测存在的问题 (1)监测设施。湖北省小型水库除少部分配有坝前水位尺、坝后量水堰及坝址雨量筒外,大多数小型水库无任何大坝安全监测设施。多数中型水库安全监测仍采用人工观测,尚未建成自动化监测系统,难以确保在恶劣条件下数据采集的及时可靠。已建成的监测设施中,有的设施精度低、可靠性差,如个别水库在大坝渗流观测的选型上,使用仅有一道机械密封、用于临时性工程监测的弦式传感器,埋设1a后便陆续损坏;有的监测系统布置不合理,缺少某些必要的监测项目;有的甚至因施工期间或移交前期管理混乱,对设施的保护不够,造成人为的意外破坏或损坏。少数大型水库除监测仪器存在上述问题外,在自动化监测系统建成后,因规划不周、仪器稳定性差及防雷系统布设不合理等原因,建成后不足设计使用年限即导致数据自动采集系统瘫痪,无法正常开展监测。此外,各管理单位使用的自动化监测软件的兼容性不强、监测软件版本较多、操作使用方式不一、管理维护成本高、统筹难度大,加之软件系统更新换代速度快,建成后的大坝安全监测系统也难以与市场同步升级。 (2)技术力量。大坝安全监测设计、监理、施 工及运行管理等行业技术力量不足。目前,湖北省大坝安全监测的设计与施工大多以信息化专业较强的公司为主,水工和水文知识较为缺乏,有的项目设计中出现布设不当,如坝前位移观测点布设低于正常蓄水位;有的对仪器量程的选择不合理,导致采集数据精度不够等。有的施工单位无建设大坝安全监测系统的实际经验,埋设队伍不够专业,不能正确的安装埋设各类设备,造成埋设高程不准、埋设中关键性指标漏记等。而建设监理单位工作人员多以水利工程专业为主,缺乏计算机系统集成、电子工程等专业的监理经验,在实施监理过程中采用水利工程监理方式开展大坝安全监测建设的监理。在运行管理方面,大中型水库虽基本均成立了专管机构,落实了编制和经费,大多水库亦配备了大坝安全监测管理人员,但由于水库大多地处偏远、大坝安全监测条件艰苦、待遇低、要求高,人才流失严重。且大中型水库从事专职观测人员中,多数未受专业系统培训,年龄结构日趋老化,监测技术人才缺乏突出。湖北省小型水库多为乡镇管理,大多无专管机构或未落实专管人员,大坝安全监测主要以防汛保安为主,仍处于初级阶段。 (3)资料分析。有的水库仅有观测资料,无分析资料;有的仅停留于日常资料月报表的整编及年度观测结果的初步分析,评价深度亦仅停留于短期定性分析,缺乏系统性与综合性,观测资料分析结果不能完整、客观地反映大坝安全状况;有的因监测资料自身不系统、不完整,加之监测结果精度不够,观测资料无法分析水库工程运行状态的优劣。另外,由于水库大坝各具异性,虽大坝安全监测资料分析的理论、方法和大坝安全管理信息系统等新技术发展较快,但大多未达到实时监控的程度,也未能得出令人信服的安全监测指标。 图1 漳河水库大坝安全监测系统通信结构框图 Fig.1 StructurediagramofdamsafetymonitoringsystemofZhangheReservoi r

某水库大坝安全鉴定综合评价报告(doc 15页)

某水库大坝安全鉴定综合评价报告(doc 15页)

XX水库大坝安全鉴定综合评价报告 一 XX水库基本情况 1工程概况 1.1XX水库位于浙江省宁波奉化市境内,坝址位于奉化江支流剡江上游,属甬江流域,距宁波市47km,在溪口镇上游7km处。坝址以上集雨面积176.0km2,总库容1.503亿m3。水库保护坝址以下溪口镇、萧王庙和江口街道约15万人口,剡江两岸10万亩农田,以及甬温高速公路等。配合横山、皎口水库等工程解决奉化市、鄞州区东南和镇海区共67.4万亩农田的灌溉及城市供水,减轻鄞奉平原40余万亩农田的洪涝威胁。是一座以防洪、灌溉为主,结合发电、供水、养殖、旅游等综合利用的大(2)型水利枢纽工程,是奉化江流域三大水利骨干工程之一。 枢纽工程由拦河大坝、坝顶溢洪闸、泄洪放空洞、发电输水洞、坝后式电站等组成(枢纽平面布置见附图1)。 工程于1978年5月动工兴建,1985年9月工程竣工验收。大坝于1983年5月封孔蓄水,电站于1984年4月30日并网投运。工程管理机构为奉化市XX水库管理局。1.2枢纽工程主要特性指标: 1.2.1工程等级与防洪标准 XX水库总库容1.503亿m3,按《防洪标准》GB50201-94和《水利水电工程等级划分及洪水标准》SL252-2000确定本工程规模为大(2)型。水库枢纽工程为Ⅱ等工程,主要建筑物拦河坝、溢洪闸、泄洪放空洞、发电输水洞为2级建筑物,电站为3级建筑物。水库防洪标准按100年一遇洪水设计,10000年一遇洪水校核,保坝洪水为PMF,下游防洪标准为20年一遇。本次安鉴洪水复核设计标准为100年一遇,校核标准为10000年一遇。 1.2.2 水库水位(黄海基面)与相应库容 1.2.3 主要工程建筑物特征参数

【大坝方案】水库工程大坝安全监测方案

XXX水库 大坝安全监测工程 施 工 方 案 工程名称: XXXXXXXXXXXXXXXX水库工程 合同编号: 承包人: XX建设工程有限公司 XX水库工程项目部 项目经理: 日期: 20XX 年 XX 月 XX 日

目录 1、工程概况 (1) 2、监测工作内容 (1) 3、编制依据 (1) 4、仪器设备采购、检验、及保管 (2) 4.1 主要仪器设备选型 (2) 4.2 仪器设备采购 (2) 4.3电缆连接 (2) 5、监测仪器程序和埋设方案 (3) 5.1 施工程序 (3) 5.2监测仪器埋设方案 (3) 6、观测 (10) 6.1 总则 (10) 6.2施工期观测及成果提交.........................错误!未定义书签。 7、监测资料整理分析和反馈 (13) 7.1 资料搜集 (13) 7.2 资料整理分析 (14) 7.3监测资料反馈 (14) 8、资源配置.........................................错误!未定义书签。 8.1 主要施工机械设备计划表.....................错误!未定义书签。 8.2 主要施工人员配置计划表.....................错误!未定义书签。 9、施工质量控制措施 (16) 10、安全、文明施工管理 (17) 11、环境保护措施 (18) 12、施工进度计划 (18) 附件及附表1~9 ................................................ 19~29

1、工程概况 万营水库位于珠江流域红水河水系北盘江的一级支流万营河上,隶属水城县新街乡马路、大元村。水库坝址距水域县城约75KM,距新街乡驻地约lOKM乡村公路通往库区左岸炭山小学附近,交通较为方便。 万营水库工程任务是灌溉、乡镇供水,可向发耳乡提供灌溉水量205万m3,乡镇供水量185万m3。 万营水库正常蓄水位1575m,总库容为313万m3,正常蓄水位以下库容为252万m3,兴利库容221万m3,年可供灌溉水量205万m3(P=80%)、乡镇供水185万m3(P=95%)。工程规模为小(Ⅰ)型,工程等别为Ⅳ等。 本工程主要建筑物有万营水库土坝(坝高41.1m,坝长95.64m)、岸边开敞式溢洪道、右岸导流洞(洞型为城门洞型,洞长227m)兼环境生态放水管及放空管、罗家坝重力坝(坝高10.5m,坝长20m)、炭山取水隧洞(洞型为城门洞型,洞长1559m)及从万营水库引水至马场水库的东瓜林输水隧洞(洞型为城门洞型,洞长4787m)。 2、监测工作内容 万营水库大坝安全监测项目主要包括:大坝变形观测、坝基渗压计、测压管内渗压计渗透压力观测等。 本监测工程主要工程量详见表1-1。 表1-1 大坝监测项目工程量汇总表 主要工作内容有:监测仪器设备的采购、检验、安装埋设、调试、电缆牵引、看护保管、

大坝安全监测的作用及发展

大坝安全监测的作用及发展 摘要:本文对大坝为主的水工建筑物安全监测的内容作了简单的概括,着重分析了其对于水工建筑的作用及意义,并对安全监测技术的发展作出了分析和展望。 关键词:大坝监测;数据观测;技术展望 大坝安全监测是人们了解大坝运行状态和安全状况的有效手段和方法。它的目的主要是了解大坝安全状况及其发展态势 , 是一个包括由获取各种环境、水文、结构、安全信息到经过识别、计算、判断等步骤 , 最终给出一个大坝安全程度的全过程。此过程包括 : 通过各种信息的获取、整理和分析 , 给出大坝安全评价 , 控制大坝安全运行 ; 校核计算参数的准确性和计算方法的实用性 ; 反馈施工方法的正确性 , 改进施工方法和施工控制指标 ; 为科学研究提供现场资料 , 检验各种理论、校正各种模型和参数 , 协助找出实测规律和辅助成因分析等。 1 大坝的监测内容 1.1 检查观测 检查监测是利用人员本身通过观察、手摸或者利用一些简单的工具对建筑物进行简单的观测。使用仪器观测虽然可以得到更为准确的信息,但一个建筑物的仪器安设点数是有限的,太多的仪器设备不

利于经济方面的考虑,另外水工建筑物裂缝、渗水等缺陷部位也不一定反生在仪器设备的观测点上,所以人员的检查观测具有相当重要的地位。有利于及时的弥补仪器的不足,及时的发现异常情况的发生。检查观察主要检测建筑物有无裂缝,在坝脚、迎水坡部位有无塌陷、流土和沼泽化的现象,在伸缩缝部位是否有渗漏,混凝土表面有没有松软、侵蚀的危害,有泄水作用的部位检查有无磨损、剥落金属部位的焊缝、铆钉等是否生锈变形。 1 . 2 仪器的量测 仪器量测既是在相应的建筑部位预设仪器设备,通过规律性的采 集数据,来判定建筑物的工作状态。 (1)变形观测 变形观测是原型观测中较为重要的一部分,要对土工、混凝土、土坝等建筑物观测水平位移和垂直位移、地基的固结沉降情况、伸缩缝的变形等。 (2)渗透观测 对于土坝类的渗透观测,浸润线的位置变化情况可以通过孔隙水 压力仪来确定,根据结构形式、工程等级以及施工方法和地质情况等定出观测断面,观测断面要能够反应出主要的渗流情况和问题可能发生的地点,根据断面的大小确定测量点数。其他还包括渗流量的观测、绕坝渗流观测、坝基渗压观测、土坝孔隙水压力观测以及渗水透明度观测。对混凝土建筑物的渗透观测还要包括坝基场压力观测和混凝土内部渗透渗透压观测。

水库大坝安全评价报告

云县小(二)型水库 大坝安全评价 临沧市云县大口水库 大坝安全评价报告 水利水电勘测设计队 二O一五年八月

水库管理单位:水利水电水土保持管理站安全评价单位:水利水电勘测设计队 批准: 核定: 校核: 编写:

目录 1、概述 (1) 1.1安全评价工作概况 (1) 1.2工程概况 (1) 1.3 工程地质与水文地质条件 (2) 1.4工程建设简介 (7) 2、现场安全检查及存在的主要问题 (9) 2.1大坝 (9) 2.2输、泄水建筑物 (9) 2.3近坝库岸 (9) 2.4闸门及启闭机等金属结构 (10) 2.5检查小结 (10) 3、工程质量评价 (11) 3.1工程施工及现状质量评价 (11) 3.2 综合质量评价、质量等级 (12) 4、大坝运行管理评价 (13) 4.1水库的管理机构 (13) 4.2大坝运行 (13) 4.3大坝维修 (15) 4.4大坝安全监测 (15) 4.5运行管理综合评价、等级 (15) 5 防洪标准复核 (17) 5.1 基本情况 (17) 5.2 洪水的标准、方法及计算代表期的确定 (24)

5.3 设计暴雨 (24) 5.4. 设计洪水 (28) 5.5调洪演算 (29) ,5.6坝顶高程复核 (30) 6、结构安全评价 (33) 6.1大坝变形描述 (33) 6.2大坝抗滑稳定分析及评价 (33) 6.3近坝库岸及结合部稳定安全评价 (39) 6.4输泄水建筑物结构稳定安全评价 (39) 6.5大坝结构安全评价、安全等级 (40) 7、渗流安全评价 (42) 7.1原设计、施工的渗流控制措施评价 (42) 7.2大坝现状渗流情况评价 (42) 7.3输泄水建筑物渗流安全评价 (46) 7.4大坝渗流安全综合评价、安全等级 (47) 8、抗震安全复核 (48) 8.1地震基本烈度、抗震设防烈度 (48) 8.2设计标准 (48) 8.3大坝抗震安全复核 (48) 8.4输泄水建筑物抗震安全复核 (49) 8.5大坝抗震稳定综合评价、安全等级 (49) 9、金属结构安全评价 (50) 9.1闸门安全评价 (50) 9.2启闭机安全评价 (50) 9.3金属结构安全评价、安全等级 (50)

大坝安全监测

论述大坝安全监测分析与数值模拟在水工结 构中的应用及新进展 一、大坝安全监测分析 1.大坝监测的内容 大坝安全监测的范围应根据坝址、枢纽布置、坝高、库容、投资以及失事后果等确定,根据具体情况由坝体、坝基、坝肩,推广到库区及梯级水库大坝;监测的时间应从设计时开始至运行管理;监测的内容包括坝体结构、地质状况、辅助机电设备及消洪泄能建筑物等。 1.1大坝安全监测的分类 1.1.1 仪器监测 仪器监测是选择有代表性的部位或断面,按需要使用或安装、埋设仪器设备,对某些物理量进行系统的观测,取得反映建筑物性状变化的实测数据。仪器监测的项目主要有“变形监测”、“渗流监测”、“应力、应变及温度监测”和“环境量监测”。随着监测范围的扩展,诸如水力学监测、地震监测、动力监测等一些新兴监测项目不断涌现。 1.1.2 巡视检查 监测技术人员通过目视或借助一些专用设备(如在某些部位安装摄像头,辅设人工巡视专用栈道等)对建筑物现场包括坝体、坡脚、坝肩、廊道、排水设施、机电设备、船闸、航道、高陡边坡等部位进行查看、比较、分析,进而发现建筑物在施工、挡水、运行中可能危及工程安全的异常现象。它弥补了监测仪器仅埋设在指定部位的不足。而且能直观

地发现某些监测仪器不易监测到的非正常现象.提供有关建筑物安全等一些重要信息,是监测系统的组成部分。巡视检查和仪器监测是不可分割的。巡视检查也要尽可能利用当今的先进仪器和技术对大坝特别是隐患进行检查,以早发现早处理。如土石坝的洞穴、暗缝、软弱夹层等很难通过简单的人工检查发现,因此,必须借用高密度电阻率法、中间梯度法、瞬态面波法等进行检查.从而完成对其定位及严重程度的判定。因此,在大坝监测中多数采用两种监测手段结合起来的方法。 1.2大坝安全监测的目的和意义 1.2.1掌握大坝的工作状态。 指导工程的运行管理通过大坝的安全监测及时获取大坝安全的第 一手资料.掌握大坝工作状态,实现对大坝的在线、实时安全监控。在发生异常现象时,分析产生的原因和危险程度,预测大坝的安全趋势。及时采取措施,把事故消灭在萌芽状态中,保证工程安全。 1.2.2 验证坝工设计理论和选用参数的合理性 到目前为止。因实际情况复杂多变,水工建筑的设计尚不能完全与实际情况相吻合,作用在建筑物上的荷载除水压力和自重力,都难以精确计算。因此在水工设计中不得不采用一些经验系数和简化公式进行计算。通过大坝安全监测认识监测物量变化规律,检验坝工基本理论的正确性、设计方法和计算参数的合理性。验证施工措施、材料性能、工程质量的效果。

大坝安全监测中存在的问题及对策

大坝安全监测中存在的问题及对策 发表时间:2019-07-16T09:24:32.633Z 来源:《工程管理前沿》2019年第08期作者:王杨 [导读] 针对大坝安全监测存在的问题,需要有关单位立足于多方面、全过程,制定解决方法、引进先进技术从而协调监测问题,保证大坝的安全、稳定运行。 黑龙江省松花江航运枢纽建设管理中心黑龙江省150026 【摘要】:大坝安全监测是工作人员掌握大坝运行状态、稳定性的主要途径。针对大坝安全监测存在的问题,需要有关单位立足于多方面、全过程,制定解决方法、引进先进技术从而协调监测问题,保证大坝的安全、稳定运行。 【关键词】:大坝安全监测;问题;对策 引言 大坝安全监测设施重在加强保护和管理,这样才能保证设施的完好率和资料的连续可靠性。要重视计算机在水工管理中的运用,使观测资料的计算、整理整编和分析实现微机管理,以提高工作效率。 1、大坝安全监测过程中存在的问题 1.1监侧设施陈旧 由于各个地方的地域性会有差异,所以每一个地方的大坝也就存在着不同的检侧规则以及具体方案。时代在不停的进步和发展,有些方案还是停留在很久以前,跟不上科技的日新月异。所以目前很多大坝的安全检侧存在很大的问题,有待于我们去解决。这些问题主要有:①监侧设施不够先进,无法使用;②没有考虑地域性差异监测项目不够完善。 1.2大坝监侧依靠人工 由于科技的普及需要时间,现在很多的水库大坝还是依靠人工来采集数据,但是人本身对于大自然就存在很多不可抗拒的因素,所以依靠人工是无法得到准确有效的数据。当然也有很多地区已经用上了机器化的监侧系统,不仅处理信息高效,而且速度也特更快,得到了很多地方的青睐。但是每一个地区的具体大坝情况都是不一样的同样的机器放在这个地区可以运行的很好,但是一旦转移了地区,机器就会出现各种各样我们预想不到的问题,如果经常的出现意外,就会影响我们的观测数据的准确性。 1.3监侧数据分析浮于表面 通过前面一系列的人工和机器进行监侧,我们会得到很多数据。整理分析数据主要是包括日、月以及年度综合分析。数据整理出来之后还是远远不够的,我们需要对此进行深层次的挖掘,找出真正影响的因素是什么。目前的分析大多数都是浮于表面,而缺乏深度,使得即使拥有了观侧数据,却依然得不到真实的答案。 我们都知道,只有真实的监侧数据才能放映出真实的情况。如果监侧出的数据都不够真实,那么我们再努力的研究和分析都是无济于事的。大坝安全监侧是一个大工程,监侧数据的不真实所带来的后果是不堪想象的。不仅整个工程会收到影响,分析出来的数据会被很多部门使用,将导致大范围的影响。不过由于监侧数据的过程是复杂而又艰辛的,所以需要工作人员具有吃苦耐劳的精神、专业的知识积累和丰富的实战经历。 1.4数据采集不够及时 (1)由于不精通监侧设备,采集数据时容易漏掉许多关键的数据。每个基地的监侧设备都不尽相同,只有具有长期实战经验的技术人员才能够胜任这些工作。(2)数据采集结束后,没有及时的进行专业分析。数据采集后,应该及时的进行分析,与历史数据对比,找出问题所在。(3)监侧设备运行出现间歇性故障时,没有及时的发现,会严重导致采集的数据过于片面。 2、大坝安全监测对策 2.1稳步推进大坝安全监侧系统自动化建设 科技的快速发展使得监侧系统自动化也成为了现在主流的监侧方式,单纯依靠人工会产生太多的误差。具体落实方案,应注意下面这些:①机器自动化的成本不低,不适合大面积的开展,应先选择几个地方,慢慢进行试验;②虽然机器监侧和人工监侧相比较有很多的优点,但是我们也不能一味的相信机器,机器也有出现故障的时候;③监侧系统自动化看起来简单,面对不同的地区也会产生难以实现的问题,在研究的过程中要充分的结合地域因素和不可抗力因素。 2.2加深大坝安全监测实施强度 大坝安全监测系统价值很高,一般会长时间放置于相同的地方,但是在一定时间段内监测的数据可能是非常稳定的,时间久了,这些稳定的数据也就失去了存在的价值。所以要在严肃的分析和探讨之后,并且要经过上级部门的批准,对我们监测数据的机器进行全方位的整修。有必要的项目就留下,没有使用价值的项目就丢弃,对于我们在后期的整体、分析监测数据中会减少很大一部分的压力和工作强度,而且这样经过改善后得到的数据也更加的具有代表性。 每一个进行监测监测机器一般是放置于露天环境中,很容易遭到人为的破坏,进而影响我们获取数据和进行后续的工作。首先要做好公共宣传工作,通过当地的政府和有关部门来加大宣传力度和公信力,并且对于破坏机器的行为进行一定的处罚。可以让当地的居民清楚的明白监测机器的责任重大,自己的行为也是影响巨大。可以通过设立相关宣传栏、走进居民家中进行实地访谈等措施来提高居民保护机器的意识。 的机器设备都是付出了很多的心血,价格一般也很高。不仅要学会如何正确使用相关仪器,还要知道如何进行保管,监测设备的如果出现质量问题会对我们获取数据产生很多阻碍,对于监测仪器要建立严苛的保护制度。首先应该创建适合机器本身工作的一个外部环境,找到可靠的人员进行保护,要不定时的对所监管的机器进行抽查、维护,出现问题可以及时的解决,使得监测设备一直保持正常,以备不时之需。 在平时的大坝监测工作中,会找专门的人来负责,相关负责人员不要产生太大的调动,对于数据记录以及整理都会产生不利的影响。要保证监测数据可靠完整,在每一次的监测结束之后就开始记录,这样出现问题也可以及时的解决。 2.3强化监侧资料的分析 (1)在以前的监侧工程中,有很大一部分是人为因素的影响,使用了自动化系统之后,我们得到的监侧数据以及分析的结果都比以往

水库大坝安全评价报告

水库大坝安全评价报告

1 大坝安全综合评价 1.1工程概况 XX水库地处XX市XX区XX镇XX村河段,距XX镇3km,距XX区约6.5km,有简易公路直达坝址。 XX水库属湘江水系,位于XX一支流上游。坝址以上控制集雨面积1.2km2,干流长0.8km,干流平均坡降6‰。水库正常蓄水位250.25m,正常库容23×104m3,总库容29.32×104m3(本次复核),是一座以灌溉为主,兼顾防洪、养殖等综合效益的小(2)型水利工程。XX水库灌溉面积1200亩。枢纽主要由大坝、溢洪道、输水涵管等建筑物组成。 大坝为均质土坝,坝顶高程252.33m,坝顶轴线总长90.0m,坝顶宽3.6m,最大坝高16.7m。上游坝坡设有一级平台,平台高程245.4m,坝坡坡比:坝脚至一级平台1:3.35,一级平台至坝顶1:2.66;下游坝坡设有二级平台,一级平台高程246.8m,二级平台高程241.9m,坝脚至二级平台坡比1:7.5,为排水棱体,二级平台至一级平台边坡坡比1:2.15,一级平台至坝顶边坡坡比1:2.36,内外无护坡。 溢洪道位于右坝肩,为正槽式宽顶堰,堰顶高程250.25m,溢流前缘净宽3.0m,下游无消能设施。 灌溉输水设施位于左坝端,由输水卧管和涵管组成。卧管为浆砌石结构,全长40m,直径Φ=1.0m,共有7个孔口直径为0.25m的放水孔,由铸铁翻板闸门控制放水。涵管为浆砌块石圆形涵,直径为0.5m,全长75m,进口底板高程240.03m,出口底板高程237.44m,设计灌溉流量0.1m3/s。 水库自投入运行以来,充分发挥了防洪保安、灌溉、养殖等作用,对促进当地经济的发展作出了巨大的贡献,社会效益和经济效益十分显著。 1.2现场安全检测及存在的主要问题 XX水库于1958年开工, 1959年竣工并投入运行。由于工程是当地数千村民集体填筑而成,属于非专业队伍施工。施工队伍庞大,又缺少专业技术人员的现场指导,因此大坝填筑时施工质量无法控制,存在坝基清基不彻底、坝体填筑碾压欠密实等施工缺陷。水库投入运行后,出现了坝体散浸与渗漏问题、坝体与坝基接触界面散浸与渗漏、坝基渗漏、输水设施破裂等险情隐患,大坝一直带病工作,近年来汛期与正常蓄水位附近运行时坝体散浸问题更为严重,水库一直处于控制蓄水位的带病运行状况,无法正常发挥水库的效益。为鉴定水库大坝的安全状况,确保工程安全运行,我院受业主委托,对XX水库大坝进行

水库大坝安全监测系统

水库大坝安全监测系统 1. 监测内容、方法及仪器 a. 大坝区降雨强度和雨量监测 采用翻斗式雨量计测量降雨量和降雨强度。 b. 大坝浸润线及坝基渗压监测 通过埋设渗压计来观测坝体的渗流压力分布情况和浸润线位置以及坝基渗 流压力分布情况。 c. 大坝上下游水位监测 通过安装浮子式、振弦式水位计观测大坝的上下游的水位。 d. 大坝坝体位移监测 采用全站仪自动极坐标测量系统监测大坝变形,内外业一体化的工程测量系统可实现无人值守及自动监测。 e. 大坝渗流量监测 在大坝下游设置量水堰,安装量水堰计以监测大坝渗流量。 2. 传感器 可根据实际需求,在监测范围内安装各种传感器。一般常用的有:渗压计、混凝土应变计、应力计、多点位移计、测缝计、水位计、钢筋计、倾角计、测力计、气压计、温度计、压力盒等。 3. 自动监测系统 a. 系统简介 随着计算机技术和电测技术的发展,使得以电测传感器技术为基础的监测项目能实现全天候自动监测。同样,监测系统也具备人工观测条件,通过观测人员携带读数仪或笔记本电脑到各监测站读取数据,并可由人工输入计算机,进入相关数据库。 连续的自动监测可以记录下监测对象完整的数据变化过程,并且实时得到数据,借助于计算机网络系统,还可以将数据传送到网络覆盖范围内的任何需要这些数据的部门。 b. 系统组成 本系统由三部分组成: 1)现场量测部分 2)远程终端采集单元MCU 3)管理中心数据处理部分 c. 系统网络结构 水库大坝安全监测数据采集系统采用分层分布开放式结构,运行方式为分散控制方式,可命令各个现地监测单元按设定时间自动进行巡测、存储数据,并向安全监测中心报送数据。系统MCU之间以及MCU与监控计算机之间的网络通信采用光缆。 安全监测数据采集系统可通过光缆将位于本工程各个监测站内的监测数据 采集上来,然后通过光缆传送到位于管理所的监测中心内的监控主机内。

大坝安全监测设计(推荐方案)

1 设计条件 1.1 工程概况 1、地理位置 马槽河水库工程位于巴东县水布垭镇,为桥河流域水电开发的龙头水库,为充分利用水库形成的水头发电,在坝后设置马槽河电站。桥河又名磨刀河,系清江中游左岸支流、长江二级支流。桥河流域位于恩施自治州巴东县南部,地处巫山山脉南麓的鄂西南山区。流域地理位置为:东径110°12′~110°23′,北纬30°24′~30°40′。坝址位于已建成的桥河一级电站坝区上游,距巴鹤公路、野三关镇的距离分别为16km、26km。工地从左岸经八字岩新建公路到野三关15km。 2、工程特性 马槽河水库工程为流域龙头水库,主要任务是调节流域水量分布,向下游两级电站供水发电。桥河流域流域总面积209.4km2,干流河道全长37.50km,总落差1150m,河道加权平均坡降32.78‰。坝址位于巴东县水布垭镇桥河尹家坪河段,马槽河水库坝址控制流域面积139.9km2,干流河道长22.2km,加权平均坡降21.66‰。坝址处多年平均流量3.11m3/s,多年平均年径流量9821万m3。P=2%洪峰流量:693.0m3/s;P=0.33%洪峰流量:914.5m3/s。 本工程属Ⅳ等小(1)型工程,工程由挡水建筑物、泄洪建筑物、放水(放空)建筑物等组成。挡水建筑物为混凝土面板堆石坝,最大坝高56.80m,泄水建筑物为左岸岸边开敞式正槽溢洪道。 1.2 枢纽布置 枢纽主要由大坝、溢洪道、放空洞(由导流洞改建)、发电引水隧洞、电站厂房、开关站、输变电系统、管理设施等建筑物组成。 马槽河水库工程挡水建筑物为混凝土面板堆石坝,本工程坝顶无特殊交通要求,坝顶宽取5.5m,为减少坝体回填工程量,在坝顶上游侧设“L”形防浪墙,坝顶高程832.30,坝轴线长110.14m,防浪墙墙顶高程833.50m。防浪墙墙高5.0m,埋入堆石3.8m,高出坝顶1.2m,墙顶宽0.30m,墙底高程为828.50m,高出正常蓄水位1.00m。河床趾板建基面高程775.50m,最大坝高56.80m。上游坝坡1:1.4,下游坝坡1:1.3,坝体总填筑方量25.02

大坝安全监测的意义和方法

大坝安全监测的意义与方法 【论文提要】:从分析影响大坝安全的各种因素入手,拓宽了大坝安全监测的概念,即大坝安全监测应在时空上将影响大坝安全的因素考虑在内。提出:(1)大坝安全监测要有明显的针对性;(2)重视对溃坝的分析;(3)大坝安全监测应和设计及大坝安全定检结合起来,以方便资料分析和相互校核;(4)加强对大坝安全监测(包括监测系统),特别是自动化系统的效益评估,要求大坝安全监测系统成为水库运行调度的依据,真正为提高水库效益服务;(5)通过网络技术,实现大坝安全监测的网络化,以方便经验交流,提高监测技术。 【关键字】大坝安全检测意义方法 大坝是一种特殊建筑物,其特殊性主要表现在如下3个方面:①投资及效益的巨大和失事后造成灾难的严重性;②结构、边界条件及运行环境的复杂性;③设计、施工、运行维护的经验性、不确定性和涉及内容的广泛性。以上特殊性说明了要准确了解大坝工作性态,只能

通过大坝安全监测来实现,同时也说明了大坝安全监测的重要性。事实上,大坝安全监测已受到人们的广泛重视,我国已先后颁布了《水电站大坝安全检查实施细则》、《混凝大坝安全监测技术规范》、《水库大坝安全管理条例》、《土石坝安全监测技术规范》等。同时,国际大坝会议也多次讨论过大坝安全问题。 大坝安全监测是人们了解大坝运行性态和安全状况的有效手段。随着科学技术的发展、管理水平的提高及人们观念的转变,大坝安全监测的内涵也进一步加深。为此,笔者从分析影响大坝安全的因素入手,对大坝安全监测的若干问题进行探讨。 一、影响大坝安全的因素 影响大坝安全的因素很多,由于设计洪水位偏低和泄洪设备失灵引起洪水漫顶而失事;由于地质条件复杂,基础失稳和意外结构事故;由于地下渗漏引起扬压力过高、渗流量增大、渗透坡降过大引起;由于大坝老化、建筑材料变质(开裂、侵蚀和风化)以及施工质量等原因。 大坝失事的原因很多、涉及范围也很广,但大致可以分成3类。第一类是由设计、施工和自然因素引起,

大坝安全监测的作用及建议

大坝监测的作用及建议 【提要】从分析影响大坝安全的各种因素入手,在时空两个方面拓宽了大坝安全监测的概念,即大坝安全监测应在时空上将影响大坝安全的因素考虑在内。在此基础上,提出:(1)大坝安全监测要有明显的针对性;(2)重视对溃坝的分析;(3)大坝安全监测应和设计及大坝安全定检结合起来,以方便资料分析和相互校核;(4)加强对大坝安全监测(包括监测系统),特别是自动化系统的效益评估,要求大坝安全监测系统成为水库运行调度的依据,真正为提高水库效益服务;(5)通过网络技术,实现大坝安全监测的网络化,以方便经验交流,提高监测技术。 【关键词】大坝安全监测;时空;运行管理;网络 众所周知,大坝是一种特殊建筑物,其特殊性主要表现在如下3个方面:①投资及效益的巨大和失事后造成灾难的严重性;②结构、边界条件及运行环境的复杂性;③设计、施工、运行维护的经验性、不确定性和涉及内容的广泛性。以上特殊性说明了要准确了解大坝工作性态,只能通过大坝安全监测来实现,同时也说明了大坝安全监测的重要性。事实上,大坝安全监测已受到人们的广泛重视,我国已先后颁布了差阻式仪器标准及监测仪器系列型谱、《水电站大坝安全检查实施细则》、《混凝大坝安全监测技术规范》、《水库大坝安全管理条例》、《土石坝安全监测技术规范》等,同时,国际大坝会议也多次讨论过大坝安全问题[1]。 大坝安全监测是人们了解大坝运行性态和安全状况的有效手段。随着科学技术的发展、管理水平的提高及人们观念的转变,大坝安全监测的内涵也进一步加深。为此,笔者从分析影响大坝安全的因素入手,对大坝安全监测的若干问题进行探讨。 1影响大坝安全的因素 影响大坝安全的因素很多,据国际大坝会议“关于水坝和水库恶化”小组委员会记录的1100座大坝失事实例,从1950年至1975年大坝失事的概率和成因分析中得出大坝失事的频率和成因分别为:30%是由于设计洪水位偏低和泄洪设备失灵引起洪水漫顶而失事;27%是由于地质条件复杂,基础失稳和意外结构事故;20%是由于地下渗漏引起扬压力过高、渗流量增大、渗透坡降过大引起;11%是由于大坝老化、建筑材料变质(开裂、侵蚀和风化)以及施工质量等原因;12%是不同的特有原因所致。 通过上面的数值可以作如下分析:大坝失事的原因很多、涉及范围也很广,但大致可以分成3类。第一类是由设计、施工和自然因素引起,它没有一个从量变到质变的过程,而是一旦大坝建成就已确定了的,如设计洪水位偏低、混凝土标号过低、未考虑地震荷载等;第二类是在运行、管理过程中逐步形成的,有一个从量变到质变的发展过程,如冲刷、浸蚀、混凝土的老化、金属结构的锈蚀等;第三类是上述两种混合情况,即设计、施工中的不完善在运行中得不到改正,或者说随着时间的推移和运行管理的不力使设计、施工中的隐患发展为破坏。就目前而言,大坝安全监测主要是针对后两种情况。下面将从设计、施工、运行维护3个阶段来讨论,着重强调目前大坝安全监测容易忽视的一些方面。 1.1设计阶段 众所周知,在设计阶段,坝址的确定决定了地形、地质、地震发生频率及水文条件等;枢纽的总体布置、坝型及结构、材料选择和分区、水文资料的收集及洪水演算、地质勘探等都将影响大坝的安全。1980年6月19日,乌江渡水库泄洪水雾引起开关站出现相间短路跳闸、引出线烧断、工地停电,类似情况1980年6月23日在黄龙滩、1986年9月3日在白山等也曾发生。以上事故的发生引起工地停电和泄洪闸门不能开启的严重后果,均是由于整体布置不合理,对泄洪水雾飘移危害认识不够所致。喀什一级大坝位于高地震烈度区,粘土斜墙坝的抗震性能差,而设计又将防渗膜放在斜墙下游侧,形成潜在的最薄弱滑裂面,因而在1985年大地震时,迎水面滑落库中,其原因是坝体结构设计不合理。综上所述,大坝的许多安全隐患是由设计阶段留下的,特别是水文计算及地质勘探和处理两个方面,如纪村坝基红层问题,前期勘探工作不够是重要原因之一[2]。 1.2施工阶段 施工阶段能否贯彻设计意图、确保施工质量,特别是有效解决施工中发现的新问题是确保大坝

相关文档
最新文档