高锰钢的切削加工

高锰钢的切削加工
高锰钢的切削加工

高锰钢的切削加工

高锰钢的切削加工

1.高锰钢有哪几种?其性能如何?

锰含量约为11%~18%的钢称高锰钢。常用的铸造高锰钢ZGMn13的化学成分为:Mn含量11%~14%,c含量1.0%~1.4%,Si含量0.3%~1.0%,P含量<0.03%,S含量<0.05%。

高锰钢是一种耐磨钢,经过水韧处理的高锰钢可以得到较高的塑性和冲击韧性。所谓水韧处理,就是把钢加热到1000℃~1100℃,保温一段时间,使钢中的碳化物全部溶入奥氏体中,然后迅速冷却,使碳化物来不及从奥氏体中析出,从而保持了单一的均匀的奥氏体组织。经过水韧处理的高锰钢称为高

锰奥氏体钢。其力学性能为:σ

=980 MPa,σs=392 MPa,HB210,δ=80%,α

b

=2.94 MJ/m2。

k

高锰钢具有很高的耐磨性,虽然它的硬度只有HB210,但它的屈服点σs 较低,只有σb的40%,因此具有较高的塑性和韧性。高锰钢在受到外来压力和冲击载荷时,会产生很大的塑性变形或严重的加工硬化现象,钢被剧烈强化,硬度显著提高,可达HB450~550,因此有了较高的耐磨性。

高锰钢可分为高碳高锰耐磨钢、中碳高锰无磁钢、低碳高锰不锈钢和高锰耐热钢。几种高锰钢的牌号和性能见表5-1。

2.高锰钢有哪些切削加工特点?

高锰钢锰含量高达11%~18%,具有较高的塑性和韧性,在切削加工中有以下特点:

(1)加工硬化严重:高锰钢在切削过程中,由于塑性变形大,奥氏体组织转变为细晶粒的马氏体组织,从而产生严重的硬化现象。加工前硬度一般为HB200~220,加工后表面硬度可达HB450~550,硬化层深度0.1~0.3 mm,其

硬化程度和深度要比45号钢高几倍。严重的加工硬化使切削力增大,加剧了刀具磨损,也容易造成刀具崩刃而损坏。

(2)切削温度高:由于切削功率大,产生的热量多,而高锰钢的导热系数比不锈钢还低,只有中碳钢的1/4,所以切削区温度很高。当切削速度Vc<50 m/min时,高锰钢的切削温度比45号钢高200℃~250 ℃,因此,刀具磨损严重,耐用度降低。

(3)断屑困难:高锰钢的韧性是45号钢的8倍,切削时切屑不易拳曲和折断。

(4)尺寸精度不易控制:高锰钢的线膨胀系数与黄铜差不多,在高的切削温度下,局部产生热变形,尺寸精度不易控制。切削高锰钢时,应先进行粗加工,工件冷却后再进行精加工,以保证工件的尺寸精度。

3.怎样通过热处理改善高锰钢的切削性能?

金属材料的切削性能主要取决于材料的力学、物理性能,如:强度、硬度、塑性、韧性、耐磨性及线膨胀系数等。通过热处理可以改变金属材料的力学、物理性能,从而改善其切削性能。改善高锰钢的切削性能可以通过高温回火来实现。将高锰钢加热至600℃~650℃,保温两小时后冷却,使高锰钢的奥氏体组织转变为索氏体组织,其加工硬化程度显著降低,加工性能明显改善。加工完成的零件在使用前应进行淬火处理,使其内部组织重新转变为单一的奥氏体组织。

4.切削高锰钢时怎样选择刀具材料?

高锰钢属难加工材料,对刀具材料要求较高。一般来说,要求刀具材料红硬性高、耐磨性好,有较高的强度、韧性和导热系数。切削高

锰钢可选用硬质合金、金属陶瓷做刀具材科,也可以用CN25涂层刀片或CBN(立方氮化硼)刀具。目前应用最普遍的还是硬质合金,其中YG类硬质合金具有较高的抗弯强度和冲击韧性(与YT类硬质合金比较),可减少切削时的崩刃。同时,YG类硬质合金的导热性较好,有利于切削热从刀尖散走,降低刀尖温度,避免刀尖过热软化。YG类硬质合金的磨加工性较好,可以磨出锐利的刃口。一般情况下,刀具的耐用度取决于刀具材料的红硬性、耐磨性和冲击韧性。YG类硬质合金中含钴量较多时,抗弯强度和冲击韧性好,特别是提高了疲劳强度,因此适于在受冲击和震动的条件下作粗加工用;含钴量较少时,其硬度、耐磨性和耐热性较高,适合作连续切削的精加工。

YT类硬质合金具有较高的硬度和较高的耐热性,但与YG类硬质合金相比,其强度低、脆性大,导热性差。因此,切削高锰钢时通常选用韧性好的YG 类硬质合金作刀具材料。应当注意的是,YG类硬质合金不适于高速切削,因为在高速切削钢料时,切削时的高温将使刀具前刀面上形成强烈的月牙洼磨损,

并加速后刀面磨损,刀具耐用度降低。在切削速度较高且切削过程较平稳的情况下可考虑选用YT类硬质合金作刀具材料。

YG类硬质合金中添加适量的(一般为0.5%~3%左右)TaC(碳化钽)或NbC(碳化铌),可提高其硬度和耐磨性而不降低其韧性。随着硬质合金中含钴量的增加,这些优点更为显著。因此,以Tac和NbC为添加剂的通用型硬质合金也适于高锰钢的切削加工。

切削高锰钢常用的硬质合金牌号有:YG8、YG6A、YG6X、YG8N、YW1、YW2A、YW3、YC45、767、798、813等。

采用金属陶瓷刀片进行高锰钢的精车、半精车,可选用较高的切削速度,

加工表面质量好,刀具耐用度高。例如利用Al

2O

3

基陶瓷刀具切削50Mn18Cr4高

锰钢比用硬质合金刀具效率提高1~4倍。

切削加工高锰钢还可选用CN25涂层刀片和CBN(立方氮化硼)刀具。在使用CBN刀具时应注意被切削材料含锰量不能高于14%,否则,CBN可能与Mn元素产生化学反应使刀具磨损严重,切削性能下降。

5.切削加工高锰钢时怎样选择刀具几何参数?

高锰钢具有较高的塑性和韧性,加工硬化严重,切削温度高,断屑困难,容易造成崩刃,因此合理选择刀具的几何参数尤为重要。

(1)前角与后角:切削高锰钢时,为了减轻加工硬化,要求刀具保持锋利。但一般不可以采用大前角,因为前角大不利于保证刃口强度和改善散热条件。常采用较小前角或负前角及较大后角,但后角太大也会削弱刃口强度引起

崩刃。采用硬质合金刀具时,γ

0=-3°~3°,α

=8°~12°;采用陶瓷刀具时,

γ

0=-5°~-10°,α

=5°~10°。粗车时取小值,精车时取大值。

(2)主偏角与副偏角:切削高锰钢时,主偏角应小些,这样可以增加刀

具散热面积和刀尖强度,副偏角也不宜过大。选用硬质合金刀具时,一般取κr=25°~45°,κ′r=10°~20°。工艺系统刚性好时取小值,反之可适当加大主偏角和副偏角。选用陶瓷刀具时,主偏角还可大些,一般取κr=45°~60°,精车时可取κr=60°~90°。

(3)刃倾角:为了保持刀尖部分的强度,切削高锰钢时一般应选择负刃倾角。选用硬质合金刀具时,λs =-5°~0°;选用陶瓷刀具时,λs =-10°~-5°。

(4)刀尖圆弧半径:切削高锰钢时,不论采用何种刀具材料,刀尖部分都应修磨出较大的圆弧半径,以加强刀尖强度,提高刀具耐用度。一般粗车时r

ε=1~2 mm;半精车时rε=0.5~1 mm;精车时rε=0.2~0.5mm。工艺系统刚性好时取大值,反之取小值。

(5)刃口倒棱:为了保证刃口有足够的强度,减少崩刃现象,一般应将刃口修磨出负倒棱。硬质合金刀具倒棱宽度bγ

1

=0.2~0.8 mm,倒棱前角γ

01=-10°~-5°;如采用陶瓷刀具,bγ

1

=0.2 mm,γ

01

=-20°。

6.切削高锰钢时怎样选择切削用量?

高锰钢的切削加工性很差,为了维持一定的刀具耐用度,切削速度应低

些。采用硬合金刀具时, Vc=20~40 m/min,其中,较低的速度用于粗车,较高的速度用于半精车和精车。采用陶瓷刀具时,可以选用较高的切削速度,一般Vc=50~80 m/min(如用Si3N4陶瓷刀具,Vc≤60 m/min)。

高锰钢在切削过程中,由于塑性变形和切削力的影响,切削层及表层下一定深度范围内会产生严重的硬化现象。为了使刀尖避开毛坯表层和前一次走

刀造成的硬化层,应选择较大的切削深度和进给量。一般粗车时αp =3~6 mm,f=0.3~0.8 mm/r;大件粗车时可取αp =6~10 mm;半精车时αp =1~3 mm;f=0.2~0.4 mm/r;精车时口。≤1 mm;f≤0.2mm/r。

7.钻高锰钢硬质合金群钻有哪些特点?

在工程机械、矿山机械和越野车辆的制造中,常采用ZGMn13类高锰钢。ZGMn13高锰钢锰含量达11%~14%,这类钢经过水韧处理后在受到剧烈冲击压力时,会产生很强的硬化现象,硬度可达HB450~550,硬化层深度达0.3 mm左右。高锰钢在受到冲击压力发生变形的过程中,会消耗那些对钢材表面继续作用的冲击力,阻止作用力传到更深的内层去。加之高锰钢的导热系数很低,只有碳钢的1/3~1/4,给切削带来很大困难。特别是钻削时,刀具磨损严重,耐用度较低。因此,常采用硬质合金群钻进行高锰钢的钻削。

钻高锰钢硬质合金群钻的本体为40Cr制造,切削部分为YG8或YW硬质合金。切削部分形状与铸铁群钻近似,只是将钻尖高h加大到0.08 D,圆弧刃的圆弧半径加大到0.4 D,以加大B点刃尖的刀尖角,提高刀尖强度,改善散热

条件,同时也起到分屑作用。同样,在外缘处磨出双重锋角,并磨出负前角,把外缘处后角加大到20°,如图1所示。钻头磨好后,要用油石仔细鐾研刃口,不得有锯齿。

8.使用硬质合金群钻钻削高锰钢时应注意什么?

高锰钢具有较高的塑性和韧性,切削温度高,用硬质合金群钻钻高锰钢时,应注意以下问题:

(1)合理选择切削用量:切削速度太低或进给量太大,都会使切削力增加,容易造成切削刃崩碎。一般取Vc=30~40m/min,f=0.07~0.1 mm/r。

(2)要充分使用冷却液:高锰钢的线膨胀系数大,钻孔时应充分使用冷却液,有条件的可将工件浸在冷却液中钻孔,以防止因孔的收缩将钻头咬死损坏。

(3)严格控制钻头磨钝标准:钻削过程中如听到刺耳的尖叫声或发现钻头外缘转角处后角和棱边磨损约1 mm时,应及时将钻头进行重磨,否则继续使用会加快钻头磨损以致损坏。

(4)严禁中途停车:用硬质合金群钻钻削高锰钢时,应采用自动进给,尽量不用手动进给,否则会加重硬化现象,使钻削更加困难。操作中要严禁中途停车,防止因切削力过大造成“闷车”,使钻头崩碎。

除以上几点外,在使用硬质合金群钻钻削高锰钢时,还要求机床刚性好、振动小。硬质合金的硬度、耐热性比高速钢高,但韧性比高速钢低很多,强烈的振动和切削时的高温,会加快钻头磨损,造成崩刃或开焊,使钻削无法进行。

9.高锰钢车削实例有哪些?

工件材料为40Mn18Cr3,刀具材料为YW2,刀具几何参数见图2。切削用量为Vc=45 m/min,αp=4 mm,f=0.2 mm/r。

高锰钢工艺(学术参考)

高锰钢工艺 1.高锰钢有哪几种?其性能如何? 锰含量约为11%~18%的钢称高锰钢。常用的铸造高锰钢ZMn13的化学成分为:Mn含量11%~14%,c含量1.0%~1.4%,Si含量0.3%~1.0%,P 含量<0.03%,S含量<0.05%。 高锰钢是一种耐磨钢,经过水韧处理的高锰钢可以得到较高的塑性和冲击韧性。所谓水韧处理,就是把钢加热到1000℃~1100℃,保温一段时间,使钢中的碳化物全部溶入奥氏体中,然后迅速冷却,使碳化物来不及从奥氏体中析出,从而保持了单一的均匀的奥氏体组织。经过水韧处理的高锰钢称为高锰奥氏 体钢。其力学性能为:σ b =980 MPa,σs=392 MPa,HB210,δ=80%,α k =2.94 MJ /m2。 高锰钢具有很高的耐磨性,虽然它的硬度只有HB210,但它的屈服点σs 较低,只有σb的40%,因此具有较高的塑性和韧性。高锰钢在受到外来压力和冲击载荷时,会产生很大的塑性变形或严重的加工硬化现象,钢被剧烈强化,硬度显著提高,可达HB450~550,因此有了较高的耐磨性。 高锰钢可分为高碳高锰耐磨钢、中碳高锰无磁钢、低碳高锰不锈钢和高锰耐热钢。几种高锰钢的牌号和性能见表5-1。

2.高锰钢有哪些切削加工特点? 高锰钢锰含量高达11%~18%,具有较高的塑性和韧性,在切削加工中有以下特点: (1)加工硬化严重:高锰钢在切削过程中,由于塑性变形大,奥氏体组织转变为细晶粒的马氏体组织,从而产生严重的硬化现象。加工前硬度一般为 HB200~220,加工后表面硬度可达HB450~550,硬化层深度0.1~0.3 mm,其硬化程度和深度要比45号钢高几倍。严重的加工硬化使切削力增大,加剧了刀具磨损,也容易造成刀具崩刃而损坏。 (2)切削温度高:由于切削功率大,产生的热量多,而高锰钢的导热系数比不锈钢还低,只有中碳钢的1/4,所以切削区温度很高。当切削速度Vc<50 m/min 时,高锰钢的切削温度比45号钢高200℃~250 ℃,因此,刀具磨损严重,耐用度降低。 (3)断屑困难:高锰钢的韧性是45号钢的8倍,切削时切屑不易拳曲和折断。 (4)尺寸精度不易控制:高锰钢的线膨胀系数与黄铜差不多,在高的切削温度下,局部产生热变形,尺寸精度不易控制。切削高锰钢时,应先进行粗加工,工件冷却后再进行精加工,以保证工件的尺寸精度。 3.怎样通过热处理改善高锰钢的切削性能? 金属材料的切削性能主要取决于材料的力学、物理性能,如:强度、硬度、塑性、韧性、耐磨性及线膨胀系数等。通过热处理可以改变金属材料的力学、物理性能,从而改善其切削性能。改善高锰钢的切削性能可以通过高温回火来实现。将高锰钢加热至600℃~650℃,保温两小时后冷却,使高锰钢的奥氏体组织转变为索氏体组织,其加工硬化程度显著降低,加工性能明显改善。加工完成的零件在使用前应进行淬火处理,使其内部组织重新转变为单一的奥氏体组织。 4.切削高锰钢时怎样选择刀具材料?

热处理工艺规范(最新)

华尔泰经贸有限公司铸钢件产品热处理艺规范 随着铸造件产品种类增多,对外业务增大,方便更好的管理铸造件产品,特制定本规定,要求各部门严格按照规定执行。 1目的: 为确保铸钢产品的热处理质量,使其达到国家标准规定的力学性能指标,以满足顾客的使用要求,特制定本热处理工艺规范。 2范围 3术语 经保温一段时间后, 经保温一段时间后, 3.3淬火:指将铸钢产品加热到规定的温度范围,经保温一段时间后, 快速冷却的操作工艺。 3.4回火:指将淬火后的铸钢产品加热到规定的温度范围,经保温一 段时间后出炉,冷却到室温的操作工艺。 3.5调质:淬火+回火 4 职责

4.1热处理操作工艺由公司技术部门负责制订。 4.2热处理操作工艺由生产部门负责实施。 4.3热处理操作者负责教填写热处理记录,并将自动记录曲线转换到 热处理记录上。 4.4检验员负责热处理试样的力学性能检测工作,负责力学性能检测 结论的记录以及其它待检试样的管理。 5 工作程序 5.1 错位炉底板应将其复位后再装, 5.2 对特别 淬铸件应控制入水时间,水池应有足够水量,以保证淬火质量。 5.5作业计划应填写同炉热处理铸件产品的材质、名称、规格、数量、 时间等要素,热处理园盘记录纸可多次使用,但每处理一次都必须与热处理工艺卡上的记录曲线保持一致。 6 不合格品的处置 6.1热处理试样检验不合格,应及时通知相关部门。

6.2技术部门负责对不合格品的处置。 7 附表 7.1碳钢及低合金钢铸件正火、退火加热温度表7.2碳钢及低合金钢铸件退火工艺 7.3铸钢件直接调质工艺 7.4铸钢件经预备热处理后的调质工艺 7.5低合金铸钢件正火、回火工艺

耐磨高锰钢铸件的各类热处理

.耐磨高锰钢铸件的铸态余热热处理 为缩短热处理周期,可利用铸态余热进行高锰钢水韧处理。其工艺为:铸件于ll00~1180。C时自铸型中取出,经除芯清砂后,铸件温度允许冷却到900~1000。C,然后装入加热到l050。1080。C的炉内保温3~5h后水冷。该处理工艺简化了热处理工艺,减少了铸件在型内的冷N啪3,但ue产操作上有一定难度。表11—18为不同热处理工艺的高锰钢试样的力学性能。 2.耐磨高锰钢铸件的沉淀强化热处理 耐瞎高锰钢沉淀强化热处理的目的,是在加入适量碳化物形成元素(如钼、钨、钒、钛、铌和铬)的基础上,通过热处理方法在高锰钢中得到一定数量和大小的弥散分布的碳化物第二相质点,强化奥氏体基体,提高高锰钢的抗磨性能。但这种热处理工艺较复杂,并使生产成本增加。 3.耐磨高锰钢铸件的固溶热处理——水韧处理耐磨高锰钢的铸态组织中有大量析出的碳化物,因而其韧度较低,使用中易断裂。 高锰钢铸件固溶热处理的主要目的,是消除铸态组织中晶内和晶界上的碳化物,得到单相奥氏体组织,提高高锰钢的强度和韧度,扩大其应用范围。 要消除其铸态组织的碳化物,须将钢加热至1040。C以上,并保温适当时间,使其碳化物完全固溶于单相奥氏体中,随后快速冷却得到奥氏体固溶体组织。这种固溶热处理又称为水韧处理。 (1)水韧处理的温度:水韧温度取决于高锰钢成分,通常为1050~1100。含碳量高或者合金含量高的高锰钢应取水韧温度的上限,如ZGMnl3钢和GXl20Mnl7钢。但过高的水韧温度会导致铸件表面严重脱碳,并促使高锰钢的晶粒迅速长大,影响高锰钢的使用性能。图ll-25为高锰钢在1100保温2h后铸件表面碳和锰元素的变化。 (2)加热速率:高锰钢比一般碳钢的导热性差,高锰钢铸件在加热时应力较大而易开裂,因此其加热速率应根据铸件的壁厚和形状而定。一般薄壁简单铸件可采用较快速率加热;厚壁铸件则宜缓慢加热。为减少铸件在加热过程中变形或开裂,生产上常采用预先在650左右保温,使厚壁铸件内外温差减小,炉内温度均匀,之后再快速升到水韧温度的处理工艺。图ll—26为典型高锰钢件的热处理工艺规范。 (3)保温时间:保温时间主要取决于铸件壁厚,以确保铸态组织中的碳化物完全溶解和奥氏体的均匀化。通常保温时间可按铸件壁厚25mm保温lh计算。图ll—27为保温时间对高锰钢表面脱碳层深度的影响。 (4)冷却:冷却过程对铸件的性能指标及组织状态有很大的影响。 水韧处理时铸件入水前的温度在950必上,以免碳化物重新析出。为此,铸件从出炉到A水时间不应超过30s;水温保持在30度以下.淬火后最高水温不超过60度。水温较高时高锰钢的力学性能显著下降。水韧处理时水量须达到铸件和吊栏重量的8倍以上,若用非循环水需定期增加水量.暑好使用水质干净的循环水或采用压缩空气搅动池水。用吊篮吊淬时,可采用摆动吊篮的方式加速铸件的冷却。 高锰钢水韧处理多用台车式.热处理炉。铸件人水常用自动倾翻或吊篮吊淬方式。前者对大件及形状复杂的薄壁件易引起变形,淬火后铸件从水池中取出也较为困难;后者淬火后取出铸件方便,但吊篮消耗大。 4.耐磨中铬钢铸件的热处理耐磨中铬钢铸件热处理的目的,是得到高强韧性和高硬度的马氏体基体组织,以提高钢的强度、韧度及耐磨性。

高锰钢与超高锰钢铸件生产技术要点

高锰钢与超高锰钢铸件生产技术要点在高能量冲击的工作条件下,高锰钢与超高锰钢铸件的应用范围是广阔的。许多铸造厂,对生产此类钢种铸件缺乏必要的认识。现对具体操作做简要的说明,供生产者参考。 1化学成分 高锰钢按照国家标准分为5个牌号,主要区别是碳的含量,其范围是%-%。受冲击大,碳含量低。锰含量在%-%之间,一般不应低于13%。超高锰钢尚无国标,但锰含量应大于18%。硅含量的高低,对冲击韧度影响较大,故应取下限,以不大于%为宜。低磷低硫是最基本的要求,由于高的锰含量自然起到脱硫作用,故降磷是最要紧的,设法使磷低于%。铬是提高抗磨性的,一般在%左右。 2炉料 入炉材料是由化学成分决定的。主要炉料是优质碳素钢(或钢锭)、高碳锰铁、中碳锰铁、高碳铬铁及高锰钢回炉料。这里特别提醒的是有人认为只要化学成分合适,就可以多用回炉料。这个认识是有害的。某些厂之所以产品质量不佳,皆出于此。不仅高锰钢、超高锰钢,凡是金属铸件,绝不可以过多的使用回炉料,回炉料不应超过25%。那么,回炉料过剩该如何只要把废品降到最低,回炉料就不会过剩。3熔炼 这里着重讲加料顺序,无论用中频炉,还是电弧炉熔炼,总是先熔炼碳素钢,而各类锰铁和其他贵重合金材料,要分多次,每次少量入炉,贵重元素在最后加入,以减少烧损。料块应尽量小些,以50-80mm

为宜。熔清后,炉温达到1580-1600℃时,要脱氧、脱氢、脱氮,可用铝丝,也可用Si-Ca合金或SiC等材料。将脱氧剂一定压到炉内深处。金属液面此时用覆盖剂盖严,隔断外界空气。还要镇静一段时间,使氧化物、夹杂物有充足时间上浮。然而,不少企业,只将铝丝甚至铝屑,撒在金属液面上,又不加覆盖,岂不白白浪费!在此期间,及时用中碳锰铁来调整锰与碳的含量。 钢液出炉前,将浇包烘烤到400℃以上是十分必要的。在出炉期间用V-Fe、Ti-Fe、稀土等多种微量元素做变质处理,是使一次结晶细化的必要手段,它对产品性能影响是至关重要的。 4炉料与造型材料 要延长炉龄,当分清钢种与炉衬的属性。锰钢属碱性,炉衬当然选用镁质材料。捣打炉衬要轮番周而复始换位操作。添加炉衬材料不可过厚,每次80毫米左右为宜,捣毕要低温长时间烘烤。如提高生产效率,笔者建议采用成型坩埚(沈阳力得厂和恒丰厂均有成品出售),从拆炉到装成,不用1小时,即可投入生产,同时成型坩埚对防穿炉大有裨益。当然,炉龄的长短与操作者大有关系。不少操作者像掷铅球的运动员一样,把炉料从三四米之外投入炉内,既不安全又伤炉龄,应将炉料置于炉口旁预热,然后用夹子慢慢地将炉料顺炉壁放入。 造型材料和涂料也应与金属液属性相一致,或者用中性材料(如铬铁矿砂、棕刚玉等)。若想获得一次结晶细化的基体,采用蓄热量大的铬铁矿砂是正确的,尤其是消失模生产厂,用它将克服散热慢的缺点。5铸造工艺设计

高铬铸铁热处理工艺

高铬铸铁热处理工艺 化学成分:C2.05,Si1.40,Mn0.78,Cr26.03,Ni0.81,Mo0.35 1、常用的高铬铸铁的热处理工艺是加热到950~1000℃,经保温空冷淬火后再进行 200~260℃的低温回火。 2、2、高温团球化处理1140~1180℃保温16h空冷却,可以明显提高冲击韧度和耐磨性能。 高温团球化处理可使碳化物全部呈团球状,可消除或减少大块状和连续网状碳化物对基体的隔裂作用,经团球化的碳化物受到更加均匀的基体支撑,特别受到一定数量的奥氏体的支撑。如果适当减少保温时间,对薄截面零件也可以取得效果。该工艺的不足是工艺消耗热能较多。 加热到1050℃,经保温空淬火后再进行550℃的回火,效果会怎么样? 要控制加热速度,最好在650? ?? ?750? ?? ?? ? 850? ?? ? 时保温一定时间。我以前做过,正火就可以了。硬度能做到61----65HRC 成熟工艺是:铸造后软化退火,便于加工,加工后空冷淬火加低温去应力回火。使用硬度一般要求为HRC58-62,多用于比如渣浆泵零部件等耐磨易损件。 我们这里是高铬生产基地,一般提供Cr24,Cr26,Cr28,Cr15Mo3等,价格是不便宜的。价格要包括中间的软化退火和精加后的淬火及回火。楼主的材料应该叫Cr26 做高铬磨球的,Cr%=10.2~10.5%,C%=2.2~2.7%,Si、S双零以下,要求硬度HRC>58 我们现在用的是淬火液淬火,淬火工艺参数是:650度保温2小时,升温到960度保温3.5小时淬火;回火温度380~400,保温4~6小时。磨球规格φ40-φ80。 工艺是1050淬火+250~350回火 金属耐磨材料在水泥企业的研究和应用 [摘要] 本文从金属耐磨材料的概述、水泥企业常用的耐磨材料以及根据磨损原理具体的选用金属耐磨材料,对金属耐磨材料进行了研究、分析,对其他选用金属耐磨材料给予一定的参考和借鉴。 [关键词] 金属耐磨材料水泥企业研究应用 一、金属耐磨材料的概述 材料的耐磨性不仅决定于材料的硬度Hm,而且更主要的是决定于材料硬度Hm和磨料硬度Ha的比值。当Hm/Ha比值超过一定值后,磨损量便会迅速降低。 当Hm/Ha≤0.5-0.8时为硬磨料磨损,此时增加材料的硬度对材料的耐磨性增加不大。 当Hm/Ha>0.5-0.8时为软磨料磨损,此时增加材料的硬度,便会迅速地提高材料的耐磨性。 金属耐磨材料一般都指的是耐磨钢,能抵抗磨料磨损的钢。这类钢还没有成为一个完全独立的钢种,其中公认的耐磨钢是高锰钢。 二、水泥企业主要使用的耐磨钢

高锰钢

高锰钢分为两大类,一类是耐磨钢,一类是无磁钢。这里主要涉及耐磨钢。这类钢含锰10%~15%,碳含量较高,一般为0.90%~1.50%,大部分在1.0%以上。其化学成分为(%): C0.90~1.50Mn10.0~15.0 Si0.30~1.0 S≤0.05 P≤0.10这类高锰钢的用量最多,常用来制作挖掘机的铲齿、圆锥式破碎机的轧面壁和破碎壁、颚式破碎机岔板、球磨机衬板、铁路辙岔、板锤、锤头等。 上述成分的高锰钢的铸态组织通常是由奥氏体、碳化物和珠光体所组成,有时还含有少量的磷共晶。碳化物数量多时,常在晶界上呈网状出现。因此铸态组织的高锰钢很脆,无法使用,需要进行固溶处理。通常使用的热处理方法是固溶处理,即将钢加热到1050~1100℃,保温消除铸态组织,得到单相奥氏体组织,然后水淬,使此种组织保持到常温。热处理后钢的强度、塑性和韧性均大幅度提高,所以此种热处理方法也常称为水韧处理。热处理后力学性能为:σb615~1275MPa σ 0.2340~470MPa ζ15%~85%ψ15%~45% aKl96~294J/cm2 HBl80~225 高锰钢经过固溶处理后还会有少量的碳化物未溶解,当其数量较少符合检验标准时,仍可使用。 奥氏体组织的高锰钢受到冲击载荷时,金属表面发生塑性变形。形变强化的结果,在变形层内有明显的加工硬化现象,表层硬度大幅度提高。低冲击载荷时,可以达到HB300~400,高冲击载荷时,可以达到HB500~800。随冲击载荷的不同,表面硬化层深度可达10~20mm。高硬度的硬化层可以抵抗冲击磨料磨损。高锰钢在强冲击磨料磨损条件下,有优异的抗磨性能,故常用于矿山、建材、火电等机械设备中,制作耐磨件。在低冲击工况条件下,因加工硬化效果不明显,高锰钢不能发挥材料的特性。 中国常用的高锰钢的牌号及其适用范围是:ZGMn13—1(C 1.10%~1.50%)用于低冲击件,ZGMn13—2(C1.00%~1.40%)用于普通件,ZGMn13—3(C0.90%~1.30%)用于复杂件,ZGMn13-4(C0.90%~1.20%)用于高冲击件。以上4种牌号钢的锰含量均为11.0%~14.0%。 在冲击载荷作用的冷变形过程中,由于位错密度大量增加,位错的交割、位错的塞积及位错和溶质原子的交互作用使钢得到强化。这是加工硬化的重要原因。另一个重要原因则是高锰奥氏体的层错能低,形变时容易出现堆垛层错,从

高锰钢抗磨性提高的方法

高锰钢抗磨性提高的方法 摘要:采用细化晶粒和沉淀硬化的方法来提高高锰钢抗磨性。 关键词:高锰钢抗磨性细化晶粒沉淀硬化 对于承受较大冲击负荷的磨粒磨损条件下,通常采用奥氏体锰钢。因为这种具有高的韧性和高的应变硬化能力,在高冲击载荷下具有高的耐磨性。适宜制作具有抵抗凿削磨损的耐磨件。但在很多磨料磨损的情况下,如高锰钢齿板、碎煤机环锤、衬板未能表现出较高的抗磨粒性能,甚至还出现了早期失效。为此,本工作采用细化晶粒和沉淀硬化的方法来解决这个问题,提高奥氏体锰钢的抗磨性,适应工况条件的要求。 1、实验内容 采用两种实验方案:细化奥氏体晶粒,以提高奥氏体锰钢的强韧性;进行沉淀硬化处理,进一步强化锰钢基体,改善屈服强度,获得弥散分布的碳化物组织,提高抗磨性。 1.1 细化晶粒 ZGMn13钢的化学成分如表1所示。 快速循环热处理工艺:用基尔试块制作金相及夏氏冲击试样,用梅花试样制作拉伸试样。其热处理工艺如下表2所示。 通过快速循环热处理,可使高锰钢奥氏体晶粒获得细化。显微组织的观察表明,阶梯加热,循环加热和交替加热等三种热处理方法,均可获得比普通水韧处理细得多的奥氏体晶粒。图1为循环热处理后的组织,晶粒度为6-8级。图2为普通水韧处理的组织,晶粒度1-3级。 1.2 沉淀硬化处理 在原循环热处理工艺基础上,分别进行低温和中温长时间失效,温度为350℃、450℃和540℃,时间为6小时,8小时和10小时,通过不同工艺处理后,得出下列结果。其工艺方案如表3所列。机械性能如表4所列。(如表3) 高锰钢在细化奥氏体晶粒后,再经过450℃×8小时的失效处理,使其碳化物不论在晶内或晶界都达到了弥散分布,而且呈粒状。而经1080℃×3小时固溶,再经过450℃×8小时失效的高锰钢,则未能得到弥散分布的碳化物,并且碳化物呈块状、针状、且聚集于晶界附近。通过比较可以看出,高锰钢细化晶粒后,进行沉淀硬化处理,可以得到比较满意的奥氏体+弥散分布的细粒状碳化物组织。 当时效温度超过450℃时,碳化物则逐渐由粒状变成针状,而且逐渐粗大。组织变脆,但硬度达到失效峰值为HRC45-47。(如表4) 2、工业实验 工业试验在HSZ300的小型破碎机上进行的。破碎矿物主要是煤矿,其中有部分煤矸石,粒度不规则,硬度为7-8(f),破碎比为1/10。环锤已破碎11000小时矿物,还没有明显磨损,仍在继续使用。原普通水韧处理的锤头,平均破碎8000多小时就磨损得磨损。另外,经过快速循环热处理的齿板,其耐磨性也得到较大的提高。 3、结语 (1)通过快速循环热处理等强韧化方法,明显地细化了高锰钢奥氏体组织,使其晶粒度分别达到5-8级(普通水韧处理可达1-3级)。提高了钢的强韧性。(2)在细化的奥氏体锰钢基体上,进行沉淀硬化处理。既得奥氏体+弥散分布粒状碳化

切削高锰钢如何选择刀具材料

切削高锰钢如何选择刀具材料 1、高锰钢的类别与性能 锰含量约为11%~18%的钢称高锰钢。常用的铸造高锰钢ZMn13的化学成分为:Mn含量11%~14%,c含量1.0%~1.4%,Si含量0.3%~1.0%,P含量<0.03%,S含量<0.05%。可分为高碳高锰耐磨钢、中碳高锰无磁钢、低碳高锰不锈钢和高锰耐热钢。 高锰钢是一种耐磨钢,经过水韧处理的高锰钢可以得到较高的塑性和冲击韧性。高锰钢具有很高的耐磨性,虽然它的硬度只有HB210,但它的屈服点σs较低,只有σb的40%,因此具有较高的塑性和韧性。高锰钢在受到外来压力和冲击载荷时,会产生很大的塑性变形或严重的加工硬化现象,钢被剧烈强化,硬度显著提高,可达HB450~550,因此有了较高的耐磨性。 2、高锰钢的切削加工性能 (1)加工硬化严重:高锰钢在切削过程中,由于塑性变形大,奥氏体组织转变为细晶粒的马氏体组织,从而产生严重的硬化现象。加工前硬度一般为HB200~220,加工后表面硬度可达HB450~550,硬化层深度0.1~0.3 mm,其硬化程度和深度要比45号钢高几倍。严重的加工硬化使切削力增大,加剧了刀具磨损,也容易造成刀具崩刃而损坏。 (2)切削温度高:由于切削功率大,产生的热量多,而高锰钢的导热系数比不锈钢还低,只有中碳钢的1/4,所以切削区温度很高。当切削速度Vc<50 m/min 时,高锰钢的切削温度比45号钢高200℃~250 ℃,因此,刀具磨损严重,耐用度降低。 (3)断屑困难:高锰钢的韧性是45号钢的8倍,切削时切屑不易拳曲和折断。 (4)尺寸精度不易控制:高锰钢的线膨胀系数与黄铜差不多,在高的切削温 度下,局部产生热变形,尺寸精度不易控制。切削高锰钢时,应先进行粗加工, 工件冷却后再进行精加工,以保证工件的尺寸精度。 3、切削高锰钢时各种刀具材料的特点 高锰钢属难加工材料,对刀具材料要求较高。一般来说,要求具材料红硬性高、耐磨性好,有较高的强度、韧性和导热系数。 1,高速钢是一种高合金工具钢.能承受切削温度500~600C,目前加工高锰钢基本不能胜任,一般用于制作非标钻头使用。 2,硬质合金刀具加工高锰钢时,一般用于小型零件的加工(大型高锰钢零件选用非金属粘合剂的CBN刀具牌号更合适),据统计,当高锰钢零件单件加工时长小于5min时,可选用硬质合金刀具,粗加工可采用抗冲击韧性较好的YG系列牌号,精加工选用YW系列。 3,陶瓷材料的特点:硬度高(91~94HRA),耐磨性好,耐热性高(>1200),

高锰钢件消失模铸态直接水韧处理

高锰钢浇注和水韧工艺参数 一:结晶组织对高锰钢性能的影响 粗大的柱状晶组织必然伴随有枝晶间的显微缺陷,如显微疏松。也会伴随有较高程度的化学偏析,使力学性能和耐磨性降低。再有就是铸态组织中碳化物形貌和分布特征受一次结晶组织粗细的影响,初晶组织细则它也细。碳化物虽然在热处理时可以溶解、但粗大的碳化物往往使热处理后奥氏体晶界的致密度降低,且奥氏体基体内化学成分不均匀,使力学性能降低。固此一次结晶组织对高锰钢的性能影响是很大的! 1)浇铸温度对一次结晶和机械性能的影响: 浇铸温度/℃一次结晶组织特征σb/MPaa K/J。Cm 21460 细等轴晶392.27 166.71 1550 等轴晶372.65 127.49 1620 柱状晶362.84 58.84 2)浇铸温度和载面厚度对晶区比例的影响: 浇铸温度 /℃ 等轴晶区占高度/%柱状晶区占高度/%120mm载面60mm载面120mm载面60mm载面 1550 32~35 14~16 48~50 28~30 1450 38~42 22~24 32~35 10~12 1400 73~75 100 20~22 ——

3)浇铸温度对力学性能的影响: 浇铸温度 /℃ 力学性能 σb/MPaδ/%φ/%aK/J。Cm2 1310~1360 715.88 23.0 22.2 215.75 1360~1410 630.57 17.0 22.5 140.24 由此可知浇铸温度对高锰钢的力学性能有极为明显的影响! 4) 铸型冷却能力对一次结晶特征的影响: 铸型种类 浇铸温度/ ℃ 1380~1420 1420~1430 1450~1460 干砂型等轴晶等轴晶等轴晶 冷金属型边缘少量柱状晶断面大部分柱状晶柱状晶贯穿全断面消失模铸态直接水韧处理 一:工艺要点 (1)消失模样组装要尽量将大小、壁厚相当的模样组装在一起,使铸件的冷却速度基本一致、才能满足铸件同时入水时对水韧温度的要求。(2)型砂的选择:由于铸态水淬没有热处理过程中的再结晶和成分的均匀化,因此为加强铸件在凝固过程中的冷却速度,得到较细的一次结晶组织!宜选用宝珠砂、锆英矿砂、铬铁矿砂和钛铁矿砂等,它们的导热系数为石英砂的2~3倍,可加快铸型的凝固速度。 (3)打箱与入水时间的确定:入水温度直接关系到水韧处理的成败!一般打箱时铸件温度应低于1100 ℃,入水温度应高于950℃。因此应根据铸件的大小、壁厚及室温主高低来确定打箱与入水时间。

高锰钢工艺

1<高猛钢有哪几种其性能如何 猛含量约为11%?18%的钢称高镒钢。常用的铸造高镭钢ZMnl3的化学成分为:Mn含量11%?14%, C含量%?%,Si含量%?%, P含量<%, S含量<%。 高猛钢是一种耐磨钢,经过水韧处理的高镭钢可以得到较高的塑性和冲击韧性。所谓水韧处理,就是把钢加热到IOOO O C?1100°C,保温一段时间,使钢中的碳化物全部溶入奥氏体中,然后迅速冷却,使碳化物来不及从奥氏体中析出, 从而保持了 单一的均匀的奥氏体组织。经过水韧处理的高镭钢称为高猛奥氏体钢。其力学性能为:O b=980MPa, σs=392 MPa, HB210, δ =80%, Qk=MJ / 高猛钢具有很高的耐磨性,虽然它的硬度只有HB210,但它的屈服点OS较低, 只有Ob的40%,因此具有较高的塑性和韧性。高镭钢在受到外来压力和冲击载荷时,会产生很大的塑性变形或严重的加工硬化现象,钢被剧烈强化,硬度显著提高,可达HB450?550,因此有了较高的耐磨性。 高镒钢可分为高碳高猛耐磨钢、中碳高猛无磁钢、低碳高猛不锈钢和高猛耐热钢。儿种高镭钢的牌号和性能见表54。 1 2. 高链钢有哪些切削加工特点 高猛钢猛含量高达11%?18%,具有较高的塑性和韧性,在切削加工中有以下特点:

(1) 加工硬化严重:高猛钢在切削过程中,山于塑性变形大,奥氏体组织转变为细晶粒的马氏体组织,从而产生严重的硬化现象。加工前硬度一般为HB200?220,加工后表面硬度可达HB450?550,硬化层深度?mm,其硬化程度和深度要比45号钢高儿倍。严重的加工*更化使切削力增大,加剧了刀具磨损,也容易造成刀具崩刃而损坏。 (2) 切削温度高:山于切削功率大,产生的热量多,而高镒钢的导热系数比不锈钢还低,只有中碳钢的1/4,所以切削区温度很高。当切削速度Vc<50 m/min 时,高镭钢的切削温度比45号钢拓200。C?250 °C,因此,刀具磨损严重,耐用度降低。 ⑶断屑困难:高猛钢的韧性是45号钢的8倍,切削时切屑不易拳曲和折断。 (4)尺寸精度不易控制:高镒钢的线膨胀系数与黃铜差不多,在高的切削温度下,局部产生热变形,尺寸精度不易控制。切削高猛钢时,应先进行粗加工,工件冷却后再进行精加工,以保证工件的尺寸精度。 3. 怎样通过热处理改善高锈钢的切削性能 金属材料的切削性能主要取决于材料的力学、物理性能,如:强度、硬度、塑性、韧性、耐磨性及线膨胀系数等。通过热处理可以改变金属材料的力学、物理性能,从而改善其切削性能。改善高猛钢的切削性能可以通过高温回火来实现。将高镭钢加热至600°C?650o C,保温两小时后冷却,使高镭钢的奥氏体组织转变为索氏体组织,其加工硕化程度显著降低,加工性能明显改善。加工完成的零件在使用前应进行淬火处理,使其内部组织重新转变为单一的奥氏体组织。 4. 切削高猛钢时怎样选择刀具材料 高猛钢属难加工材料,对刀具材料要求较高。一般来说,要求刀具材料红硬性高、耐磨性好,有较高的强度、韧性和导热系数。切削高镭钢可选用硬质合金、金属陶瓷做刀具材科,也可以用CN25涂层刀片或CBN(立方氮化硼)刀具。□前应用最普遍的还是硬质合金,其中YG类硬质合金具有较高的抗弯强度和冲击韧性(与YT类硬质合金比较),可减少切削时的崩刃。同时,YG类硬质合金的导热性较好,有利于切削热从刀尖散走,降低刀尖温度,避免刀尖过热软化。YG类硬质合金的磨加工性较好,可以磨出锐利的刃口。一般情况下,刀具的耐用度取决于刀具材料的红硬性、耐磨性和冲击韧性。YG类硬质合金中含钻量较多时,抗弯强度和冲击韧性好,特别是提高了疲劳强度,因此适于在受冲击和震动的条件下作粗加工用;含钻量较少时,其硬度、耐磨性和耐热性较高,适合作连续切削的精加工。 YT类硬质合金具有较高的硬度和较高的耐热性,但与YG类硬质合金相比,其强

关于高锰钢的若干问题

关于高锰钢的若干问题通常高锰钢含13%Mn,已有百余年历史,至今尚有一些问题在这里讨论一下,可能对读者有所裨益。 1 常用高锰钢 1.1 国内近20年来,由于过去滥用高锰钢,在一些原不该用高锰钢的场合也用了。后来人们用其它材料代替了高锰钢,取得了很大成绩。但这并不是说高锰钢的用途越来越小,不值得重视了。其实不然,高锰钢仍拥有巨大市场,其中绝大多数是Mn13,其次则是含铬的Mn13Cr2。此外,还有加入其它合金元素的高锰钢(见表1)[1]。 表1 高锰钢的典型成分 Tab.1 Typical composition of high manganese steel %

1.2 加入各种合金元素后的力学性能,如图1至图4[1]所示,从中可以看到几 个问题: (1) 薄断面(25 mm)的性能均优于厚断面(150 mm),这是由于厚断面中碳的偏析比较严重所致[2],这也是在对待厚断面高锰钢件时应该十分注意的一个问 题。 (2) 通常高锰钢的σs只有350 MPa左右,使高锰钢件在服役中易于产生流变,流变使生产操作十分不便,而且甚至会产生严重的后果。加入Cr、Mo、Ni 等元素可以提高σb,但主要的着眼点却在于提高σs(图1、2),其中含Cr或Mo 的高锰钢可达σs 410 MPa,那种高屈服点的高锰钢σs可达660 MPa。有人以为加Cr可以提高耐磨寿命,但实践并未观察到这一现象。 (3) 加Mo可以提高σs,而不牺牲韧性,这点优于加铬。加Mo可提高铸态高锰钢的力学性能(δ>20%,αK(夏氏)>53 J/cm2),因此有些铸件若不适宜进行热处理,可以采用这种措施。由于Mo与C易于结合,使C在钢中的溶解减慢,推迟碳化物的析出[3],并指出加入1.0%Mo可基本上消除铸态碳化物,韧性得以提高。Mo的这一特点就赋予高锰钢一些方便之处,也就是在铸造、切割、焊补时不易产生裂纹(指碳低时)。Mo既然能抑制淬火时碳化物的析出,因此适用于厚壁铸件及高碳铸件。经弥散硬化处理的含Mo Mn13可以提高寿命。 (4) 由图3和图4中的韧性指标可以看出中锰钢的δ和αK最低。这种合金在国外开始于60年代初,本来认为它容易加工硬化,能提高使用寿命,但实际上几十年来却得不到推广应用,问题是生产中或使用中均易发生开裂之故[2]。国内也有报道[4],为提高中、低冲击工况下的耐磨性,人们开发了中、低锰钢,

高锰钢简介

锰 锰最重要的用途就是制造合金----锰钢 锰钢的脾气十分古怪而有趣:如果在钢中加入2.5—3.5%的锰,那么所制得的低锰钢简直脆得象玻璃一样,一敲就碎。然而,如果加入13%以上的锰,制成高锰钢,那么就变得既坚硬又富有韧性。高锰钢加热到淡橙色时,变得十分柔软,很易进行各种加工。另外,它没有磁性,不会被磁铁所吸引。现在,人们大量用锰钢制造钢磨、滚珠轴承、推土机与掘土机的铲斗等经常受磨的构件,以及铁锰锰轨、桥梁等。 高锰钢 高锰钢(high manganese steel)是指含锰量在10%以上的合金钢。高锰钢的铸态组织通常是由奥氏体、碳化物和珠光体所组成,有时还含有少量的磷共晶。奥氏体组织的高锰钢受到冲击载荷时,金属表面发生塑性变形。形变强化的结果,在变形层内有明显的加工硬化现象,表层硬度大幅度提高。低冲击载荷时,可以达到HB300~400,高冲击载荷时,可以达到HB500~800。随冲击载荷的不同,表面硬化层深度可达10~20mm。高硬度的硬化层可以抵抗冲击磨料磨损。高锰钢在强冲击磨料磨损条件下,有优异的抗磨性能,故常用于矿山、建材、火电等机械设备中,制作耐磨件。在低冲击工况条件下,因加工硬化效果不明显,高锰钢不能发挥材料的特性。高锰钢极易加工硬化,因而很难加工,绝大多数是铸件,极少量用锻压方法加工。高锰钢的铸造性能较好。钢的熔点低(约为14()()℃),钢的液、固相线温度间隔较小,(约为50℃),钢的导热性低,因此钢水流动性好,易于浇注成型。高锰钢的线膨胀系数为纯铁的1.5倍,为碳素钢的2倍,故铸造时体积收缩和线收缩率均较大,容易出现应力和裂纹。为提高高锰钢的性能进行过很多合金化、微合金化、碳锰含量调整和沉淀强化处理等方面的研究,并在生产实践中得到应用。介稳奥氏体锰钢的出现则可较局gao大幅度降低钢中碳、锰含量并使钢的形变强化速度提高,可适用于高和中低冲击载荷的工况条件,这是高锰钢的新发展。 高锰钢按照国家标准分为5个牌号,主要区别是碳的含量,其范围是0.75%-1.45%。受冲击大,碳含量低。锰含量在11.0%-14.0%之间,一般不应低于13%。超高锰钢尚无国标,但锰含量应大于18%。硅含量的高低,对冲击韧度影响较大,故应取下限,以不大于0.5%为宜。低磷低硫是最基本的要求,由于高的锰含量自然起到脱硫作用,故降磷是最要紧的,设法使磷低于0.07%。铬是提高抗磨性的,一般在2.0%左右。 无磁钢 这类钢含锰大于17%,碳含量一般均在1.0%以下,常在电机工业中用于制作护环等。这类钢的密度为7.87~7.98g/cm3。由于碳、锰含量均高,钢的导热能力差。导热系数为12.979W/(m?℃),约为碳素钢的1/3。由于钢是奥氏体组织,无磁性,其磁导率μ为1.003~1.03(H/m)。 Mn13奥氏体高锰钢是碳含量为0.9%~1.3%、锰含量为11%~14%的高合金钢。奥氏体高锰钢经过热处理后,具有很高的韧性,是一种非常强韧的非磁性合金,在冲击载荷作用下,表面

高锰钢的加工及切削参数

高锰钢的加工及切削参数 华菱超硬刀具研发部 一,高锰钢加工用刀具及选择标准 高锰钢加工的特点不再赘述,刀具选择根据加工实际状况综合考虑,大致有硬质合金刀具、陶瓷刀具,涂层刀片或CBN(立方氮化硼)刀具。 选择标准: 1,如果单件加工工时小于五分钟,可选用硬质合金刀具,大切深可考虑YG系列,小切深考虑用YW系列,。 2,如果工件加工时间长,表面质量差,粗加工选择整体立方氮化硼刀具,精加工可考虑陶瓷刀具或者涂层刀片(原因见《黑色金属铸件难加工分析及应对措施》 二,高锰钢车削刀具的合理切削参数 高锰钢的加工性能很差,,为了维持一定的刀具耐用度,切削速度应低些。采用硬合金刀具时, Vc=20~40 m/min,其中,较低的速度用于粗车,较高的速度用于 半精车和精车。采用陶瓷刀具时,可以选用较高的切削速度,一般Vc=50~80 m/min(如用Si3N4陶瓷刀具,Vc≤60 m/min)。 高锰钢在加工过程中,切削层及表层下一定深度范围内会产生严重的硬化现象。为了使刀尖避开毛坯表层和前一次走刀造成的硬化层,应选择较大的切削深度和进给量。一般粗车时αp =3~6 mm,f=0.3~0.8 mm/r;大件粗车时可取αp =6~10 mm;半精车时αp =1~3 mm;f=0.2~0.4 mm/r;精车时口。≤1 mm;f≤0.2mm/r。 三,立方氮化硼刀具车削加工高锰钢的参数及刀具牌号选用 1,粗加工用立方氮化硼整体聚晶刀片BN-S20,吃刀深ap=2-3.5mm(根据实际加工余量,BN-S20牌号刀具最大吃刀深度可以超过10mm);走刀量 Fr=0.25-0.8mm/r;线速度v=85m/min 。刀具耐用度:3小时/刃口!刀片能旋8次-12次使用,一个刀片可用三个班。可见BN-S20牌号刀具使用成本与其他刀具牌号比较有很大的优势。 2,立方氮化硼刀具BN-S20牌号精加工高锰钢时,吃刀深ap=0.5-1mm;走刀量Fr=0.15mm/r;线速度v=135m/min 。 从以上粗精加工高锰钢的案例可以看出,BN-S20刀具牌号在大余量拉荒粗车时表现出很强的抗冲击韧性,可以大余量切削,遇到夹砂、冒口、表面不规整

超高锰钢热处理工艺优化及力学性能的提高

? ?基金项目:河南省杰出人才创新基金资助项目(项目编号:0621000600)。收稿日期:2006-03-27收到初稿,2006-07-03收到修订稿。作者简介:闫华(1982-),男,河南罗山人,硕士研究生,主要从事高强韧耐磨铸钢的研究。E-mail:yanhua19820915@sina.com 闫 华1,谢敬佩1,王文焱1,李继文1,王爱琴1,张东海2,王 伟2 (1.河南科技大学材料科学与工程学院,河南洛阳471003;2.鞍钢集团鞍山矿山机械制造厂,辽宁鞍山114042) !!!!!" !" !!!!!" !" 摘要:优化了含Cr、Mo及RE-Si-Fe变质处理超高锰钢的热处理工艺,研究了超高锰钢不同温度回火处理后的组织和力 学性能。结果表明,沉淀(弥散)强化使奥氏体晶内析出了弥散颗粒状M23C6型碳化物,强化了奥氏体基体。优化出超高锰钢的最佳热处理工艺为,加热至1100℃保温4h,水淬,再经250℃保温4h,空冷。该热处理工艺条件下奥氏体晶粒细小,晶内颗粒状碳化物均匀、弥散分布,力学性能得到显著提高,即σb=994.51MPa,σs=430.98MPa,αk=260 J/cm2 ,HB227,δ=55.03%。与常规水韧处理相比σb提高了18.2%,σs提高了7%,αk提高了22%,δ 提高了30.3%,硬度提高了9.7%。 关键词:热处理工艺;力学性能;超高锰钢 中图分类号:TG142.72;TG142.1文献标识码:A文章编号:1001-4977(2006)10-1067-04 YANHua1,XIEJing-pei1,WANGWen-yan1,LIJi-wen1,WANGAi-qin1,ZHANGDong-hai2,WANGWei2 (1.CollegeofMaterialsScienceandEngineering,HenanUniversityofScienceandTechnology,Luoyang471003,Henan,China;2.AngangGroupAnshanMining-machineryandManufacturing Plant,Anshan114042,Liaoning,China)Abstract:Theheattreatmentprocessofsuper-highmanganesesteelwithRE-Si-FemodificationwhichcontainsalloyingelementsCrandMoisoptimizedandthestructureandmechanicalpropertiesofthesteelbydifferenttemperingtemperaturetreatmentprocessarealsostudied.Theexperimentresultsshowthatafterprecipitation(dispersion)strengtheningtreatment,thesecond-phase,carbideparticlesM23C6aredistributinginausteniticgrains,whichintensifytheausteniticmatrixofthesteel.Theoptimalheattreatmentistreatedbywatertougheningat1100℃andtemperingat250℃for4hours.Themicrostructureofthesuper-highmanganesesteelisfinecarbideparticlesrelativelyevenprecipitatinginausteniticmatrix,anditsmechanicalpropertiesis enhanceddramatically:σb=994.51MPa,σs=430.98MPa,αk=260J/cm2 ,HB227,δ=55.03%.Comparedwiththatoftheconventionaltreatment,theσb,σs,αk,δandhardnessareincreasedby18.2%,7%,22%,30.3%,and9.7%respectively. Keywords:heattreatmentprocess;mechanicalproperties;super-highmanganesesteel应用技术 超高锰钢热处理工艺优化及力学性能的提高 OptimizationofHeatTreatmentProcessandMechanical PropertiesEnhancementofSuper-highManganeseSteel 由英国的R.A.Hadfield于1882年发明的高锰钢是历史最悠久的耐磨材料。高锰钢作为耐磨材料,在抵抗强冲击、大压力作用下的磨料磨损或凿削磨损方面,其优异的耐磨性是其他材料所无法比拟的。在较大的冲击载荷或接触应力作用下,其表层迅速产生加工硬化,并有高密度位错和形变孪晶相继生成,从而产生高耐磨的表面层,而此时内层奥氏体仍保持着良好的韧性。高锰钢的这种加工硬化特性使其长期以来广泛应用于冶金、矿山、建材、铁路、电力、煤炭等机械装备中[1-5]。 随着现代工业的发展,在冶金、矿山等行业不断出现大型设备,如采矿、破碎、挖掘设备等,其抗磨 配件重达几吨到几十吨,有效厚度均在100mm以上,传统高锰钢(ZGMn13)的热处理工艺、力学性能和耐磨性已不能满足这些大型厚壁耐磨件的要求[4]。经本课题组长期以来对耐磨材料的研究并跟踪厂家使用情况,超高锰钢代替传统的高锰钢能满足抗磨件大型化的需要,在高应力、强冲击工况条件下具备优异抗磨性能、高韧性、高水韧化能力,使用过程中使厂家获得了良好的工程效果和经济效益。 1 试验内容和方法 1.1 超高锰钢的化学成分 向奥氏体锰钢中加入Cr、Mo等合金元素,改进热 Oct.2006Vol.55 No.10 铸造 FOUNDRY 1067

高锰钢的热处理

热处理技术与装备 高锰钢的热处理是将高锰钢铸件加热到碳化物固溶的温度,并保温一定时间,然后在水中快速冷却,形成单一的奥氏体组织,使其强度和韧性大大提高,达到可加工硬化的目的。与普通碳钢不同,高锰钢在水中淬火后不是变硬,而是变软了,因此高锰钢的热处理又叫水韧处理。在热处理过程中,碳化物是在固溶态下溶解到奥氏体中去的,所以又叫固溶强化处理。高锰钢固溶理的参数主要有入炉温度、升温速度、保温温度、保温时间、摆放位置等。 1入炉温度和加热速度 高锰钢铸件在入炉之前,铸件表面的粘砂、披缝和浇注冒口要清理干净。粘砂对铸件加热或冷却都有隔热作用,使铸件加热和入水后的冷却不均匀,严重粘砂会降低铸件入水后的冷却速度,造成晶界碳化物重新析出。披缝较薄,在热处理加热时会脱碳,水淬后会变成马氏体,马氏体相变体积膨胀,可能会使铸件基体受到拉应力而开裂。高锰钢导热性能低, 100℃以下为碳钢的1/4~1/6倍, 600℃时为碳钢的1/2~5/7倍。高锰钢热膨胀系数大,为碳钢的2倍, 500℃以上更大。虽然铸件在低温加热过程中无相变应力发生,但加热到300℃以上,会在晶内和 晶界上出现脆性碳化物增多的现象,有时会发生珠光体转变。高锰钢辙叉结构复杂,同一铸件壁厚相差悬殊,铸件本身存在不小不等的铸造应力。在热 第1期吴霞等:高锰钢的热处理 处理的加热或冷却过程中不同部位存在较大的温差,产生热应力。这样,热应力和铸造应力叠加,会使辙叉产生裂纹。因此,必须控制高锰钢辙叉的入炉温度和加热速度。高锰钢辙叉热处理工艺分两种:冷辙叉处理和热辙叉处理。对于热辙叉,如果装入同一窑的所有辙叉的装窑温度基本和窑温一致,则这种工艺可以节能,提高效率。但在实际生产中装窑温度很难与 窑温一致,且相差较大,主要原因有:不同炉次的辙叉开箱水爆后在同一窑中进行热处理,造成同一窑中辙叉的初始温度不同;由于连续生产,每天窑的温度也不尽相同;季节性的温度变化导致辙叉与窑温的变化较大;辙叉在窑内的排序不同会造成一定的温差。这样导致辙叉与炉窑存在较大温差。沈阳铁路局薛家配件厂老工艺的热辙叉升温起点高(450℃),升温速度快(150℃/h)。由于高锰钢导热性差,就会使辙叉内部产生较大的热应力,在随后的水淬急剧冷却处理中或前期升温时发生开裂。对于冷辙叉(温度为室温)前期均温不够、保温时间短、升温起点高(分别为400℃和200℃),升温快(分别为160℃/h和90℃/h)。这样升温曲线起点、辙叉和炉窑起始温度存在较大温差,导致辙叉在水韧处理后开裂。图1是他们改进后的高锰钢辙叉热处理工艺。在新工艺中,冷辙叉的装窑温度降到室温,热辙叉装窑温度降到150℃。两种辙叉入窑后都均温1. 0~1. 5h后再升温。在650℃以下升温时,由于高锰钢晶界和晶内会析出碳化物,有时还会发生珠光体转变,因此升温速度要慢。改进后的工艺,冷、热两种辙叉从150℃升温到650℃时,升温速度均为90℃/h,冷辙叉在150℃以下升温速度要降到70℃/h。此外,在650℃以下升温时,升温速度随高锰钢中C、P含量增加而放慢,这是因为C、P含量与热处理时加热裂纹密切相关。升温到650~700℃时,要保温1~2h,目的使辙叉温度均匀,消除铸造应力。温度大于650℃,超过了高锰钢的弹性变形温度,高锰钢由弹性状态进入塑性状态,而且脆性碳化物逐渐溶解到奥氏体中去,钢的强度和塑性得到改善,加上保温处理,铸造应力得到消除。因此随后可以快速升温,升温速度大于100℃/h,甚至到150℃/h。 图1高锰钢辙叉改进后的热处理工艺 2固溶处理温度和保温时间 固溶处理温度和保温时间确定的根据为:碳化物充分溶解、奥氏体适当的晶粒度、钢中化学成分均匀,得到最佳的力学性能、防止过热组织出现。TB/T447- 2004规定对不含其他合金元素高锰钢辙叉的水韧处理温度为1000~1100℃。渗碳体型的碳化物溶解过程是碳从碳化物中向奥氏体中扩散,原来渗碳体相的铁原子自扩散,并形成面心立方的奥氏体。(Fe,Mn) 3C型碳化物中的碳原子和其它原子作用力较弱,扩散过程容易进行,溶解速度较快。加热到

相关文档
最新文档