电冰箱控制系统设计

电冰箱控制系统设计
电冰箱控制系统设计

HEFEI UNIVERSITY

自动化综合设计

设计题目:冰箱温度控制设计

系别:11 电子系

专业班级:自动化2班

指导老师:丁健

姓名学号:董祥(1105032020)吴兵(1105032022)王万里(1105032023)丁超超(1105032028)

_钱心远()

摘要

近年来随着计算机在社会领域的渗透, 单片机的应用正在不断地走向深入,同时带动传统控制检测日新月益更新。在实时检测和自动控制的单片机应用系统中,单片机往往是作为一个核心部件来使用,仅单片机方面知识是不够的,还应根据具体硬件结构,以及针对具体应用对象特点的软件结合,以作完善。

电冰箱温度控制系统是利用温度传感器DS18B20采集电冰箱冷藏室和冷冻室的温度以及蒸发表面温度。通过INTEL公司的高效微控制器MCS-C51单片机进行数字信号处理,从而达到智能控制的目的。本系统可实现电冰箱冷藏室和冷冻室的温度设置、电冰箱自动除霜、开门报警等功能。

通过对直冷式电冰箱制冷系统的改进和采用模糊控制技术,实现了电冰箱的双温双控,使电冰箱能根据使用条件的变化迅速合理地调节制冷量,且节能效果良好。

关键词:单片机;温度传感器;电冰箱;温度控制

一、设计内容

家用电冰箱一般是双门冰箱,分为冷冻室和冷藏室两个部分。

冷冻室用于冷冻食品和制冰。长时间存放,食品中的水份也会凝结成冰。冷冻室的温度为-6~-18℃。为保证冷冻室良好的制冷效果。当霜厚达3mm 时,能自动检测霜厚并进行除霜。

冷藏室用于在较低的温度中存放食品。要求有一定的保鲜而不冻伤食物的功能。冷藏室的温度一般为 0~10℃。

对家用电冰箱的要求是:较高的温度控制精度和最优的节能效果。

系统结构框图:

二、硬件设计

直冷式电冰箱的控制原理是根据蒸发器的温度控制制冷压缩机的启动与停止,使冰箱内的温度保持在设定的温度范围内。本电冰箱控制系统要完成冷冻室及冷藏室的温度检测和动态显示的功能,霜厚检测及除霜的功能,温度设置功能,。控制系统硬件结构如图所示,主要由电源电路,AT89C52最小系统,温度传感器,功能按键, ADC0809转换电路,时钟电路,键盘电路,显示电路,复位电路,测霜、除霜装置。

系统总体设计硬件方框图

三.各部分电路作用及介绍

1.AT89C52单片机简介

AT89C52是一个低电压,高性能CMOS 8位单片机,片内含8k bytes的可反复擦写的Flash只读程序存储器和256 bytes的随机存取数据存储器(RAM),器件采用ATMEL公司的高密度、非易失性存储技术生产,兼容标准MCS-51指令系统,片内置通用8位中央处理器和Flash存储单元,AT89C52单片机在电子行业中有着广泛的应用。

MCS-51系列单片机是美国Inter公司在1980年推出的高性能8位单片微型计算机,较原来的MCS-48系列更为先进,功能更强。

2. 时钟电路

时钟电路用于产生单片机工作所需的时钟信号,时序是指令执行中各信号之间的相互关系。单片机本身就如同一个复杂的同步时序电路,为了

保证同步工作方式的实现,电路应在唯一的时钟信号控制下严格地按时序进行工作。

在单片机内部带有时钟电路,因此,只需要在片外通过XTAL1和XTAL2引脚接入定时控制元件(晶体振荡器和电容),即可构成一个稳定的自激振荡器。XTAL1和XTAL2之间跨接晶体振荡器和微调电容。晶体呈感性,与C1、C2构成并联谐振电路。振荡器的振荡频率主要取决于晶体;电容的值则有微调作用,通常取30pF左右。电容的安装装置应尽量靠近单片机芯片。

MCS8051的时钟电路如图所示:

C1

3 复位电路

复位是单片机的初始化操作,其主要功能是使单片机从0000H单元开始执行程序。除了进入系统的正常初始化以外,当由于程序运行出错或操作错误使系统处于死锁状态时,本单片机系统采用自动复位方式复位。

+5V

RST

R 10k Ω

10μF

10μF

++100pF

Vcc

MCS-805

1

3

2

1

C C C

4 温度检测

我们选用DS18B20单线数字温度传感器。

1.DS18B20单线数字温度传感器的主要技术指标:

(1)独特的单线接口方式,DS18B20在与微处理器连接时仅需要一条口线即可实现微处理器与DS18B20的双向通讯。(2)测温范围 -55℃~+125℃,固有测温分辨率0.5℃。(3)支持多点组网功能,多个DS18B20可以并联在唯一的三线上,最多只能并联8个,如果数量过多,会使供电电源电压过低,从而造成信号传输的不稳定,实现多点测温。(4)工作电源: 3~5V/DC 。(5)在使用中不需要任何外围元件。(6)测量结果以9~12位数字量方式串行传送。

2.DS18B20外形和内部结构

DS18B20内部结构如图所示,主要由4部分组成:64位ROM 、温度传感器、非挥发的温度报警触发器TH 和TL 、配置寄存器。DS18B20的外形及管脚排列如图和表所.

DS18B20的内部结构

DS18B20的管脚排列

DS18B20引脚定义:

3、DS18B20接口设计

下图为DS18B20接入电路的两种方法:

(a)寄生电源工作方式(b)外接电源工作方式

5.键盘与显示电路

键盘是人与MCS8051联系的重要手段,用于向CPU输入运行参数,控制系统的运行状态。键盘电路形式分为直接编码输入键盘和矩阵键盘。前者接口电路简单,一般应用于需要少量按键的控制系统。后者因占用I/O 引脚数少,常被按键较多的控制系统所采用。本课程设计采用直接编码输

入键盘,系统采用了5个按键,分别设置为加一键、减一键、正常键、冷藏室温度显示键、冷冻室温度显示键。

显示器是常用的输出器件。显示器件种类很多,有LED发光二极管、LED数码管、液晶显示器LCD、阴极射线管CRT等。本电冰箱的电控系统使用的液晶显示器LCD。

端读入键盘信号,若读得“0”表示有键按下,转入处理键功能程序。

6.制冷与除霜控制电路

用机械方法来增加气体压力的设备称为压缩机。在电冰箱制冷系统中,用于压缩制冷剂蒸气,并使制冷剂在系统中循环的设备称为制冷压缩机。

电冰箱制冷系统所选用的压缩机属于容积型压缩机。容积型压缩机是指气缸内制冷剂蒸气直接受到压缩,使其容积变小,压力增高的压缩机。所以,在整个电冰箱的制冷系统中,压缩机的正常有序的运行是非常重要的,因此,需恰当的设计制冷压缩机的启动与停止控制电路。

本设计中的电冰箱的电控系统中,含有自动除霜的功能,所以,也需要设计自动控制除霜电热丝的启动与停止的控制驱动电路。

7. 驱动控制电路的设计

(1)制冷压缩机和除霜电热丝的启动和停止控制驱动电路如图所示:

1

2

5KΩ制冷压缩机和除霜电热丝的启动和停止控制驱动电路

四. 软件设计

本电冰箱的软件设计是在硬件电路设计的基础上,此电冰箱电控系统

控制设计过程中主要完成以下几个功能:冷冻室及冷藏室温度采样并进行

模拟到数字的转换,自动除霜功能,键盘扫描和Lcd显示。

本系统软件主要由主程序、功能子程序、中断服务程序组成。采用

主程序调用功能子程序,子程序尽可能少的调用其它子程序,以保证系统

的稳定运行。

主程序

主程序是整个电冰箱的总控制程序,如控制各单元初始化、控制中

断、定时、显示、键盘程序的启动与重复等,为系统软件的主干部分。本

电冰箱的电控系统的核心部分是冷冻室和冷藏室的温度检测及控制电路。

主程序中对是否为冷冻室和冷藏室的温度键进行了逐步的判断,通过判断

调用不同的子程序来实现对冷冻室和冷藏室的温度的控制。

主程序框图如图所示:

主程序流程图

2 打开、关闭压缩机子程序

程序流程图如下图如示:

开始

初始化

有无反应回复

接收数据启动/停车?

调启动子程序

1

调停车子程序

结束

1

压缩机子程序调用框图

总程序附表

#include

#include

#define uchar unsigned char

#define uint unsigned int

/*定义按键-------------------------------------------------------------------*/ sbit K1 = P1^4; //K1-设置

sbit K2 = P1^5; //K2-确认、返回

sbit K3 = P1^6; //K3-加

sbit K4 = P1^7; //K4-减

sbit K5 = P3^2; //电机开关

sbit beep=P3^6;

sbit jdq=P2^5;

sbit LED=P3^1;

sbit fan=P2^6;

bit f_low=0;

uchar flag,shan;

int beep_tmp=40,shu,beep_jdq=-20,shu_j;

/**************************************************/ void delay1ms(uint ms)//延时1毫秒

for(i=0;i

for(j=0;j<110;j++);

}

void delaynms(uint ms)//延时1毫秒

uint i;

for(i=0;i

delay1ms(1);

}

#include "1602.h"

#include "18b20.h"

void init()

{

beep=1;

jdq=1;

fan=1;

}

void beep_scan()

{

WriteAddress(0xc0+0);//设定屏幕上的显示位置delaynms(5);

WriteData('B');

WriteData(':');

if(beep_tmp>=0)

{

WriteData(' ');

if((beep_tmp%1000/100)==0)

{WriteData(' ');}

else

{WriteData(beep_tmp%1000/100+0x30);delaynms(5);} WriteData(beep_tmp%100/10+0x30);delaynms(5);

WriteData('.');delaynms(5);

WriteData(beep_tmp%10+0x30);delaynms(5);

}

else

{

shu=~beep_tmp+1;

WriteData('-');

if((shu%1000/100)==0)

{WriteData(' '); }

else

{WriteData(shu%1000/100+0x30);delaynms(5);}

WriteData(shu%100/10+0x30);delaynms(5);

WriteData('.');delaynms(5);

WriteData(shu%10+0x30); delaynms(5);

}

tmp(0xc0+7);

WriteAddress(0xc0+8);//设定屏幕上的显示位置delaynms(5);

WriteData('J');delaynms(5);

WriteData(':');delaynms(5);

if(beep_jdq>=0)

{

WriteData(' ');

if((beep_jdq%1000/100)==0)

{WriteData(' ');}

else

{WriteData(beep_jdq%1000/100+0x30);delaynms(5);} WriteData(beep_jdq%100/10+0x30);delaynms(5);

WriteData('.');delaynms(5);

WriteData(beep_jdq%10+0x30);delaynms(5);

}

else

{

shu_j=~beep_jdq+1;

WriteData('-');

if((shu_j%1000/100)==0)

{WriteData(' '); }

else

{WriteData(shu_j%1000/100+0x30);delay1ms(10);}

WriteData(shu_j%100/10+0x30);delay1ms(10);

WriteData('.');delay1ms(10);

WriteData(shu_j%10+0x30);delay1ms(10);

}

tmp(0xc0+15);

}

/********************主程序

***********************************/

void main()

{

LcdInt();//液晶初始化

for(;;)

{

read_temp();

ds1820disp();

beep_scan();

if(flag==0)

{

if(tvalue>beep_tmp)

{

jdq=0;

f_low=1;

}

}

else

{ if((tvalue

else {jdq=1;f_low=0;}

}

/*设置时间------------------------------------------------------------------*/ if (K1 == 0)

{

beep=1;

delaynms(20); //按键消抖

if(K1 == 0) //当是调时状态本键用于调整下一项

{

shan++;

if(shan==5)

shan=1;

switch(shan)

{

case 1: WriteAddress(0xc0+4);

Write_com(0x0f); break;

case 2: WriteAddress(0xc0+6);

Write_com(0x0f);break;

case 3: WriteAddress(0xc0+12);

Write_com(0x0f); break;

case 4: WriteAddress(0xc0+14);

Write_com(0x0f);break;

}

}

while(K1 == 0); //等待键松开}

/*--------------------------------------------------------------------------*/ while(shan!=0)

{

if (K1 == 0)

{

delaynms(20); //按键消抖

if(K1 == 0) //当是调时状态本键用于调整下一项

{

shan++;

if(shan==5)

shan=1;

switch(shan)

{

case 1: WriteAddress(0xc0+4);

Write_com(0x0f); break;

case 2: WriteAddress(0xc0+6);

Write_com(0x0f);break;

case 3: WriteAddress(0xc0+12);

Write_com(0x0f); break;

case 4: WriteAddress(0xc0+14);

Write_com(0x0f);break;

}

}

while(K1 == 0); //等待键松开

}

if (K2 == 0) // 当在调时状态时就退出调时

{

delaynms(20);

if(K2 == 0)

{

shan=0;

Write_com(0x0c);

}

while(K2 == 0);

}

if (K3 == 0) // 当在调时状态时就退出调时

{

delaynms(20);

if(K3 == 0)

{

switch(shan)

{

case 1:

beep_tmp+=10;

beep_scan();

WriteAddress(0xc0+4);

Write_com(0x0f); break;

case 2:

beep_tmp+=1;

beep_scan();

WriteAddress(0xc0+6);

Write_com(0x0f);break;

case 3:

beep_jdq+=10;

if(beep_tmp

beep_jdq=beep_tmp;

beep_scan();

WriteAddress(0xc0+12);

Write_com(0x0f); break;

case 4:

beep_jdq+=1;

if(beep_tmp

beep_jdq=beep_tmp;

beep_scan();

WriteAddress(0xc0+14);

Write_com(0x0f);break;

}

}

while(K3 == 0);

}

if (K4 == 0) // 当在调时状态时就退出调时

{

delaynms(20);

智能冰箱方案设计

智能冰箱方案设计 从目前趋势来看,家电智能化已经成为必然,而作为一天中与我们接触最多的冰箱产品要想达到更人性化的使用效果,势必会进一步智能化。但其在智能化的进程中,也并非所有功能一股脑加进其中就可以,在此期间还需要根据用户的痛点、需求进一步筛选,不让智能冰箱的功能成为仅仅是过一次的“尝鲜”功能。面对这样的现状,一些厂商已经开始对智能冰箱3.0时代进行布局,打破以往功能单一、使用不便的痛点,让冰箱的智能功能走入我们的生活。相比以往智能冰箱产品,在智能方面有所提升,我们也希望能在未来看到更具智能化、高端化、人性化的冰箱产品。 目录 1.智能冰箱主要种类 2.智能冰箱和普通冰箱的区别 3.怎么延长智能冰箱的使用寿命

1.智能冰箱主要种类 按内冷却可分为:冷气强制循环式、冷气自然对流式;按用途可分为:冷藏箱、冷藏冷冻箱、冷冻箱;按外形可分为:单门电冰箱、双门电冰箱、三门电冰箱、四门电冰箱;按放置可分为:立式电冰箱、卧式电冰箱、台式电冰箱;按制冷风方式可分为:气体压缩式电冰箱、气体吸收式电冰箱、半导体式电冰箱。尽享舌尖美味,可让用户通过手机或电脑,随时随地了解冰箱里食物的数量、保鲜保质信息,可为用户提供健康食谱和营养禁忌,可提醒用户定时补充食品等。降低冰箱能耗,能够根据环境温度进行自动调节温度,并有多种调节模式,根据需求随时调节。

2.智能冰箱和普通冰箱的区别 智能冰箱和传统冰箱实际上并没有太多的区别,既没有住着个超级人工智能,也不会变形,更没有什么次元空间储藏。目前大多数智能冰箱都是在冰箱的门体上增加了一块触摸屏,让用户能够直接在冰箱的屏幕上调整冰箱的温度、工作状态;可以让用户手动记录冰箱内储存食物的时间、种类和到期时间;有些冰箱还能够根据储存的食物向用户推荐合适的菜谱;能够联网使用一些娱乐功能,比如播放音乐、播放视频或收听各种电台;有的冰箱还有网购模块,想购买什么东西可以直接在冰箱上下单。还有一些智能冰箱在门体上没有这些功能,但用户可以下载一个手机App与冰箱进行连接,在手机App上能够完成上面那些功能中的全部或大部分。

家用电冰箱温度的正确调节方法

家用电冰箱温度的正确调节方法 除非你家的温度一年四季如春,那你的冰箱的温度调好就不需要变动了。否则,由于夏季和冬季温差较大,为了达到省电和保证食品冷冻质量,就需要在夏天和冬天调一下冰箱的温控旋钮。 调节方法:温控旋钮一般有0、1、2、3、4、5、6、7当,数字越大,冷冻室里的温度越低。一般春秋天我们放到3档上,具体要看你的要求,冷冻室能否达到零下18度以下。为了达到食品保鲜和省电的目的,夏天我们可以打到1档或2档,冬天打到4档或5档。 有的人可能要问,冬天温度低,反而把温度设置的低(数值大),夏天温度高,反而把温度设置的高(数值小),是不是搞反了呀。其实有很多人都有这样的错误认识,认为冬天温度低可以把冰箱温度设置高点,夏天温度高要设置低些。为什么要我这样设置呢?那是因为,冰箱冷冻室的温度是靠储藏室里的温度控制,看你的温控旋钮就是在储藏室。储藏室里的温度一般在4~8度,到了冬天,室内温度接近这个温度,如果温控旋钮还在3或者小于3上的话,冰箱压缩机就很少启动了,虽然储藏室里的温度能够满足要求,但冷冻室的温度就不能达到零下18度以下,食物容易变质,严重时食品解冻溶化。到了夏天,温度比较高,如果温控旋钮还在3或者大于3上的话,冰箱储藏室为了达到温度要求,压缩机频繁启动,虽然冷冻室的温度比零下18度还要低,但却造成电能的浪费,缩短了冰箱的使用寿命,这也是我们所不希望的。所以正确调节冰箱温度控制旋钮可以使我们既保

鲜又省电。 如何正确调节冰箱温度 1、夏季温度调节 电冰箱(冷柜)在使用过程中,其工作时间和耗电受环境温度影响很大,因此需要我们在不同的季节要选择不同的档位使用。夏季环境温度高时,应打在弱档2-3档使用。 原因:在夏季,环境温度高,而此时箱内温度每下降1度都很困难,通过箱体保温层和门封冷量散失也会加快,这样就会出现开机时间很长而停机时间却很短。这样就会导致压机在高温下长时间的运行,加剧了活塞与气缸的磨损,电机线圈漆包线的绝缘性能也会因高温而降低,耗电量也会急剧上升,即不经济又不合理。若此时改在打弱档(2.3),就会发现开机时间明显变短,停机时间加长,这样即节约了电能,又减少了压缩机磨损,延长了使用寿命。所以夏季高温时就将温控器调到弱档。 2、冬季温度调节 冬季一般档位要打到4档以上适用,原因是:您所购产品只有一个冷藏室温控器来控制冷藏和冷冻的温度,因冷藏温度技术要求控制在0~10度之间,而一般在冬季冷藏环境比较低,冷藏很容易到达设定的温度,如果设定温度过高,容易产生冰箱开机时间短导致冷冻制冷效果达不到,而冬季如果环境温度低,主要是要保证冷冻的制冷效果。一般情况下,如果环境温度低于16度,调到5档,低于10度,

智能冰箱系统设计与研究项目中期报告

智能冰箱系统设计与研究项目中期报告 《智能冰箱系统设计与研究》这个课题从立项到现在已有近两个月了。在这段 时间里,我们从实际出发,有计划有步骤,扎扎实实地推进这项工作,做到在 实践中去研究,在研究中去实践,在研究实践中去总结。 一、研调研情况与资料收集情况 项目组根据设计的需要查阅了大量资料,现总结如下: (一)冰箱行业现状 1.市场 进入21世纪以来,中国已经成为世界上最大的冰箱生产和供应国之一。 中国的电冰箱企业除了不能自主设计和制造压缩机外,其他方面的自主设计和 生产能力均已具备。截至2006年底,中国冰箱年销售量达到了3079万台,与 上年同期相比增速达到19.56%,增速提升了8个百分点。 总体规模稳步上升 (1)国内销售量创5年新高 据赛诺市场研究公司监测,从2002年起至2004年,中国冰箱国内销量 增长率一直呈上升趋势,其中2004年国内销量比2003年增加了22.06%,国内销量增长率达到历史最高水平。2005年由于国内冰箱业资本市场发生一些重大事件影响了行业的正常发展,导致国内销量比2004年小幅下降了2.7%。2006 年中国冰箱国内销量增长速度开始恢复,并创下1427万台的新高,比2005年 增长了13.6个百分点,增长率也达到5年来的最高水平。 从2006年的国内销量情况可以看出,中国冰箱国内销量开始从以前的急速上升过渡到稳步上升的阶段。此外,自2005年冰箱出口量首次突破内销量以来,2006年中国冰箱的出口量继续突飞猛进,13.63%的内销增速仅为外销增速的一半,而根据海关统计数据,我国外销的冰箱产品也逐步向中高端转移,LG、西门子等国际品牌将对开门冰箱的基地设在国内,就是看中了国内良好的 出口环境和配套资源。从产品外销的增速来看,虽然2006年出口产品的国内销量增速比上一年度下降了3个百分点,但是增长的绝对值达到318万台,说 明其实国内企业冰箱出口的增速并未放缓,只是由于出口量基数越来越大,导 致增速看起来下降。 (2)销售额增幅高达23%
2002年-2006年,除2003年的零售额增长率为4.25%之外,其他各年度冰箱市场的零售总额增长均在7%左右。2006年由于平均零售价格的上升,致使冰箱零售总额出现更大幅度的增长,在冰箱零售总量仅上升了13.63%的情况下,冰箱市场零售总额同比增长了23%,达到了350亿元。自此标志着2006年国内冰箱市场进入一个销售额爆发时期,国内销量稳步增长,同时由于单价的上升,市场零售总额实现大幅度攀升,给厂商带来了更多的转型机遇。品牌竞争已经 从单纯的价格战模式提升到以产品差异化及品牌差异化为核心的价值战上来。(3)价格呈现不降反升 正如以上所提及到的,2006年中国冰箱市场零售价格出现了较大幅度的上涨,这一现象源于原材料涨价、市场供应短缺、产品升级等因素。根据赛诺 的监测数据显示,2006年中国冰箱市场平均零售价格达到2450元/台,比2005年增长了8.26%,创下历史最高水平。而在2002年-2004年期间,冰箱市场的 平均零售价格以3.1%-4.4%的速度下降,到2004年产品平均零售价格达到最低

家用电冰箱温度的正确调节方法修订版

家用电冰箱温度的正确调节方法修订版 IBMT standardization office【IBMT5AB-IBMT08-IBMT2C-ZZT18】

家用电冰箱温度的正确调节方法除非你家的温度一年四季如春,那你的冰箱的温度调好就不需要变动了。否则,由于夏季和冬季温差较大,为了达到省电和保证食品冷冻质量,就需要在夏天和冬天调一下冰箱的温控旋钮。 调节方法:温控旋钮一般有0、1、2、3、4、5、6、7当,数字越大,冷冻室里的温度越低。一般春秋天我们放到3档上,具体要看你的要求,冷冻室能否达到零下18度以下。为了达到食品保鲜和省电的目的,夏天我们可以打到1档或2档,冬天打到4档或5档。 有的人可能要问,冬天温度低,反而把温度设置的低(数值大),夏天温度高,反而把温度设置的高(数值小),是不是搞反了呀。其实有很多人都有这样的错误认识,认为冬天温度低可以把冰箱温度设置高点,夏天温度高要设置低些。为什么要我这样设置呢?那是因为,冰箱冷冻室的温度是靠储藏室里的温度控制,看你的温控旋钮就是在储藏室。储藏室里的温度一般在4~8度,到了冬天,室内温度接近这个温度,如果温控旋钮还在3或者小于3上的话,冰箱压缩机就很少启动了,虽然储藏室里的温度能够满足要求,但冷冻室的温度就不能达到零下18度以下,食物容易变质,严重时食品解冻溶化。到了夏天,温度比较高,如果温控旋钮还在3或者大于3上的话,冰箱储藏室为了达到温度要求,压缩机频繁启动,虽然冷冻室的温度比零下18度还要低,但却造成电能的浪费,缩短了冰箱的使用寿命,这也是我们所不希望的。所以正确调节冰箱温度控制旋钮可以使我们既保鲜又省电。 如何正确调节冰箱温度 1、夏季温度调节

基于单片机的冰箱温度智能控制系统的设计

编号:_______________ 商丘工学院 毕业论文(设计) 题目冰箱温度控制系统设计 系别机电工程学院 专业电气自动化 学生姓名梁子鹏 成绩 指导教师吴德刚 2012年04月

冰箱温度控制系统设计 摘要 单片机即单片微型计算机,是集CPU,RAM,ROM,定时,计数和多种接口于一体的微控制器。其中51单片机是各种单片机中最为典型和最有代表性的一种,广泛应用于各个领域。 本课题设计的电冰箱的电控系统主要应用AT89C51单片机作为核心控制元件进行分析和设计,对各部分的软件编程、硬件电路设计、及调试进行了介绍。电冰箱温度控制系统是利用温度传感器DS18B20采集电冰箱冷藏室和冷冻室的温度,通过INTEL公司的高效微控制器MCS-C51单片机进行数字信号处理,从而达到智能控制的目的。本系统可实现电冰箱冷藏室和冷冻室的温度设置、电冰箱自动除霜、开门报警等功能。 本文在第一章介绍了电冰箱的系统组成及工作原理,第二章论述了本控制系统的硬件设计部分。第三章论述了系统的软件设计部分。 通过对直冷式电冰箱制冷系统的改进和采用模糊控制技术,实现了电冰箱的双温双控,使电冰箱能根据使用条件的变化迅速合理地调节制冷量,且节能效应明显。 关键词:AT89C51单片机A/DC0809智能仪器

目录 前言 (3) 第一章电冰箱的系统概述 (2) 1.1电冰箱的设计原理 (2) 1.2工作过程的设计.............................................................................错误!未定义书签。 1.3冷冻室冷藏室温度检测采样电路.................................................错误!未定义书签。第二章硬件部分设计 (4) 2.1系统结构 (4) 2.2冷冻室冷藏室温度检测采样原理 (4) 2.2.1主要特性 (4) 2.2.2管脚说明 (5) 2.2.3振荡特性 (6) 2.2.4计算器 (6) 2.3过欠压保护电路 (6) 2.4电压检测装置的设计....................................................................错误!未定义书签。 2.5功能按键的设计 (7) 2.6开门报警点路 (8) 第三章软件部分的设计 (9) 3.1主程序的设计 (9) 3.2始化程序的设计 (9) 3.3关闭压缩机的设计 (10) 结论 (11) 参考文献 (12)

电冰箱自动控制系统的设计

目录 1.引言 (2) 2 设计要求及分析 (3) 2.1电冰箱温度自动调节功能 (3) 2.3电源过欠压保护功能 (3) 2.4压缩机开启延时功能 (3) 2.5故障报警功能 (3) 3. 自动控制系统硬件结构设计 (4) 3.1主要部件选择与功能实现 (4) 3.1.1 单片机选型及功能介绍 (4) 3.1.2 A/D转换器选型及功能介绍 (5) 3.1.3 74LS373简介 (5) 3.2检测及控制电路 (6) 3.2.1 传感器的选择与温度自动调节功能的实现 (6) 3.2.2 电冰箱的过欠压保护电路及功能实现 (8) 3.2.3 电冰箱的开启延时电路及功能的实现 (9) 3.2.4 自动除霜功能的实现 (10) 3.2.5 报警器 (11) 总结 (13) 参考文献 (14)

电冰箱自动控制系统的设计 1.引言 冰箱自动控制系统在正常工况下工作,当运行过程中需要进行自动调节时,系统能通过预设程序进行调节,要求控制系统应有一定的应变能力。 对于冰箱性能的主要调节指标是箱体温度由此实现的功能有自动温度调节,自动除霜等。 要求维持冰箱的冷藏冷冻室温度维持在预先设定的数值,当箱内温度高于或低于这一值时判断启动或关闭压缩机,使温度回归。 系统还要求累计压缩机运行时间和检测环境温度,来判断是否满足化霜条件,当满足化霜条件时,接通化霜加热丝,同时断开压缩机和风机,当完成化霜工作后恢复压缩机风机的工作。 另外当运行达到安全极限时,要求系统能采取一些相应的保护措施,促使运行离开安全极限,返回到正常情况,以防事故。 属于生产保护性措施的有两类:一类是硬保护措施;一类是软保护措施。 例如电源的过欠压保护,压缩机开启延时,故障自检报警等. 本系统通过监控环境温度,冰箱的冷冻,冷藏室温度,电源电压等数据,通过处理判断调整冰箱的运行以达到预期的运行效果。使冰箱在节能,储藏效果,安全方面都能进行自动有效的控制。

电冰箱温度控制系统设计样本

电冰箱温度控制系统设计 一、引言 电冰箱是每个家庭现代化厨房必备的家用电器之一, 它是利用电能在箱体内形成低温环境,用于冷藏冷冻各种食品和其它物品的家用电器设备。它的主要任务就是控制压缩机、化霜加热等来保持箱内食品的最佳温度达到食品保鲜的目的, 即保证所储存的食品在经过冷冻或冷藏之后保持色、味、水分、营养基本不变。从19 世界上第一台电机压缩式电冰箱研制成功, 随着科学技术的飞速发展电冰箱也在不断的演变和更新特别是近年来高新技术的迅猛崛起更使得电冰箱的发展日新月异。现代社会每一个家庭都处在快节奏的生活中人们大多已无闲暇的时间和精力花费在经常性的采购日常生活用品上。因此集中时间大量采购的新型生活方式已为越来越多的人所接受从而决定了大容量电冰箱将是一种国际化的发展趋势。传统的机械式直冷式电冰箱的控制原理是根据蒸发器的温度控制制冷压缩机的启、停,使电冰箱内的温度保持在设定温度范围内。一般,当蒸发器温度升至3~5℃时启动压缩机制冷;当温度低于-10 ~ -20℃时停止制冷,关断压缩机。 随着微机技术的飞速发展,单片机以其体积小、价格低、应用灵活等优点在家用电器、仪器仪表等领域中得到了广泛的应用。

采用单片机进行控制,能够使电冰箱的控制更准确、灵活、直观。 本次所设计的就是基于51单片机的电冰箱温度控制系统, 以AT89C51单片机为核心控制压缩机的启动和停止, 解决了传统电冰箱控制系统存在的不足, 能够使控制更准确、更灵活。 本次设计的目的是设计一个温度控制系统, 要求: 1.利用键盘分别控制冷藏室、冷冻室温度( 0~5℃, -7 ~ -18℃) ; 2.显示各室的温度值; 3.制冷压缩机运行后若突然断电要有30秒延时; 4.各个门开后超过2分钟要报警。 本次设计的意义是经过此次设计加深对测控系统原理与设计课程的理解, 掌握微机化测控系统设计的思路, 了解一般设计过程。 二、电冰箱温度控制系统硬件电路设计 1. 总体设计方案 以AT89S51单片机为核心, 来实现各个模块的功能。温度传感器模块、键盘输入模块作为系统的输入模块, 液晶显示模块、温度控制器模块、报警模块作为系统的输出模块, 构成基本电路, 原

冰箱温度智能控制系统的设计

冰箱温度智能控制系统的设计 目录 第一章概论..................................... 错误!未定义书签。 一.电冰箱的系统组成 (2) 二.工作原理: (3) 三.本系统采用单片机控制的电冰箱主要功能及要求 (4) 第二章硬件部分 (4) 一.系统结构图 (4) 二.微处理器(单片机) (5) 三.温度传感器 (8) 四.电压检测装置 (8) 五.功能按键 (9) 六.压缩机,风机、电磁阀控制 (9) 七.故障报警电路 (9) 第三章软件部分 (10) 一、主程序:MAIN (10) 二、初始化子程序:INTI1 ......................... 错误!未定义书签。 三、键盘扫描子程序:KEY ......................... 错误!未定义书签。 四.打开压缩机子程序:OPEN (13) 五.关闭压缩机:CLOSE (15) 六.定时器0中断程序:用于压缩机延时............ 错误!未定义书签。 七.延时子程序.................................. 错误!未定义书签。第四章分析与结论.................................. 错误!未定义书签。

电冰箱温度测控系统设计 目前市场销售的双门直冷式电冰箱,含有冷冻室和冷藏室,冷冻室通常用于冷冻的温度为-6~-18℃;冷藏室用于在相对冷冻室较高的温度下存放食品,要求有一定的保鲜作用,不能冻伤食品,室温一般为0~10℃. 传统的电冰箱温度一般是由冷藏室控制,冷藏室、冷冻室的不同温度是通过调节蒸发器在两室的面积大小来实现的,温度调节完全依靠压缩机的开停来控制.但是冰箱内的温度受诸多因素的影响,如放入冰箱物品初始温度的高低、存放品的散热特性及热容量、物品在冰箱的充满率、环境温度的高低、开门的频繁程度等.因此对这种受控参数及随机因素很多的温度控制,既难以建立一个标准的数学模型,也无法用传统的PID调节来实现.一台品质优良的电冰箱应该具有较高的温度控制精度,同时又有最优的节能效果,而为了达到这一设计要求采用模糊控制技术无疑是最佳的选择. 一.电冰箱的系统组成 液体由液态变为气态时,会吸收很多热量,简称为“液体汽化吸热”,电冰箱就是利用了液体汽化的过程中需要吸热的原理来制冷的。 蒸气压缩式电冰箱制冷系统原理图如图1-1所示,主要由压缩机、冷凝器、干燥过滤器、毛细管、蒸发器等部件组成,其动力均来自压缩机,干燥过滤器用来过滤赃物和干燥水分,毛细管用来节流降压,热交换器为冷凝器和蒸发器。制冷压缩机吸入来自蒸发器的低温低压的气体制冷剂,经压缩后成为高温高压的过热蒸气,排入冷凝器中,向周围的空气散热成为高压过冷液体,高压过冷液体经干燥过滤器流入毛细管节流降压,成为低温低压液体状态,进入蒸发器中汽化,吸收周围被冷却物品的热量,使温度降低到所需值,汽化后的气体制冷剂又被压缩机吸入,至此,完成一个循环。压缩机冷循环周而复始的运行,保证了制冷过程的连续性。

冰箱制冷系统设计说明书

冰箱制冷系统设计说明书1.冰箱设计步骤

图1 BCD-348W/H电冰箱制冷系统图 2.冰箱的总体布置 2.1箱体设计要求及形式 电冰箱箱体设计的优劣,直接影响使用性能、外观、耐久性制造成本和市场销售。在进行设计时,要求造型别致、美观大方。除色调要与家庭家具协调外,还必须考虑占地面积小容积大,宽度、深度与高度的比例合理,有稳定感等。冰箱箱体尺寸见表1。 表1箱体尺寸 2.2箱体外表面温度校核和绝热层厚度 设计箱体的绝热层时,可预先参照国外冰箱的有关资料设定其厚度,并计算出箱体表面温度t w。如果箱体外表面温度t w低于露点温度t d,则会在箱体表面发生凝露现象,因此箱体表面温度必须高于露点温度,一般t w > t d+0.2 t o t i

)(i o o o W t t a K t t --= (1) 国家标准GB8059.1规定,电冰箱在进行凝露实验时 亚温带SN 、温带N 气候条件下,露点温度为19±0.5℃ 亚热带ST 、热带T 气候条件下,露点温度为27±0.5℃ 在t w > t d 的前提下,计算箱体的漏热量Q 1,并用下面的公式校验绝热层的厚度 121)(Q t t A w w -= λδ (2) 1w t ----冰箱外壁温度,℃ 2w t ----冰箱壁温度,℃ λ-----绝热层导热系数,w/(m.k) A -----传热面积,m 2 校验计算的厚度在设定厚度基础上进行修正,反复计算,直到合理为止。 3.冰箱热负荷计算 总热负荷Q=Q 1+Q 2+Q 3 Q 1---- 箱体的漏热量 Q 2---- 门封漏热量 Q 3---- 除露管漏热量 (1)箱体的漏热量Q 1 由于箱体外壳钢板很薄,而其导热系数很大,所以钢板热阻很小,可忽略不计。胆多用塑料ABS 成型,热阻较大,可将其厚度一起计入隔热层,箱体的传热可以看做单层平壁的传热。 )(1i o t t KA Q -= (3) (4) 其中:K —— 传热系数,W/m 2·℃; A —— 传热面积,m 2 ; t o ——箱体外空气温度,℃; t i ——箱体空气温度,℃ αo ——箱外空气对箱体外表面的表面换热系数,W/m 2·℃; αi ——箱体表面对箱空气的表面换热系数,W/m 2·℃; i o a a K 111++=λδ

基于单片机的电冰箱控制系统

课程设计 成绩评定表 设计课题:基于单片机的电冰箱控制系统 学院名称:电气工程学院 专业班级:自动0801 学生姓名:田冠枝 学号:200848280126 指导教师:臧海河 设计地点:2#421 设计时间:2011.06.27-2011.07.03

计算机控制技术 课程设计 设计课题:基于单片机的电冰箱控制系统 学院名称:电气工程学院 专业班级:自动0801 学生姓名:田冠枝 学号:200848280126 指导教师:臧海河 设计地点:2#421 设计时间:2011.06.27-2011.07.03

计算机控制技术课程设计任务书

目录 1 引言 ......................................................................................... 错误!未定义书签。 1.1 课题背景 (1) 1.2 主要实现功能 (1) 2 总体方案设计 ............................................................. 错误!未定义书签。 2.1 控制系统方案设计 (2) 2.2 基于单片机的电冰箱控制系统整体布局.................... 错误!未定义书签。 2.3 功能原理分析 (3) 3 硬件电路设计 (4) 3.1单片机的选择 (5) 3.2 A/D转换电路 (5) 3.2.1 ADC0809介绍 (6) 3.2.2ADC0809与A T89C51单片机接口电路 (6) 3.3 键盘电路及其显示电路 (7) 3.4 温度采集及除霜电路 (8) 3.4.1 温度采集电路 (8) 3.4.2 除霜电路 (9) 3.4.3 传感器的选择 (9) 3.5 制冷压缩机和除霜电热丝启停电路 (10) 3.5.1 控制电路图 (10) 3.5.2 工作原理 (11) 3.6 电源电压检测电路 (11) 3.7 报警电路 (12) 4 软件设计 (12) 4.1 程序设计语言 (12) 4.2程序主要模块 (13) 4.2.1主程序模块 (13) 4.2.2T0中断服务程序模块 (14) 4.2.3T1中断服务程序模块 (15) 5 总结 (16) 参考文献 (17) 附录系统总原理图 (18)

冰箱冷藏室温度智能控制系统

- . - 目录 摘要 (1) 1 引言 (1) 2 设计思路 (2) 2.1 设计任务 (2) 2.2 设计的理论基础 (2) 2.3 冰箱的系统组成 (2) 2.3.1 蒸汽式压缩机电冰箱 (2) 2.3.2 直冷式电冰箱 (3) 2.4 总体设计方案选择 (3) 2.5 方案总体介绍 (4) 3 硬件系统设计 (4) 3.1 系统总体结构 (4) 3.2 温度采集模块 (5) 3.2.1 温度采集模块的选择 (5) 3.2.2 DS18B20测温电路 (6) 3.2.3 测量数据的比较 (7) 3.3 单片机系统及液晶模块 (7) 3.3.1 微处理器(单片机) (7) 3.3.2 显示电路的设计 (8) 3.4 输出控制模块 (9) 4 软件设计 (9) 4.1 主程序流程框图 (10) 4.2 DS18B20工作的流程图 (12) 5 调试与实验 (12) 5.1 使用说明 (12) 5.1.1 Keil单片机模拟仿真 (12) 5.2 功能测试 (14) 5.2.1 温度测量分辨率 (14) 5.3 晶振的选择 (14) 附录1 硬件原理图 (15)

冰箱冷藏室温度智能控制系统 摘要:本智能温度控制主要由温度采集模块、液晶显示模块、单片机智能控制模块和输出控制模块组成。此次设计相比于传统的冰箱温度控制器,温度信号更加精确,利用单片机控制冷藏室温度在1℃~5℃之间,当温度低于1℃,继电器不工作;当温度高于5℃,继电器开始工作,并且利用液晶显示冷藏室温度的变化。 关键词:温度采集;液晶显示;温度控制 1 引言 随着集成电路的发展,单片机的功能也越发的多样。单片机因为他本是的诸多优点,比如功能强、体积小、可靠性高、开发的周期短,成为各种检测控制方面被广泛应用的元器件,在电子工业生产中变为不可缺少的存在,特别是在我们日常的生活生产中也发挥了很多的作用[1]。而在日常生活中,冰箱已经成了家庭生活中不可缺少的一部分,就此对于冰箱的性能要求也越来越高。在这其中冰箱的智能温度控制是现今市场上冰箱重要选择。 现在市面上的冰箱大多都包含着两部分,分别是冷藏室和冷冻室。其中冷藏室用于冷藏食物,要求有一定的保鲜作用,不可冻伤食物;冷冻室一般用于对食物的冷冻作用。 现代信息技术的三大基础是信息采集(即传感器技术)、信息传输(通用技术)和信息处理(计算机技术)。目前信息技术中前端的产品就是传感器,而其中被广泛应用在工业生产、科学研究方面的传感器就是温度传感器,在这些领域中温度传感器的应用是位于各种传感器的第一位[2]。 智能温度传感器最早是出现在20世纪90年代的中期,在其内部就应用了A/D转换器,但他测量的温度X围比较低,而且也只有1℃的分辨率。到了21世纪以后,智能温度传感器正在迅速的朝着高精度、多功能、总线标准化、高可靠性及安全性、开发虚拟传感器和网络传感器、研制单片测温系统等高科技的方向发展[3]。 传统电冰箱的温度一般是由冷藏室控制。冷藏室、冷冻室之间不同的温度是通过调节蒸发器在两室的面积大小来实现的,温度的调节完全是依靠压缩机的开停来控制。但是影响冰箱内部温度的因素有很多种:如放到冰箱内的食物

3-电冰箱系统设计

3 冰箱制冷系统设计 冰箱制冷系统的设计基本思路和顺序是:先根据要求确定箱体尺寸,然后根据箱体尺寸确定热负荷,根据热负荷和其他发热元件可以确定冰箱的基本能耗,并依次确定压缩机,同时可以确定蒸发器和冷凝器两大主要传热设备,最后才是确定节流元件和制冷剂充注量。当然,计算设计不可能是很准确的,最后还需要通过试验和不断的调试来使系统运行达到最优化。 保温层设计 3.1.1 保温层设计方法 冰箱保温层厚度是设计的重点,关键是产品的成本与性能,而保温层的设计需要考虑的因素包括: ①不同的市场和不同的能耗要求; ②产品的不同风格和设计特点; . ③市场对发泡料的限制条件; ④产品成本的综合对比选择; ⑤产品的市场要求:全球性、区域性、特殊客户; ⑥产品的未来发展考虑。 冰箱保温层厚度是设计的重点,在设计中总会与不同部门发生冲突,当然要求的厚度越薄越好,这样成本低,容积大,但由于技术的能力有限制的,在能耗达到一定的水平时,厚度也不是可以薄到想要的程度,因此在厚度的设计方面存在选择是否合理的问题。 目前冰箱箱体都采用硬质聚氨脂整体发泡作绝热层,其绝热性能好,适于流水线大批量生产,发泡后的箱体内外壳被粘接成刚性整体,结构坚固,内外壳厚度可以适当降低,无须对箱体做防潮处理,年久也不会吸湿而使热导率增大。 电冰箱绝大多数为立式结构。箱体结构的发展过程,大致分为四个阶段:5 0年代以前主要是厚壁箱体(厚度为60~65mm);60年代是薄壁箱体(厚度30~3 5mm);70年代是薄壁双温双门;80年代以后世界上趋于采用中等壁厚箱体(厚度为40~45mm),并以箱背式冷凝器的三门三温或双门双温自然对流冷却(即直冷

(完整版)自动控制原理第1章习题参考答案

第1章习题参考答案 1-1 自动控制系统通常由哪些环节组成?它们在控制过程中担负什么功能? 解:见教材P4- 1-2 试比较开环控制系统和闭环控制系统的优缺点。 解:见教材P4-6 1-7题1-7图是仓库大门自动控制系统原理示意图。试说明系统自动控制大门开闭的工作原理并画出系统原理方框图。 解: 当合上开门开关时, 电桥会测量出开门位置与开门实际位置间的偏差电压,偏差电压经放大器放大后,驱动伺服电动机带动绞盘转动,将大门向上提起,与此同时,和大门连在一起的电刷也向上移动,直到桥式测量电路达到平衡,电动机停止转动,大门达到开启位置。反之,当合上关门开关时,电动机带动绞盘使大门关闭,从而可以实现大门远距离开闭自动控制,系统原理方框如下图所示。 电桥电路放大器电动机绞盘大门 _ 期望门位实际门位 仓库大门控制系统原理方框图 1-8 电冰箱制冷系统工作原理如题1-8图所示。试简述系统的工作原理,指出系统的被控对象、被控量和给定量,画出系统原理方框图。 题1-8图电冰箱制冷系统工作原理 题1-7图仓库大门自动开闭控制系统原

解: 电冰箱制冷系统结构如下图 电冰箱制冷系统结构图 系统的控制任务是保持冰箱内温度c T 等于给定温度r T 。冰箱体是被控对象;箱内温度是被控量,希望的温度r T 为给定量(由电位器的输出电压r U 对应给出);继电器、压缩机、蒸发器、冷却器所组成制冷循环系统起执行元件的作用。 温度控制器中的双金属温度传感器(测量元件)感受冰箱内的温度并转换为电压信号c U ,与控制器旋钮设定的电位器输出电压r U (对应于希望温度r T )相比较,构成偏差电压c r U U U -=?(表征希望温度与实际温度的偏差),控制继电器K 。当U ?大到一定值时,继电器接通,压缩机启动,将蒸发器中的高温低压制冷剂送往冷却器散热,降温后的低温低压制冷剂被压缩成低温高压液态进入蒸发器,急速降压扩展成气体,吸收箱体内的热量,使箱体的温度下降;而高温低压制冷剂又被吸入冷却器。如此循环,使冰箱达到制冷的效果。电冰箱控制系统的原理方框图如下图所示。 电冰箱控制系统的原理方框图

电冰箱温控系统(DOC)

电冰箱温控系统 设计要求: A 、单片机控制。 B 、制冷控制电路、温度监测及恒温控制。 1、设计方案 本系统以AT89S51单片机为核心,来实现各个模块的功能。温度传感器模块、键盘输入模块作为系统的输入模块,液晶显示模块、温度控制器模块、报警模块作为系统的输出模块,构成基本电路,原理框图如图1所示。 温度传感器从设备环境采集温度,单片机AT89S51获取采集的温度值,经处理得到当前环境中一个比较稳定的温度值,再根据当前设定的温度上下限值,通过加热和降温对当前温度进行调整。当采集的温度经处理后超过设定温度上限时,单片机通过三极管驱动继电器开启降温设备(压缩制冷器),当采集的温度经处理后低于设定温度下限时,单片机通过三极管驱动继电器开启升温设备 (加热器)。 AT89S51 键盘电路 DS18B20 温度芯片数据传输 继电器1 压缩制冷 继电器2 加热器 MAX232电平转换芯片 报警电 PC 机 输入电源 复位电路 LED 数据显时钟电

2.测温模块的选择方案 DS18B20是一种单端通信的数字式温度传感器,操作简单。我们把单片机的一条I/O分配给温度传感器,即可完成温度采集。本系统在温度采集中使用的DS18B20测温原理图如图2-1所示:图中低温度系数晶振的振荡频率受温度的影响很小,用于产生固定频率的脉冲信号,送给减法计数器1;高温度系数晶振振荡频率随着温度变化,变化明显,所产生的信号作为减法计数器2的脉冲输入。图中还隐含着计数门,当计数门打开时,DS18B20就对低温度系数振荡器产生的时钟脉冲进行计数,进而完成温度测量,计数门的开启时间由高温度系数振荡器来决定。每次测量前,首先将-55℃所对应的一个基数分别置入减法计数器1、温度寄存器中。 图2-1 DS18B20测温原理图 DS18B20的内部有一个高速暂存RAM和一个非易失性的可电擦除的EEPRAM,后者存放高温度和低温度触发器TH、TL。当温度转换命令发布后,经转换所得的温度值以二字节补码形式存放在高速暂存存储器的第1和第2个字节。单片机可通过单线接口读到该数据,读取时低位在前,高位在后,对应的温度计算:当符号位S=0时,直接将二进制位转换为十进制;当S=1时,先将补码变为原码,再计算十进制值。第3和第4字节是TH 和TL的拷贝,是易失性的,每次上电复位时被刷新,第5字节为配置寄存器,它主要用来确定温度值的数字转换分辨率。6、7、8字节保留未用,为全逻辑1,第9字节是冗余检验字节。

毕业设计-电冰箱的制冷控制系统

前言 众所周知,电冰箱是现代家庭中必不可少的家用电器。而目前我国市场销售的冰箱大多采用传统的机械式温控,其控制精度差,功能单一,控制方式简单难以满足冰箱发展的要求。随着经济的发展和人民生活水平的进一步提高,人们对多功能的发展要求越来越高。由于单片机性能好,控制功能强,工作可靠,成本低等优点,现在已经在家电产品中得到了广泛的应用。面临国内电冰箱发展的现状,在技术上还与其他发达国家有一定的差距,我们在原有的基础上对电冰箱进行了一定的改进,使其适应当代个性时尚、节能环保、智能高端、精确温控的发展方式,使人们体验闻所未闻的个性化感受,快捷与原汁原味不再是梦想。新一代产品在控制上还增加了人工智能,使家电性能更优异,使用更方便可靠。 本次设计基于大量的市场调查和理论研究。首先,我对传统电冰箱控制系统进行了分析。调查了10多个品牌的电冰箱的控制系统,研究了他们制冷的优缺点,吸收了一些比较好的设计思想。其后,我又查阅了大量的资料文献,其中最多的是国内外最新发表的关于制冷方面的论文,丰富了我们的理论依据。然后,根据我拥有的材料用单片机实现电冰箱控制系统的硬件设计,最后在硬件设计的基础上实现了其软件设计。 第1章电冰箱系统概述 1.1 单片机概述 自从1971年微型计算机问世以来,随着大规模集成电路技术的进一步发展,导致微型计算机正向两个方向发展:一是高速度、高性能、大容量的高档微型计算机及其系列化,向大、中型计算机挑战;另一个是稳定可靠、小而廉、能适应各种领域需要的单片机。 单片机是指把中央处理器、随机存储器、只读存储器、定时器/计数器以及I/O 接口电路等主要部件集成在一块半导体芯片上的微型计算机。虽然单片机只是一个芯片,但从组成和功能上看,它已经具有了微型计算机系统的含义,从某种意义上来说,一块单片机就是一台微型计算机。

电冰箱的控制系统方案

第四章电冰箱的机械控制系统 电冰箱以电为能源,靠电动机来驱动压缩机,一般还要配上启动继电器才能工作。为了避免由于种种原因引起的超负荷现象造成电机烧毁,都装有过载保护器。此外,为了控制箱内温度,还要用机械式温度控制器,有时它还兼有控制化霜功能。电冰箱的控制系统依据系统中所采用温控器的不同分为“机械温控系统”和“电子温控系统”。本章主要介绍机械温控原理及机械式温度控制器。 第一节常见机械温控系统 一.机械温控系统组成 常见机械式冰箱温控系统: 图4-1 冰箱电气原理图

表4-1 机械式电冰箱温控系统部件 二.机械式温控器 1.温控器的类型与作用 温度控制器(简称温控器),是一种能自动控制器具的温度,使其保持在两个特定值之间,并且可以由使用者设定的装置。广泛应用于各种家用电器中,以下为列表: 表4-2 常用温控器类型 本教材中温控器均为冰箱用温控器的技术参数、要求等,主要介绍温感压力式

温度控制器,以下简称“温控器”。 温控器属于温度控制系统中的一个主要的部件,其主要作用是控制压缩机压缩机开、停时间,以保持电冰箱内的温度在确定的范围内。 常见的温度控制器有温感压力式、热敏电阻式和风门温度调节器等。 2.温感压力式温度控制器 由感温组件、温度设定主体组件、执行开闭的微动开关或自动风门等三部分组成。是通过密闭的内充感温工质的温包和毛细管,把被控温度的变化转变为密闭空间压力或容积的变化,以达到温度设定值时,通过弹性元件和快速瞬动机构,自动开闭触点或风门,以达到自动控制温度。 表4-3 温感压力式温度控制器分类及用途

常用术语: ●接通点(ON)温控器触点闭路时的温度; ●断开点(OFF)温控器触点开路时的温度; ●调节范围温控器的调节机构给定的最大和最小接通点或断开点之间的温差; ●差动值(DIFF)调节机构整定于某一温度位置时的接通点和断开点之间的温度差; ●感温部件把控制对象的温度变换为充入工质(气体或液体)压力的部分; ●毛细管把感温部分的压力变化传递到波纹管或膜盒的细管。对于充注饱和蒸气●工作的温控器,起毛细管本身亦是感温部分。通常以其端头150mm长作为感温部 分; ●主体除去感温部分和毛细管,其内装调温机构和触点开闭机构等部分; ●冷点(C)温控器调温机构整定在调温范围最低温度值的位置; ●中点/正常点(N)温控器调温机构整定在调温范围中间温度值的位置; ●暖点(W)温控器调温机构整定在调温范围最高温度值的位置; ●调整点温控器动作温度校准的位置,通常作为产品温度动作特性的主要考核●点。它可以是中点或暖点。 3.工作原理 国内常用的压力式温控器有鹭宫型和兰柯型两大类别,其结构不尽相同,但均由三部分组成: 1)感温组件:感温包、毛细管、波纹管(或膜盒)焊接密封而成,内充感温工质。2)带有调节设定温度的主体部分 3)执行机构:由微动开关盒组件或可动风门构成 温控器结构简单、成本低、性能可靠,在家用电冰箱中得到广泛的应用。原理

基于单片机的冰箱温度智能控制系统的设计

基于单片机的冰箱温度智能控制系 统的设计 摘要: 近年来随着计算机在社会领域的渗透, 单片机的应用正在不断地走向深入,同时带动传统控制检测日新月益更新。在实时检测和自动控制的单片机应用系统中,单片机往往是作为一个核心部件来使用,仅单片机方面知识是不够的,还应根据具体硬件结构,以及针对具体应用对象特点的软件结合,以作完善。 电冰箱温度控制系统是利用温度传感器DS18B20采集电冰箱冷藏室和冷冻室的温度,通过INTEL公司的高效微控制器MCS-C51单片机进行数字信号处理,从而达到智能控制的目的。本系统可实现电冰箱冷藏室和冷冻室的温度设置、电冰箱自动除霜、开门报警等功能。 本文在第一章介绍了电冰箱的系统组成及工作原理,第二章论述了本控制系统的硬件设计部分。第三章论述了系统的软件设计部分。 通过对直冷式电冰箱制冷系统的改进和采用模糊控制技术,实现了电冰箱的双温双控,使电冰箱能根据使用条件的变化迅速合理地调节制冷量,且节能效果良好。

目录 第一章概论 (3) 一.电冰箱的系统组成 (3) 二.工作原理: (5) 三.本系统采用单片机控制的电冰箱主要功能及要求: (5) 第二章硬件部分 (6) 一.系统结构图 (6) 二.微处理器(单片机) (6) 三.温度传感器 (11) 四.电压检测装置 (15) 五.功能按键 (15) 六.压缩机,风机、电磁阀控制 (16) 七.故障报警电路 (16) 第三章软件部分 (16) 一、主程序:MAIN (17) 二、初始化子程序:INTI1 (21) 三、键盘扫描子程序:KEY (22) 四.打开压缩机子程序:OPEN (25) 五.关闭压缩机:CLOSE (26) 六.定时器0中断程序:用于压缩机延时 (27) 七.延时子程序 (28) 第四章分析与结论 (28) 致谢 (29) 参考文献: (30)

电冰箱的自动控制

电冰箱的自动控制 自动控制技术是能够在没有人直接参与的情况下,利用附加装置(自动控制装置)使生产过程或生产机械(被控对象)自动地按照某种规律(控制目标)运行,使被控对象的一个或几个物理量(如温度、压力、流量、位移和转速等)或加工工艺按照预定要求变化的技术。它包含了自动控制系统中所有元器件的构造原理和性能,以及控制对象或被控过程的特性等方面的知识;自动控制系统的分析与综合;控制用计算机(能作数字运算和逻辑运算的控制机)的构造原理和实现方法。自动控制技术是当代发展迅速,应用广泛,最引人瞩目的高技术之一;是推动新的技术革命和新的产业革命的核心技术;是自动化领域的重要组成部分。 自动控制技术有很强的应用背景,无论是在炼钢、轧钢、化工、石油、电力等工业上,或是造纸、纺织、皮革和食品等工业上;无论是在航空、航海、汽车和铁路运输工业和国防工业上,或是图书资料的管理、实验室技术设备上都得到广泛应用。自动控制技术对导弹和人造地球卫星是非常重要的,对于研究原子能的应用,研究飞机和导弹的空气动力和结构强度也是有用的。没有应用背景的“控制理论”就缺乏生命力。如何巧妙地运用控制的基础理论来解决实际问题是和研究控制理论本身不同的另一种创造性工作。下面以电冰箱为例介绍一下自动控制的原理: 一、冰箱简介:一种使食物或其他物品保持冷态的小柜或小室,用于冷冻、冷藏食品 或其他物品,内有制冰机用以结冰的柜或箱带有制冷装置的储藏箱。家用电冰箱的容积通常为20~500升。1910年世界上第一台压缩式制冷的家用冰箱在美国问世。1925年瑞典丽都公司开发了家用吸收式冰箱。1927年美国通用电气公司研制出全封闭式冰箱。1930年采用不同加热方式的空气冷却连续扩散吸收式冰箱投放市场。1931年研制成功新型制冷剂氟利昂12。50年代后半期开始生产家用热电冰箱。中国从50年代开始生产电冰箱。 二、冰箱历史:17世纪中期,“冰箱”这个词才进入了美国语言,在那之前,冰只是刚刚开始影响美国普通市民的饮食。随着城市的发展冰的买卖也逐渐发展起来。它渐渐地被旅馆、酒馆、医院以及被一些有眼光的城市商人用于肉、鱼和黄油的保鲜。内战(1861-1865)之后,冰被用于冷藏货车,同时也进入了民用。到1880年以前,已经有半数在纽约、费城和巴尔的摩销售的冰,三分之一在波士顿和芝加哥销售的冰箱开始进入家庭使用,因为一种新的家庭设备——冰箱——即现代冰箱的前身,被发明了。现在同类产品还有冰柜。制造一台有效率的冰箱不像我们想象的那么简单。19世纪早期,发明家们关于对冷藏科学至关重要的热物理知识的了解是很浅陋的。人们认为最好的冰箱应该防止冰的融化,而这样一个在当时非常普遍的观点显然是错误的,因为正是冰的融化起到了制冷作用。早期人们为保存冰而作出了大量的努力,包括用毯子把冰包起来,使得冰不能发挥它的作用。直到近19世纪末,发明家们才成功地找到有效率的冰箱所需要的隔热和循环的精确平衡。但早在1803年,一位有发明天才的马里兰农场主——托马斯?莫尔就找到了正确的方法。他拥有一个农场,离华盛顿约20英里,那里的乔治镇村庄是集市中心。当他用自己设计的冰箱运送黄油去市场时,他发现顾客们会走过装在竞争者桶里那些迅速融化的黄油而给他比 自动控制 市价更高的价格买他仍然新鲜坚硬,整齐地切成一磅一块的黄油。莫尔说他的冰箱的一个好处是使得农民们不必为了保持他们产品的低温而在夜里去市场交易。 三、按工作原理分的冰箱种类 1)压缩式电冰箱:该种电冰箱由电动机提供机械能,通过压缩机对制冷系统作功。制冷系统利用低沸点的制冷剂,蒸发时,吸收汽化热的原理制成的。其优点是寿命长,使用方便,目前世界上91~95%的电冰箱属于这一类。 2)吸收式电冰箱:该种电冰箱可以利用热源(如煤气、煤油、电等)作为动力。利用氨-水-氢混合溶液在连续吸收-扩散过程中达到制冷的目的。其缺点是效率低,降温慢,现已

相关文档
最新文档