蔗糖酯的合成研究进展.

蔗糖酯的合成研究进展.
蔗糖酯的合成研究进展.

蔗糖酯的合成研究进展综述

李国兴

(西南大学化学化工学院,重庆 400715)

摘要:蔗糖酯是一种高效乳化剂和表面活性剂,在工业上具有广泛的用途。对蔗糖酯的合成和分析方法研究进展进行综述,其合成方法主要有溶剂法、无溶剂法、微乳化法和酶催化法4种。其中溶剂法和酶催化法需用有毒溶剂,限制了产品在食品等行业的应用;无溶剂法反应温度较高,易产生焦化,产品质量得不到保证;微乳化法以丙二醇或水代替有毒溶剂,利用乳化剂使反应体系成为近似均相,是无毒高效的生产工艺。介绍薄层色谱、柱层析、高效液相色谱、红外色谱等在蔗糖酯分析中的应用,并总结了各自的特点。

关键词:蔗糖酯;合成;分析;表面活性剂

中图分类号:TS202.3 文献标志码:A

0.前言

蔗糖酯(SE)又称蔗糖脂肪酸酯,是一种无毒、易生物降解、具有良好表面活性的非离子表面活性剂,有着广泛的用途。蔗糖酯在食品工业中可用作乳化剂、发泡剂、黏度调节剂、润滑光泽剂、抗老化剂、润湿与分散剂、抗菌剂;在日化工业中作洗净剂和化妆品;在医药工业中作增溶剂、分散剂、渗透剂、乳化剂、包覆剂、崩解剂等[1-12]。近年来蔗糖酯作为生理活性物质,在抗癌、增强免疫力和抗菌性方面的研究也引起科学界的关注。

——————————

作者简介:李国兴(1990-),男,四川成都人,在校本科生,研究方向高分子材料

蔗糖酯按蔗糖中羟基与脂肪酸酯化度的不同可分为单酯、双酯和多酯,单酯溶于温水,双酯、三酯及多酯难溶于水。蔗糖酯的熔点范围为50~100℃,温度过高会使蔗糖残基焦糖化而发黑。蔗糖酯在20℃以下水解作用较小,在120℃以下稳定,加热到145℃以上时则容易发生分解。

蔗糖单酯结构式如图1所示。当蔗糖酯结构中的羟基氢原子进一步被取代时获得双酯、三酯及多酯。

1.蔗糖酯合成原理

蔗糖酯的合成采用酯交换法,即蔗糖与脂肪酸低碳醇酯在碱性催化剂作用下发生酯交换反应,得到蔗糖酯和低碳醇。蔗糖酯是蔗糖(亲水)和脂肪酸(亲油)的酯化产物。其中的蔗糖是二糖,含1个葡萄糖吡喃环、1个果糖呋喃环和8个自由羟基。如图1所示,8个自由羟基中位于6,6’,1’位置上的3个伯羟基最容易被酯化,然后是5个仲羟基。一般认为3个伯羟基被酯化的难易程度是l’>6’>6位,即蔗糖单酯一般是6位上的羟基被酯化,但它们的差别不大。5个仲羟基酯化的难易程度基本相同。蔗糖酯合成一般采用碱催化反应。反

应机理[13]可解释为:蔗糖与碱作用生成蔗糖化物(Sucrate),由它离解成的阴离子进攻带有阳电荷的脂肪酸酯(以硬脂酸甲酯为例)的羧基碳,发生亲核取代反应,从而生成蔗糖酯。对此可用下列反应式表示:

其中:R"OH代表蔗糖;R"O代表蔗糖化离子;

代表脂肪酸低碳醇酯;R'OH代表甲醇。

2、蔗糖酯的合成方法

以蔗糖为化工原料的研究始于1948年,美、英为首的西方制糖工业并为此成立了国际性的研究机构,从而开辟了一个新的领域——糖化学。从此科学家们不断致力于研究各种合成蔗糖酯的新方法,合成原料、合成途径和催化剂的选择等都在不断地创新。到目前为止蔗糖酯的合成已有溶剂法、无溶剂法、微乳化法和相转移催化法等各种方法。

2.1溶剂法

溶剂法最早是在20世纪50年代由Snell[14]提出的,其合成的表面活性剂蔗糖酯是这一领域的第一批产品。溶剂法生产蔗糖酯1959

年在日本实现工业化生产。溶剂法主要是以二甲基甲酰胺(DMF)或二甲基亚砜(DMSO)作溶剂,碳酸钾为催化剂,使蔗糖与脂肪酸酯发生酯化反应生成蔗糖酯。溶剂法的主要缺点是所采用的溶剂有毒,不利于食品和生活用品方面应用。提纯精制产品需要的设备投资大,成本高。

2.2无溶剂法

无溶剂法是通过高温使反应物成为熔融相,蔗糖和脂肪酸酯在熔融相中发生酯化反应。无溶剂法反应温度较高,蔗糖易焦化结块,反应常无法正常进行。有人通过在无溶剂反应体系中加入乳化剂、表面活性剂或其它助剂获得低温相溶相或低温固液非均相,使反应得以改进。

有文献报道,以硬脂酸甲酯和蔗糖为原料无溶剂合成蔗糖酯,用恒温仪通过控制石蜡浴温度使原料熔化,保持反应温度在120℃,用硬脂酸单甘酯为乳化剂,SrO为催化剂,在磁力搅拌作用下使反应以恒温进行,该方法在无溶剂体系中合成蔗糖酯的最高产率为42.2%[15]。章亚东等[16]用乙醇代替有毒的甲醇在酸催化下与硬脂酸反应制出了

硬脂酸乙酯。以合成硬脂酸乙酯和蔗糖为原料在催化剂和乳化剂的作用下,控制压力4.35 kPa,温度120℃,用无溶剂酯交换法合成蔗糖硬脂酸酯,产率可达到75.2%。硬脂酸乙酯和蔗糖的反应属于可逆反应,为了反应有利于向正方向进行,要不断蒸出反应生成的乙醇,破坏反应的平衡,使酯交换反应趋向完全。降低压力也可促进反应向产物方向进行,加快反应速率,同时有隔绝空气作用,可防止蔗糖氧化,保持反应体系良好的熔融状态。胡健华等[17]以蔗糖、硬脂酸甲酯为原

料,用硬脂酸钾作助溶剂,控制反应温度135℃,压力1.33 kPa,以非均相无溶剂体系合成蔗糖酯的产率达到82%。

以食用油酯为原料,无溶剂法合成蔗糖酯的研究也进行了许多[18-20],研究主要用K2CO3和硬脂酸钾作为催化剂和助溶剂,获得低温相溶相或固液混合相,合成蔗糖酯的产率大都超过70%。以油脂为原料,直接经醇解、预皂化后以无溶剂法合成蔗糖酯的生产工艺也有研究,但后序产品纯化工艺非常复杂[18]。孙庶冬等[21]以蔗糖、棉籽油为原料直接合成蔗糖酯。首先使苛性钾与脂肪酸乙酯反应生成部分中性皂作为乳化剂,再加入一定量的蔗糖,使蔗糖和脂肪酸乙酯在较低温度下达到相溶状态,进而在均相下发生酯交换反应合成蔗糖酯。用这种工艺合成蔗糖酯时,在形成均匀熔融物系所需的乳化剂(脂肪酸皂)不是直接加入,而是反应物脂肪酸乙酯在体系内部分皂化自然生成中性皂。反应物系稳定,熔融状态良好,操作条件要求不高。毛逢银等[22]采用微波加热技术以无溶剂法合成蔗糖酯,与传统加热技术相比,大幅缩短了反应时间,提高了产率。

无溶剂法合成蔗糖酯的方法还包括相转移催化法,即利用相转移催化剂在两相界面的特殊运输作用,将反应物从一相运输到另一相,从而使反应顺利进行。刘慧娟等[23]采用相转移催化法以硬脂酸甲酯和蔗糖合成蔗糖酯,温度控制在95~100℃就可很好地进行反应。用相转移催化法合成蔗糖硬脂酸甲酯较与其它无溶剂法相比,设备简单,反应在常压和较低温度的温和条件下就可进行,且反应时间短,反应产率较高。

2.3微乳化法

此方法是对溶剂法的改进。采用丙二醇或水代替溶剂法所使用的DMF和DMSO有毒溶剂,并加入乳化剂,使反应体系形成近似均相体系的乳化液。根据替代溶剂的不同,微乳化法又分为丙二醇法和水溶剂法。丙二醇法以丙二醇为溶剂,脂肪酸钠做乳化剂,将蔗糖和脂肪酸酯在丙二醇溶液中加热、搅拌形成微乳化液。然后适当升温减压,在短时间内可完成反应。方法不含有毒溶剂,丙二醇可回收,且残存不妨碍在食品中应用。缺点是容易产生焦糖化,蔗糖损失量较大,产品可能被着色。孙果宋等[24]进行了由蔗糖和脂肪酸乙酯在丙二醇溶剂中经酯交换合成蔗糖脂肪酸酯的研究,他们不仅进行了小试、中试试验,而且完成了300t/a规模的工业性技术开发实验。合成分2步进行:首先将脂肪酸与乙醇反应生成脂肪酸乙酯,第二步蔗糖与脂肪酸酯的酯化。该工艺合成蔗糖酯收率在78%以上,总酯质量分数在91%以上。水溶剂法是对丙二醇法的进一步改善,以水代替丙二醇作为溶剂。水乳化法反应的关键是控制反应过程始终维持在微乳化状态。必须在油水分散体系中加入足够量表面活性剂时,使油、水、蔗糖和表面活性剂组成的体系界面张力下降到难以测量的程度,甚至达到负值,但负的界面张力是不稳定的。要保持体系的稳定,必然要增大分散度,扩大界面积,使体系的界面张力由负值变为零,从而自发达到微乳化状液的稳定体系。因而可以通过加入多量的表面活性剂,控制反应体系处于透明的微乳化状态,以使反应过程中蔗糖小滴不致聚集而析出结晶,保证酯交换反应顺利进行[25]。另外水的引入可能导致水

解,因此必须控制水的用量以及适宜的反应温度与压力,避免脂肪酸酯的水解。此方法合成产品单酯含量高,反应条件温和,反应时间短,成本低,原料转化率较高,是蔗糖酯合成史上的较大突破。韦异等[26]以蔗糖和硬脂酸甲酯为原料,蔗糖:硬脂酸甲酯(摩尔比)=4∶1,乳化剂用量30%,催化剂用量5%,反应时间2.5 h。压力0.07~0.14 Pa,水溶剂法合成蔗糖酯的重量产率105.9%。

2.4酶催化法

人们还发现了用生物技术合成蔗糖酯的方法[21],将脂肪酶在疏水相催化酯交换反应,通过酯交换反低廉的油脂转化为具有特殊功用的油脂。根霉菌、肠杆菌、曲霉菌、假单胞菌、念球菌和青霉菌属的脂肪酶可使蔗糖与脂肪酸反应生成蔗糖酯。与化学催化剂相比,酶催化法具有催化活性高、反应条件温和、选择性强、产物分离简单等优点[26]。生物法合成的蔗糖酯不仅具有乳化、润湿和增容等表面活性,而且居有增强免疫抗肿瘤的性能[27]。吴洪达等[28]以蔗糖八乙酸酯和油酸乙酯为原料,以脂肪酶Novo435为催化剂,以叔戊醇为溶剂,通过转酯化反应合成了同时含有油酸酰基和乙酸酰基的混合型糖。Patil[28,29]用杆菌碱性蛋白酶Proleather,以无水吡啶为介质,通过蔗糖2,2,2-三氟乙基己二酸酰化反应催化合成长链线性蔗糖多酯,这种蔗糖多酯具有高度的水溶性,还可以溶于其它极性有机溶剂。利用这个特点,

它可以用来作吸水剂,生物降解塑料用作尿布和卫生产品,水处理化

学试剂以及药物载体。Park[30]用两步法酶催化合成线性蔗糖多酯, 其产物具有较高的分子量和快速的反应时间,均超过了一步法酶催化

合成酯反应。首先用脂肪酶Novo435催化合成二酯,在酶催化作用下二酯与二醇在有机溶剂下发生缩聚反应生成线性蔗糖多酯,其重均分子量可达22 000。这在同类试验中尚属首创。班青等[31]在常压下用固定脂肪酶催化合成蔗糖脂肪酸酯,生产工艺简单,反应温度比较低,为20~80℃;采用了低毒性溶剂,可用于食品和药品,而且生产提纯简便,所得产品纯度高。

3、蔗糖酯的纯化

蔗糖酯的合成产物为蔗糖酯、脂肪酸酯、蔗糖及催化剂或乳化剂的混合物,蔗糖酯的分离纯化一般是应产物冷却,进行脱色处理,再采用混合溶剂分离残余的脂肪酸酯、蔗糖及催化剂等杂质,再进行冷

却使蔗糖酯结晶析出,过滤后得粗酯。粗酯经过乙醇重结晶即可得到产品。胡健华[32]采用乙醚浸泡法对蔗糖酯粗产物进行纯化处理。将反应产物先用3%的醋酸溶液进行中和,一方面可以防止蔗糖酯的水解,另外可以使脂肪酸皂转化为脂肪酸,使其与蔗糖酯同时析出。再进一步盐析,加速蔗糖酯的凝聚分层,进行水洗,并弃除水相得到粗产物。将粗产物置于真空干燥箱干燥,并研成粉状。分析产物组成为蔗糖酯占61%,硬脂酸甲酯21%,硬脂酸钾18%。将粗品精制,用乙醚浸泡,

除去可溶于乙醚的硬脂酸甲酯和硬脂酸钾。与有机溶剂共沉淀法相比,能显著降低生产成本,提高产品产率。刘志伟[33]对蔗糖酯合成的粗品的纯化工艺进行了筛选和研究,用两步萃取法代替目前常用的一步法精制粗品。首先向SE粗品中加入5倍的乙酸乙酯和3倍的水,70℃下加热搅拌溶解,用柠檬酸调pH=5,在上层有机相中再加入占粗品14%

的NaCl,70℃下搅拌10~20min,冷却至5℃,生成含SE和盐的共沉淀物,抽滤除去滤液,滤饼中再加入与粗品等量的异丁醇和水,65℃加热溶解,调pH=7,最后排出水层(如有必要可重复水洗2~3次),有机相减压脱溶即得SE精制产品。实验证明,此法回收率高于90%,而且也克服了传统精制法对粗品粉碎过筛的麻烦。

4 结语

为了保证蔗糖酯在食品等行业的应用,蔗糖酯的合成反应首先应向着环保无毒的方向进行,采用无毒溶剂或无溶剂法合成。另外,在保证产率的前提下,降低反应温度是合成的重点,而寻找合适的乳化剂,使反应体系成为均相反应体系,或添加有效的催化剂都是降低反应温度、提高反应速率的有效方法。蔗糖酯的生物降解性[34,35],受脂肪酸链的长度和饱和度的影响,为了环保的需要,蔗糖酯的合成原料脂肪酸酯应选择长度偏小、饱和度较低的脂肪酸链,这将利于蔗糖酯的降解。

[参考文献](References)

[1]Ahsan F,Arnold J J,Meezan E,et a1.Sucrose cocoate,a component ofcosmetic preparations,enhances nasal and ocular peptide absorption[J].IntJ

Pharm,2003,251(1/2):195-203.

[2]Desai N B.New sucrose esters and their applications in cosmetics[J].Cosmet Toiletries,1995,110(1):55-59.

[3]Hill K,Rhode O.Sugar-based surfactants for consumer products and technical applications[J].FettLipid,1999,10l(1):25-33.

[4]Cazares D J,Naik A,Kalia Y N,et a1.Skin permeation enhancement by sucrose esters:A pH-dependent phenomenon[J].Int J Pharm,2005,297(1/2):204-212.

[5]Mestres G M,Nielloud F.Main surfactants used in the pharmaceutical[J].Drugs Pharm Sci,2000,105(1):1-18.

[6]Sangnark A,Noomhorm A.Effect of dietary fiber from sugarcane bagasse and sucrose ester on dough and bread properties[J].Lebensmittel-Wissenschafi and Technologic,2004,37(8):697-704.

[7]Garti N,Aaerin A,Fanun M.Non-ionic sucrose esters microemulsions for food applications[J].Physicochemical and Engineering Aspects,2000,164:27-38.

[8]杨峰.糖类化学利用的现状与前景[J].化学展,1990,(2):43-48.Yang Feng.The Present Situations and Prospects for the use of Carbohydrate Chemistry[J].Chemical Industry and Engineering Progress,1990,(2):43-48.(in Chinese)

[9]黄平.多用途的表面活性剂-蔗糖酯[J].现代化工,1996,(9):50-51.Huang

Ping.Multi-purpose surface-active agent-sucrose esters[J].Modern Chemical Industry,1996,9:50-51.(in Chinese)

[10]Fanun M,Lese M,Aserin A,et al.Sucrose ester microemulsions as microreactors for model maillard reaction[J].Physicochemical and

EnneeringAspects,2001,194:175-187.

[11]Muller AS,Gagnaire J,Queneau Y,et al.Winsor behaviour of sucrose fatty acid esters:choice of the the cosurfactant and effect of the surfactant composition[J].Physicochemical and Engineering Aspects,2002,203:55-66.

[12]张万福.食品乳化剂[M].北京:中国轻工业出版社,1993.Zhang Wanfu.Food emulsifier[M].Beijing:China Light Industry Press,1993.(in Chinese)

[13]章亚东,蒋登高,高晓蕾,等.蔗糖硬脂酸酯的合成反应机理及动力学[J].化学反应工程与工艺,2002,18(3):219-224.Zhang Yadong,Jiang Denggao,Gao Xiaolei,et al.Reaction mechanismand kinetics of sucrose stearic acid esters synthesized by sucrose and stearic acid ethyl ester without solvent[J].Chemical Reaction Engineering and Technology,2002,18(3):219-224.(in Chinese)

[14]Osipow L,Snell F D,York W C,et al.Methods of preparation-fatty acid

esters of sucrose[J].Industrial and Engineering Chemistry,1956,48:1459-1462.

[15]张慧萍,李正宇,谢笑天,等.蔗糖脂肪酸酯合成方法的改进[J].云南师范大学学

报,1999,19(1):41-44.Zhang Huiping,Li Zhengyu,Xie Xiaotian,et al.To improved in coposution manner for sucrose esters of fatty acids[J].Journal of Normal University,1999,19(1):41-44.(in Chinese)

[16]章亚东,高晓蕾,蒋登高,等.无溶剂法合成蔗糖硬脂酸酯的工艺研究[J].高校化学工程学报,2002,16(5):519-523.Zhang Yadong,Gao Xiaolei,Jiang Denggao,et al.Synthesis of sucroseester with no-solvent method[J].Journal of Chemical Engineering of Chinese Universities,2002,16(5):519-523.(in Chinese)

[17]胡健华,胡鹏.蔗糖酯的无溶剂法合成研究(I)-无溶剂法合成蔗糖酯[J].中国油

脂,1999,24(5):61-64.Hu Jianhua,Hu Peng.Synthesis on sucrose esters by solventless method(I)-synthesis of SE with solventless method[J].China Oils and

Fats,1999,24(5):61-64.(in Chinese)

[18]胡健华,胡鹏.蔗糖酯的无溶剂法合成研究(Ⅱ)-以油脂为原料的蔗糖酯合成[J].中国油脂,1999,24(6):45-46.Hu Jianhua,Hu Peng.Study on synthesis of sucrose esters by solventlessmethod(Ⅱ)-synthsis of SE with oils[J].China Oils and Fats,1999,24(6): 45-46.(in Chinese)

[19]黄恩才,刘先桥,刘诗飞,等.蔗糖酯合成的动力学研究[J].郑州工业大学学报,2000,21(4):4-6.Huang Encai,Liu Xianqiao,Liu Shifei,et al.kinetic study on the synthesisof sucrose esters[J].Journal of Zhengzhou University of Technology, 2000,21(4):4-6.(in Chinese)

[20]章亚东,高晓蕾,蒋登高,等.由棕榈油无溶剂法合成蔗糖棕榈酸酯

[J].精细化工,2002,19(12):697-700.Zhang Yadong,Gao Xiaolei,Jiang Denggao,et

al.Nonsolvent method for synthesizing sucrose palmitic acid ester from palm oil and sucrose[J].Fine Chemicals,2002,19(12):697-700.(in Chinese)

[21]孙庶冬,吾满江·艾力,杨晓冬,等.蔗糖酯的相溶法合成研究[J].新疆大学学报:自然科学版,2002,19(4):466-470.Sun Shudong,Wumanjiang·Aili,Y ang Xiaodong,et al.The study on synthesis of sucrose esters with compatibility method[J].Journal of Xinjiang University:Natural Science Edition,2002,19(4):466-470.(in Chinese)

[22]毛逢银,黄小兵,马国民.微波酯交换法合成硬脂酸蔗糖酯[J].四川理工学院学

报,2008,21(5):71-73.Mao Fengyin,Huang Xiaobing,Ma Guomin.Study on synthesis of sucrose esters by ester exchange method with microwave technology[J].Journal of Sichuan University of Science&Engineering,2008,21(5):71-73.(in Chinese)

[23]刘慧娟,李先红,赵燕萍,等.相转移催化合成蔗糖硬脂酸酯[J].河北化工,

2004,5:39-40.Liu Huijuan,Li Xianhong,Zhao Yanping,et al.Synthesis of sucrose ester by phase transfer catalysis[J].Hebei Chemical,2004,5:39-40.(in Chinese)

[24]孙果宋,杨宏权,李德昌,等.丙二醇法合成蔗糖脂肪酸酯工业性实验[J].精细化

工,2007,24(5):454-465.Sun Guosong,Yang Hongquan,Li Dechang,et al.Industrial experimentation of synthesizing sucrose fatty acid esters by method ofpropylene glycol[J].Fine Chemicals,2007,24(5):454-465.(in Chinese)

[25]周莉,刘波,王玮,等.水乳化法合成蔗糖酯[J].深圳大学学报:理工版, 1994,

11(3/4):87-91.Zhou Li,Liu Bo,Wang Wei,et al.Preparation of sucrose esters by emulsion method[J].Journal of Shenzhen University:Science&Engineering,

1994,11(3/4):87-91.(in Chinese)

[26]韦异,梁帆,杨焕艺,等.蔗糖酯合成工艺研究[J].广西工学院学报,

1999,10(2):98-102.Wei Yi,Liang Fan,Yang Huanyi,et al.Study on the synthetic reaction ofsucrose ester[J].Journal of Guangxi Institute of Technology,1999,10(2): 98-102.(in Chinese)

[27] 努尔买买提,阿依夏木,吾满江·艾力.新疆师范大学学报(自然科学版),2002,

21(2):30~33.

[28] 努尔买买提,吾满江·艾力,阿依夏木.食品科学,2004,25(3):116~118.

[29] 林秀杰,薛桂芬.化工时刊,2001,2:10~12.

[30] 吴洪达,李军生,闫柳娟等.食品工业科技,2005,2:170~171.

[31] Patil R, Rethwisch G, Dordick S. Biotechnol Bioeng 1991,37(7):639~646.

[32] Rethwisch D G, Patel D, Adigal R. et al. Annual Technical

Conference-ANTEC,Conference Proceedings, 1991,37:1805~1807.

[33] Park O J, Kim D Y, Dordick J S. Biotechnol Bioeng, 2000,70(2):208-216.

[34] 班青,马万勇,吴建国.中国,CN1733927. 2006,02,15.

[35] 刘志伟.武汉工业学院学报, 1999,3:11~14.

[36] Figge K, Haigh-Baird S D. Chemosphere,1997,34(12):2621~2636.

[37] Haigh-Baird S D, Bus J, Engelen C, et al. Chemosphere,1997,35(3):413~425.

三氯蔗糖基本介绍及合成方法简介

三氯蔗糖 氯蔗糖是以蔗糖为原料经氯代而制得的一种非营养型强力甜味剂,其化学名4,1’,6’—三氯—4,1’,6’—三脱氧半乳型蔗糖,是一种白色粉末状产品,极易溶于水(溶解度28.2克,20oC),水溶液澄清透明,其甜度是蔗糖的400~ 800倍。 1.三氯蔗糖的合成方法 三氯蔗糖是将蔗糖分子中位于4、1’和6’三个位置上的羟基用氯原子取代而得。蔗糖分子中一共有8个羟基,要将其中特定位置上的3个羟基通过选择性氯化而取代,而其它位置上的羟基不发生变化,当然是很困难的,又因为各个位置上的羟基的反应活性大小不一,使得三氯蔗糖的合成更为困难。目前三氯蔗糖的合成工艺主要有三种。 1.1化学合成法 这是Tate & Tyle公司于1976年研究成功的方法,它以蔗糖为原料,首先在蔗糖的6,1’和6’三个伯碳位上的羟基三苯甲基化后乙酰化,使蔗糖分子的8个羟基全部反应,然后脱去三苯甲基基团形成五乙酰基蔗糖,接着将4位上的乙酰基迁移到6位上,再进行氯化,最后脱乙酰基而得到三氯蔗糖。 1.2化学-酶合成法 化学-酶法合成三氯蔗糖,是采用了6位上的基团保护法,它以葡萄糖和蔗糖为原料,首先葡萄糖发酵生成葡萄糖—6—乙酸,然后经层析分离提纯后与蔗糖一起在酶的作用下生成蔗糖—6—乙酸,再经氯化得到三氯蔗糖—6—乙酸,最后脱去乙酰基即得到三氯蔗糖。 1.3单酯法 这是近几年备受重视的方法。它是以蔗糖为原料,用化学方法,使蔗糖6位上的羟基生成单酯,即蔗糖—6—酯,再用适当的氯化剂进行选择性氯化而生成三氯蔗糖—6—酯,最后脱去酯基,经结晶提纯即得到三氯蔗糖。 1.4三种方法的比较 上述合成三氯蔗糖的工艺,化学合成法步骤较多,工艺流程复杂。化学-酶法步骤也较多,其中发酵这一步代价较高,且提纯中间产物较为困难,不能采用结晶分离方法,而只能采用层析方法,显然工业生产时成本太高。单酯法只需要三步反应,投资小,收率高,成本低,中间产物易于分离提纯,可采取萃取和结晶的方法,最适宜于工业生产,这是目前合成三氯蔗糖的最理想的工艺。 2.单酯法的合成工艺进展 九十年代开始,单酯法的合成工艺研究活跃,采用不同的反应物和不同的分离方法,产物收率大

二甲醚的生产工艺

二甲醚及生产工艺 摘要:综述了二甲醚的性质、用途、生产方法及使用二甲醚时候的注意事项。 关键词:二甲醚化工产品合成气一步法甲醇液相法甲醇气相法 一、产品说明 1、二甲醚的基本概况 二甲醚别名:甲醚 英文名称:methyl ether;dimethyl ether;DME CAS编号:115-10-6 分子式:C2H6O 结构式:CH3—O—CH3 二甲醚又称甲醚,简称DME。二甲醚在常压下是一种无色气体或压缩液体,具有轻微醚香味。相对密度(20℃)0.666,熔点-14 1.5℃,沸点-24.9℃,室温下蒸气压约为0.5MPa,与石油液化气(LPG)相似。溶于水及醇、乙醚、丙酮、氯仿等多种有机溶剂。易燃,在燃烧时火焰略带光亮,燃烧热(气态)为1455kJ/mol。常温下DME具有惰性,不易自动氧化,无腐蚀、无致癌性,但在辐射或加热条件下可分解成甲烷、乙烷、甲醛等。 二甲醚是醚的同系物,但与用作麻醉剂的乙醚不一样,毒性极低;能溶解各种化学物质;由于其具有易压缩、冷凝、气化及与许多极性或非极性溶剂互溶特性,广泛用于气雾制品喷射

剂、氟利昂替代制冷剂、溶剂等,另外也可用于化学品合成,用途比较广泛。 2 生产原理 2.1 生产方法简介 目前国外二甲醚生产方法主要有合成气一步法和甲醇法。甲醇法又分为甲醇气相法和甲醇液相法。合成气一步法的工业化技术尚未成熟,理由是: ①现有的技术未经装置检验; ②即使按现有技术,其生产成本也高于甲醇气相法 2.2 反应方程式 合成气一步法以合成气(CO + H2 )为原料,合 成甲醇反应和甲醇脱水反应在一个反应器中完成, 同时伴随CO的变换反应。其反应式如下。 2CO + 4H2 = 2CH3OH CO +H2O =CO2 +H2 2CH3OH =CH3OCH3 +H2O 总反应: 3CO + 3H2 =H3COCH3 +CO2 甲醇液相法: 甲醇脱水反应在液相、常压或微正压、130 ~130 ℃下进行。其化学反应式如下: 2CH3OH =H3COCH3 +H2O 甲醇气相法:

材料化学李昆昂蔗糖酯的合成与进展222011316210066

蔗糖酯的合成与研究进展 李昆昂1 (西南大学化学化工学院,重庆市北碚区,400715) 摘要:综述了蔗糖酯的合成方法及工艺的研究进展.并对其应用进行了阐述。 关键词:蔗糖酯;合成;应用 中图分类号: O624.31 文献标志码:A 1引言 蔗糖脂肪酸酯简称蔗糖酯(Sucrose Esters,简称SE),是一种新型的多元醇型非离子型表面活性剂。其外观为白色至黄褐色的粉末状、块状或无色至微黄色的粘稠树脂状。蔗糖酯的蔗糖部分为亲水基,长链脂肪酸部分为亲油基。蔗糖酯具有良好的乳化、分散、增溶、润滑、渗透、起泡、粘度调节、防老化、抗菌等性能。同时,它还具有无毒、易生物降解等特性。现已被批准作为食品添加剂。蔗糖酯还广泛应用于医药、化工、石油开采、化肥、化妆品、制糖和果蔬保鲜等工业中。我们通常所说的蔗糖酯是单、二、三酯组成的混合物。蔗糖多酯(Sucrose Polyester,SPE)通常指的是三酯以上的蔗糖酯。确切地讲,蔗糖多酯是蔗糖分子中8个羟 1李昆昂(1992-),男,重庆江津人,材料化学专业2011级本科生。E-mail:2607548771@https://www.360docs.net/doc/e713598692.html,

基有6个以上的羟基发生酯化反应时(即酯化度n=6—8)生成的一类蔗糖酯。多酯具有许多特殊的性质,饱和度和脂肪酸链长都会对其有影响。一般地,多酯在室温下是金黄色透明的油状液体,物理性质类似于食用油酯,其色、香、味均与植物油脂一样,但不被人体内的脂肪酶水解,不产生热量,不会被消化系统吸收,无毒、副作用,是一种理想的脂肪替代品和减肥剂。,还可降低血清中的胆固醇,治疗冠心病[1]。蔗糖多酯化学结构如图 蔗糖酯的熔点范围为50~100℃,温度过高会使蔗糖残基焦糖化而发黑。蔗糖酯在20℃以下水解作用较小,在120℃以下稳定,加热到145℃以上时则容易发生分解。 2蔗糖酯的合成方法 2.1酰氯酯化法 酰氯酯化法是指在催化剂存在下蔗糖和脂肪酸酰氯发生反应生成蔗糖酯。目前,酰氯酯化法有两种:(1)在含氮有机化合物如二甲基甲酰胺(DMF)、氮杂苯、哇琳或吡啶中,使蔗糖和脂肪酸酰氯发生酯化反应生成蔗糖酯。这种方法产率较高,但因需毒性较大的含氮有机化合物作溶剂及吡啶,使该法生产的产品很难达

甲醚生产工艺

二甲醚及生产工艺 1、二甲醚的基本概况 二甲醚别名:甲醚 英文名称:methyl ether;dimethyl ether;DME CAS编号:115-10-6 分子式:C2H6O 结构式:CH3—O—CH3 二甲醚又称甲醚,简称DME。二甲醚在常压下是一种无色气体或压缩液体,具有轻微醚香味。相对密度(20℃)0.666,熔点 -141.5℃,沸点-24.9℃,室温下蒸气压约为0.5MPa,与石油液化气(LPG)相似。溶于水及醇、乙醚、丙酮、氯仿等多种有机溶剂。易燃,在燃烧时火焰略带光亮,燃烧热(气态)为1455kJ/mol。常温下DME具有惰性,不易自动氧化,无腐蚀、无致癌性,但在辐射或加热条件下可分解成甲烷、乙烷、甲醛等。 二甲醚是醚的同系物,但与用作麻醉剂的乙醚不一样,毒性极低;能溶解各种化学物质;由于其具有易压缩、冷凝、气化及与许多极性或非极性溶剂互溶特性,广泛用于气雾制品喷射剂、氟利昂替代制冷剂、溶剂等,另外也可用于化学品合成,用途比较广泛。 2 生产原理 生产方法简介

目前国内外二甲醚生产方法主要有合成气一步法和甲醇法。甲醇法又分为甲醇气相法和甲醇液相法。合成气一步法的工业化技术尚未成熟,理由是: ①现有的技术未经装置检验; ②即使按现有技术,其生产成本也高于甲醇气相法 反应方程式 合成气一步法以合成气(CO + H2 )为原料,合 成甲醇反应和甲醇脱水反应在一个反应器中完成, 同时伴随CO的变换反应。其反应式如下。 2CO + 4H2 = 2CH3OH CO +H2O =CO2 +H2 2CH3OH =CH3OCH3 +H2O 总反应: 3CO + 3H2 =H3COCH3 +CO2 甲醇液相法: 甲醇脱水反应在液相、常压或微正压、130 ~130 ℃下进行。其化学反应式如下: 2CH3OH =H3COCH3 +H2O 甲醇气相法: 催化剂为ZSM分子筛、磷酸铝或γ2Al2O3。 甲醇脱水反应的化学反应式如下。 主反应: 2CH3OH =H3COCH3 +H2O

蔗糖酯合成研究进展 综述

蔗糖酯的合成研究进展及应用 李** 西南大学化学化工学院,重庆 400715 摘要:蔗糖酯是一种良好的表面活性剂,有着广泛的用途,它的应用领域还在不断开发;蔗糖聚酯是新型的低热量油脂,可作为脂肪代用品及高血脂、高胆固醇的治疗预防药物。本文介绍了蔗糖酯的性质、合成方法和应用。关键词:蔗糖酯;合成;应用 Progress in research of synthesis and application of sucrose ester LI *-* School of Chemistry and Chemical Engineering, Southwest University Chongqing 400715, China Abstract:As a good kind of non-ionic surfactant,sucros esters are used extensively;sucrose polyester is a new kind of low-calorie lipin,which is regarded as fat substitute and medication of high cholesterol.This article introduces propertise,synthetic methods and application of sucrose esters. Key words:Sucrose esters;Synthesis;Application 蔗糖脂肪酸酯简称蔗糖酯( Sucrose Esters, 简称SE) , 是一种新型的多元醇型非离子型表面活性剂。其外观为白色至黄褐色的粉末状、块状或无色至微黄色的粘稠树脂状。蔗糖酯的蔗糖部分为亲水基, 长链脂肪酸部分为亲油基。蔗糖酯具有良好的乳化、分散、增溶、润滑、渗透、起泡、粘度调节、防老化、抗菌等性能。同时, 它还具有无毒、易生物降解等特性。现已被批准作为食品添加剂。蔗糖酯还广泛应用于医药、化工、石油开采、化肥、化妆品、制糖和果蔬保鲜等工业中。 我们通常所说的蔗糖酯是单、二、三酯组成的混合物。蔗糖多酯( Sucrose Polyester, SPE) 通常指的是三酯以上的蔗糖酯。确切地讲, 蔗糖多酯是蔗糖分子中8 个羟基有6 个以上的羟基发生酯化反应时( 即酯化度n= 6~ 8) 生成的一类蔗糖酯。多酯具有许多特殊的性质, 饱和度和脂肪酸链长都会对其有影响。一般地, 多酯在室温下是金黄色透明的油状液体, 物理性质类似于食用油酯, 其色、香、味均与植物油脂一样, 但不被人体内的脂肪酶水解, 不产生热量, 不会被消化系统吸收, 无毒、副作用, 是一种理想的脂肪替代品和减肥剂 , 还可降低血清中的胆固醇, 治疗冠心病,是高附加值产品。 1 蔗糖酯的合成 世界各国科学家研究出了很多种合成方法:从反应方式分有酰氯法、直接脱水法、酯交换法和酶法,从反应状态分有均相法和非均相法,从工艺条件分有溶剂法、微乳化法和无溶剂法等。 1.1 酰氯酯化法

三氯蔗糖

三氯蔗糖是以蔗糖为原料经氯代而制得的一种非营养型强力甜味剂,其化学名4,1’,6’—三氯—4,1’,6’—三脱氧半乳型蔗糖,是一种白色粉末状产品,极易溶于水(溶解度28.2克,20oC),水溶液澄清透明,其甜度是蔗糖的400~800倍,三氯蔗糖具有如下优点:(1)水溶液化学稳定性好,高温下甜味不变,而且与食物中的蛋白质果胶等主要成分不起化学反应,在焙烤工艺中甜度更稳定。(2)无毒副作用,在人体内几乎不被吸收,热量值为零,是糖尿病人的甜味代用品。(3)甜味纯正,与蔗糖一样没有不愉快的苦后味和其他怪味,它不被龋齿病菌利用,所以不会引起龋齿。正是基于这些优点,三氯蔗糖是目前食品和医药领域研究开发的热点。本文就笔者所了解的知识,对近年来国内外有关三氯蔗糖的合成工艺与应用研究进展作一介绍和述评,为我国今后在这一领域的研究提供一些参考。 1 三氯蔗糖的合成方法 三氯蔗糖是将蔗糖分子中位于4、1’和6’三个位置上的羟基用氯原子取代而得。蔗糖分子中一共有8个羟基,要将其中特定位置上的3个羟基通过选择性氯化而取代,而其它位置上的羟基不发生变化,当然是很困难的,又因为各个位置上的羟基的反应活性大小不一,使得三氯蔗糖的合成更为困难。目前三氯蔗糖的合成工艺主要有三种。 1.1 化学合成法 这是Tate & Tyle公司于1976年研究成功的方法,它以蔗糖为原料,首先在蔗糖的6,1’和6’三个伯碳位上的羟基三苯甲基化后乙酰

化,使蔗糖分子的8个羟基全部反应,然后脱去三苯甲基基团形成五乙酰基蔗糖,接着将4位上的乙酰基迁移到6位上,再进行氯化,最后脱乙酰基而得到三氯蔗糖。 1.2 化学-酶合成法 化学-酶法合成三氯蔗糖,是采用了6位上的基团保护法,它以葡萄糖和蔗糖为原料,首先葡萄糖发酵生成葡萄糖—6—乙酸,然后经层析分离提纯后与蔗糖一起在酶的作用下生成蔗糖—6—乙酸,再经氯化得到三氯蔗糖—6—乙酸,最后脱去乙酰基即得到三氯蔗糖。 1.3 单酯法 这是近几年备受重视的方法。它是以蔗糖为原料,用化学方法,使蔗糖6位上的羟基生成单酯,即蔗糖—6—酯,再用适当的氯化剂进行选择性氯化而生成三氯蔗糖—6—酯,最后脱去酯基,经结晶提纯即得到三氯蔗糖。 1.4 三种方法的比较 上述合成三氯蔗糖的工艺,化学合成法步骤较多,工艺流程复杂。化学-酶法步骤也较多,其中发酵这一步代价较高,且提纯中间产物较为困难,不能采用结晶分离方法,而只能采用层析方法,显然工业生产时成本太高。单酯法只需要三步反应,投资小,收率高,成本低,中间产物易于分离提纯,可采取萃取和结晶的方法,最适宜于工业生产,这是目前合成三氯蔗糖的最理想的工艺。 2 单酯法的合成工艺进展 九十年代开始,单酯法的合成工艺研究活跃,采用不同的反应物

蔗糖酯的性能与应用试验

蔗糖酯(SE)的性能及应用 一、SE的水溶性 1 原料:SE-11(生产批号04052143大拿公司),SE-15(生产批号04052003大拿公司),SE-1、SE-3由大拿公司工程部提供。 2 试验方法 取SE 1%,室温32℃,按下列方法溶解: a 加水搅拌溶解 b 加少量水调成糊状,再加水搅拌溶解 c 搅拌中慢慢撒入水中搅拌溶解 d 与等量白糖干混匀,搅拌中慢慢撒入水中搅拌溶解 e 与等量白糖干混匀,加少量水调成糊状,再加水搅拌溶解 f 与等量白糖干混匀,加水搅拌溶解 g 与5倍白糖干混匀,按d法溶解 h 与5倍白糖干混匀,按e法溶解 I 与5倍白糖干混匀,按f法溶解 2 试验结果 a SE-11、SE-15开始有少量不溶,10分钟后完全溶解,溶 液呈浅乳白色,浑浊,pH7.5,放置数小时后浑浊物呈均匀分散入烧杯下部。 b 结果同a c 结果同a d 开始有少量不溶,5分钟后完全溶解其余同a e 结果同a f 结果同d g 结果同a h 结果同a I 结果同a

SE-1、SE-3不溶入水。 不同水温溶解SE-11、SE-15所需的时间(分钟) 大拿公司生产的SE-11、SE-15在常温下水溶性良好,加温溶解速度更快。分散的浑浊物为蔗糖二酯和三酯等混合物。 二、三聚磷酸钠对SE的分散作用 1 试验方法 分别称取1g SE 溶入配好的0.01%、0.05%、0.10%、0.20%、0.30%、0.40%的100ml三聚磷酸钠溶液中,搅拌至完全溶解,同时做空白试验。 2 试验结果 搅拌数分钟后与空白样对比,SE在0.01%、0.05%、0.10%三聚磷酸钠溶液中均完全溶解,无显著区别,在0.2%、0.3%、0.4%三聚磷酸钠溶液中有乳白色沉淀物。 3 结果讨论 SE可以与低浓度的三聚磷酸钠配合使用。

国内外二甲醚场和生产工艺分析

国内外二甲醚市场和生产工艺分析 国内外二甲醚市场和生产工艺分析 目前二甲醚组成的合资公司将在澳大利亚建设140-240万吨/年的大规模二甲醚装置,定于2006年投产。 目前二甲醚的主要消费领域是作溶剂和气雾剂的推动剂,其它方面的消费不多。2002年

二甲醚的的合成及其应用前景

学号:3510020031泰山医学院毕业设计(论文) 题目:二甲醚的的合成及其应用前景 院(部)系化工系 所学专业应用化工技术 年级、班级10级1班 完成人姓名 指导教师姓名 专业技术职称 年月日

论文原创性保证书 我保证所提交的论文都是自己独立完成,如有抄袭、剽窃、雷同等现象,愿承担相应后果,接受学校的处理。 专业: 班级: 签名: 年月日

摘要 二甲醚是一种重要的精细化工产品,因其良好的理化性质在化工和医药行业中一直被广泛用作甲基化剂、气雾剂、致冷剂和各种有机合成原料。近年来国内外的研究发现它还具有优良的燃烧性能,可直接用作发动机燃料和民用燃料,被誉为“21世纪的清洁燃料”。本论文将介绍二甲醚的性质,二甲醚的制备方法,二甲醚的应用及市场发展前景,国内二甲醚的生产及研究现状。 关键字:二甲醚;燃料;化工产品;制备方法

Abstrac Two ether is an important fine chemical product, because of its physical and chemical properties in the chemical and pharmaceutical industries has been widely used as a methylating agent, aerosol, refrigerant and various organic synthesis of raw materials. In recent years, the domestic and foreign research found that it also has excellent combustion properties, can be directly used as engine fuel and civilian fuel, known as "the twenty-first Century clean fuel". This paper will introduce the properties of two ether, preparation method of two ether, application and market prospect of the two ether, present situation of production and research of the two ether. Keywords: two ether; fuel; chemical products; preparation method

蔗糖酯

综述:蔗糖酯的合成研究进展 摘要:综述了蔗糖酯的合成方法及工艺的研究进展.并对其反应机理进行了阐述。蔗糖酯的合成方法主要有四种:溶剂法、微乳化法、无溶剂法以及酶催化法。溶剂法采用DMF或DMSO 为溶剂,但是这两种溶剂均有毒,限制了蔗糖酯在食品等行业的应用。徽乳化法采用丙二醇或水代替溶剂法所使用的有毒溶剂,并加人乳化剂,使反应体系近似为均相体系。无溶剂法则是通过在反应体系中加^乳化剂或表面活性剂等使熔融相成均一相,反应平稳。但是一般无溶剂法反应温度教高.反应不易进行,产率低+且产品质量得不到保证。酶催化合成法屉一种新的生物台成方法,采用生物酶代替传统的催化剂合成蔗稀酯.该法催化恬性高、反应条件温和、选择性强、产物易分离等优点。文中还对蔗糖酯粗品的纯化工艺进行了介绍。蔗糖酯是由亲水的蔗糖和亲油的脂肪酸组成的表面鎏然荆。其特有的性质使之能广泛应用于食品、医药、化妆品、洗涤荆等行业。 关键词:蔗糖酯;合成;反应机理;纯化;应用;研究进展 1 蔗糖酯的合成 为了适应工业化生产的低成本、无毒性产品的需要,蔗糖酯的合成方法和工艺路线在不断的改进和发展。蔗糖酯的合成主要经历了三个阶段:溶剂法、乳化法和无溶剂法,酶催化合成法也得到了广泛的应用。 1.1溶剂法 蔗糖酯的合成制备方法始于20世纪50年代,早期的台成方法大多采用二甲基甲酰胺(DMF)或二甲基亚砜(DMSO)作溶剂,碳酸钾为催化剂。改进的溶剂法添加了助溶剂低碳烷基苯,使反应体系成均一相,反应速度加快。溶剂法的优点是产品纯度高,副产物少,缺点是溶剂有毒,易在成品中残留,精制成食品级设备投资大,生产成本高。 1.2微乳化法 微乳化法包括丙二醇酯法和水溶剂法,即用丙二醇和水代替DMF,以脂肪酸皂为乳化剂,碳酸钾为催化剂,将蔗糖和脂肪酸甲(乙)酯经乳化生成微乳进行酯交换反应。此反应的关键足不能破乳,否则会降低产率,而且采用水作溶剂,要防止脂肪酸酯的水解。另外.脂肪酸皂用量较大,一般为15%一30%,反应体系粘度很大,搅拌困难,不利于工业化生产。刘志伟?1在水溶剂的基础上对工艺进行了一定的改进,即在反应初期当蔗糖、皂、水和催化剂成微乳状态后,逐渐升温脱水,当水基本除尽后再向系统加人脂肪酸酯,继而迅速维持较高的真空度和1=|_j应的温度,使得酯化反应顺利进行,可以较好的避免脂肪酸酯的分解。这主要是根据在水溶体系中,当水含量变化时,酯不发生水解的温度和压力存在一个特定的区限,保持在这一区限内可避免酯的水解。 1.3无溶剂法 国外运用无溶剂法合成蔗糖酯,但是反应温度高,蔗糖易结块焦化,使反应不易进行,产率低,且产品质量得不到保证。有人在无溶剂法的基础上进行了改进,提出了两步反应法和一步反应法。两步反应法即将反应分两阶段进行,第一阶段将脂肪酸甲酯与蔗糖在一定条件下生成低酯产物,第二阶段加入过量的脂肪酸甲酯继续反应生成多糖酯,收率以蔗糖计为92%?1。一步法是用蔗糖、脂肪酸甲醋、脂肪酸盐一次完成反应,收率为85%?1。 李祖义等???。独创地加入某种生物表面活性剂,使脂肪酸乙酯、蔗糖与催化剂整个反应体系成为均相无溶剂法合成蔗糖酯。其中生物表面活性剂是鼠李糖或改性的鼠李糖脂、槐糖脂或改性的槐糖脂以及不同配比的鼠李糖或改性鼠李糖与槐糖脂或改性槐李糖脂的混合物。反应压力为10—30mmHg。反应温度为110~145℃,反应时问为I一4h,最终产物蔗糖酯的转化率为50%~55%,达到国际先进水平。这种方法具有反应均匀、温度低、无毒性、成本低、转化率高的特点,可应用于工业生产??。张卫等??在传统工艺的基础上引入反应促进剂sE,使反应在较低温度下由非均相反应变为均相反应,大大加快了反应速度、提高了产品转

合成气直接制取二甲醚工艺简介

合成气直接制取二甲醚工艺简介 中国科学院大连化学物理研究所 天然气化工与应用催化研究室 1. 前言 随着煤化工、天然气化工和C1 化学的发展,人们竞相寻找除合成气制合成氨和甲醇外的加工途径,合成气(煤基或天然气)直接制取二甲醚已成为关注焦点。由于二甲醚是具有多种用途的环保产品,许多发达国家投入巨资进行合成气直接制取二甲醚合成技术及其下游产品的开发研究。 与国外相比,我国对二甲醚的研究工作起步较晚,大连化学物理研究所则是国内最早从事合成气直接制取二甲醚研究的科研单位之一。合成气直接制取二甲醚是国家“八五”科技攻关项目“合成气经由二甲醚制取低碳烯烃”的子课题,该项目历经实验室研究和中试放大,于1995年八月完成全部工艺开发工作。“合成气经由二甲醚制取低碳烯烃”项目分别获1996年度中国科学院科技进步特等奖、国家“八五”科技攻关重大科技成果奖(国家计委、国家科委及财政部颁发),使建设万吨级二甲醚工业示范装置成为可能。 2.二甲醚的性质与用途 二甲醚的分子式CH3OCH3,常压下沸点:-24.9 ℃,20℃时饱和蒸汽压0.5 MPa,爆炸极限3.4-18℅,自燃温度350℃.二甲醚无毒、无味、易挥发,它不易形成过氧化物,在空气中十分稳定。二甲醚与水及有

机溶剂互容性好。 二甲醚是一种在制药、染料、农药、涂料及日用化学等领域有着非常广泛用途的精细化工产品。随着人们环保意识的增强,目前世界各国都在寻求对环境无害的气雾剂来替代氯氟烃。二甲醚作为气雾剂有其独特的优点-对金属无腐蚀、易液化以及它的溶解能力使二甲醚在配制气雾剂产品中具有双重功能:推进剂和溶剂。由于它水溶性好,可以大幅度降低气雾剂中乙醇及其他有机物的含量,从而减少对环境的污染,因此二甲醚在气溶胶工业中已得到广泛的应用,尤其在欧美发达国家。广东省中山精细化工实业有限公司已建立规模为5000吨/年二甲醚的装置,其全部产品用作气雾剂。此外,精品二甲醚还可用作制冷剂和发泡剂等。我们认为二甲醚最大宗用途是作为民用燃料代替石油液化气及作为车用燃料部分取代柴油,在缺油富气(或多煤)地区可采用合成气经二甲醚制取汽油及乙烯、丙烯等低碳烯烃,以减少对石油资源的依赖,在我国更具迫切性和重要性。 3.合成气直接制取二甲醚 由合成气合成甲醇已实现工业化生产,最大的工业装置已超过100万吨/年,但甲醇的合成反应受热力学平衡限制,单程转化率较低,而由合成气一步法制二甲醚反应的平衡转化率很高,基本不受热力学平衡限制。目前国内外众多科研机构从事合成气制二甲醚生产工艺的研究,按生产步骤分为一步法和两步法两种,现在人们经常提到的合成气制二甲醚生产工艺,实际上已特指一步法(或直接法)而言;按合成气生产所采用的原料来源化分:煤制气、油制气、天然气制气等。

二甲醚生产工艺流程

合成气制二甲醚工艺 目前合成气合成二甲醚的生产工艺主要有两步法和一步法两种,两步法是经过甲醇合成和甲醇脱水两步过程得到DME,一步法是合成气直接生产DME,新开发的工艺有二氧化碳加氢合成二甲醚和生物质间接液化制取二甲醚。 1、两步法制二甲醚 两步法制二甲醚是以合成气为原料由低压法制得甲醇后,甲醇再经脱水制得DME,其主要过程如图1所示: 图1两步法合成二甲醚流程简图 其中甲醇脱水制二甲醚的方法又包括液相甲醇脱水法和气相甲醇脱水法液相甲醇脱水是将甲醇与浓硫酸混合加热使甲醇脱水得到二甲醚,浓硫酸起到催化剂的作用该工艺具有反应温度低,原料转化率和二甲醚的选择性高的优点,但是产品后处理比较困难,而且浓硫酸的存在使设备腐蚀严重,并且产生大量的废液,带来很大的环境污染,限制了此工艺的发展"目前国内仅有武汉硫酸厂和山东久泰化工科技有限公司开发此工艺。 在液相脱水制DME基础上,为了避免液体酸作为甲醇脱水剂时产生的设备腐蚀问题,美孚公司和意大利的ESSO公司开发了以固体酸为催化剂的甲醇气相脱水技术,气相甲醇脱水法的基本原理是将甲醇蒸汽通过固体酸催化剂脱水生成二甲醚,目前常用的催化剂主要有沸石、氧化铝、二氧化硅/氧化铝、阳离子交换树脂等,由于甲醇脱水反应是放热反应,因此维持适宜的反应温浙江大学博士学位论文合成气合成二甲醚和乙二醇研究综述度是气相甲醇脱水法的关键,两步法制二甲醚的反应条件温和,副反应少,二甲醚的选择性和产品的纯度高,但是由于需要从合成气开始生产甲醇,导致合成气的转化率低,生产流程长,并且需要经过甲醇分离精制过程,使得整个工艺的成本增加,即使购买成品甲醇直接脱水制得二甲醚,也容易受到甲醇价格的影响,而使成本难以控制。 2、一步法制二甲醚 合成气直接制二甲醚被称为“一步法”,一步法合成二甲醚由甲醇合成和甲醇脱水两个过程组成,同时还存在水汽变换反应,由于受到热力学的限制,甲醇合成反应的单程转化率一般较低,而由合成气一步法合成二甲醚,采用具有合成甲醇和甲醇脱水两种功能的复合催化剂,由于催化剂的协同效应,反应系统内各个反应相互祸合,生成的甲醇不断转化为二甲醚,合成甲醇不再受热力学的限制,与传统的经甲醇合成和甲醇脱水两步得到DME两步法,相比,一步法具有流程短、操作压力低、设备规模小、单程转化率高等优点,经济上更加合理,但缺点在于二甲醚的选择性低,产物的纯度不高。 目前国内外一步法合成二甲醚的反应工艺主要包括固定床工艺和浆态床工艺两大类:(1)固定床工艺 该工艺采用固定床作为合成二甲醚的反应器,合成反应在固体催化剂表面进行,在此工艺中,若采用贫氢合成气为原料气,催化剂表面会很快积碳,因此须使用富氢合成气为原料气,固定床一步法制取二甲醚的优点是具有较高的CO转化率,该方法具有简单高效的优点,但由于二甲醚合成反应是强放热反应,反应所产生的热量如果无法及时移走,致使催化剂床层局部区域产生热点,进而导致催化剂铜晶粒长大,从而导致催化剂活性降低甚至失去活性,同时,在目前所使用的催化剂上,具有催化甲醇合成的功能团和具有催化甲醇脱水功能的酸

蔗糖酯的合成

蔗糖酯的合成工艺及其应用研究 摘要:蔗糖酯是一种高效乳化剂和表面活性剂,在工业上具有广泛的用途。蔗糖酯在食品工业中可用作乳化剂、发泡剂、黏度调节剂、润滑光泽剂、抗老化剂、润湿与分散剂、抗菌剂;在日化工业中作洗净剂和化妆品;在医药工业中作增溶剂、分散剂、渗透剂、乳化剂、包覆剂、崩解剂等。本文综述了蔗糖酯的典型合成方法及工业用途。 关键词:蔗糖酯表面活性剂溶剂法无溶剂法 蔗糖脂肪酸酯(sucroseester,SE)简称为蔗糖酯,是一种新型的多元醇型非离子表面活性剂, 由蔗糖和正羧酸反应生成的一大类有机化合物的总称,根据蔗糖羟基的酯化数,可以获得由亲油性到亲水性的蔗糖脂肪酸酯系列产品,其HLB(亲水、亲油平衡值)值在216之间。蔗糖酯具有良好的乳化[1]、分散、增溶、润滑、渗透、起泡、粘度调节、防止老化、抗菌等性能;同时,它还具有无毒、易生物降解等特性。联合国粮农组织(FAO)以及世界卫生组织(WHO)分别在1969年和1980年批准蔗糖酯为食品添加剂。目前蔗糖酯已在欧洲、美国及日本等国得到普遍使用。作为一种非离子型表面活性剂, 蔗糖酯的原料来源普遍,价格便宜,具有高HLB,而且其HLB的范围宽,可以广泛应用于食品、医药、化工、石油开采、化肥、化妆品、制糖和果蔬保鲜等工业中。 1.蔗糖酯合成方法 蔗糖酯的合成方法很多,主要方法可以概括为:溶剂法、无溶剂法和酶法三大类。 1.1溶剂法[2] 将蔗糖溶于DMF中,加脂肪酸(一般用硬脂酸)甲酯和催化K2CO3,在减压加热(约1.2*104 Pa和100℃)条件下进行酯交换反应3~5h,同时馏去甲醇,反应结束后除去溶剂和未参与反应的原料,并在乙醇中重结晶后干燥粉碎而成。本法工艺简单,反应条件温和,蔗糖不会焦化,脂肪酸甲酯的转化率高(>95%)。但溶剂DMF价格昂贵、易燃、有毒产品纯化较难,因此随后又出现了由二甲基亚砜(DMS)、苄胺、环己胺等取代DMF的方法。催化剂除K2CO3外,还有硬酯酸钾、KHCO3、NaOH、NaHCO3等。由于甲醇有毒,所以以脂肪酸乙酯、丙二醇酯等代替脂肪酸甲酯。此外,添加助剂如二甲苯的各种同分异构体、乙苯、丙苯、甲乙苯和二乙苯,可使反应时间缩短,催化剂用量减少,皂生成量减少,同时减少了溶剂损失和副反应。因为不能完全除去蔗糖酯中的有毒溶剂DMF,所以食品级蔗糖酯不能用此法合成。 1.2无溶剂法[3] 无溶剂法是通过高温使反应物成为熔融相,蔗糖和脂肪酸酯在熔融相中发生酯化反应。无溶剂法反应温度较高,蔗糖易焦化结块,反应常无法正常进行。硬脂酸乙酯和蔗糖的反应属于可逆反应,为了反应有利于向正方向进行,要不断蒸出反应生成的乙醇,破坏反应的平衡,使酯交换反应趋向完全。降低压力也可促进反应向产物方向进行,加快反应速率,同时有隔绝空气作用,可防止蔗糖氧化,保持反应体系良好的熔融状态。无溶剂法合成蔗糖酯的方法还包括相转移催化法[4],即利用相转移催化剂在两相界面的特殊运输作用,将反应物从一相运输到另一相,从而使反应顺利进行。刘慧娟等采用相转移催化法以硬脂酸甲酯和蔗糖合成蔗糖酯,温度控制在95~100 ℃就可很好地进行反应。用相转移催化法合成蔗糖硬脂酸甲酯较与其它无溶剂法相比,设备简单,反应在常压和较低温度的温和条件下就可进行,且

(完整版)三氯蔗糖

中文名:三氯蔗糖 英文名:Sucralose 别名:4,1',6'-三氯-4,1',6'-三脱氧半乳蔗糖 CAS NO. :56038-13-2 分子式:C12H19Cl3O8 分子量:397.064 三氯蔗糖(Sucralose, TGS)是目前唯一以蔗糖为原料生产的功能性甜味剂,其甜度是 蔗糖的600 倍,且甜味纯正,甜味特性十分类似蔗糖,没有任何苦后味;无热量,不龋齿, 稳定性好,尤其在水溶液中特别稳定。经过长时间的毒理试验证明其安全性极高,是目前最 优秀的功能性甜味剂之一,现已有美国、加拿大、澳大利亚、俄罗斯、中国等三十多个国家 批准使用。三氯蔗糖已广泛应用于饮料、食品、医药、化妆品等行业,由于三氯蔗糖是一种 新型非营养性甜味剂,是肥胖症、心血管病和糖尿病患者理想的食品添加剂,因此,它在保 健食品和医药中的应用不断扩大。 三氯蔗糖最早由英国Tate&Lyle 公司和美国Johnson 公司的子公司McNeil Specialty Products Company 经过大量研究,于1976年开发成功并申请了专利。80 年代中期,国际上 16 位知名专家组成的专门小组对三氯蔗糖的安全性问题进行了权威评价,确认三氯蔗糖对 于广泛用途来说是安全的。1988年三氯蔗糖由McNeil Specialty Products公司以Splenda商 标率先进入北美市场;FAO/WHO 经过140多次安全和环境的研究来确定三氯蔗糖的安全性, 于1990年确定其ADL值为15mg/kg。我国于1997年7月1日起批准使用三氯蔗糖。1998 年3 月21 日,美国FDA 批准了三氯蔗糖食品添加剂的地位;2001 年三氯蔗糖专利保护到期。目前已经有三十几个国家批准使用三氯蔗糖,其已经广泛应用于370 多种食品当中。 三氯蔗糖仅是高度甜味剂的一种。目前,我国高度甜味剂市场主要由糖精钠、甜蜜素、 阿斯巴甜、安赛密、甜菊糖占据,三氯蔗糖、甜菊苷等也占据一定份额。从长远看,三氯蔗 糖的发展前景最大。 随着国家提出可持续发展战略和满足国内健康饮食文化的发展,开发各种高甜度的甜 味剂替代蔗糖具有重要的社会效益和经济意义,目前,我国蔗糖供大于求,价格呈下降趋势。 从蔗糖生产高科技含量、高附加值的三氯蔗糖产品,以满足人民群众的生活和健康需要,具有重要的社会意义和经济价值。三氯蔗糖作为非营养型甜味剂将作为专用甜味剂在食品工业 中占据主要地位,并必将得到大力发展和广泛应用,发展前景广阔。 本报告技术部分对三氯蔗糖的生产工艺及技术进展做了详细的介绍,从反应原理、工艺 流程、工艺过程、反应机理、副反应及预防控制措施、设备、岗位定员、成本估算、环境保 护、技术特点、产品质量标准等许多方面进行了深入探讨,可以供国内三氯蔗糖技术开发参 考;本报告通过参考大量专利文献对三氯蔗糖的工艺技术进展做了系统介绍。 本报告市场部分从三氯蔗糖的用途、下游产品、国内外生产状况、国内潜在生产厂家、 国外生产厂家及规模、国内外产量走势、市场状况及预测、供需状况分析及预测、价格、进 出口状况、国内外市场分布、国内需求厂家及联系方式、国外需求厂家统计及潜在客户等诸 多方面对三氯蔗糖的市场状况及发展方向做了详细论述,可作为三氯蔗糖的市场销售、客户 开发、产品深加工等方面的重要参考信息。 八大产品优势 1、甜度高 三氯蔗糖的甜度是蔗糖的600-650 倍,是阿斯巴甜甜度的 3 倍。 2、口感优越 三氯蔗糖甜味纯正,甜感的呈现速度、最大甜味的感受速度、甜味持续时间及后味等三个方面都

浅议二甲醚的合成工艺

浅议二甲醚的合成工艺 【摘要】二甲醚(简称DME)习惯上简称甲醚,为最简单的脂肪醚,分子式C2H6O,是乙醇的同分异构体,结构式CH3―O―CH3,分子量46.07,是一种无色、无毒、无致癌性、腐蚀性小的产品。DME因其良好的理化性质而被广泛地应用于化工、日化、医药和制冷等行业,近几年更因其燃烧效果好和污染少而被称为“清洁燃料”,引起广泛关注。 【关键词】二甲醚;设计;工艺 1.DME的用途[1] 1.1用作制冷剂和发泡剂 由于DME的沸点较低,汽化热大,汽化效果好,其冷凝和蒸发特性接近氟氯烃,因此DME作制冷剂非常有前途。国内外正在积极开发它在冰箱、空调、食品保鲜剂等方面的应用,以替代氟里昂。关于DME作发泡剂,国外已相继开发出利用DME作聚苯乙烯、聚氨基甲酸乙酯、热塑聚酯泡沫的发泡剂。发泡后的产品,孔的大小均匀,柔韧性、耐压性、抗裂性等性能都有所增强。 1.2 DME用作燃料 由于DME具有液化石油气相似的蒸气压,在低压下

DME 变为液体,在常温、常压下为气态,易燃、毒性很低,并且DME的十六烷值(约55)高,作为液化石油气和柴油汽车燃料的代用品条件已经成熟。由于它是一种优良的清洁能源,已日益受到国内外的广泛重视。在未来十年里,DME 作为燃料的应用将有难以估量的潜在市场,其应用前景十分乐观。可广泛用于民用清洁燃料、汽车发动机燃料、醇醚燃料。 1.3 DME用作化工原料 DME作为一种重要的化工原料,可合成多种化学品及参与多种化学反应:与SO3反应可制得硫酸二甲酯;与HCL 反应可合成烷基卤化物;与苯胺反应可合成N,N-二甲基苯胺;与CO反应可羰基合成乙酸甲酯、醋酐,水解后生成乙酸;与合成气在催化剂存在下反应生成乙酸乙烯;氧化羰化制碳酸二甲酯;与H2S反应制备二甲基硫醚。此外,利用DME还可以合成低烯烃、甲醛和有机硅化合物。 2.DME工艺说明及设计 2.1设计依据 本项目基于教科书上的教学案例,通过研读大量的关于DME性质、用途、生产技术及市场情况分析的文献,对生产DME的工艺过程进行设计的。 2.2设计方法[2] 2.2.1液相甲醇脱水法制DME

蔗糖脂肪酸酯

蔗糖脂肪酸酯(蔗糖酯;脂肪酸蔗糖酯) Sucrose fatty acid esters (SE) ——————浙江迪耳有限公司郑海平一、蔗糖酯的制备 蔗糖酯是由蔗糖和食用脂肪酸经过酯交换反应而制成。蔗糖的—OH(羟基)亲水基,脂肪酸的碳链部分为亲油基制得的乳化剂,因蔗糖上有8个—OH基,故可接1—8个脂肪酸,其酯化的产物即有单酯、双酯、三酯、多酯。单酯含量越多,HLB值越高;双酯、三酯、多酯含量越多,HLB值越低。由此,我们可以知道,蔗糖酯具有广泛的HLB值,产品型号有S-1~S-16。蔗糖酯作为一种安全高效的非离子型表面活性剂,在食品行业中得到广泛的应用。 蔗糖酯的制造流程如下: 蔗糖 酯化反应蔗糖酯 脂肪酸 化学结构式为: CH2COOR CH2OH* O H O H H OH H O H HO CH2OH* OH H OH OH H *能与脂肪酸结合成二酯或三酯的羟基位置。 分子式:(RCOO)nC12H12O3(OH)8-n, 其中:R 脂肪酸的羟基;n 蔗糖的羟基酯化数。 (以蔗糖单硬脂酸酯计,R=C17H35,分子式为C30O12H56,分子量608.76)二、蔗糖酯S系列产品质量指标

三、蔗糖酯S系列产品规格型号 四、蔗糖酯的物化性能 1、蔗糖酯是一种乳白色至黄褐色粉末。无臭无味。 2、在水中分散或溶解,溶于氯仿,易溶于热的乙醇、丙二醇等有机溶剂。 3、弱酸、弱碱条件下稳定。 4、强酸强碱下易分解,在PH值低于4.2时不稳定,温度高于141℃时开始分解。 5、蔗糖酯属于非离子型表面活性剂,由于分子中有强亲水性的蔗糖残基团和亲油性的硬脂酸基团,因而是一种优良的食品乳化剂。 6、蔗糖酯对人具有极高的安全性,无毒,不刺激皮肤和黏膜。而且,在人体 内,经酶 解作用,蔗糖酯可水解为蔗糖和脂肪酸,前者再进一步分解为葡萄糖和果糖,具有一定的营养作用。 五、蔗糖酯的作用 1、乳化作用 1.1蔗糖酯是一种非离子表面活性剂,可以在水油界面产生吸附,形成界面膜,在这种界面膜中,蔗糖酯按其分子内极性发生定向排列,即亲油部分伸向油,而亲水部分朝向水定向排列。其结果是油分子与蔗糖酯的亲油部分为一方与水分子和蔗糖酯的亲水部分为另一方之间相互作用。 1.2溶液中加入蔗糖酯后,能显著降低界面张力,改变体系的界面状态,从而使一种液体以液滴形式分散于另一种液体中,即形成乳状液。界面膜具有一定的强度,对分散相液滴起保护作用,使液滴在相互碰撞中不易聚结,防止油脂分层、上浮。 1.3蔗糖酯的亲水部分与水相互作用的强度决定所形成的乳状液类型。相互作用大时,水的表面张力大大下降,接近于0,此时水发生松弛,不再形成液滴,而变成乳状液的外相,故形成水包油(O/W)型乳状液;水和乳化剂的亲水部分之间相互作用小时,水的表面张力下降得不大,因此,形成油包水(W/O)型乳状液。 1.4蔗糖酯能与蛋白质相互作用,使蛋白质的原始结构展开,并与展开的蛋白质分子的疏水区域结合,从而增加了蛋白质的亲水性,使溶解度增大。这种作用可提高蛋白质稳定性,防止蛋白质凝聚、沉淀等现象。 1.5 蔗糖酯的亲水亲油平衡值(HLB值)范围很广(1~16),当制备O/W(水包油)型 乳剂时,如甜牛奶、纯牛奶、植物蛋白饮料等,通常选用HLB值较高的蔗糖酯,可防止蛋白质凝聚和油脂上浮,不产生沉淀、分层、油圈等现象;当制备W/O (油包水)型乳剂时,通常用HLB值低的蔗糖酯,可获得稳定的乳液。 2、分散作用 蔗糖酯的表面活性较强,吸附在分散相固体小粒子上,使分散相固体微粒均匀分散且不易沉淀,改善食品的溶解性和分散性,防止结块、结团,可用于固体

水热与溶剂热合成技术研究进展综述

水热与溶剂热合成技术研究进展综述 摘要:水热与溶剂热合成是无机合成中的重要技术,在大多技术领域得到广泛的研究和应用,是近年来十分活跃的研究领域。本文概述了水热与溶剂热合成的基本特点和反应类型,综述近年来水热与溶剂热合成技术的应用以及研究进展。关键词:水热合成;溶剂热合成;无机合成技术;应用;研究进展;现状。 1 前言 水热和溶剂热合成研究工作经久不衰并逐步演化出新的研究课题如水热条件下的生命起源问题以及与环境友好的超临界水氧化过程。由于水热与溶剂热合成化学在材料领域的广泛应用,世界各国越来越重视这一领域的研究。 水热与溶剂热合成是指在一定温度(100~1000℃)和压强(1~100MPa)条件 下利用溶液中物质化学反应所进行的合成,是研究物质在高温和密闭高压溶液条件下的化学行为与规律的化学分支。水热法是模拟自然界中某些矿石的形成过程而发展起来的一种软化学合成法,已被广泛地应用于材料制备、化学反应和处理,不仅在实验室里得到了应用和持续的研究,而且实现了产业规模的人工水晶水热生长,成为十分活跃的研究领域。溶剂热反应是近年来材料领域的一大研究热点,它是水热反应的发展,与水热反应的不同之处在于所使用的溶剂为有机溶剂而不是水。与其它制备路线相比,溶剂热反应的显著特点在于反应条件非常温和,可以稳定亚稳物相、制备新物质、发展新的制备路线等。 2水热与溶剂热合成基础 2.1 水热与溶剂热合成的基本特点 水热法是指在密闭的不锈钢反应釜中,以水为溶剂,在一定温度下,在水自身产生的压强(即水的自生压强)下,反应混合物进行反应生成产物的合成方法。溶剂热反应是水热反应的发展,该法以非水溶剂代替水,不仅扩大了水热技术的应用范围,而且由于溶剂处在近临界的状态下,能够实现通常条件下无法实现的许多反应,合成通常条件下无法制得的物相或物种,并且能生成介稳态结构的材料,很大程度上扩展了纳米功能材料合成的领域[1]。 水热与溶剂热合成研究特点之一是,在高温高压条件下,水或其它溶剂处于临界或超临界状态,反应活性提高。物质在高温高压溶剂中的物理性能与化学反

相关文档
最新文档