人教版必修五:不等式性质及解法 专题汇编

人教版必修五:不等式性质及解法 专题汇编
人教版必修五:不等式性质及解法 专题汇编

必修五第三章 不等式

第1节 不等式性质及解法

一、不等式性质

例1.若-1<α<β<1,则下列各式中恒成立的是( )

A .-2<α-β<0

B .-2<α-β<2

C .-1<α-β<0

D .-1<α-β<1 例2.对于实数a 、b 、c ,有下列命题:

(1)若a>b,则acbc 2,则a>b (3)若aab>b 2

(4)若c>a>b>0,则b c b a c a ->- (5)若a>b,b a 11>,则a >0,b<0其中真命题的个数( ) A.2 B.3 C.4 D.5

例3.如果b a b a ,,2log 2log 0则<<的大小关系是( )

A.0

B.0

C.a>b>1

D.b>a>1

例4.三个数20.60.6

20.6,2,log 的大小关系是( )

A.20.60.620.62log <<

B.0.620.62log 0.62

<< C.0.60.622log 20.6<< D.20.6

0.620.6log 2<< 例5.(1)已知1≥a ,比较a a M -+=1与1--=a a N 的大小

M N <

(2)已知a,b ∈+R ,比较b a b a 与2)

(b a ab +的大小 b a b a >2)(b a ab +

(3)已知x>0,比较1+log x 3与2log x 2的大小

当401,3x x <<>时1+log x 3>2log x 2 当413

x <≤时1+log x 3≤2log x 2 例6.已知奇函数f(x)在区间(∞-,∞+)上是递减的,R ∈γβα,,,且,0>+βα0>+γβ, 0>+γα,试讨论)()()(γβαf f f ++的值与0的关系

()()()0f f f αβγ++<

二、不等式解法

例1.解不等式2

3410x x x ->- 例2.1273310522>+-+-x x x x

{}25x x x <>或 1213x x x x ??<<<>????

1或或2 例3.不等式221x x +≥+ 例4.()0432

>--x x {}101x x x -<≤>或 {}4x x > 例5.不等式222312512()2x x x x -++-< 例6.不等式1432160x x +-?-> 413x x ??

-< 例7. 不等式12

log (1)8x +<的解集为

255

256x x ??

>-????

例8.解不等式log a (x 2-3x-4)>log a (2x+10)(a>0且a ≠1)

当1a >时{}527x x x -<<->或

当01a <<时{}2147x x x -<<-<<或

例9.求不等式0212<---x x 的解集 {}11x x -<<

例103430x x -->

{}3x x ≥

一元一次不等式组的解法常考题型讲解

一元一次不等式组的解法 一、知识点复习 1.一元一次不等式组的概念: 几个 一元一次不等式 合在一起就组成一个一元一次不等式组. 2.一元一次不等式组的解集: 一般地,几个不等式的解集的 公共部分 ,叫做由它们组成的不等式组的解集. 2.一元一次不等式组解集四种类型如下表: 二、经典题型分类讲解 题型1:考察一元一次不等式组的概念 1. (2017春雁塔区校级月考)下列不等式组:①???<->32x x ,②???>+>420 x x ,③???>+<+4 2122x x x , ④???-<>+703x x ,⑤? ??<->+010 1y x 。其中一元一次不等式组的个数是( ) A 、2个 B 、3个 C 、4个 D 、5个

题型2:考察一元一次不等式组的解法 2.(2018春天心区校级期末)不等式组?? ???>+≤-6 1213312 x x 的解集在数轴上表示正确的是( ) 3.解下列不等式组,并在数轴上表示解集: ! (1)?? ? ??<--+->++-021331215)1(2)5(7x x x x (2)?????≥-+->-154245 3312x x x x (3)?????≤--+<--+-1213128)3()1(3x x x x (4)?? ? ??< -+≤+321)2(352x x x x —

(5)?????-<+-<-2322125.05.7x x x x (6)?????->≥----62410 2.05.05.04 .073x x x x x ! 4. 解下列不等式21 153 x --< ≤ \

必修五-不等式知识点总结

不等式总结 一、不等式的主要性质: (1)对称性:a b b a (2)传递性:c a c b b a >?>>, (3)加法法则:c b c a b a +>+?>; d b c a d c b a +>+?>>, (4)乘法法则:bc ac c b a >?>>0,; bc ac c b a 0, bd ac d c b a >?>>>>0,0 (5)倒数法则:b a a b b a 110,> (6)乘方法则:)1*(0>∈>?>>n N n b a b a n n 且 (7)开方法则:)1*(0>∈>?>>n N n b a b a n n 且 二、一元二次不等式02>++c bx ax 和)0(02≠<++a c bx ax 及其解法 有两相异实根 有两相等实根注意:一般常用因式分解法、求根公式法求解一元二次不等式 顺口溜:在二次项系数为正的前提下:大于型取两边,小于型取中间 三、均值不等式

1.均值不等式:如果a,b 是正数,那么 ).""(2 号时取当且仅当==≥+b a ab b a 2、使用均值不等式的条件:一正、二定、三相等 3、平均不等式:平方平均≥算术平均≥几何平均≥调和平均(a 、b 为正数),即 2112a b a b +≥+(当 a = b 时取等) 四、含有绝对值的不等式 1.绝对值的几何意义:||x 是指数轴上点x 到原点的距离;12||x x -是指数轴上12,x x 两点间的距离 2、则不等式:如果,0>a a x a x a x -<><=>>或|| a x a x a x -≤≥<=>≥或|| a x a a x <<-<=><|| a x a a x ≤≤-<=>≤|| 3.当0c >时, ||ax b c ax b c +>?+>或ax b c +<-, ||ax b c c ax b c +?∈,||ax b c x φ+?-<<,|| (0)x a a x a >>?>或x a <-. (2)定义法:零点分段法; (3)平方法:不等式两边都是非负时,两边同时平方. 五、其他常见不等式形式总结: ①分式不等式的解法:先移项通分标准化,则 ()()0() () 0()()0;0()0 () ()f x g x f x f x f x g x g x g x g x ≥?>?>≥??≠? ②无理不等式:转化为有理不等式求解 ()0()0()()f x g x f x g x ?≥????≥?? ?>? 定义域 ???<≥?????>≥≥?>0 )(0)()] ([)(0)(0)()()(2x g x f x g x f x g x f x g x f 或 ??? ??<≥≥?<2 )] ([)(0 )(0 )()()(x g x f x g x f x g x f

七年级下册不等式及其基本性质讲义

(完整word版)七年级下册不等式及其基本性质讲义 亲爱的读者: 本文内容由我和我的同事精心收集整理后编辑发布到文库,发布之前我们对文中内容进行详细的校对,但难免会有错误的地方,如果有错误的地方请您评论区留言,我们予以纠正,如果本文档对您有帮助,请您下载收藏以便随时调用。下面是本文详细内容。 最后最您生活愉快 ~O(∩_∩)O ~

环球雅思教育学科教师讲义 年级:上课次数: 学员姓名:辅导科目:学科教师: 课题 课型□预习课□同步课□复习课□习题课 授课日期及时段 教学内容 【基础知识网络总结与新课讲解】 知识点一、不等式的有关概念: 1.不等式的概念:用不等号把两个代数式连接起来,表示不等关系的式子,叫做不等式。注意:常见的不等号有五种:“≠”、“>”、“<”、“≥”、“≤”. 例1.请指出下列各式哪些是不等式:①x+y=y+x②4+x>5③-3<0④a+b≤c+b⑤a≠0⑥ 2x-7=5x+4 例2.列出表示下列各数量关系的不等式:(1)a是正数;(2)y与2的差是非负数;(3)a与6的和大于7;(4)y的一半不小于3;(5)8与x的3倍的和不大于1。

而2,+4,4.5不是不等式2x+1<5的解。 例4.指出下面变形是根据不等式的哪一条基本性质。 (1)由2a>5,得a>(2)由a-7>,得a>7 (3)由- a>0,得a<0 (4)由3a>2a-1,得a>-1。 例5.设a>b;用">"或"<"号填空: (1)(2) a-5 b-5 (3)- a - b (4)6a 6b (5)-(6)-a -b 参考答案:(1)>(2)>(3)<(4)>(5)<(6)< 例5.试比较下列两个代数式值的大小: (1)5a+2与4a+2 (2)x3+3x2-7与x3+2x2-7 提示:我们知道,若a-b>0,则a>b;若a-b=0,则a=b;若a-b<0,则a<b,所以要比较a与b的大小,可以先求出a与b的差,再看这个差是正数、负数还是零。 参考答案:(1)(5a+2)-(4a+2)=5a+2-4a-2=a ∵a可取正数,负数或零,∴5a+2和4a+2间的大小关系有三种可能: ①当a>0时,5a+2>4a+2 ②当a=0时,5a+2=4a+2 ③当a<0时,5a+2<4a+2。 (2)(x3+3x2-7)-(x3+2x2-7)=x3+3x2-2x2+7=x2∵x2≥0(对任意x) ∴x3+3x2-7≥x3+2x2-7

一元一次不等式及其解法常考题型讲解

一元一次不等式及其解法 一、知识点复习 1.一元一次不等式的概念: 只含有一个未知数,且未知数的次数是1且系数不为0的不等式,称为一 元一次不等式。 2.解一元一次不等式的一般步骤: 去分母、去括号、移项、合并同类项、系数化为1. 3. 注意事项: ①去分母时各项都要乘各分母的最小公倍数,去分母后分子是多项式时,分子要加括号。 ②系数化为1时,注意系数的正负情况。 二、经典题型分类讲解 题型1:考察一元一次不等式的概念 1. (2017春昭通期末)下列各式:①5≥-x ;②03<-x y ;③05<+πx ;④ 32≠+x x ; ⑤x x 333≤+;⑥02<+x 是一元一次不等式的有( ) A 、2个 B 、3个 C 、4个 D 、5个 2.(2017春启东市校级月考)下列不等式是一元一次不等式的是( ) A 、 67922-+≥-x x x x B 、01=+x C 、0>+y x D 、092≥++x x 3.(2017春寿光市期中)若03)1(2>-+m x m 是关于x 的一元一次不等式,则m 的值为( ) A 、1± B 、1 C 、1- D 、0 题型2:考察一元一次不等式的解法 4. (2016秋太仓市校级期末)解不等式,并把解集在数轴上表示出来: (1))21(3)35(2x x x --≤+ (2)2 2531-->+ x x

5.解不等式 10 1.0)39.1(10 2.06.035.05.12?->---x x x 。 6.(2016秋相城区期末)若代数式 123-+x 的值不大于6 34+x 的值时,求x 的取值范围。 7. (2017春开江县期末)请阅读求绝对值不等式3x 的解集的过程: 因为3x ,从如图2所示的数轴上看:小于3-的数和大于3的数的绝对值是大于3,所以3>x 的解集是3-x 。 解答下列问题: (1)不等式a x <(0>a )的解集为, 不等式a x >(0>a )的解集为; (2)解不等式42<-x ; (3)解不等式75>-x 。

高中数学必修五第三章:不等式专题

《不等式专题》 第一讲:不等式的解法 知识要点: 一、不等式的同解原理: 原理1:不等式的两边都加上(或减去)同一个数或同一个整式,所得不等式与原不等式是同解不等式; 原理2:不等式的两边都乘以(或除以)同一个正数或同一个大于零的整式,所得不等式与原不等式是同解不等式; 原理3:不等式的两边都乘以(或除以)同一个负数或同一个小于零的整式,并把不等式改变方向后所得不等式与原不等式是同解不等式。 二、一元二次不等式的解法: 一元二次不等式的解集的端点值是对应二次方程的根,是对应二次函数的图像与x 轴交点的横坐标。 二次函数 () 的图象 有两相异实根 有两相等实根 无实根 注意: (1)一元二次方程20(0)ax bx c a ++=≠的两根12,x x 是相应的不等式2 0(0)ax bx c a ++>≠的解集的端点的取值,是抛物线2 (0)y ax bx c a =++≠与x 轴的交点的横坐标; (2)表中不等式的二次系数均为正,如果不等式的二次项系数为负,应先利用不等式的性质转化为二 次项系数为正的形式,然后讨论解决; (3)解集分0,0,0?>?=?<三 种情况,得到一元二次不等式2 0(0)ax bx c a ++>≠与20(0)ax bx c a ++<≠的解集。

三、一元高次不等式的解法: 解高次不等式的基本思路是通过因式分解,将它转化成一次或二次因式的乘积的形式,然后利用数轴标根法或列表法解之。 数轴标根法原则:(1)“右、上”(2)“奇过,偶不过” 四、分式不等式的解法: (1)若能判定分母(子)的符号,则可直接化为整式不等式。 (2)若不能判定分母(子)的符号,则可等价转化: ()()()()() ()()()()()()()()() ()()()()000;0.0000;0.0 f x g x f x f x f x g x g x g x g x f x g x f x f x f x g x g x g x g x ?≥?>??>≥??≠??≤?>?>><>?>>><>?<-><>?-<<>?<->?>或或 对于含有多个绝对值的不等式,利用绝对值的意义,脱去绝对值符号。

常见不等式通用解法

常见不等式通用解法总结 一、基础的一元二次不等式,可化为类似一元二次不等式的不等式 ①基础一元二次不等式 如2260x x --<,2210x x -->,对于这样能够直接配方或者因式分解的基础一元二次不等式,重点关注解区间的“形状”。 当二次项系数大于0,不等号为小于(或小于等于号)时,解区间为两根的中间。 2260x x --<的解为3 (,2)2 - 当二次项系数大于0,不等号为大于(或大于等于号)时,解区间为两根的两边。 2210x x --> 的解为(,1(1)-∞?+∞ 当二次项系数小于0时,化成二次项系数大于0的情况考虑。 ②可化为类似一元二次不等式的不等式(换元) 如1392x x +->,令3x t =,原不等式就变为2320t t -+<,再算出t 的范围,进而算出x 的范围 又如243 2 x ax >+ ,令2t x =,再对a 进行分类讨论来确定不等式的解集 ③含参数的一元二次不等式 解法步骤总结: 如不等式210x ax ++>,首先发现二次项系数大于0,而且此不等式无法直接看出两根,所以,讨论24a ?=-的正负性即可。 此不等式的解集为0,0,{|}20,()R a x R x ? ??-∞?+∞? 又如不等式223()0x a a x a -++>,发现其可以通过因式分解化为2()()0x a x a -->,所 以只需要判定2a 和a 的大小即可。 此不等式的解集为22 01,{|}01,(,)(,)01,(,)(,) a or a x R x a a a a a or a a a ==∈≠?? <<-∞?+∞??<>-∞?+∞?

高中数学必修五《基本不等式》培优专题(无答案)

高中数学——基本不等式培优专题 目录 培优(1)常规配凑法 培优(2)“1”的代换 培优(3)换元法 培优(4)和、积、平方和三量减元 培优(5)轮换对称与万能k法 培优(6)消元法(必要构造函数求异) 培优(7)不等式算两次 培优(8)齐次化 培优(9)待定与技巧性强的配凑 培优(10)多元变量的不等式最值问题 培优(11)不等式综合应用

培优(1) 常规配凑法 1.(2018届温州9月模拟)已知242=+b a (a,b ∈R ),则a+2b 的最小值为_____________ 2. 已知实数x,y 满足116 2 2 =+y x ,则22y x +的最大值为_____________ 3.(2018春湖州模拟)已知不等式9)1 1)((≥++y x my x 对任意正实数x,y 恒成立,则正实数m 的最小值 是( ) A.2 B.4 C.6 D.8 4.(2017浙江模拟)已知a,b ∈R,且a ≠1,则b a b a -++ +1 1 的最小值是_____________ 5.(2018江苏一模)已知a ﹥0,b ﹥0,且ab b a =+3 2,则ab 的最小值是_____________ 6.(诸暨市2016届高三5月教学质量检测)已知a ﹥b ﹥0,a+b=1,则 b b a 21 4+ -的最小值是_____________

7.(2018届浙江省部分市学校高三上学期联考)已知a ﹥0,b ﹥0,11 111=+++b a ,则a+2b 的最小值 是( ) A.23 B.22 C.3 D.2 培优(2) “1”的代换 8.(2019届温州5月模拟13)已知正数a,b 满足a+b=1,则b a b 1 +的最小值为_____________此时a=______ 9.(2018浙江期中)已知正数a,b 满足112=+ b a 则b a +2 的最小值为( ) A.24 B.28 C.8 D.9

数学必修五第三章不等式知识点总结

数学必修五 第三章 不等式 一、知识点总结: 1、 比较实数大小的依据:①作差:0a b a b ->?>;0a b a b -=?=;0a b a b ->>?>时,1a a b b =?=,1a a b b ?<时,,1a a b b =?=,1a a b b 2、 不等式的性质 3、一元二次不等式的解法步骤:①将不等式变形,使一端为0且二次项的系数大于0;②计算相应的判别式;③当0?≥时,求出相应的一元二次方程的根;④根据对应二次函数的图象,写出不等式的解集。(大于0取两边,小于0取中间).含参数的不等式如20(0)ax bx c a ++>≠解题时需根据参数的取值范围依次进行分类讨论:①二次项系数的正负;②方程20(0)ax bx c a ++=≠中?与0的关系;③方程20(0)ax bx c a ++=≠两根的大小。 4、一元二次方程根的分布:一般借助二次函数的图象加以分析,准确找到限制根的分布的等价条件,常常用以下几个关键点去限制:(1)判别式;(2)对称轴;(3)根所在区间端点函数值的符号。设12,x x 是实系数一元二次方程20(0)ax bx c a ++=>的两个实根,则12,x x 的分布情况列表如下:(画出函数图象并在理解的基础上记忆)

5、一元高次不等式()0f x >常用数轴穿根法(或称根轴法、区间法)求解,其步骤如下:①将()f x 最高次项的系数化为正数;②将()f x 分解为若干一次因式或二次不可分解因式的积;③将每一个根标在数轴上,从右上方向下依次通过每一点画曲线(注意重根情况,偶重根穿而不过,奇重根既穿 又过);④根据曲线显现出的符号变化规律,写出不等式的解集。 6、简单的线性规划问题的几个概念:①线性约束条件:由关于,x y 的二元一次不等式组成的不等式组是对,x y 的线性约束条件;②目标函数:要求最值的关于,x y 的解析式,如:22z x y =+,

七年级下册不等式及其基本性质讲义

环球雅思教育学科教师讲义年级:上课次数: 学员姓名:辅导科目:学科教师: 课题 课型□预习课□同步课□复习课□习题课 授课日期及时段 教学内容 【基础知识网络总结与新课讲解】 知识点一、不等式的有关概念: 1.不等式的概念:用不等号把两个代数式连接起来,表示不等关系的式子,叫做不等式。 注意:常见的不等号有五种:“≠”、“>”、“<”、“≥”、“≤”. 例1.请指出下列各式哪些是不等式:①x+y=y+x②4+x>5③-3<0④a+b≤c+b⑤a≠0⑥2x-7=5x+4 例2.列出表示下列各数量关系的不等式:(1)a是正数;(2)y与2的差是非负数;(3)a与6的和大于7;(4)y的一半不小于3;(5)8与x的3倍的和不大于1。 提示:注意一个数的"和","差","倍","分"的表示法以及"大于","不小于","不大于"应该用哪一个不等号来表示,另外。正数都大于0,负数都小于0,所以"是正数"可表示为">0","是负数"可表示为"<0","非负数"可表示为"≥0"。 参考答案:

(1)a >0 (2)y-2≥0 (3)a+6>7 (4) ≥3 (5)8+3x ≤1 注意:列不等式时应注意两点: ①"是正数"表示为>0","是负数"表示为<0";"非正数"表示为"≥0"。 ②"不大于"用"≤"表示,"不小于"用"≥"表示。 2.不等式的基本性质 (1)不等式的基本性质1:不等式的两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。 用式子表示:如果a>b ,那a+c>b+c (或a –c>b –c ) (2)不等式的基本性质2:不等式两边都乘以(或除以)同一个正数,不等号的方向不变。 用式子表示:如果a>b ,且c>0,那么ac>bc , c b c a >。 (3)不等式的基本性质3:不等式两边都乘以(或除以)同一个负数,不等号的方向改变。 用式子表示:如果a>b ,且c<0,那么acb ,那么bb ,b>c 那么a>c 。 注意:不等式的基本性质是对不等式变形的重要依据。不等式的性质与等式的性质类似,但等式的结论是“仍是等式”,而不等式的结论则是“不等号方向不变或改变”。在运用性质(2)和性质(3)时,要特别注意不等式的两边乘以或除以同一个数,首先认清这个数的性质符号,从而确定不等号的方向是否改变。 说明:常见不等式所表示的基本语言与含义还有: ①若a -b >0,则a 大于b ; ②若a -b <0,则a 小于b ; ③若a -b ≥0,则a 不小于b ; ④若a -b ≤0,则a 不大于b ; ⑤若ab >0或0a b >,则a 、b 同号; ⑥若ab <0或0a b <,则a 、b 异号。 任意两个实数a 、b 的大小关系: ①a-b>O ?a>b ; ②a-b=O ?a=b ; ③a-b

苏教版高中数学必修五高二(不等式)专题练习

高二数学(必修5不等式)专题练习 班级 姓名 一、选择题 1.若a>0,b>0,则不等式-b< 1 x 1b D.x<1b -或x>1a 2.设a ,b ∈R ,且a ≠b ,a+b=2,则下列不等式成立的是 ( ) A 、2b a ab 122+<< B 、2b a 1ab 2 2+<< C 、12 b a ab 22<+< D 、1ab 2b a 2 2<<+ 3.二次方程22 (1)20x a x a +++-=,有一个根比1大,另一个根比1-小,则a 的取值范围是A .31a -<< B .20a -<< C .10a -<< D .02a << ( ) 4.下列各函数中,最小值为2的是 ( ) A .1y x x =+ B .1sin sin y x x =+,(0,)2 x π∈ C .2 y = D .1y x =- 5.下列结论正确的是 ( )

A .当2lg 1lg ,10≥+≠>x x x x 时且 B .21,0≥+>x x x 时当 C .x x x 1,2+ ≥时当的最小值为2 D .当x x x 1,20-≤<时无最大值 6.已知函数2 (0)y ax bx c a =++≠的图象经过点(1,3)-和(1,1)两点,若01c <<,则 a 的取值范围是A .(1,3) B .(1,2) C .[)2,3 D .[]1,3 ( ) 7.不等式组1 31y x y x ≥-???≤-+?? 的区域面积是 ( ) A .12 B .32 C .5 2 D .1 8.给出平面区域如下图所示,其中A (5,3),B (1,1),C (1,5),若使目标函数z=ax+y(a>0)取得最大值的最优解有无穷多个,则a 的值是 ( ) A .32 B .21 C .2 D .2 3 9、已知正数x 、y 满足81 1x y +=,则2x y +的最小值是( ) A.18 B.16 C .8 D .10 10.已知不等式250ax x b -+>的解集为{|32}x x -<<,则不等式 250bx x a -+>的解集为 A 、11{|}32 x x -<< B 、11 {|}32 x x x <->或 C 、{|32}x x -<< D 、{|32}x x x <->或 ( ) 二、填空题 11.设函数23 ()lg()4 f x x x =--,则()f x 的单调递减区间是 。 12.已知x >2,则y =2 1 -+x x 的最小值是 . 13.对于任意实数x ,不等式23 208 kx kx +-<恒成立,则实数k 的取值范围是 14、设y x ,满足,404=+y x 且,,+∈R y x 则y x lg lg +的最大值是 。 15.设实数,x y 满足2210x xy +-=,则x y +的取值范围是___________。

不等式的基本性质知识点

不等式的基本性质知识点 1 .不等式的定义:a-b>0 a>b, a-b=O a=b, a-b a0, X1-X2<0,可得 f(X l)b三bb, b>c 二a>c (传递性) ⑶ a>b = a+c>b+c (c € R) (4) c>0 时,a>b A,ac>bc c<0 时,a>b acb, c>d —a+c>b+d。 ⑵ a>b>0,c>d>0 ac>bd。

⑶ a>b>0 —a n>b n(n € N, n>1)。 ⑷ a>b>0= 川>w (n € N, n>1)。 应注意,上述性质中,条件与结论的逻辑关系有两种:“ ”和“ ”即推出关系和等价关系。一般地,证明不等式就是从条件出发施行一系列的推出变换。解不等式就是施行一系列的等价变换。因此,要正确理解和应用不等式性质。 ②关于不等式的性质的考察,主要有以下三类问题: (1)根据给定的不等式条件,禾U用不等式的性质,判断不等式能否成立。 ⑵利用不等式的性质及实数的性质,函数性质,判断实数值的大小。 ⑶利用不等式的性质,判断不等式变换中条件与结论间的充分或必要关系。

高中数学 考前归纳总结 常见基本不等式的解法

常见基本不等式的解法 一、简单的一元高次不等式的解法:标根法: 其步骤是: (1)分解成若干个一次因式的积,并使每一个因式中最高次项的系数为正; (2)将每个一次因式的根标在数轴上,从最大根的右上方依次通过每一点画曲线;并注意 奇穿过偶弹回; (3)根据曲线显现()f x 的符号变化规律,写出不等式的解集。 如(1)解不等式2 (1)(2)0x x -+≥。(答:{}|12x x x ≥=-或); (2)不等式(0x -的解集是____(答:{}|31x x x ≥=-或); (3)设函数()()f x x ,g 的定义域都是R ,且()0f x ≥的解集为{}|12x x ≤<, ()0g x ≥的解集为?,则不等式()()0f x g x ?>的解集为______ (答:()[),12,-∞+∞U ; (4)要使满足关于x 的不等式2290x x a -+<(解集非空)的每一个x 的值至少满足 不等式2430x x -+<和2680x x -+<中的一个,则实数a 的取值范围是______. (答:81[7,)8 ) 二、分式不等式的解法:分式不等式的一般解题思路是先移项使右边为0,再通分并将分子 分母分解因式,并使每一个因式中最高次项的系数为正,最后用标根法求解。解分式 不等式时,一般不能去分母,但分母恒为正或恒为负时可去分母。 如(1)解不等式25123 x x x -<---(答:()()1,12,3-U ); (2)关于x 的不等式0ax b ->的解集为()1,+∞,则关于x 的不等式 02ax b x +>-的 解集为____________(答:()(),12,-∞-+∞U ). 三、绝对值不等式的解法: (1)零点分段讨论法(最后结果应取各段的并集): 如解不等式312242 x x -++≥(答:x R ∈); (2)利用绝对值的定义;(3)数形结合; 如解不等式13x x +->(答:()(),12,-∞-+∞U ) (4)两边平方:如若不等式322x x a +≥+对x R ∈恒成立,则实数a 的取值范围

必修五不等式知识点资料讲解

不等式的基本知识 (一)不等式与不等关系 1、应用不等式(组)表示不等关系;不等式的主要性质: (1)对称性:a b b a (2)传递性:c a c b b a >?>>, (3)加法法则:c b c a b a +>+?>;d b c a d c b a +>+?>>,(同向可加) (4)乘法法则:bc ac c b a >?>>0,; bc ac c b a 0, bd ac d c b a >?>>>>0,0(同向同正可乘) (5) 倒数法则:b a ab b a 110,> (6)乘方法则:)1*(0>∈>?>>n N n b a b a n n 且 (7)开方法则:)1*(0>∈>?>>n N n b a b a n n 且 2、应用不等式的性质比较两个实数的大小:作差法(作差——变形——判断符号——结论) 3、应用不等式性质证明不等式 (二)解不等式 1、一元二次不等式的解法 一元二次不等式()0002 2≠<++>++a c bx ax c bx ax 或的解集: 设相应的一元二次方程()002 ≠=++a c bx ax 的两根为2121x x x x ≤且、,ac b 42-=?,则不等式的解的各种情况如下表: 0>? 0=? 0a )的图象 c bx ax y ++=2 c bx ax y ++=2 c bx ax y ++=2 一元二次方程 ()的根 002 >=++a c bx ax 有两相异实根 )(,2121x x x x < 有两相等实根 a b x x 221-== 无实根 的解集)0(0 2>>++a c bx ax {}21x x x x x ><或 ??????-≠a b x x 2 R

2.1 等式性质与不等式性质

2.1等式性质与不等式性质 (一) 1.数轴上的点与实数是一一对应的.数轴上右边的点表示的实数比左边的点表示的实数 大. 2.实数的运算性质与大小顺序之间的关系(教材中方框内的三个等价关系). 3.差值比较法比较两个实数的大小. (二) 1.掌握差值比较法. 2.会用差值比较法比较两个实数的大小. (三) 1.培养学生转化的数学思想和逻辑推理能力. 2.培养学生数形结合的数学思想和灵活应变的解题能力. 3.培养学生分类讨论的数学思想和思考问题严谨周密的习惯. ●教学重点 理解在两个实数a、b之间具有以下性质:a>b?a-b>0;a=b?a-b=0;a<b?a -b<0.这是不等式这一章内容的理论基础,是不等式性质证明、证明不等式和解不等式的主要依据. ●教学难点 比较两个代数式的大小,实际上是比较它们的值的大小,而这又归结为判断它们的差的符号(注意是指差的符号,至于值是多少,在这里无关紧要).差值比较法是比较实数大小的 基本方法,通常的步骤是:作差→变形→判断差值的符号. ●教学方法 ●教具准备 投影片两张. ●教学过程 Ⅰ.课题导入 在客观世界中,不等关系具有普遍性、绝对性,是表述和研究数量取值范围的重要工具.研究不等关系,反映在数学上就是证明不等式与解不等式.实数的差的正负与实数的大小的比较有着密切关系,这种关系是本章内容的基础,也是证明不等式与解不等式的主要依据.因此,本节课我们有必要来研究探讨实数的运算性质与大小顺序之间的关系. Ⅱ.

(一)打出投影片§6.1.1 A [师]数轴的三要素是什么? [生]原点、正方向、单位长度. [师]把下列各数在数轴上表示出来,并从小到大排列: 213-,5-,0,-4,2 3 [生] ∴213-<-4<0<2 3<|-5|. [师生共析]在数轴上不同的两点中,右边的点表示的实数比左边的点表示的实数大. (二)请同学们预习课本,(教师打出投影片§6.1.1 A ,§6.1.1 B),在解决了投影片 §6.1.1 A 问题基础上解决下列问题: [师]若a >b ,则a -b 0;若a =b ,则a -b 0;若a <b ,则a -b 0. [生]若a >b ,则a -b >0;若a =b ,则a -b =0;若a <b ,则a -b <0,反之亦然. [师]“a >b ”与“a -b >0”等价吗? [生]显然,“a >b ”与“a -b >0”等价. [师生共析] 此等价关系提供了比较实数大小的方法:即要比较两个实数的大小,只要考查它们的差就可以了. (三) [例1]比较(a +3)(a -5)与(a +2)(a -4)的大小. [师]比较两个实数a 与b 的大小,可归纳为判断它们的差a -b 的符号(注意是指差的符号,至于差的值究竟是多少,在这里无关紧要).由此,把比较两个实数大小的问题转化为实数运算符号问题. 本题知识点:整式乘法,去括号法则,合并同类项. [生]由题意可知: (a +3)(a -5)-(a +2)(a -4) =(a 2-2a -15)-(a 2-2a -8) =-7<0 ∴(a +3)(a -5)<(a +2)(a -4) [例2]已知x ≠0,比较(x 2+1)2与x 4+x 2+1的大小. [师]同例1方法类似,学生在理解基础上作答. 本题知识点:乘法公式,去括号法则,合并同类项. [生]由题意可知: (x 2+1)2-(x 4+x 2+1) =(x 4+2x 2+1)-(x 4+x 2+1) =x 4+2x 2+1-x 4-x 2-1 =x 2

必修五不等式专题附加答案解析

不等式专题 一共分为6部分 1.不等关系与不等式 2.一元二次不等式及其解法 3.二元一次不等式组与平面区域 4.线性规划与实际应用 5.线性规划与基本不等式 6.不等式综合复习 第一部分不等关系与不等式 实数的符号: 任意x R ∈,则0x >(x 为正数)、0x =或0x <(x 为负数)三种情况有且只有一种成立。 两实数的加、乘运算结果的符号具有以下符号性质: ①两个同号实数相加,和的符号不变 符号语言:0,00a b a b >>?+>; 0,00a b a b <>?>; 0,00a b ab < ③两个异号实数相乘,积是负数 符号语言:0,00a b ab >?>; ②0b a b a -,a b =,a b <三种关系有且只有一种成立。 要点诠释:这三个式子实质是运用实数运算来比较两个实数的大小关系。它是本章的基础,也是证明不等式与解不等式的主要依据。

1、某人有楼房一幢,室内面积共2180m ,拟分割成大、小两类房间作为旅游客房,大房间面积为 218m , 可住游客5人,每名游客每天住宿费40元;小房间每间面积为215m ,可住游客3人,每名游客每天住宿费50元;装修大房间每间需要1000元,装修小房间每间需要600元,如果他只能筹款8000元用于装修,试写出满足上述所有不等关系的不等式. 【解析】假设装修大、小客房分别为x 间,y 间,根据题意,应由下列不等关系: (1) 总费用不超过8000元 (2) 总面积不超过2 180m ; (3) 大、小客房的房间数都为非负数且为正整数. 即有: **1800(0(100060080001815))x x N y y N x y x y ≤≥∈≥∈+≤??+????? 即* *600(0(534065))x x N y y N x y x y ≤≥∈≥∈+≤??+? ???? 此即为所求满足题意的不等式组 1、某种杂志原以每本2.5元的价格销售,可以售出8万本。据市场调查,若单价每提高0.1元,销售量就可能相应减少2000本。若把提价后杂志的定价设为x 元,怎样用不等式表示销售的总收入仍不低于20万元呢? 【答案】设杂志社的定价为x 元,则销售的总收入为 2.5 (80.2)0.1 x x --? 万元,那么不等关系“销售的总收入仍不低于20万元”可以表示为不等式 2.5 (80.2)200.1x x -- ?≥ 2、某矿山车队有4辆载重为10 t 的甲型卡车和7辆载重为6 t 的乙型卡车,且有9名驾驶员.此车队每天至少要运360 t 矿石至冶炼厂.已知甲型卡车每辆每天可往返6次,乙型卡车每辆每天可往返8次,写出满足上述所有不等关系的不等式. 解析:设每天派出甲型卡车x 辆,乙型卡车y 辆. 根据题意,应有如下的不等关系: (1)甲型卡车和乙型卡车的总和不能超过驾驶员人数; (2)车队每天至少要运360 t 矿石; (3)甲型卡车不能超过4辆,乙型卡车不能超过7辆. 用下面的关于x ,y 的不等式表示上述不等关系即可, 91066836004,07,x y x y x x y x +≤???+?≥?? ≤≤∈??≤≤∈?N N ,即9 543004,07,x y x y x x y x +≤??+≥? ?≤≤∈??≤≤∈?N N

基本不等式求最值的类型与方法,经典大全

专题:基本不等式求最值的类型及方法 一、几个重要的基本不等式: ①,、)(2 22 22 2 R b a b a a b ab b a ∈+≤ ?≥+当且仅当a = b 时,“=”号成立; ②, 、)(222 + ∈?? ? ??+≤?≥+R b a b a ab ab b a 当且仅当a = b 时,“=”号成立; ③, 、、)(3 33 333 3 3 +∈++≤?≥++R c b a c b a abc abc c b a 当且仅当a = b = c 时,“=”号成立; ④)(333 3+ ∈?? ? ??++≤?≥++R c b a c b a abc abc c b a 、、 ,当且仅当a = b = c 时,“=”号成立. 注:① 注意运用均值不等式求最值时的条件:一“正”、二“定”、三“等”; ② 熟悉一个重要的不等式链: b a 11 2 +2 a b +≤≤≤2 2 2b a +。 二、函数()(0)b f x ax a b x =+ >、图象及性质 (1)函数()0)(>+ =b a x b ax x f 、图象如图: (2)函数()0)(>+=b a x b ax x f 、性质: ①值域:),2[]2,(+∞--∞ab ab ; ②单调递增区间:(,-∞ ,)+∞ ;单调递减区间:(0, ,[0). 三、用均值不等式求最值的常见类型 类型Ⅰ:求几个正数和的最小值。 例1、求函数2 1 (1)2(1) y x x x =+ >-的最小值。 解析:21(1)2(1)y x x x =+ >-21(1)1(1)2(1)x x x =-++>-2 111 1(1)222(1)x x x x --=+++>- 1≥312≥+52=, 当且仅当 2 11 (1) 22(1)x x x -=>-即2x =时,“=”号成立,故此函数最小值是52。 评析:利用均值不等式求几个正数和的最小值时,关键在于构造条件,使其积为常数。通常要通过添加常数、拆项(常常是拆底次的式子)等方式进行构造。 类型Ⅱ:求几个正数积的最大值。 例2、求下列函数的最大值: ①2 3 (32)(0)2 y x x x =-<< ②2sin cos (0)2y x x x π=<< 解析:① 3 0,3202 x x <<->∴, ∴2 3(32)(0)(32)2y x x x x x x =-<<=??-3(32)[ ]13 x x x ++-≤=, 当且仅当32x x =-即1x =时,“=”号成立,故此函数最大值是1。 ② 0,sin 0,cos 02 x x x π << >>∴,则0y >,欲求y 的最大值,可先求2y 的最大值。 2 4 2 sin cos y x x =?2 2 2 sin sin cos x x x =??222 1(sin sin 2cos )2x x x =??22231sin sin 2cos 4( )2327 x x x ++≤?=, 当且仅当22 sin 2cos x x =(0)2 x π < < tan x ?=tan x arc =时 “=”号成立,故 评析:利用均值不等式求几个正数积的最大值,关键在于构造条件,使其和为常数。通常要 通过乘以或除以常数、拆因式(常常是拆高次的式子)、平方等方式进行构造。 类型Ⅲ:用均值不等式求最值等号不成立。 例3、若x 、y + ∈R ,求4 ()f x x x =+ )10(≤、图象及性质知,当(0,1]x ∈时,函数 4 ()f x x x =+是减函数。证明:任取12,(0,1]x x ∈且1201x x <<≤,则

不等式性质和基本不等式

第七章 不等式 知识网络 . 第1讲 不等关系与不等式 ★ 知 识 梳理 ★ 1.比较原理: 两实数之间有且只有以下三个大小关系之一:a>b;a-?>b a b a ; 0<-?, a b b a >?< (2)传递性:,a b b c >>?,a c >

(3)可加性:a b >?. a c b c +>+ 移项法则:a b c a c b +>?>- 推论:同向不等式可加. ,a b c d >>? a c b d +>+ (4)可乘性:bc ac c b a >?>>0,,,0a b c >>>>?ac bd > 推论2:可乘方(正):0a b >>? n n a b >` (,2)n N n * ∈≥ (5) 可开方(正):0a b >>? >(,2)n N n *∈≥ 第4讲 基本不等式 ★ 知 识 梳理 ★ 1.基本形式: ,a b R ∈,则222a b ab +≥; 0,0a b >>, 则a b +≥,当且仅当a b =时等号成立. 2求最值: 当ab 为定值时,22 ,a b a b ++有最小值; 当a b +或22a b +为定值时,ab 有最大值(0,0a b >>). 3.拓展:若0,0a b >>时 ,2 112a b a b +≤≤+,当且仅当a b =时等号成立. ★ 热 点 考 点 题 型 探 析★ 考点1 利用基本不等式求最值(或取值范围) 题型1. 当积ab 为定值时,求和a b +最小值 例1 . 已知0,0x y >>且满足 281x y +=,求x y +的最小值. 【解题思路】利用281x y +=,构造均值不等式 解析:∵2828()1()()28y x x y x y x y x y x y +=+?=+?+=+++,0,0x y >>,∴280,0y x x y >> 1018x y +≥+=,当且仅当28y x x y =时等号成立,即224y x =,∴2y x =,又281x y +=, ∴6,12x y == ∴当6,12x y ==时,x y +有最小值18. 【名师指引】利用基本不等式求最值要注意“一正二定三相等”即(1)要求各数均为正

相关文档
最新文档