人耳的听觉特性 录音手册

人耳的听觉特性 录音手册
人耳的听觉特性 录音手册

人耳的听觉特性录音手册-第二章

相关时间:2006-10-26 来源:疯狂音乐国

第一节人耳的构造及功能

1.人耳的构造

外耳:耳廓外耳道中耳:鼓膜听小骨内耳:半规管耳蜗

耳廓:也叫耳壳,耳廓起收集和向外耳道反射声音的作用。

外耳道:直径约0.5厘米,长约2.5厘米的一端与鼓膜封闭的圆形轨道,他的作用是将声音传导道鼓膜,是声音进入骨室的通道。

鼓膜:鼓膜的面积约为0.8平方厘米,厚度约为0.1毫米,是一个浅锥型的软膜。

听小骨:它是由锤骨砧骨镫骨三块小骨组成。三块听小骨成杠杆式连接,最后一块镫骨与卵型窗相邻。

半规管:保持人体平衡(人耳内唯一一个与听力无关的器官)

耳蜗:耳蜗呈螺旋型,形状象蜗牛,是一骨质腔体,内部充满淋巴液。耳蜗沿其长度分为两部分,分别称为前庭阶和鼓阶,在基底膜上分布有大量毛细胞,每根毛细胞上都连有末梢神经。

2.人耳的功能

1.外耳道:外耳形状的不对称性有聚集声能的作用,并有一定的定向作用,外耳道的自然谐振频率约为3400Hz,由于外耳道的共鸣,以及人头对声音产生的反射和衍射,使得人耳对2~4kHz的声音感觉约可提高15~20dB。所以缺少耳廓的人,高频听力差。

2.中耳:咽骨管有平衡中耳和外耳的气压作用,以保证鼓膜的正常震动。鼓膜将声能转换为机械能。

鼓膜的面积比卵型窗的面积约大24~36倍,大面积的力作用在小面积上,从耳加大了卵型窗的作用力,三块听小骨的杠杆作用,也对声能转换为机械能起到一定的放大作用,另外听小骨具有一些非线性,使人们对一个频率的声音能产生出它的谐音感觉。当遇到瞬时超大的声压时,听小骨会自动脱位,切断声音的通道,从而达到保护内耳的作用。

3.内耳:内耳最重要的部分是耳蜗,耳蜗其实就是一个“选频器”,高频声音激励靠近卵型窗的末梢;中频声音激励中部的神经末梢;末端的神经末梢则被低频声激励,而当声音激励卵型窗的某一部分时,相应的神经末梢就会发送信号到大脑。值得一提的是用人而辨别声音的音调,只需听到震动的几个周期就能分辨得一清二楚。在听觉范围内人耳能认定和区分大约1500种不同的音调。

人耳听声的详细过程如下:声音通过耳廓和外耳道到达鼓膜,使鼓膜产生相应的振动。鼓膜的振动经类似杠杆系统的三个听小骨放大后,传到耳蜗的卵型窗,并传递给耳蜗内的淋巴液,最后发送信号给大脑。

耳壳效应:耳壳的凹凸不平,造成了直接声和反射声进入外耳道的时间差和相位差,大脑的听觉区可对此微小的差别做出方位上的判断,这就使耳壳效应。

第二节人耳的听觉特性

1.听觉和分贝

由于人的生理特点,人们对声音大小的感觉与音响系统的对声功率的大小感觉成对数关系,既人耳听觉的对数特性,人耳的听觉感觉与声功率的变化是一种比率,比率相同感觉才相同。

功率比

分贝数

功率比

分贝数

分贝数1.26 1 dB 4

6 dB 31.6 15 dB 1.41 1.5 dB 5

7 dB 100 20 dB

1.58

2 dB 6.3

8 dB 103 30 dB 2

3 dB 7.9

9 dB 104 40 dB 2.5

4 dB 7.9

9 dB 105 50 dB 3.16 5 dB 10

10 dB 106 60 dB

1dB是正常人能分辨的最小声压级

当分贝数为3 dB时,人耳听觉感觉为原声音响度的1倍,到10 dB时为原声音响度的2倍,20 dB时为原响度的4倍,30 dB时为原响度的8倍,40 dB时为原响度的16倍,50 dB时为原响度的32倍,60 dB时为原响度的64倍。

2.声音的三要素

声音是一种物理现象,人耳听到声音后对声音的感觉却是一种心理现象,首先应弄清楚人耳的主观感受与声音的物理量之间的关系,通常将人耳对声音的三种主观感受既响度音调和音色称为声音的三要素。可以认为,响度主要与声音的振动幅度有关;音调主要与声音的振动频率有关;音色主要与声音的振动频率有关。

响度[/b]:人耳对声音强弱的感觉称为响度。响度的单位是“宋”,记做“sone”,以1kHz的纯音,声压级为40dB时的响度为1度。 1kHz的声音以分贝表示的声压级,定义为响度级,单位是“方”,记做“phon”。即响度级40方对应的响度为1宋。

2宋=48方 0.5宋=32方

人耳对声音响度的感觉与声压级和频率有关,将人耳在听到不同频率纯音(正旋波)时,对所有具有相同音量感的声压用一条曲线表示后所得到的曲线图,称为等响曲线。

图中每条曲线上所代表的与声压级,频率相对应的声音,人耳听来都时同样响的,也可理解为对于不同频率的声音,人耳听到同样响度时所需的声压级不同。例如1kHz ,9dB的声音为基准,人耳听到与它等响的100Hz声音所需声压级为47dB。

0方以下的声音,人耳是听不见的,所以0方曲线可称为听阈;120方以上的声音会使人感到疼痛,所以120方曲线可称为痛阈

分析等响曲线可得出以下结论

1.人耳对不同频率声音的灵敏度不同,在1 kHz到5 kHz频率范围内,人耳的听觉灵敏度最高,最敏感的是3 kHz左右(这是由外耳道的共鸣引起的)。

2.在1 kHz以下5 kHz以上,人耳听觉灵敏度下降很多,尤其在低频端,想要使其达到等响程度,必须在两端(高频和低频),尤其是在低频端加大声功率。

3.响度越高,曲线越趋于平滑,即响度越小受频率影响越大,在80方时基本平直。

根基上述分析可知,当改变重放音量时,各个频率的声音的响度级也将改变,所以人们会感到声音的音色由变化。即使是一个高级的放音装置,在低声级放音时,也会感到放音频带变窄,声音单薄;相反,即使时一个低级的放音装置,在提高放音音量时,也会感到放音音量展宽,声音较丰满。为了减小等响曲线的影响,可以在放置放大器部分安装响度控制器,使在低声级放音时,能根据等响曲线自动地将低声频段和高声频段声音的声级进行反校正,将它们相应提高。

音色[/b]:音色是听觉上区别具有同样响度和音调的两个声音的主观感觉,也称为音品。音色主要是由声音的频谱结构决定,即由声音的基频和谐波的数目以及它们的相互关系来决定。

由于各种发生体的材料和形状结构不同,发声机理也不尽相同,即使它们发出相同的音调相同的响度的声音,在基频相同的情况下,谐波的成分和幅度也会由所区别,人耳听到的主观感受便是音色不同。

另外,音色还与发声体振动的起振,稳定和衰减的时间过程有关。

起振阶段(也称为建立阶段)指在激发弦或空气柱使振动开始的瞬间,即开始振动而振幅还不大,并且还不稳定的那段时间。例如铜管乐器激发的时间一般为40ms左右,强激发时最长为80 ms,但在弱激发时最长可达180 ms。

稳态阶段是乐音过了起振阶段以后,振幅增至最大并保持恒定不变的阶段。例如弦乐器中的提琴,二胡,管乐器的长笛,小号等有稳态阶段,而板鼓,梆子等打击乐器则基本上没有稳态阶段。

衰减阶段是振幅开始减小直到完全停止振动的阶段。有的乐器衰减阶段很短,有的却很长。例如扬琴,竖琴的衰减时间就很长,可达1~2s以上。一般乐器的衰减时间,高音较短,底音较长。

下图为风琴和钢琴的时间过程图

风琴的时间过程是:起振较缓慢,在短时间保持一定的稳态声级,然后较缓地衰减。

钢琴的时间过程是:起振较快,然后逐步衰减。

音调[/b]:人耳对声音高低的感觉称为音调。音调主要与声音的基音频率有关,基音频率高则音调高,基音频率低则音调低,但不成正比,而是一种对数关系。十二平均律等程音阶是将一个倍频程的频带按照频率的对数关系划分成十二个等份而构成的,相隔一个倍频称的两个音成为八度。例如钢琴调音时,低音区要向下调,高音区要上调,最大会差几音分之多。这样,听起来才有正确的音阶感。要不然,如果完全按八度同音音程定弦,钢琴的低音键听起来就偏高,高音键听起来就偏低。

音调的单位是“美”(Mel)。频率为1000Hz的纯音音高在听阈上40dB为1000美。

另外影响音调的因素还有声音的声压级和声音的持续时间等。例如,即使是物理上相同频率的声音,如果改变音量,音调的高低感觉也会有微小的变化。这种音量变化对音调感觉的影响,纯音比由许多纯音合成后的复音更为显著。特别是当低频声减小音量时,会感到音调升高;增大音量时,会感到音调变低。高频声正相反,减小音量时,会感到音调降低;增大音量时,会感到音调变高。因此,在小音量情况下,必须将低频声的音调调低一些,而将高频声的音调调高一些才能得到应有的音调。

倍频程[/b]:音阶中频率比为2 :1的频率间隔的声程,在电声学中被称为倍频程,通常用“oct”表示,而在音乐学中被称为8度。

3.人耳听觉的几个效应

掩蔽效应:[/b]在寂静的环境里,人耳能分辨出轻微的声音,但在嘈杂的环境中,轻微的声音完全被淹没掉了。要想听到原来轻微的声音,就必须使它增强才行。这种由于第一个声音的存在而使第二个声音提高听阈的现象,称为掩蔽效应。

当声级较低时,窄带噪声的掩蔽只限于中心频率附近较窄的范围,声级越高掩蔽区也越宽,并且高与中心频率的声音掩蔽作用大。从频率角度来看低频声容易掩蔽高频声。

当掩蔽声作用在被掩蔽声之前时,称为前掩蔽;掩蔽声作用在被掩蔽声之后时,称为后掩蔽。总称为非同时掩蔽。

(1).掩蔽声在时间上越接近掩蔽声,掩蔽效应越大。掩蔽现象常发生在掩蔽声声级在40dB以上时。

(2).掩蔽声与被掩蔽声在时间上距离很近时,后掩蔽作用大于前掩蔽作用。

(3).掩蔽声强度增加时,掩蔽量并不成正比例增大。例如,掩蔽声增加10dB,掩蔽量只增加3dB,这点与同时掩蔽不同。

鸡尾酒会效应:[/b]掩蔽效应时一种生理现象,相对来说鸡尾酒会效应则时心理引起的一种现象。人们具有从许多声音中选择听到自己要听声音的能力。在许多人聚会的鸡尾酒会中,可以对特定人的讲话听的最清楚,这种效应称为鸡尾酒会效应。可以认为这种效应是根据讲话内容,声源的指向性和音色等要素,从嘈杂环境中听到自己需要的声音的一种能力。但传声器拾音时,不具备人的这种心理选择,而只能客观地拾取由其指向性,灵敏度,拾音方式。因此在实际录音时,不应被声源的内容所吸引,而应注意客观存在的物理声音,这样才能更好地把握具体的拾音方式。

多普勒效应:[/b]当波源与波的接收者之间以一定速度作相对运动时,接收者所接收到的频率(或波长)就会改变,这就是多普勒效应。

当波源与接收者之间做相向运动即相互靠近时,接收者接收到的频率就会升高;当波源与接收者之间做反向运动即相互远离时,接收者接收到的频率就会变低。例如,听疾驶而来的火车鸣笛声,先是升高,然而当火车掠身而过再向后驶去时,笛声又突然降低。夏天,树上有蝉鸣,你把扇子面对着蝉摇动,并把耳朵贴在旁边,则在耳畔可以听到随着你摇扇的节律出现音调高低的变化。这也是多普勒效应。

双耳效应:[/b]用两只耳朵听声在效果方面有许多不同,这种不同称为双耳效应。

例如用双耳可听到比用单耳听到的更小的声音。根据测量,可知双耳听到比单耳时低3dB的声音,随着声音声压级的增大,到达35dB以上时,这一差值可达6dB。但对噪声来说,上述关系不成立。当噪声较大时,上述差值会减小,噪声声压级大到一定程度时,双耳的听阈反而会上升,单耳的灵敏度反倒较好,这种现象称为耳间的抑制效应。

双耳效应中最明显的是对声音的定位,也就是双耳可正确的确定声源的方位,这是由于到达两耳的声音存在声级差,时间差和相位差所致。

人耳辨向能力分析(1)

人耳的辨向能力分析 棕北中学张心怡 摘要本文分析了人耳辨向的几种解释,以及这些解释的不足,提出了人耳具有方向追踪能力的假设及实现原理,合理地解释了人耳的辨向能力。 1.引言 人耳是我们的重要器官,它能够让我们领略自然界的不同声音,感受这丰富多彩的有声世界。借助双耳,我们可以分辨语音,进行语言交流;可以根据发声体发出的声音,辨别发声体的远近、方向,甚至发声体的大小、材质等特征。关于人耳对声音的接收、辨识处理的机理,人类进行了不懈的探索,同时也创造出很多仪器或装置(如录音机,助听器等),部分替代或弥补人耳的功能,但是人耳对声音的接收、转换、处理过程及机理仍然有很多未解之谜,等待我们去破解。 2.人耳辨向机理 人耳没有眼睛那样的转动能力,但人耳对声源具有方向分辨能力,我们不但可以分辨声音来自空间哪个方向,我们还可以“竖起耳朵”专注倾听某个方向的声音。那么,人耳是如何实现这样的能力的呢? 2.1 双耳效应 英国物理学家瑞利于1896年通过实验发现人的两只耳朵对同一声源的直达声具有时间差(0.44-0.5微秒)、声强差及相位差,而人耳的听觉灵敏度可根据这些微小的差别准确判断声音的方向、确定声源的位置,但依据时间差,只能局限于确定声源到我们的直线距离,不能解决三维空间声源的定位。

如图1,同一声源,如果在以双耳连线为轴线的同一圆周上移动,在上下前后位置处,声源在双耳形成的时间差、声强差等是一样的,仅仅根据时间差、声强差,我们只能确定声源到我们的直线距离,无法分辨声音来自上、下、前或后,但事实上我们是能够分辨的。 图1 2.2 耳廓效应 人的耳廓对声波的反射以及对空间声源的定向有重要的定向作用。借此效应,可判定声源的三维位置。 虽然耳廓对上下左右不同方向声音的收集效果不一样,但即使我们能够根据两耳间细微的声强差异,再配合时间差,区分声源的三维空间位置,但无法解释我们的主动指向某一方向,有方向选择性的倾听的能力。 2.3 人耳的频率滤波效应 人耳的声音定位机制与声音频率有关,对20-200赫的低音靠相位差定位,对300-4000赫的中音靠声强差定位,对高音则靠时间差定位。据此原理可分析出重放声音中的语言、乐音的差别,经不同的处理而增加环绕感。

耳和听觉练习题

1.人耳能听到鼓面被敲击后发出的声音,而听不到手臂上下挥动发出的声音,这是因为( )。 A.人手臂上下挥动的频率太低B.人手臂上下挥动的振幅太小 C.人手臂上下挥动不是振动D.人手臂不是发声的物体 2.假如跟你家一墙之隔的邻居经常放音响或引吭高歌,为了减少这些声音对你学习、休息的影响,下列采取的方法没有用的是( )。 A.将门、窗关紧B.用棉花塞住耳朵 C.将门、窗打开,让空气加快流动D.将门、窗关上后再把棉毯挂在窗上 3.形成听觉的正确路径为( )。 A.声波→耳→听神经→听觉中枢B.声波→外耳→中耳→内耳 C.声波→外耳→中耳→耳蜗D.声波→鼓膜→听小骨→耳蜗 4.患中耳炎很可能导致耳聋,其原因是( )。 A.听觉感受器受损伤B.听神经受伤C.鼓膜和听小骨受伤D.大脑皮层听觉中枢损伤5.大剧场的四周墙壁要修得凹凸不平,目的是( )。 A.增强声音的反射B.减弱声音的反射C.为了装饰剧场,美观漂亮D.为了增大音量6.声音从水中发出,再经空气传入人耳,在此过程中一定不变的是( )。 A.响度B.音色C.音调D.不能判断 7.耳的结构中,能接受声波并转化为振动的是() A、耳廓 B、鼓膜 C、听小骨 D、耳道 8.下列属于内耳结构的是()A.鼓膜 B.鼓室C.听小骨D.耳蜗 9.放爆竹和礼花时,若你在一旁观看,最好张开嘴或捂住耳朵、闭上嘴。这种做法主要是为了()A.保护耳蜗内的听觉感受器B.保持鼓膜内外气压平衡 C.使咽鼓管张开,保护听小骨D.防止听觉中枢受损伤 10.发生晕车、晕船等症状,其原因是() A、由于睡眠不足引起 B、小脑调节平衡的能力弱 C、躯体感觉中枢受到了过强的刺激 D、前庭和半规管受到过强或长时间的刺激 11.人的听觉形成于() A、耳蜗 B、听觉感受器 C、听神经 D、脑部听觉中枢 12.先轻敲一下大钟,然后再用力敲一下大钟,两次听到大钟发出的声音() A、音调改变了 B、响度改变了 C、音色改变了 D、声音传播的速度改变了 13.男同学一般总是比女同学发出的声音沉闷、浑厚,即音调一般比女同学的低。其原因是男学声带振动的频率与女同学的相比() A、较低 B、较高 C、一样 D、时高时低 14.2007年5月17日,“中华情?和谐海西”大型文艺晚会在闽江公园盛装上演。观众能区别出不同乐器发出的声音,主要是根据它们发出的声音有不同的 A.响度 B.音色 C音调 D.三者皆有 二、填空题 1.乐音的三个基本特征为__________、__________和__________。 2.声音是发声体________而产生的。钢琴、吉它、笛子等乐器发出的声音,即使音调、响度都相同。也可以从它们的__________分钟。 3.女同学说话的声音“尖细”,是指女同学声音的__________高,这是因为同学说话的声带振动比较__________的缘故。 4.减少噪声的途径有__________、__________、__________。

人耳的听觉特征

人耳得听觉特征 1、振动产生声波,声波传播至耳,耳膜受到声压变化刺激听觉神经听觉神经传入大脑中枢,形成声音得存在感觉。声音得传播过程(自然状态):当一个物体受外力作用时,产生一个往复得弹性振动,这样就产生了声波,经过介质(物体、空间或水)向四面八方传播。当人耳接受声波得振动,通过听觉神经传达给大脑。 2、声音得产生就是物理现象,人对声音得感觉就是生理、心理活动。 ①构成人耳听觉特性得要素 构成声音产生与存在得客观因素就是:振幅、频率、谐波 构成人耳对声音得听觉特性得要素就是:响度、音调、音色 ⑴响度:就是人耳对声音强弱得感觉程度。它首先决定于声音得振幅,其次就是频率。声学中把描述响度、振幅、频率之间得关系曲线叫等响度曲线。单位:分贝(dB) 与振幅得关系:a、声压级越高,人耳感觉声音响度越大b、人耳得声压范围就是:0——120 dB 与频率得关系:a、4—5KHz附近得声音最响,因外耳道与其产生共鸣b、低声压时,低频区得音响度大于高频音得响度c、常见声源得声压级dB λ窃窃私语:20——35 女高音:35——105 男λ高音:40——95 λ小提琴:40——100 交响乐:80 dB 小鼓:55——105 打雷:120λ dB λ教师讲话:50——60 飞机起飞(3m处):140 dB ⑵音调(音高):就是人耳对声音高低得感觉,其变化主要取决于声音频率得对数值,其次就是取决于声音得振幅。 频率越高,人耳感觉得音调随之升高,频率增加一倍,声学中称之增加一个“倍频程”,音乐

上叫“提高一个八度”。音调单位:美(mei)音调与频率得关系: a、人耳听觉得频率范围:20Hz——20KHz,其中700——3000Hz为最灵敏区 b、语言得频率范围范围就是100——10 KHz 音乐得频率范围就是50——15 KHz 音调与声压(振幅)得关系: a、1K——2 KHz 以上得高音区,声压增大感觉音调提升 b、500 Hz以下得声音,声压增大,感觉声音低沉,音调下降 ⑶音色(音品):指声音得音调与响度以外得音质差异。它与声音得频谱结构、包络与波形有关。发音体得泛音结构不同频率特性曲线、种类不同造成音色结构得不同。 声音得物理特性 声音得构成及关系 客观:振幅(大、小);频率(快、慢);谐波 主观:响度;音调(音高);音色(音品) 振幅:声波得振动幅度,它得大小影响人耳对声音强弱得感觉强度(即响度)单位:分贝(dB) 频率:声波每秒钟振动得次数。它直接影响人耳对声音高低(音调)得感觉。单位:赫兹(Hz) 谐波:指声波得波形。包括瞬间状态。它直接影响人们对声音音质差异(音色)得感觉。(如乐器不同,相同得“i”听觉则不相同。) 声音得传播 ⑴直达声:就是室内任一点直接接收到声源发出得声音。 它就是接收声音得主体,又叫主达声,不受空间界面影响,其声强基本上就是与听点到声源间距离得平方成反比衰减。 ⑵早期反射声:指延迟直达声50ms以内到达听声点得反射声,对声音起到增强作用;在大空间内,因反射距离远,易形成回声,产生空间感。

音频不同频率对人耳的听觉的影响

音频不同频率对人耳的听觉的影响 16K~20KHz频率:这段频率范围实际上对于人耳的听觉器官来说,已经听不到了,因为人耳听觉的最高频率是15.1KHz。但是,人可以通过人体和头骨、颅骨将感受到的16~20KHz频率的声波传递给大脑的听觉脑区,因而感受到这个声波的存在。这段频率影响音色的韵味、色彩、感情味。如果音响系统的频率响应范围达不到这个频率范围,那么音色的韵味将会失落;而如果这段频率过强,则给人一种宇宙声的感觉,一种幻觉,一种神秘莫测的感觉,使人有一种不稳定的感觉。因为这些频率大多数是基音的不谐和音频率,所以会产生一种不安定的感受。这段频率在音色当中强度很小,但是很重要,是音色的表现力部分,也是常常被人们忽略的部分,甚至有些人根本感觉不到它的存在。 12K~16KHz频率:这是人耳可以听到的高频率声波,是音色最富于表现力的部分,是一些高音乐器和高音打击乐器的高频泛音频段,例如镲、铃、铃鼓、沙锤、铜刷、三角铁等打击乐器的高频泛音,可给人一种"金光四射"的感觉,强烈地表现了各种乐器的个性。如果这段频率成分不足,则音色将会会失掉色彩,失去个性;而如果这段频率成分过强,如激励器激励过强,音色会产生"毛刺"般尖噪、刺耳的高频噪声,对此频段应给予一定的适当的衰减。 10K~12KHz频率:这是高音木管乐器的高音铜管乐器的高频泛音频段,例如长笛、双簧管、小号、短笛等高音管乐器的金属声非常强烈。如果这段频率缺乏,则音色将会失去光泽,失去个性;如果这段频率过强,则会产生尖噪,刺耳的感觉。 8K~10KHz频率:这段频率s音非常明显,影响音色的清晰度和透明度。如果这频率成分缺少,音色则变得平平淡淡;如果这段频率成分过多,音色则变得尖锐。 6K~8KHz频率:这段频率影响音色的明亮度,这是人耳听觉敏感的频率,影响音色清晰度。如果这段频率成分缺少,则音色会变得暗淡;如果这段频率成分过强,则音色显得齿音严重。 5K~6KHz频率:这段频率最影响语音的清晰度、可懂度。如果这段频率成分不足,则音色显得含糊不清;如果此段频率成分过强,则音色变得锋利,易使人产生听觉上的疲劳感。 4K~5KHz频率:这段频率对乐器的表面响度有影响。如果这段频率成分幅度大了,乐器的响度就会提高;如果这段频率强度变小了,会使人听觉感到这种乐器与人耳的距离变远了;如果这段频率强度提高了,则会使人感觉乐器与人耳的距离变近了。 4KHz频率:这个频率的穿透力很强。人耳耳腔的谐振频率是1K~4KHz所以人耳对这个频率也是非常敏感的。如果空虚频率成分过少,听觉能力会变差,语音显得模糊不清了。如果这个频率成分过强了,则会产生咳声的感觉,例如当收音机接收电台频率不正时,播音员常发出的咳音声。 2K~3KHz频率:这段频率是影响声音明亮度最敏感的频段,如果这段频率成分丰富,则音色的明亮度会增强,如果这段频率幅度不足,则音色将会变得朦朦胧胧;而如果这段频率成分过强,音色就会显得呆板、发硬、不自然. 1K~2KHz频率:这段频率范围通透感明显,顺畅感强。如果这段频率缺乏,音色则松散且音色脱节;如果这段频率过强,音色则有跳跃感

(完整版)第一章:声波的传播特性及人耳的听觉

第一章声波的传播特性及听觉特性 第一节声波的传播特性 声波是由物体振动产生的,当振动在一定的频率和强度范围内时,人耳就可听到。振动发声的物体称为声源,有声波传播的空间称为声场。当声源在空气中发声时,媒质质点在平衡位置附近作往复振动,媒质中振动着的质点的位移会作用到相邻质点,使后者也产生振动,于是,振动形成波动,在空间传播开来,在声源周围形成疏密交替的空气压力波,称为声波。声波在150C时,大约以340m/s的速度由声源向外传播。气体中的声波属于纵波,即波的前进方向与媒质质点的振动方向在一条直线上。 在传播过程中不受反射而向前行进的声波,称为行波。在某一时刻,空间行波相位相同各点的轨迹曲面称为波阵面,也称为波前。波阵面为平面的声波称为平面声波。 尺寸比波长小的声源所发出的声波是以球面扩展的,波阵面为球面,称为球面声波。这种声源称为点声源。现实中的声源,即使具有一定尺寸,但在距离与声源尺寸相比充分远时,也可将它看作点声源,在这样的距离处得到球面声波。当距离远到一定程度时,波阵面即与平面声波的波阵面相接近,可看作平面声波。 声能从声源沿波阵面的法线方向传播的路径称为声线,在各向同性的媒质中,声线是代表声波的传播方向。例如球面声波的声线就是球面的半径线。 声波的瞬时状态可用声压、媒质质点振速和媒质密度中的任何一个来描述。 (1)声压:有声波存在时,在静态大气压强上叠加的变化分量称为声压。 (2)质点振速:有声波存在时,媒质质点的振动速度。单位为m/s。 (3)媒质密度:单位体积内的媒质质量称为媒质密度。有声波存在时,媒质密度要产生稠密稀疏的变化。单位为kg/m3。 一、声波的反射 声波在前进过程中如果遇到尺寸甚大于声波波长的坚硬界面,会产生反射。声波从界面反射的角度与声波入射到界面的角度相等,即反射角等于入射角。反射的声波如同从界面后面与声源相对应位置处发射出来的一样,即如同在该位置处有一声源,称为虚声源,也称为镜像声源,它与界面的距离等于声源与界面的距离,如图1-1所示。 图1-1 声波的反射 当声源在一个凹界面前,声波会产生聚焦,如图1-2所示。对于播音室来说,为了声音良好扩散,应避免凹界面。

语音信号处理-第02章 语音信号的产生、特征与人耳的听觉特性

语音信号处理
Speech Signal Processing
长春工业大学图像工程研究所 史东承教授
dcshi@https://www.360docs.net/doc/e715771188.html, 2010.8
第二章 语音信号的产生、特征 与人耳的听觉特性
§2.1 语音信号的产生
鼻腔 软腭 口腔 鼻子
嘴巴
气管 声带
人类发音器官示意图
发音器官:
产生语音的器官
1)肺和气管:能源与能量传输; 2)咽喉:振动源,包括声带和声门; 3)声道(声门到嘴唇的呼气通道):谐振腔 (包括口腔、鼻腔等); 4)其他发音器官:包括嘴唇、齿、舌、面颊 等,使谐振腔改变形状。
1

发音机理
? 喉位于气管的上端,实际 上是气管末端一圈软骨构 成的一个框架,前方稍高 处的软骨称为甲状软骨, 前后方环成一圈的称为喉 部环形软骨,喉中两片肌 肉称为声带,声带之间的 空隙为声门。 ? 当声带张开时,声门打 开,空气可自由呼出,正 常呼吸就处于这种情况; 当声带闭合,声门关闭。
当说话时,声带在软骨的作用下相互靠 近但不完全闭合,声门变成一条窄缝,当气 流通过窄缝时压力减小,外界压力大,从而 两片声带完全闭合使得气流不能通过,当气 声带靠拢 流阻断时压力恢复正常,推开两片声带,声 门再次打开,气流再次流过。 声带的开启和闭合称 为振动。这一振动过程周 而复始,形成了一串周期 性脉冲气流送入声道。这 个过程发出的音称为浊音。 如汉语发音的[a]、[i]、 [u]和[o]等。
Tp 基音周期
男声发音“我的语音”的时域波形和语谱图
2

人耳的听觉特征

人耳的听觉特征 1、振动产生声波,声波传播至耳,耳膜受到声压变化刺激听觉神经听觉神经传入大脑中枢,形成声音的存在感觉。声音的传播过程(自然状态):当一个物体受外力作用时,产生一个往复的弹性振动,这样就产生了声波,经过介质(物体、空间或水)向四面八方传播。当人耳接受声波的振动,通过听觉神经传达给大脑。 2、声音的产生是物理现象,人对声音的感觉是生理、心理活动。 ①构成人耳听觉特性的要素 构成声音产生与存在的客观因素是:振幅、频率、谐波 构成人耳对声音的听觉特性的要素是:响度、音调、音色 ⑴响度:是人耳对声音强弱的感觉程度。它首先决定于声音的振幅,其次是频率。声学中把描述响度、振幅、频率之间的关系曲线叫等响度曲线。单位:分贝(dB) 与振幅的关系:a、声压级越高,人耳感觉声音响度越大b、人耳的声压范围是:0——120 dB 与频率的关系:a、4—5KHz附近的声音最响,因外耳道与其产生共鸣b、低声压时,低频区的音响度大于高频音的响度c、常见声源的声压级dB λ窃窃私语:20——35 女高音:35——105 男λ高音:40——95 λ小提琴:40——100 交响乐:80 dB 小鼓:55——105 打雷:120λ dB λ教师讲话:50——60 飞机起飞(3m处):140 dB ⑵音调(音高):是人耳对声音高低的感觉,其变化主要取决于声音频率的对数值,其次是取决于声音的振幅。

频率越高,人耳感觉的音调随之升高,频率增加一倍,声学中称之增加一个“倍频程”,音乐上叫“提高一个八度”。音调单位:美(mei)音调与频率的关系: a、人耳听觉的频率范围:20Hz——20KHz,其中700——3000Hz为最灵敏区 b、语言的频率范围范围是100——10 KHz 音乐的频率范围是50——15 KHz 音调与声压(振幅)的关系: a、1K——2 KHz 以上的高音区,声压增大感觉音调提升 b、500 Hz以下的声音,声压增大,感觉声音低沉,音调下降 ⑶音色(音品):指声音的音调和响度以外的音质差异。它与声音的频谱结构、包络和波形有关。发音体的泛音结构不同频率特性曲线、种类不同造成音色结构的不同。 声音的物理特性 声音的构成及关系 客观:振幅(大、小);频率(快、慢);谐波 主观:响度;音调(音高);音色(音品) 振幅:声波的振动幅度,它的大小影响人耳对声音强弱的感觉强度(即响度)单位:分贝(dB) 频率:声波每秒钟振动的次数。它直接影响人耳对声音高低(音调)的感觉。单位:赫兹(Hz)谐波:指声波的波形。包括瞬间状态。它直接影响人们对声音音质差异(音色)的感觉。(如乐器不同,相同的“i”听觉则不相同。) 声音的传播 ⑴直达声:是室内任一点直接接收到声源发出的声音。 它是接收声音的主体,又叫主达声,不受空间界面影响,其声强基本上是与听点到声源间距离的平方成反比衰减。

初一第二章第三节耳和听觉讲义加练习

1.人耳能听到鼓面被敲击后发出的声音,而听不到手臂上下挥动发出的声音,这是因为( )。 A.人手臂上下挥动的频率太低B.人手臂上下挥动的振幅太小C.人手臂上下挥动不是振动D.人手臂不是发声的物体 2.假如跟你家一墙之隔的邻居经常放音响或引吭高歌,为了减少这些声音对你学习、休息的影响,下列采取的方法没有用的是( )。 A.将门、窗关紧B.用棉花塞住耳朵C.将门、窗打开,让空气加快流动D.将门、窗关上后再把棉毯挂在窗上 3.形成听觉的正确路径为( )。 A.声波→耳→听神经→听觉中枢B.声波→外耳→中耳→内耳C.声波→外耳→中耳→耳蜗D.声波→鼓膜→听小骨→耳蜗 4.患中耳炎很可能导致耳聋,其原因是( )。 A.听觉感受器受损伤B.听神经受伤C.鼓膜和听小骨受伤D.大脑皮层听觉中枢损伤 5.大剧场的四周墙壁要修得凹凸不平,目的是( )。 A.增强声音的反射B.减弱声音的反射C.为了装饰剧场,美观漂亮D.为了增大音量 6.声音从水中发出,再经空气传入人耳,在此过程中一定不变的是( )。 A.响度B.音色C.音调D.不能判断 7.耳的结构中,能接受声波并转化为振动的是() A.耳廓B、鼓膜C、听小骨D、耳道 8.下列属于内耳结构的是()A.鼓膜 B.鼓室C.听小骨D.耳蜗 9.放爆竹和礼花时,若你在一旁观看,最好张开嘴或捂住耳朵、闭上嘴。这种做法主要是为了() A.保护耳蜗内的听觉感受器B.保持鼓膜内外气压平衡C.使咽鼓管张开,保护听小骨D.防止听觉中枢受损伤 10.发生晕车、晕船等症状,其原因是() A、由于睡眠不足引起 B、小脑调节平衡的能力弱 C、躯体感觉中枢受到了过强的刺激 D、前庭和半规管受到过强或长时间的刺激11.人的听觉形成于() A、耳蜗 B、听觉感受器 C、听神经 D、脑部听觉中枢 12.先轻敲一下大钟,然后再用力敲一下大钟,两次听到大钟发出的声音() A、音调改变了 B、响度改变了 C、音色改变了 D、声音传播的速度改变了 13.男同学一般总是比女同学发出的声音沉闷、浑厚,即音调一般比女同学的低。其原因是男学声带振动的频率与女同学的相比() A、较低 B、较高 C、一样 D、时高时低 14.2007年5月17日,“中华情?和谐海西”大型文艺晚会在闽江公园盛装上演。观众能区别出不同乐器发出的声音,主要是根据它们发出的声音有不同的A.响度 B.音色 C音调 D.三者皆有 二、填空题 1.乐音的三个基本特征为__________、__________和__________。 2.声音是发声体________而产生的。钢琴、吉它、笛子等乐器发出的声音,即使音调、响度都相同。也可以从它们的__________分钟。 3.女同学说话的声音“尖细”,是指女同学声音的__________高,这是因为同学说话的声带振动比较__________的缘故。 4.减少噪声的途径有__________、__________、__________。

人耳对不同频率声音的感受

人耳对不同频率声音的感受 听觉是个体对声音物理特征的反应,也是人们接受外界信息的主要的通道。通过听觉,人们可以获得由声音所传递的各式各样信息。当然,声音也给人们带来烦恼,例如噪音。至于噪音能引起多大的烦恼,既取决于声音的性质,也取决于听者的主观态度。 同时,人能感受的声音频率有一定的范围。大多数人能够听到的频率范围从20Hz到20000Hz。我们把高于20000Hz的声音叫做超声波,因为它们已超过人类听觉的上限;把低于20Hz的声音叫做次声波,因为它们已低于人类听觉的下限。动物的听觉范围通常和人不同。一些动物对高频声波反应灵敏,有些动物对低频声波有很好的反应。 那么,声音每一段的频率都有什么特点?我们对其的感觉又有什么不同呢?下面,笔者就为大家详细介绍各频率对人耳刺激的区别。 ▌16K~20KHz频率 这段频率范围实际上对于人耳的听觉器官来说,已经听不到了,因为人耳听觉的最高频率是15.1KHz。但是,人可以通过人体和头骨、颅骨将感受到的16~20KHz频率的声波传递给大脑的听觉脑区,因而感受到这个声波的存在。 这段频率影响音色的韵味、色彩、感情味。如果音响系统的频率响应范围达不到这个频率范围,那么音色的韵味将会失落;而如果这段频率过强,则给人一种宇

宙声的感觉,一种幻觉,一种神秘莫测的感觉,使人有一种不稳定的感觉。因为这些频率大多数是基音的不谐和音频率,所以会产生一种不安定的感受。这段频率在音色当中强度很小,但是很重要,是音色的表现力部分,也是常常被人们忽略的部分,甚至有些人根本感觉不到它的存在。 ▌12K~16KHz频率 这是人耳可以听到的高频率声波,是音色最富于表现力的部分,是一些高音乐器和高音打击乐器的高频泛音频段,例如镲、铃、铃鼓、沙锤、铜刷、三角铁等打击乐器的高频泛音,可给人一种“金光四射”的感觉,强烈地表现了各种乐器的个性。如果这段频率成分不足,则音色将会会失掉色彩,失去个性;而如果这段频率成分过强,如激励器激励过强,音色会产生“毛刺”般尖噪、刺耳的高频噪声,对此频段应给予一定的适当的衰减。 ▌10K~12KHz频率 这是高音木管乐器和高音铜管乐器的高频泛音频段,例如长笛、双簧管、小号、短笛等高音管乐器的金属声非常强烈。如果这段频率缺乏,则音色将会失去光泽,失去个性;如果这段频率过强,则会产生尖噪,刺耳的感觉。 ▌8K~10KHz频率 这段频率s音非常明显,影响音色的清晰度和透明度。如果这频率成分缺少,音色则变得平平淡淡;如果这段频率成分过多,音色则变得尖锐。

人耳的听觉特性 录音手册

人耳的听觉特性录音手册-第二章 相关时间:2006-10-26 来源:疯狂音乐国 第一节人耳的构造及功能 1.人耳的构造 外耳:耳廓外耳道中耳:鼓膜听小骨内耳:半规管耳蜗 耳廓:也叫耳壳,耳廓起收集和向外耳道反射声音的作用。 外耳道:直径约0.5厘米,长约2.5厘米的一端与鼓膜封闭的圆形轨道,他的作用是将声音传导道鼓膜,是声音进入骨室的通道。 鼓膜:鼓膜的面积约为0.8平方厘米,厚度约为0.1毫米,是一个浅锥型的软膜。 听小骨:它是由锤骨砧骨镫骨三块小骨组成。三块听小骨成杠杆式连接,最后一块镫骨与卵型窗相邻。 半规管:保持人体平衡(人耳内唯一一个与听力无关的器官) 耳蜗:耳蜗呈螺旋型,形状象蜗牛,是一骨质腔体,内部充满淋巴液。耳蜗沿其长度分为两部分,分别称为前庭阶和鼓阶,在基底膜上分布有大量毛细胞,每根毛细胞上都连有末梢神经。 2.人耳的功能 1.外耳道:外耳形状的不对称性有聚集声能的作用,并有一定的定向作用,外耳道的自然谐振频率约为3400Hz,由于外耳道的共鸣,以及人头对声音产生的反射和衍射,使得人耳对2~4kHz的声音感觉约可提高15~20dB。所以缺少耳廓的人,高频听力差。 2.中耳:咽骨管有平衡中耳和外耳的气压作用,以保证鼓膜的正常震动。鼓膜将声能转换为机械能。 鼓膜的面积比卵型窗的面积约大24~36倍,大面积的力作用在小面积上,从耳加大了卵型窗的作用力,三块听小骨的杠杆作用,也对声能转换为机械能起到一定的放大作用,另外听小骨具有一些非线性,使人们对一个频率的声音能产生出它的谐音感觉。当遇到瞬时超大的声压时,听小骨会自动脱位,切断声音的通道,从而达到保护内耳的作用。 3.内耳:内耳最重要的部分是耳蜗,耳蜗其实就是一个“选频器”,高频声音激励靠近卵型窗的末梢;中频声音激励中部的神经末梢;末端的神经末梢则被低频声激励,而当声音激励卵型窗的某一部分时,相应的神经末梢就会发送信号到大脑。值得一提的是用人而辨别声音的音调,只需听到震动的几个周期就能分辨得一清二楚。在听觉范围内人耳能认定和区分大约1500种不同的音调。 人耳听声的详细过程如下:声音通过耳廓和外耳道到达鼓膜,使鼓膜产生相应的振动。鼓膜的振动经类似杠杆系统的三个听小骨放大后,传到耳蜗的卵型窗,并传递给耳蜗内的淋巴液,最后发送信号给大脑。 耳壳效应:耳壳的凹凸不平,造成了直接声和反射声进入外耳道的时间差和相位差,大脑的听觉区可对此微小的差别做出方位上的判断,这就使耳壳效应。 第二节人耳的听觉特性 1.听觉和分贝 由于人的生理特点,人们对声音大小的感觉与音响系统的对声功率的大小感觉成对数关系,既人耳听觉的对数特性,人耳的听觉感觉与声功率的变化是一种比率,比率相同感觉才相同。 功率比 分贝数 功率比 分贝数

人耳的听觉特征

人耳的听觉特征 6 N7 ?7 d7 ] Y5 N( ^ 3 ~) [) z' d8 a7 M/ k0 x1 U3 @( 1、振动产生声波,声波传播至耳,耳膜受到声压变化刺激听觉神经听觉神经传入大脑中枢,形成声音的存在感觉。声音的传播过程(自然状态):当一个物体受外力作用时,产生一个往复的弹性振动,这样就产生了声波,经过介质(物体、空间或水)向四面八方传播。当人耳接受声波的振动,通过听觉神经传达给大脑。 2、声音的产生是物理现象,人对声音的感觉是生理、心理活动。 ①构成人耳听觉特性的要素! }. ]% t) W. D4 e6 A" F4 u4 构成声音产生与存在的客观因素是:振幅、频率、谐波 构成人耳对声音的听觉特性的要素是:响度、音调、音色 ⑴响度:是人耳对声音强弱的感觉程度。它首先决定于声音的振幅,其次是频率。声学中把描述响度、振幅、频率之间的关系曲线叫等响度曲线。单位:分贝(dB) 与振幅的关系:a、声压级越高,人耳感觉声音响度越大b、人耳的声压范围是:0——120 dB B: H) ]' d3 ?7 }4 k 与频率的关系:a、4—5KHz附近的声音最响,因外耳道与其产生共鸣b、低声压时,低频区的音响度大于高频音的响度c、常见声源的声压级dB λ窃窃私语:20——35 ' t6 b0 V$ V- h+ s* 女高音:35——105 男λ高音:40——95( J- x2 N* ^6 Z# ~7 L E# Z2 [* J λ小提琴:40——100 交响乐:80 dB 小鼓:55——105 打雷:120λ dB$ G c: ]0 b8 Z6 S9 N7 F λ教师讲话:50——60 飞机起飞(3m处):140 dB z$ p5 O0 x2 @/ f ⑵音调(音高):是人耳对声音高低的感觉,其变化主要取决于声音频率的对数值,其次是取决于声音的振幅。

相关文档
最新文档