3导数的几何意义练习题

3导数的几何意义练习题
3导数的几何意义练习题

3、导数的几何意义

一、选择题

1.已知曲线y =12x 2-2上一点P ?

????1,-32,则过点P 的切线的倾斜角为( ) A .30° B .45° C .135° D .165°

2.如果曲线y =f (x )在点(x 0,f (x 0))处的切线方程为x +2y -3=0,那么( )

A .f ′(x 0)>0

B .f ′(x 0)<0

C .f ′(x 0)=0

D .f ′(x 0)不存在

3.下列说法正确的是( )

A .若f ′(x 0)不存在,则曲线y =f (x )在点(x 0,f (x 0))处就没有切线

B .若f ′(x 0)不存在,则曲线y =f (x )在点(x 0,f (x 0))处的切线斜率不存在

C .若曲线y =f (x )在点(x 0,f (x 0))处有切线,则f ′(x 0)必存在

D .若曲线y =f (x )在点(x 0,f (x 0))处的切线斜率不存在,则曲线在该点处就没有切线

4.(2010·新课标全国卷文,4)曲线y =x 3-2x +1在点(1,0)处的切线方程为( )

A .y =-x -1

B .y =x -1

C .y =2x -2

D .y =-2x -2

5.曲线y =1x

在点P (1,1)处的切线方程是( ) A .x +y +2=0 B .x +y -2=0 C .y -1=-1x 2(x -1) D .y -1=1x 2(x -1) 6.设f (x )为可导函数,且满足lim -2x →0 f 1-f 1-2x 2x

=-1,则过曲线y =f (x )上点(1,f (1))处的切线斜率为( )

A .2

B .-1

C .1

D .-2

7.已知曲线y =2ax 2+1过点(a ,3),则该曲线在该点的切线方程是( )

A .y =-4x -1

B .y =4x -1

C .y =4x +8

D .y =4x 或y =4x -4

8.(2010·辽宁文,12)已知点P 在曲线y =

4e x

+1上,α为曲线在点P 处的切线的倾斜角,则α的取值范围是( )

A .[0,π4)

B .[3π4,π)

C .(π2,3π4]

D .[π4,π2

) 9.y =ax 2+1的图象与直线y =x 相切,则a =( )

A.18

B.14

C.12

D .1 10.曲线y =x 3+x -2在点P 0处的切线平行于直线y =4x -1,则点P 0的坐标是( )

A .(1,0)

B .(1,0)或(-1,-4)

C .(-1,-4)

D .(0,1)或(4,1)

二、填空题

11.曲线y =x 2-3x 在点P 处的切线平行于x 轴,则点P 的坐标为________.

12.抛物线y =x 2在点P 处的切线平行于直线y =4x -5,则点P 的坐标为________.

13.曲线f (x )=x 3

在点A 处的切线的斜率为3,则该曲线在点A 处的切线方程为____________.

14.过点P (-1,2)且与曲线y =3x 2-4x +2在点M (1,1)处的切线平行的直线方程是________.

三、解答题

15.已知曲线y =2x 2上的点(1,2),求过该点且与过该点的切线垂直的直线方程.

16.求曲线y =x 3在点(3,27)处的切线与两坐标轴所围成的三角形的面积.

17.试求过点M (1,1)且与曲线y =x 3+1相切的直线方程.

18.已知曲线y =x 2-1与y =x 3+1在x 0点的切线互相垂直,求x 0的值.

1-10.B 11 ? ????32,-94 12.(2,4) 13.3x -y -2=0或3x -y +2=0 14.2

x -y +4=0 15. x +4y -9=0. 16. S =12×2×54=54. 17. 27x -4y -23=0和y =1. 18. x 0=-1

36.

高中数学导数的概念、运算及其几何意义练习题

导数的概念、运算及其几何意义 黑龙江 依兰高中 刘 岩 A 组基础达标 选择题: 1.已知物体做自由落体运动的方程为21(),2 s s t gt ==若t ?无限趋近于0时, (1)(1)s t s t +?-?无限趋近于9.8/m s ,那么正确的说法是( ) A .9.8/m s 是在0~1s 这一段时间内的平均速度 B .9.8/m s 是在1~(1+t ?)s 这段时间内的速度 C .9.8/m s 是物体从1s 到(1+t ?)s 这段时间内的平均速度 D .9.8/m s 是物体在1t s =这一时刻的瞬时速度. 2. 已知函数f ’ (x)=3x 2 , 则f (x)的值一定是( ) A. 3x +x B. 3x C. 3x +c (c 为常数) D. 3x+c (c 为常数) 3. 若函数f(x)=x 2+b x +c 的图象的顶点在第四象限,则函数f / (x)的图象是( ) 4.下列求导数运算错误.. 的是( ) A. 20122013x 0132c x ='+)( (c 为常数) B. x xlnx 2lnx x 2+=')( C. 2x cosx xsinx x cosx +=')( D . 3ln 33x x =')( 5..已知曲线23ln 4x y x =-的一条切线的斜率为12 ,则切点的横坐标为( ) A . 2 B . 3 C . 12 D .1 填空题: 1.若2012)1(/ =f ,则x f x f x ?-?+→?)1()1(lim 0= ,x f x f x ?--?+→?)1()1(lim 0= ,x x f f x ??+-→?4)1()1(lim 0= , x f x f x ?-?+→?)1()21(lim 0= 。 2.函数y=(2x -3)2 的导数为 函数y= x -e 的导数为 A x D C x B

导数的几何意义

20200201手动选题组卷2 一、选择题(本大题共4小题,共20.0分) 1.函数f(x)=x3+x在点x=1处的切线方程为() A. 4x?y+2=0 B. 4x?y?2=0 C. 4x+y+2=0 D. 4x+y?2=0 2.设点P是曲线y=x3-√3x+3 5 上的任意一点,点P处切线的倾斜角为α,则角α的取值范围是() A. [0,2π 3]B. [0,π 2 )∪[2π 3, π) C. (π 2, 2π 3] D. [π 3, 2π 3] 3.已知曲线y=f(x)在x=5处的切线方程是,则f(5)与分别为() A. 3,3 B. 3,?1 C. ?1,3 D. 0,?1 4.函数f(x)在x=x0处导数f′(x0)的几何意义是(). A. 在点x=x0处的斜率 B. 在点(x0,f(x0))处的切线与x轴所夹的锐角正切值 C. 点(x0,f(x0))与点(0,0)连线的斜率 D. 曲线y=f(x)在点(x0,f(x0))处的切线的斜率 二、不定项选择题(本大题共1小题,共4.0分) 5.已知曲线y=x3-x+1在点P处的切线平行于直线y=2x,那么点P的坐标为() A. (1,0)或(-1,1) B. (1,1) C. (-1,1) D. (1,1) 三、填空题(本大题共4小题,共20.0分) 6.函数f(x)的图象在x=2处的切线方程为2x+y?3=0,则 7.函数y=f(x)的图象在点M(1,f(1))处的切线方程是y=3x?2,则f(1)+ f′(1)=______. 8.抛物线y=x2的一条切线方程为6x?y?9=0,则切点坐标为______ . 9.曲线y=√x在x=1处的切线斜率为______.

导数的几何意义习题课[学生用].doc

导数的几何意义 例2.己知函数f(x)在R上满足/(x) = 2/(2-x)-x2 +8x-8,贝U曲线y = f(工)在点(l,f⑴)处的切 线方程是()(A) y = 2x-1 (B) y = x (C) y = 3x-2 (D) y = -2x + 3 例3.己知函数广3)=竺建的图象在点M (-1, /(*))处的切线方程为肝2y+5=0. x" + h (1)求函数y二尸(*)的解析式;(2)求函数y=f(x)的单调区间?练习题 . 1 1 3.抛物线y = x~±点21(3,才)的切线倾斜角是( )A. 30° B. 45° C. 60° D. 90° 4.一质点做直线运动,由始点起经过业后的距离为s =上"- 4尸+16户,则速度为零的时刻是 4 ( ) A. 4s 末 B. 8s 末 C. Os 与 8s 末 D. Os, 4s, 8s 末 5.过曲线y = ??_3『上的点(0,0)的切线方程是( )。 A. y = 0 B. 9x + 4y = 0 C. y = 0y=0 或9x + 4y = 0 D.无切线 1.已知曲线y =-在点P (1, 4)处的切线与直线/平行且距离为而,则直线/的方?程为( ) A. 4x- v + 9 = 0ljK4x- y + 25 = 0 B。4x- y + 9 = 0 C. 4x + y + 9 = 0或4x+y — 25 = () D.以上都不对 2.在函数y = /-8x的图象上,其切线的倾斜角小于色的点中,坐标为整数的点的个数是 . 4 A. 3 B. 2 C. 1 D. 0 1 2 1 4) 3.曲线y =—尸+工在点1,_处的切线与坐标轴围成的三角形面积为( ) 3 I 3 / 4.曲线y = W在点(2, e)处的切线与坐标轴所围三角形的面积为: 9 z>2 A. -e1 B. 2e2 C. e2 D 4 2 5.函数/(x) = r3+4x + 5的图象在x = \处的切线与圆x2 + y2 =50的位置关系是() A.相切 B.相交但不过圆心 C.过圆心 D.相离 6.己知直线y = kx是y = lnx的切线,贝0 k=( ) 1 1 A. a B. —c C. — D.— e e 9.若曲线/(%) = o? +加x存在垂直于y轴的切线,贝0实数。的取值范围是, 2 例2.设f(x) = ax' +hx2 +cx的极小值为-&其导函数y =广(尤)的图像经过点(-2,0),(二,0),如圜所示。 3

导数练习题含答案

导数概念及其几何意义、导数的运算 一、选择题: 1 已知32 ()32f x ax x =++,若(1)4f '-=,则a 的值等于 A 193 B 103 C 16 3 D 133 2 已知直线1y kx =+与曲线3 y x ax b =++切于点(1,3),则b 的值为 A 3 B -3 C 5 D -5 3 函数2y x a a = +2 ()(x-)的导数为 A 222()x a - B 223()x a + C 223()x a - D 22 2()x a + 4 曲线313y x x =+在点4 (1,)3 处的切线与坐标轴围成的三角形的面积为 A 1 9 B 29 C 13 D 2 3 5 已知二次函数2 y ax bx c =++的导数为(),(0)0f x f ''>,对于任意实数x ,有()0f x ≥,则(1) (0) f f '的最小值为 A 3 B 52 C 2 D 32 6 已知函数()f x 在1x =处的导数为3,则()f x 的解析式可能为 A 2()(1)3(1)f x x x =-+- B ()2(1)f x x =- C 2()2(1)f x x =- D ()1f x x =- 7 下列求导数运算正确的是 A 211()1x x x '+=+ B 21 (log )ln 2 x x '= C 3(3)3log x x e '=? D 2 (cos )2sin x x x x '=- 8 曲线32 153 y x x =-+在1x =处的切线的倾斜角为 A 6 π B 34π C 4π D 3 π 9 曲线3 2 31y x x =-+在点(1,1)-处的切线方程为 A 34y x =- B 32y x =-+ C 43y x =-+ D 45y x =- 10 设函数sin cos y x x x =+的图像上的点(,)x y 处的切线斜率为k ,若()k g x =,则函数()k g x =的图像大致为

导数练习题(含答案).

3 B 10 3 C 16 3 D 13 = 2 导数概念及其几何意义、导数的运算 一、选择题: 1 已知 f ( x ) = ax 3 + 3x 2 + 2 ,若 f '(-1) = 4 ,则 a 的值等于 A 19 3 2 已知直线 y = kx + 1 与曲线 y = x 3 + ax + b 切于点(1,3),则 b 的值为 A 3 B -3 C 5 D -5 3 函数 y (x + 2a )(x-a ) 的导数为 A 2( x 2 - a 2 ) B 3(x 2 + a 2 ) C 3(x 2 - a 2 ) D 2( x 2 + a 2 ) 1 4 4 曲线 y = x 3 + x 在点 (1, ) 处的切线与坐标轴围成的三角形的面积为 3 3 A 1 2 1 2 B C D 9 9 3 3 5 已知二次函数 y = ax 2 + bx + c 的导数为 f '( x ), f '(0) > 0 ,对于任意实数 x ,有 f ( x ) ≥ 0 ,则 最小值为 f (1) f '(0) 的 A 3 B 5 2 C 2 D 3 2 6 已知函数 f ( x ) 在 x = 1 处的导数为 3,则 f ( x ) 的解析式可能为 A C f ( x ) = ( x -1)2 + 3(x - 1) f ( x ) = 2( x - 1)2 B f ( x ) = 2( x - 1) D f ( x ) = x - 1 7 下列求导数运算正确的是 A 1 1 ( x + )' = 1 + x x 2 B (log x )' = 2 1 x ln 2 C (3x )' = 3x ? log e D ( x 2 cos x )' = -2 x sin x 3 8 曲线 y = A π 6 1 3 x 3 - x 2 + 5 在 x = 1 处的切线的倾斜角为 3π π π B C D 4 4 3 9 曲线 y = x 3 - 3x 2 + 1 在点 (1,-1) 处的切线方程为 A y = 3x - 4 B y = -3x + 2 C y = -4 x + 3 D y = 4 x - 5 10 设函数 y = x sin x + cos x 的图像上的点 ( x , y ) 处的切线斜率为 k ,若 k = g ( x ) ,则函数 k = g ( x ) 的图

3.1.3 导数的几何意义(优秀经典公开课比赛教案及联系解答)

3.1.3导数的几何意义 教学目标:通过导数的图形变换理解导数的几何意义就是曲线在该点的切线的斜率,知道导数的概念并会运用概念求导数. 教学重难点:函数切线的概念,切线的斜率,导数的几何意义 教学过程: 情景导入:如图,曲线C 是函数y=f(x)的图象,P(x0,y0)是曲线C 上的任意一点,Q(x0+Δx,y0+Δy)为P 邻近一点,PQ 为C 的割线,PM//x 轴,QM//y 轴,β为PQ 的倾斜角. .tan , ,:β=???=?=x y y MQ x MP 则 展示目标:见学案 检查预习:见学案 合作探究:探究任务:导数的几何意义 问题1:当点(,())(1,2,3,4)n n n P x f x n =,沿着曲线()f x 趋近于点00(,())P x f x 时,割线的变化 趋是什么? y x ??请问:是割线PQ 的什么?

新知:当割线P n P 无限地趋近于某一极限位置PT 我们就把极限位置上的直线PT ,叫做曲线C 在点P 处的切线 割线的斜率是:n k = 当点n P 无限趋近于点P 时,n k 无限趋近于切线PT 的斜率. 因此,函数()f x 在0x x =处的导数 就是切线PT 的斜率k ,即0000()()lim ()x f x x f x k f x x ?→+?-'==? 新知: 函数()y f x =在0x 处的导数的几何意义是曲线()y f x =在00(,())P x f x 处切线的斜率. 即k =000()()()lim x f x x f x f x x ?→+?-'=? 精讲精练: 例1 如图,它表示跳水运动中高度随时间变化的函数2() 4.9 6.510h t t t =-++的图象.根据图象,请描述、比较曲线()h t 在012,,t t t 附近的变化情况. 解:可用曲线 h(t) 在 t0 , t1 , t2 处的切线刻画曲线 h(t) 在上述三个时刻附近的变化情况. (1) 当 t = t0 时, 曲线 h(t) 在 t0 处的切线 l0 平行于 x 轴.故在 t = t0 附近曲线比较平坦, 几乎没有升降.(2)当 t = t1 时, 曲线 h(t) 在 t1 处的切线 l1 的斜率 h’(t1) <0 .故在t = t1 附近曲线下降,即函数 h(t) 在 t = t1 附近单调递减.(3)当 t = t2 时, 曲线 h(t) 在 t2处的切线 l2 的斜率 h’(t2) <0 .故在 t = t2 附近曲线下降,即函数 h(t) 在t = t2 附近也单调递减.从图可以看出,直线 l1 的倾斜程度小于直线 l2 的倾斜程度,这说明 h(t) 曲线在 l1 附近比在 l2 附近下降得缓慢。 例2 如图,它表示人体血管中药物浓度()c f t =(单位:/mg mL )随时间t (单位:min)变化的函数图象.根据图象,估计t =0.2,0.4,0.6,0.8时,血管中药物浓度的瞬时变化率(精确到0.1)

导数的几何意义的教学设计

导数的几何意义 【教学目标】 1.理解切线的定义 2.理解导数的几何意义 3.学会应用导数的几何意义。 【教学重点与难点】 重点:理解导数的几何意义及应用于解决实际问题,体会数形结合的思想方法。 难点:发现、理解及应用导数的几何意义。 【教学过程】

第二步:求瞬时变化率()0000 () ()lim x f x x f x f x x ?→+?-'=?. (即0x ?→,平均变化率趋近..于的确定常数....就是该点导数.. ) (2) 类比平均变化率得出导数,同样我们可以利用平均变化率的几何意义,得出导数的几何意义,我们观察函数()y f x =的图象,平均变化 率()00() f x x f x y x x +?-?=?? 的几何意义是什么 生:平均变化率表示的是割线n PP 的斜率 教师板书,便于学生 数形结合探究导数的几何意义。 突破平均变化率的 几何意义,后面在表示割线斜率时能直接联系此知识。同时引出本节课的研究问题——导数几何意义是什么 二、引导探究、获得新知 1.得到切线的新定义 要研究导数的几何意义,结合导数的概念,即要探究0x ?→,割线的变化趋势....... , ◆多媒体显示: 曲线上点P 处的切线PT 和割线n PP ,演示点n P 从右边沿着曲线逼近点P ,即0x ?→,割线n PP 的变化趋势。 教师引导学生观察割线与切线是否有某种内在联系呢 生:先观察后发现,当0x ?→,随着点n P 沿着曲线逼近点P ,割 以求导数的两个步骤为......... 依据.. ,从平均变化率的几何意义入手探索导数的几何意义,抓住0x ?→的联系,在图形上从割线入手来研究问题。 用逼近的方法体会割线逼近切线。

(完整版)导数的几何意义(基础练习题)

导数的几何意义(1) 1.设f(x)=1 x ,则lim x→a f x-f a x-a 等于( ) A.-1 a B. 2 a C.-1 a2 D. 1 a2 2.在曲线y=x2上切线倾斜角为π 4 的点是( ) A.(0,0) B.(2,4) C.(1 4 , 1 16 ) D.( 1 2 , 1 4 ) 3.设曲线y=ax2在点(1,a)处的切线与直线2x-y-6=0平行,则a=( ) A.1 B.1 2 C.-1 2 D.-1 4.若曲线y=h(x)在点P(a,h(a))处切线方程为2x+y+1=0,则( ) A.h′(a)<0 B.h′(a)>0 C.h′(a)=0 D.h′(a)的符号不定 5.一木块沿某一斜面自由下滑,测得下滑的水平距离s与时间t 之间的函数关系为s=1 8 t2,则当t=2时,此木块在水平方向的瞬时速

度为( ) A. 2 B. 1 C.12 D.14 6.函数f (x )=-2x 2+3在点(0,3)处的导数是________. 7.如图是函数f (x )及f (x )在点P 处切线的图像,则f (2)+f ′(2)=________. 8.设曲线y =x 2在点P 处的切线斜率为3,则点P 的坐标为________. 9.已知曲线y =2x 2上的点(1,2),求过该点且与过该点的切线垂直的直线方程. 10.求双曲线y =1 x 在点(1 2 ,2)处的切线的斜率,并写出切线方程.

导数的几何意义(2) 1.如果曲线y =f (x )在点(x 0,f (x 0))处的切线方程为x +2y -3=0,那 么( ) A .f ′(x 0)>0 B .f ′(x 0)<0 C .f ′(x 0)=0 D .f ′(x 0)不存在 2.函数在处的切线斜率为( ) A .0 B 。1 C 。2 D 。3 3.曲线y =12x 2-2在点? ? ???1,-32处切线的倾斜角为( ) A .1 B. π4 C.5 4 π D .- π 4 4.在曲线y =x 2上切线的倾斜角为 π 4 的点是( ) A .(0,0) B .(2,4) C.? ?? ?? 14,116 D.? ?? ??12,14 5.设f (x )为可导函数,且满足lim x →0 f (1)-f (1-2x ) 2x =-1,则过曲线y =f (x )上点(1,f (1))处的切线斜率为( ) A .2 B .-1 C .1 D .-2 6.设f ′(x 0)=0,则曲线y =f (x )在点(x 0,f (x 0))处的切线( ) A .不存在 B .与x 轴平行或重合 C .与x 轴垂直 D .与x

(完整word)高中数学导数练习题

专题8:导数(文) 经典例题剖析 考点一:求导公式。 例1. ()f x '是3 1()213 f x x x = ++的导函数,则(1)f '-的值是 。 解析:()2'2 +=x x f ,所以()3211'=+=-f 答案:3 考点二:导数的几何意义。 例 2. 已知函数()y f x =的图象在点(1(1))M f ,处的切线方程是1 22 y x = +,则(1)(1)f f '+= 。 解析:因为21= k ,所以()2 1 1'=f ,由切线过点(1(1))M f ,,可得点M 的纵坐标为25,所以()2 5 1=f ,所以()()31'1=+f f 答案:3 例3.曲线3 2 242y x x x =--+在点(13)-,处的切线方程是 。 解析:443'2 --=x x y ,∴点(13)-,处切线的斜率为5443-=--=k ,所以设切线方程为b x y +-=5,将点(13)-,带入切线方程可得2=b ,所以,过曲线上点(13)-,处的切线方程为:025=-+y x 答案:025=-+y x 点评:以上两小题均是对导数的几何意义的考查。 考点三:导数的几何意义的应用。 例 4.已知曲线C :x x x y 232 3 +-=,直线kx y l =:,且直线l 与曲线C 相切于点 ()00,y x 00≠x ,求直线l 的方程及切点坐标。 解析:Θ直线过原点,则()000 ≠= x x y k 。由点()00,y x 在曲线C 上,则02030023x x x y +-=,∴ 2302 00 0+-=x x x y 。又263'2+-=x x y ,∴ 在 () 00,y x 处曲线C 的切线斜率为()263'02 00+-==x x x f k ,∴

最新导数的概念及其几何意义同步练习题

导数的概念及其几何意义 1 一、选择题 2 1. 21y x =+在(1,2)内的平均变化率为( ) 3 A .3 B .2 C .1 D .0 4 2. 质点运动动规律23s t =+,则在时间(3,3)t +?中,相应的平均速度为( ) 5 A .6t +? B .9 6t t +?+ ? C .3t +? D .9t +? 6 3. 函数y =f (x )的自变量x 由x 0改变到x 0+⊿x 时,函数值的改变量⊿y 为() 7 A.f (x 0+⊿x ) B.f (x 0)+⊿x C. f (x 0)?⊿x D. f (x 0+⊿x )- f (x 0) 8 4.已知函数y =f (x )=2x 2-1的图像上一点(1,1)及邻近一点(1+⊿x ,1+⊿y ),则等于( ) 9 A.4 B.4x C.4+2⊿x D.4+2(⊿x )2 10 5. 一质点运动的方程为s =5-3t 2,则在时间[1,1+Δt ]内相应的平均速度为( ) 11 A. 3Δt +6 B. -3Δt +6 C. 3Δt -6 D. -3Δt -6 12 6.若函数y =f (x )在x 0处可导,则0 00 ()() lim h f x h f x h 的值( ) 13 A.与x 0,h 有关 B.仅与x 0有关,而与h 无关 C. 仅与h 有关,而与x 0无关 D. 与x 0,h 14 都无关 15 7. 函数y =x +1 x 在x =1处的导数是( ) 16 A.2 B.1 C.0 D.-1 17 8.设函数f (x )=,则()() lim x a f x f a x a 等于( ) 18

高中数学《导数的概念及几何意义》公开课优秀教学设计

《导数的概念及几何意义》教学设计 教材内容分析 本节课的教学内容选自人教社普通高中课程标准实验教科书( A 版)数学选修2-2第一章第一节的《变化率与导数》,《导数的概念及几何意义》是在学习了函数平均变化率以后,过渡到瞬时变化率,从而得出导数的概念,再从平均变化率的几何意义,迁移至瞬时变化率即导数的几何意义。 导数是微积分的核心概念之一,是从生产技术和自然科学的需要中产生的,它深刻揭示了函数变化的本质,其思想方法和基本理论在在天文、物理、工程技术中有着广泛的应用,而且在日常生活及经济领域也日渐显示出其重要的功能。 在中学数学中,导数具有相当重要的地位和作用。 从横向看,导数在现行高中教材体系中处于一种特殊的地位。它是众多知识的交汇点,是解决函数、不等式、数列、几何等多章节相关问题的重要工具, 它以更高的观点和更简捷的方法对中学数学的许多问题起到以简驭繁的处理。 从纵向看,导数是函数一章学习的延续和深化,也是对极限知识的发展, 同时为后继研究导数的几何意义及应用打下必备的基础, 具有承前启后的重要作用。 学生学情分析 学生在高一年级的物理课程中已经学习了瞬时速度,因此,先通过求物体在某一时刻的平均速度的极限去得出瞬时速度, 再由此抽象出函数在某点的平均变化率的极限就是瞬时变化率的的模型, 并将瞬时变化率定义为导数,这是符合学生认知规律的. 而在第一课时平均变化率的学习中,课本给出了一个思考,观察函数 )(x f y 的图像,平均变化x y 表示什么?这个思考为研究导数的几何意义埋下 了伏笔。因此,在将瞬时变化率定义为导数之后, 立即让学生继续探索导数的几何意义,学生会对导数的几何意义有更为深刻的认识。 教学目标 1、知识与技能目标会从数值逼近、几何直观感知,解析式抽象三个角度认识导数的含义,应用导数的定义求简单函数在某点处的导数, 掌握求导数的基本步骤,初步学会求解 简单函数在一点处的切线方程。 2、过程与方法目标 通过动手计算培养学生观察、分析、比较和归纳能力,通过问题的探究体会逼近、类比、以及用已知探求未知、从特殊到一般的数学思想方法。 3、情感态度与价值观

2009年海南省海口市高中数学优质课评选活动参赛课例导数的几何意义

海口市2009 年高中数学课堂教学优质课评比教学实录 1.1.3 导数的几何意义 、创设情境、导入新课师:上节课我们学习了导数的概念,请回答:函数在x x0处的导数f '(x0) 的含义? 生:函数在x x0 处的瞬时变化率. / y f x0 x f (x0) f x0 lim lim x 0 x x 0 x 师:那么,用定义求导数分哪几个步骤?同学们可参考教材第6 页例1. y f x0 x f (x0) 生:第一步:求平均变化率; xx y 师:非常好,并且我们从求导数的步骤中发现:导数就是求平均变化率当x x 趋近于O时的极限. 明确了导数的概念之后,今天我们来学习导数的几何意义. 、引导探究、获得新知 y 师:观察函数y=f(x) 的图象,平均变化率在图中 x 什么几何意义? 生:平均变化率表示的是割线AB的斜率. 第二步:求瞬时变化率,即x0 li x m0 师:是的,平均变化率的几何意义就是割线的斜率

师:请看教材第7页图1.1-2 :P是一定点,当动点P n沿着曲线y=f(x)趋近于点 生:当点P n 沿着曲线y=f(x) 趋近于点P 时,割线PP n 趋近于在P 处的切线PT. 师:看来这位同学已经预习了,他说的很对,“当点P n沿着曲线y=f(x) 逼近点P 时,即x 0,割线PP n趋近于确定的位置,这个确定位置上的直线PT 称为点P处的切线. ”这就是切线的概念. 师:观察图①,曲线y=f(x) 与它的割线有2个交点,与它的切线PT有1个交点. 那么,能否根据直线与曲线交点个数来判断直线与曲线的位置关系? 生:若曲线与直线有2 个公共点,则它们相交;若曲线与直线有1 个公共点,则它们相切.

导数的几何意义练习题及答案

【巩固练习】 一、选择题 1.一个物体的运动方程为2 1t t s +-=其中s 的单位是米,t 的单位是秒, 那么物体在3秒末的瞬时速度是( ) A .7米/秒 B .6米/秒 C .5米/秒 D .8米/秒 2.(2014 东昌府区校级二模)若点P 在曲线 323 3(34 y x x x =-++ 上移动,经过点P 的切线的倾斜角 为α ,则角α 的取值范围是( ) A.0,2π?????? B. 20,,23πππ???? ? ????? ?? C. 2,3ππ???? ?? D. 20,,223πππ???? ? ?????? 3. 函数)(x f y =在0x x =处的导数)(0/ x f 的几何意义是( ) A 在点0x x =处的函数值 B 在点))(,(00x f x 处的切线与x 轴所夹锐角的正切值 C 曲线)(x f y =在点))(,(00x f x 处的切线的斜率 D 点))(,(00x f x 与点(0,0)连线的斜率. 4.(2015春 湖北校级期末)已知函数y=3x 4+a ,y=4x 3,若它们的图象有公共点,且在公共点处的切线重合,则切斜线率为( ) A .0 B .12 C .0或12 D .4或1 5.已知函数3 ()f x x =的切线的斜率等于1,则其切线方程有( ) A .1条 B .2条 C .多于2条 D .不确定 6.(2015 上饶三模)定义:如果函数()f x 在[a ,b]上存在x 1,x 2(a <x 1<x 2<b )满足 '1()()()f b f a f x b a -= -,' 2()()()f b f a f x b a -=-,则称函数()f x 在[a ,b]上的“双中值函 数”。已知函数3 2 ()f x x x a =-+是[0,a]上的“双中值函数”,则实数a 的取值范围是

(完整版)导数的概念及其几何意义同步练习题(学生版)

导数的概念及其几何意义同步练习题 一、选择题 1. 21y x =+在(1,2)内的平均变化率为( ) A .3 B .2 C .1 D .0 2. 质点运动动规律23s t =+,则在时间(3,3)t +?中,相应的平均速度为( ) A .6t +? B .96t t +?+? C .3t +? D .9t +? 3. 函数y =f (x )的自变量x 由x 0改变到x 0+⊿x 时,函数值的改变量⊿y 为( ) A.f (x 0+⊿x ) B.f (x 0)+⊿x C. f (x 0)?⊿x D. f (x 0+⊿x )- f (x 0) 4.已知函数y =f (x )=2x 2-1的图像上一点(1,1)及邻近一点(1+⊿x ,1+⊿y ),则 等于( ) A.4 B.4x C.4+2⊿x D.4+2(⊿x ) 2 5. 一质点运动的方程为s =5-3t 2,则在时间[1,1+Δt ]内相应的平均速度为( ) A. 3Δt +6 B. -3Δt +6 C. 3Δt -6 D. -3Δt -6 6.若函数y =f (x )在x 0处可导,则000()()lim h f x h f x h ?+-的值( ) A.与x 0,h 有关 B.仅与x 0有关,而与h 无关 C. 仅与h 有关,而与x 0无关 D. 与x 0,h 都无关 7. 函数y =x +1x 在x =1处的导数是( ) A.2 B.1 C.0 D.-1 8.设函数f (x )=,则()()lim x a f x f a x a ?--等于( ) A.1a - B.2a C.21a - D.21a 9. 下列各式中正确的是( ) A. y ′|x =x 0=li m Δx →0 f (x -Δx )-f (x 0)Δx B. y ′|x =x 0=li m Δx →0 f (x 0+Δx )+f (x 0)Δx C. f ′(x 0)=li m Δx →0 f (x 0-Δx )-f (x 0)Δx D. f ′(x )=li m Δx →0 f (x 0)-f (x 0-Δx )Δx 10. 设函数f (x )可导,则lim Δx →0 f (1+Δx )-f (1)3Δx 等于( ) A. f ′(1) B. 不存在 C. 13 f ′(1) D. 以上都不对 11. 设函数f (x )=ax +4,若f ′(1)=2,则a 等于( ) A. 2 B. -2 C. 3 D. 不确定 12. 已知物体的运动方程为s =t 2+3t (t 是时间,s 是位移),则物体在时刻t =2时的速度为( ) A. 194 B. 174 C. 154 D. 134 13.曲线y=2x 2+1在点P (-1,3)处的切线方程是( ) A.y =-4x -1 B.y =-4x -7 C.y =4x -1 D.y =4x -7 14.过点(-1,2)且与曲线y =3x 2-4x +2在点M (1,1)处的切线平行的直线方程是( ) A.y =2x -1 B.y =2x +1 C.y =2x +4 D .y =2x -4 15. 下面四个命题: ①若f ′(x 0)不存在,则曲线y =f (x )在点(x 0,f (x 0))处没有切线; ②若曲线y =f (x )在点(x 0,f (x 0))处有切线,则f ′(x 0)必存在; ③若f ′(x 0)不存在,则曲线y =f (x )在点(x 0,f (x 0))处的切线斜率不存在; ④曲线的切线和曲线有且只有一个公共点. 其中,真命题个数是( ) A. 0 B. 1 C. 2 D. 3 16. 函数y =f (x )的导函数f ′(x 0)图像如图所示,则在y =f (x )的图像上A 、B 的对应点附近,有( )

1.1.3 导数的几何意义优秀教案

1.1.3 导数的几何意义 学习目标 1.理解曲线的切线的含义.2.理解导数的几何意义(重、难点).3.会求曲线在某点处的切线方程(重、难点).4.理解导函数的定义,会用定义法求简单函数的导函数. 知识点1 曲线的切线 如图所示,当点P n 沿着曲线y =f (x )无限趋近于点P 时,割线PP n 趋近于确定的位置,这个确定位置的直线PT 称为点P 处的切线. (1)曲线y =f (x )在某点处的切线与该点的位置有关; (2)曲线的切线,并不一定与曲线只有一个交点,可以有多个,甚至可以有无穷多个. 【预习评价】 有同学认为曲线y =f (x )在点P (x 0,y 0)处的切线l 与曲线y =f (x )只有一个交点,你认为正确吗? 提示 不正确.曲线y =f (x )在点P (x 0,y 0)处的切线l 与曲线y =f (x )的交点个数不一定只有一个,如图所示. 知识点2 导数的几何意义 函数y =f (x )在点x =x 0处的导数f ′(x 0)就是曲线y =f (x )在点(x 0,f (x 0))处切线的斜率k ,即k =0 lim x ?→ f (x 0+Δx )-f (x 0) Δx =f ′(x 0). 【预习评价】 (正确的打√,错误的打×) 1.若曲线y =f (x )在点P (x 0,f (x 0))处的导数不存在,则切线不存在.(×) 提示 切线存在,且切线与x 轴垂直. 2.若f ′(x 0)>0,则切线的倾斜角为锐角;若f ′(x 0)<0,则切线的倾斜角为钝角;若f ′(x 0)=0,则切线与x 轴平行.(√) 知识点3 导函数的概念

导数的概念及导数的几何意义

§57 导数的概念及导数的几何意义⑴ 【考点及要求】了解导数的概念,理解导数的几何意义,通过函数图象能直观地理解导数的几何意义。 【基础知识】 1.一般地,函数)(x f 在区间],[21x x 上的平均变化率为,平均变化率反映了函数在某个区间上平均变化的趋势(变化快慢),或说在某个区间上曲线陡峭的程度; 2.不妨设))(,()),(,(0011x f x Q x f x P ,则割线PQ 的斜率为, 设x 1-x 0=△x ,则x 1 =△x +x 0,∴=PQ k ,当点P 沿着曲线向点Q 无限靠近时,割线PQ 的斜率就会无限逼近点Q 处切线斜率,即当△x 无限趋近于0时,x x f x x f k PQ ?-?+=) ()(00无 限趋近点Q 处切线。 3.曲线上任一点(x 0,f(x 0))切线斜率的求法:x x f x x f k ?-?+= ) ()(00,当 △x 无限趋近于0时,k 值即为(x 0,f(x 0))处切线的,记为. 4.瞬时速度与瞬时加速度:位移的平均变化率: t t s t t s ?-?+) ()(00,称为;当无限趋近于0 时, t t s t t s ?-?+) ()(00无限趋近于一个常数,这个常数称为t=t 0时的;速度的平均变化率: t t v t t v ?-?+)()(00,当无限趋近于0 时,t t v t t v ?-?+) ()(00无限趋近于一个常数,这个常数 称为t=t 0时的. 【基础练习】 1.已知函数2()f x ax =在区间[1,2]上的平均变化率为,则()f x 在区间[-2,-1]上的平均变化率为 . 2.A 、B 两船从同一码头同时出发,A 船向北,B 船向东,若A 船的速度为30km/h,B 船的速度为40km/h,设时间为t,则在区间[t 1,t 2]上,A,B 两船间距离变化的平均速度为____ __ _ 【典型例题讲练】 例1.已知函数f(x)=2x+1, ⑴分别计算在区间[-3,-1],[0,5]上函数f(x)的平均变化率; ⑵.探求一次函数y=kx+b 在区间[m ,n]上的平均变化率的特点; 练习:已知函数f(x)=x 2+2x ,分别计算f(x)在下列区间上的平均变化率; ⑴[1,2]; ⑵[3,4]; ⑶[-1,1]; ⑷[2,3] 【课堂检测】 1.求函数()y f x == 在区间[1,1+△x]内的平均变化率

导数的概念和几何意义同步练习题(教师版)

导数的概念和几何意义同步练习题 一、选择题 1.若幂函数()y f x =的图像经过点11(,)42 A ,则它在A 点处的切线方程是( ) A. 4410x y ++= B. 4410x y -+= C .20x y -= D. 20x y += 【答案】B 【解析】试题分析:设()a f x x =,把11(,)42A 代入,得1142a =,得12 a =,所以1 2()f x x ==() f x '= ,1 ()14f '=,所以所求的切线方程为11 24 y x - =-即4410x y -+=,选B.考点:幂函数、曲线的切线. 2.函数()x e x f x cos =的图像在点()()0,0f 处的切线的倾斜角为( ) A 、 4π B 、0 C 、4 3π D 、1 【答案】A 【解析】试题分析:由)sin (cos )('x x e x f x -=,则在点()()0,0f 处的切线的斜率1)0('==f k , 1.利用导数求切线的斜率; 2.直线斜率与倾斜角的关系 3.曲线x y e =在点2 (2)e ,处的切线与坐标轴所围三角形的面积为( ) A.2 e B.2 2e C.2 4e D.22 e 【答案】D 【解析】试题分析:∵点2 (2)e ,在曲线上,∴切线的斜率'22 2 x x x k y e e --===, ∴切线的方程为2 2 (2)y e e x -=-,即2 2 0e x y e --=,与两坐标轴的交点坐标为2 (0,)e -,(1,0), ∴22 1122 e S e =??=.考点:1.利用导数求切线方程;2.三角形面积公式. 4.函数2 ()f x x =在点(2,(2))f 处的切线方程为( ) A .44y x =- B .44y x =+ C .42y x =+ D .4y = 【答案】A 【解析】 试题分析:由x x f 2)(='得切线的斜率为4)2(='f ,又4)2(=f ,所以切线方程为)2(44-=-x y ,即44-=x y .也可以直接验证得到。考点:导数求法及几何意义 5.曲线e x y =在点A 处的切线与直线30x y -+=平行,则点A 的坐标为( ) (A )() 11,e -- (B )()0,1 (C )()1,e (D )()0,2

《导数与最值》评课资料

1、看是不是量体裁衣,优选活用 我们知道,教学有法,但无定法,贵在得法。一种好的教学方法总是相对而言的,它总是因课程,因学生,因教师自身特点而相应变化的。也就是说教学方法的选择要量体裁衣,灵活运用。 (一)从教学目标上看 1、了解导数概念的实际背景,体会导数的思想及其内涵; 2、通过函数图象直观地理解导数的几何意义; 3、能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,能求简单的复合函数的导数; 4、了解函数的单调性与导数的关系,能利用导数研究函数的单调性,会求函数的单调区间; 5、了解函数在某取得极值的必要条件和充分条件,会用导数求函数的极大值、极小值,以及闭区间上函数的最大值和最小值;体会导数方法在研究函数性质中的一般性有效性; 6、会用导数的性质解决一些实际问题,如生活中的最优化问题等。 (二)从处理教材上看 在进行新课时,教师给出一个简单问题:利用导数求函数的极值和单调区间,同学们很快的得出答案。接着,老师又提出要求:根据上述结果画出函数的大致图像。然后又提出问题:函数与直线有几个交点时参数的取值范围,学生通过图像可以找到答案。最后把问题上升到一个高度,当两个函数有交点时求参数的取值范围,引导学生把问题转化为可以利用前面的方法解决的问题,拓展学生的知识面,努力使学生的知识得到迁移。这堂课在教材处理和教法选择上突出了重点,突破了难点,抓住了关键。 教学思路由易到难,不断拓展,既完成了教学目标所规定的知识内容,又使学生获得更多的方法和能力。上课的脉络和主线清晰,根据教学内容和学生水平两个方面的实际情况设计教学方案,做到各知识点的合理编排、组合、衔接、过渡。以课程目标为主线,教师采用复习、引导、启发、探究等教学方法,课堂安排紧凑。在课堂上既有老师问题的不断抛出和理论阐述,又有学生的独立思考。总体感觉这堂课结构严谨、环环相扣,过渡自然,时间分配合理,密度适中,效率高。 (三)从教学方法和手段上看 把关注学生放在第一位,时时处处以学生的课堂表现为自己下步教学的出发点。学生的演板是检验教学效果的最好方法。曹老师对此很重视,不惜利用宝贵的时间对学生的问题进行矫正和耐心的指导。关注学生课堂表现,让学生充分暴露问题,暴露教师教学问题是绕满远老师特别设计和关注的。在教学中,注重引导学生将获取的新知识纳入已有的知识体系中,真正懂得将本学科的知识与其它相关的学科的知识联系起来,并让学生把所学的数学知识灵活运用到相关的学科中去,解决相关问题,加深了学生对于知识的理解,提高了学生掌握和综合应用知识的能力。 (四)从教师教学基本功上看 上课特点鲜明,使听课老师感到轻松自然。教学过程中层次分明,语言稳重得体,不失诙谐和幽默。板书设计科学合理、语言精练、言简意赅,条理性强,字迹工整美观,板画娴熟。教态明朗、快活、庄重,富有感染力。仪表端庄,举止从容,态度热情,热爱学生,师生情感交融。语言准确清楚精当简炼,生动形象有启发性,数学语言表达正确。 (五)从教学效果上看 教学效果好。学生学到了知识,体会到思考问题的常用方法。使学生养成注重细节,严谨认真,一丝不苟的作风。同时学到了课本以外的许多知识方法和态度。教师的榜样作用得以体现。

导数的几何意义教学设计(教案)-函数的导数的几何意义教学设计

导数的几何意义教学设计(教案) 一、【教学目标】 1.知识与技能目标: (1)使学生掌握函数)(x f 在0x x =处的导数()0/ x f 的几何意义就是函数)(x f 的 图像在 0x x =处的切线的斜率。(数形结合),即: ()()x x f x x f x f x ?-?+=→?) (lim 000 0/=切线的斜率 (2)会利用导数的几何意义解释实际生活问题,体会“以直代曲”的数学思想方法。 2.过程与方法:通过让学生在动手实践中探索、观察、反思、讨论、总结,发现问题,解决问题,从而达到培养学生的学习能力,思维能力,应用能力和创新能力的目的。 3.情感态度与价值观:导数的几何意义能够很好地帮助理解导数的定义,达到数与形的结合;同时又是知识在几何学,物理学方面的迁移应用。培养学生学数学,用数学的意识。 【教学手段】采用幻灯片,实物投影等多媒体手段,增大教学容量与直观性,有效提高教学效率和教学质量。 【课型】探究课 【教学重点与难点】 重点:导数的几何意义及“数形结合,以直代曲”的思想方法。 难点:发现、理解及应用导数的几何意义 二、【教学过程】 (一) 课题引入,类比探讨: 让学生回忆导数的概念及其本质。(承上启下,自然过渡)。 师:导数的本质是什么?写出它的表达式。(一位学生板书),其他学生在“学案”中写: 导数)(0/x f 的本质是函数)(x f 在0x x =处的瞬时变化率.....,即: ()()x x f x x f x f x ?-?+=→?) (lim 000 0/ (注记:教师不能代替学生的思维活动,学生将大脑中已有的经验、认识转换成数学符号,有利于学生思维能力的有效提高,为学生“发现”,感知导数的几何意 义奠定基础) 师:导数的本质仅是从代数(数)的角度来诠释导数,若从图形(形)的角

相关文档
最新文档