一种改进的高分辨率遥感影像分割方法

一种改进的高分辨率遥感影像分割方法
一种改进的高分辨率遥感影像分割方法

第35卷第3期

地球科学———中国地质大学学报

Vol.35 No.32010年5月

Earth Science —Journal of China University of G eosciences

May 2010

doi :10.3799/dqkx.2010.050

基金项目:教育部新世纪优秀人才计划资助项目(No.NCET 20720772);国家重点“863”项目(No.2007AA120503).

作者简介:高伟(1980-),男,博士生,主要从事遥感数据处理与信息提取的科研和教学工作.E 2mail :cuggaowei @hot https://www.360docs.net/doc/e71762935.html,

一种改进的高分辨率遥感影像分割方法

高 伟1,2,刘修国1,2,彭 攀1,2,陈启浩1,2

1.中国地质大学信息工程学院,湖北武汉430074

2.地理信息系统软件及其应用教育部工程中心,湖北武汉430074

摘要:分形网络演化算法是面向对象的遥感影像分类中比较成熟的一种构建对象的算法,但在分割效率上有待进一步提高,

而四叉树分割是一种高效的图像分割方法.提出了一种基于四叉树预分割的分形网络演化构建对象的方法.实验证明,该方法基本不影响影像分割的效果,而且提高了形成初始对象的效率,较大程度上提高了整体的分割效率.关键词:影像分割;分形网络演化;高空间分辨率;四叉树;地理信息系统.中图分类号:TP311 文章编号:1000-2383(2010)03-0421-05 收稿日期:2010-01-15

An Improved Method of High 2R esolution R emote Sense Image Segmentation

GAO Wei 1,2,L IU Xiu 2guo 1,2,PEN G Pan 1,2,CH EN Qi 2hao 1,2

1.Facult y of I nf ormation Engineering ,China Uni versit y of Geosciences ,W uhan 430074,China

2.Engineering Research Center f or GIS S of t w are and A p plications ,Minist ry of Education ,W uhan 430074,China

Abstract :Fractal net evolution approach (FN EA )is a relatively mature one among the object 2oriented image segmentation algo 2rithms ,but its efficiency is to be improved.Quad 2Tree segmentation is a kind of effective image segmentation method.In this paper ,an improved object oriented multi 2scale image segmentation method based on the quad 2tree pre 2segmentation and FN EA is introduced.The experiment shows that the effect of its segmentation result is almost the same as that of traditional FN EA method.Moreover ,It saves time.

K ey w ords :image segmentation ;f ractal net evolution approach ;high 2nesolution remote sense ;quad 2tree ;geographic informa 2tion system (GIS ).

0 引言

近年来,以I KONOS 和Quick 2Bird 为代表的高空间分辨率遥感影像得到广泛应用(高伟,2006).高分辨率遥感影像具有丰富的空间信息,地物几何结构和纹理信息,便于认识地物目标的属性特征,如地物的图层值、形状、纹理、层次和专题属性,有助于提高地物定位和判读精度,使得在较小的空间尺度上观察地表细节变化,进行大比例尺遥感制图,以及监测人为活动对环境的影响成为可能.为土地利用、城市规划、环境监测等民用方面提供了更便利、更详细的数据源.高分辨率影像的广泛应用迫切要求人们对高分辨率遥感信息提取进行研究,以满足高分辨

率影像信息不断增长的应用和研究需要(Chen et al .,2009).

面向对象的高分辨率遥感影像的分类方法不仅利用地物的光谱信息,而且更多地利用几何信息和结构信息,可以结合其他空间知识和上下文信息来进行更为深入的分类,使得对高分辨率影像的分类更为合理和有效,这成为高分辨率影像信息提取的重要方法之一(Blaschke and Hay ,2001;陆关祥等,2002).在面向对象高分辨率影像的信息提取中,对遥感图像进行分割,形成具有一定特征相似性的影像区域,是实现从影像上进行地物目标计算机自动提取的第一步.

目前分形网络演化算法(Baatz and Schape ,

地球科学———中国地质大学学报第35卷

2000)是一种比较成熟稳定的影像分割方法,在一些

商业软件中得到了广泛应用,如德国的专业信息提

取软件eCognition 等.但是运用分形网络演化算法对大数据量的影像进行分割时,形成初始对象的速度比较慢,影响了整体的分割效率.本文提出运用四叉树预分割的方法改进分形网络演化分割方法.

1 分形网络演化分割方法

分形网络演化方法(f ractal net evolution ap 2proach ,FN EA )是一种面向对象的遥感图像分割方法,它依据相应的算法针对原始影像的像元级层面上的图像分割,形成初始分割层,然后基于对象层的分割逐层形成最终的分割结果(Blaschke and Hay ,2001)

.

图1 第1次分割(a )和第2次分割(b )示意

Fig.1

The result of the first segmentation (a )and the second segmentation (b )

FN EA 技术的关键在两个影像对象间异质度的定义和描述.对于给定的特征空间,当两个影像对象在该特征空间内相距较近时,被认为是相似的或同质的.对于一个d 维的特征空间,设两相邻对象的特征值分别为f 1d 和f 2d ,则异质度可以定义为(Blaschke and Hay ,2001):

h =

6

d

(f 1d -f 2d )2.(1)

影像对象的光谱均值、纹理特征、光谱差异特征以及形状特征都可以作为特征空间的一维.通过公式(2)对每一维特征求标准差来进一步标准化特征空间距离,其中对象特征的标准差为σf d (Blaschke and Hay ,2001):

h =

6

d

(

f 1d -f 2d

σf d

)2.(2)

分形网络演化算法是基于像素从下向上的区域增长分割算法.遵循异质性最小的原则,把光谱信息

相似的邻近像元合并为一个同质的影像对象,分割后属于同一对象的所有像元都赋予同一含义.影像分割过程中对影像对象的空间特征、光谱特征和形状特征同时进行操作,因此生成的影像对象不仅包括了光谱同质性,而且包括了空间特征与形状特征的同质性.

分形网络演化的分割示意如图1所示(陈启浩,2007),此处只描述前两次,后面依此类推.

第1次分割是在影像上进行;从第2次以后的分割,直接对影像对象进行处理.每次进行分割时,就是搜寻邻域像元,遵循异质性最小的原则,把光谱信息相似的邻近像元合并为一个同质的影像对象.

传统的分形网络演化算法中的第1步是以原始影像像元为对象,当原始影像的行列值较大时,相应的原始影像像元的个数也就比较多,搜寻四邻域的次数就加大了很多,而且每次判断合并的标准中都要考虑到形状特征,导致相关的计算量也增大了.因此该阶段的分割效率相对来说就比较低.

2 基于四叉树预分割的FN EA 分割

方法

由于传统的基于分形网络演化算法的分割方法在形成初始对象的效率上相对较低,一个改进的思路就是代之以高效的分割算法来构建初始对象(Hu et al .,2005).

四叉树分割法因其具有分块灵活、压缩比高、算法简单等优点而成为目前最流行、最实用的分割方法之一(宋宇彬等,2004).当超过预定阀值时,将原始图像等分为4个子块,分别对应于四叉树树根的4个子节点(莫登奎和林辉,2005).依次考虑4个子

2

24

 第3期 高伟等:

一种改进的高分辨率遥感影像分割方法

图2 四叉树分割过程示意

Fig.2

Sketch of the quad 2tree segmentation

process

图3 传统的分形网络与改进后的处理流程对比

Fig.3

Compare between traditional and the improved seg 2mentation process

块中的每一块,当匹配误差超过预定阀值时,这个阀值可称为剪枝判同的判决标准,可以是灰度相似性,也可以是目标均方差或其他可表示目标特征的有效信息,再将此块等分成4个子块,该过程也称之为剪枝.重复这一过程直至图像中的任意一块都能找到合适的匹配块为止.图2表示一个四叉树的分割过程(任秀芳等,2007).它使图像中平坦的部分以较大的图像块进行压缩,以提高压缩比;而图像中变化复杂的部分以较小的图像块进行压缩从而保证较高的解码图像质量(宋宇彬等,2004).

四叉树的每一次剪枝是直接等分为4块,不用考虑对象的形状特征,而且剪枝的判决条件也很简单,一般只需考虑像元的灰度值相似性,计算量相对较小.因此基于四叉树的分割效率很高(Chen et al .,2006).而且经过四叉树的预分割,形成的初始对象基元、形状特征基本一致,这为后续的FN EA 的再分割提供了极大的有利运算因子,因为在FN EA 中一个很重要的对象合并依据条件就是关于对象形状特征的相似性.

基于上述原因,可以将四叉树分割应用于影像的预分割以替代传统的分形网络演化算法预分割.

大体流程如下:首先采用四叉树的分割方法形成影像的初始对象,然后在此初始对象上运用基于分形网络演化算法的方法进行再分割,最后得到分割结果影像.传统的与改进的分割处理方法的流程对比如图3所示(Peng et al .,2009).

3 实验与分析

基于改进后的分割方法,运用Map GIS 遥感影像处理平台,本文选取试验区进行分割实验.实验所采用的数据是江西省某地区的一幅3波段的SPO T5影像数据,空间分辨率为2.5m ,数据类型为8位无符号整型.该地区属低山丘陵地带,主要覆盖地物包括大片的林地、水体、农田、庄稼地、道路、沙滩裸地以及零星的居民地.为了实验的需要,从整景影像中裁取了1024×1024分辨率大小的数据进行分割实验(图4).

相应的实验数据分析具体见表1.从表1中可以看出,利用四叉树预分割方法,进行FN EA 的多尺度分割,对于同一幅影像,分割的时间相比传统的FN EA 分割方法,效率提高了将近一倍.而且只要参数选择合适,在分割精度上也基本上和原来的差不多.以道路和绿地为例:如图4所示,狭长的道路和大片的林地这些比较明显的地物特征,在用改进的方法进行分割后,基本上都提取出来了,而且像绿地的特征提取的整体效果还更好些.

实验证明,利用四叉树预分割基本上可以达到和传统的FN EA 多尺度分割所达到的要求,而且效率上提高了很多,但是四叉树阈值的选取不宜过大,否则整体分割效果就会比较差(图4d ).因此要选择合适的四叉树阈值,这样分割效果才会比较好.

四叉树预分割因提高形成初始对象的效率,而且形成的初始对象形状特征明显,对于后续的FN EA 再分割的效率提高有很大帮助.

通过实验,笔者认为:改进后的分割方法应用于

高分辨率遥感影像具有良好的分割效果,而且与传统的FN EA 分割方法相比提高了效率,在选取合适

3

24

地球科学———中国地质大学学报第35

图4 原始影像(a )、传统的FN EA 分割结果(b )、四叉树阈值45尺度50形状参数0.2(c )和四叉树阈值60尺度50形状参数

0.2(d )

Fig.4Original image (a )and the traditional segmentation results based on FN EA (b )and the result based on quad 2tree

(threshold :45)(c )and the result based on quad 2tree (threshold :60)(d )

表1 实验分析

Table 1

Experience analysis 分割方法

时间(s )

参数

传统的FN EA 分割方法18.49尺度参数:50,形状参数:0.2

基于四叉树预分割的FN EA 分割方法

10.178.95

四叉树阈值:45

尺度参数:50,形状参数:0.2

四叉树阈值:60

尺度参数:50,形状参数:0.2

的参数的情况下,效率将近提高了一倍.但通过试验

也可以看出,当四叉树分割阈值偏大时,会影响分割的效果.因此,建议根据应用的需要来设定四叉树阈值的大小.

4 结论

分形网络演化算法(FN EA )是一种传统的经典的面向对象的分割算法,它的分割精度较高.提出的基于四叉树预分割的分形网络演化算法在借鉴经典

分割算法的基础上进行了改进,提高了构建初始对象的分割效率,也形成了更易于后续FN EA 再分割的初始对象,从而提高了整体的分割效率,而且分割精度也基本满足后续的分类需求.

另外,关于四叉树预分割中的剪枝判决条件的评判标准的选择以及四叉树阈值、尺度参数、形状参数等几个参数之间的内在联系及对整体的分割效率和精度的影响还需进一步深入探究和实践.R eferences

Baatz ,M.,Schape ,A.,2000.Multiresolution segmentation :

an optimization approach for high quality multiscale im 2age segmentation.In :Strobl ,J.,Blaschke ,T.,Grieseb 2ner ,G.,eds.,Angewandte geographische informations 2verarbeitung Ⅻ.Wichmann 2Verlag.Heidelberg ,12-23.

Blaschke ,T.,Hay ,G.J.,2001.Object 2oriented image analy 2

sis and scale 2space :theory and methods for modeling and evaluateng multi 2scale landscape structure.I nterna 2

4

24

 第3期 高伟等:一种改进的高分辨率遥感影像分割方法

tional A rchives of Photog rammet ry and Remote Sens2 ing,34:22-29.

Chen,Q.H.,2007.Research and realization of multi2sources remote sensing data on object oriented(Dissertation).

China University of G eosciences,Wuhan(in Chinese). Chen,Q.H.,Liu,X.G.,Gao,W.,et al.,2009.A fast and efficient high spatial resolution multi2scale image seg2 mentation strategy.The2nd International Conference on Earth Observation for G lobal Changes,Chengdu. Chen,Z.,Zhao.Z.,G ong,P.,et al.,2006.A new process for the segmentation of high resolution remote sensing im2 agery.I nternational J ournal of Remote S ensing,27

(22):4991-5001.doi:10.1080/0143116060658131

G ao,W.,2006.Image f usion based on trous wavelet trans2

f rom.Earth Science—J ournal of China Universit y of

Geosciences,31(Suppl.):132-135(in Chinese with English abstract).

Hu,X.Y.,Tao,C.V.,Prenzel,B.,2005.Automatic segmen2 tation of high2resolution satellite imagery by integrating texture,intensity and color features.Photog rammet ric Engineering and Remote S ensing,71(12):1399-1406. L u,G.X.,Zhou,D.W.,Wang,J.L.,et al.,2002.G eological information extracting f rom remote sensing image in complex area:based on wavelet analysis for automatic image segmentation.Earth Science—J ournal of China Uni versit y of Geosciences,27(1):50-54(in Chinese with English abstract).

Mo,D.K.,Lin,H.,2005.A robust approach toward high resolution remote sensing image segmentation.In:China Society of Image and Graphics,ed.,The12th national conference on image and graphics(NCIG2005).Beijing, 244-249(in Chinese).Peng,P.,Liu,X.G.,G ao,W.,et al.,2009.An improved strategy for object2oriented multi2scale remote sensing image segmentation,ICISE2009,Nanjing.doi:10.1109/

ICISE.2009.280

Ren,X.F.,Ji,G.R.,Ji,G.Y.,2007.Improved f ractral image coding approach based on quadtree partition.Cont rol&

A utomation,23(10-3):291-293(in Chinese with

English abstract).

Song,Y.B.,Zhang,B.Q.,Hao,Y.P.,2004.Quad2tree2ba2 sing structure image segment technology.Ordnance I n2 dust ry A utomation,23(6):63-64,69(in Chinese with English abstract).

附中文参考文献

陈启浩,2007.面向对象的多源遥感数据分类技术研究与实现(硕士学位论文),武汉:中国地质大学.

高伟,2006.IKONOS影像融合技术及其在土地监测中的应用.地球科学———中国地质大学学报,31(增刊):132-

135.

陆关祥,周鼎武,王居里,等,2002.复杂结构构造区遥感图像的地质信息提取方法———基于小波变换的多层次图像分割.地球科学———中国地质大学学报,27(1):50-

54.

莫登奎,林辉,2005.一种稳健的高分辨率遥感影像分割方法.见:中国国家图形学会编.第十二届全国图象图形学学术会议.北京,244-249.

任秀芳,姬光荣,姬光玉,2007.基于四叉树分割的分形图像编码改进方法.微计算机信息,23(10-3):291-293.宋宇彬,张秉权,郝永平,2004.基于四叉树的图像分割技术.

兵工自动化,23(6):63-64,69.

524

遥感影像的分类处理

摘要 在面向对象的影像分类方法中,首先需要将遥感影像分割成有意义的影像对象集合,进而在影像对象的基础上进行特征提取和分类。本文针对面向对象影像分类思想的关键环节展开讨论和研究,(1) 采用基于改进分水岭变换的多尺度分割算法对高分辨率遥感影像进行分割。构建了基于高斯尺度金字塔的多尺度视觉单词,并且通过实验证明其表达能力优于经典的词包表示。最后,在词包表示的基础上,利用概率潜在语义分析方法对同义词和多义词较强的鉴别能力对影像对象进行分析,找出其最可能属于的主题或类别,进而完成影像的分类。 近些年来,随着航空航天平台与传感器技术的高速发展,获取的遥感影像的分辨率越来越高。高分辨率遥感影像在各行业部门的应用也越来越广泛,除了传统的国土资源、地质调查和测绘测量等部门,还涉及到城市规划、交通旅游和环境生态等领域,极大地拓展了遥感影像的应用范围。因此,对高分辨率遥感影像的处理分析成为备受关注的领域之一。高分辨率遥感影像包括以下三种形式:高空间分辨率(获取影像的空间分辨率从以前的几十米提高到1 至5 米,甚至更高);高光谱分辨率(电磁波谱被不断细分,获取遥感数据的波段数从几十个到数百个);高时间分辨率(遥感卫星的回访周期不断缩短,在部分区域甚至可以连续观测)。本文所要研究的高分辨率遥感影像均是指“高空间分辨率”影像。 相对于中低分辨率的遥感数据,高空间分辨率遥感影像具有更加丰富的空间结构、几何纹理及拓扑关系等信息,对认知地物目标的属性特征更加方便,如光谱、形状、纹理、结构和层次等。另外,高分辨率遥感影像有效减弱了混合像元的影响,并且能够在较小的空间尺度下反映地物特征的细节变化,为实现更高精度的地物识别和分类提供了可能。 然而,传统的遥感影像分析方法主要基于“像元”进行,它处于图像工程中的“图像处理”阶段(见图1-1),已然不能满足当今遥感数据发展的需求。基于“像元”的高分辨率遥感影像分类更多地依赖光谱特征,而忽视影像的纹理、形状、上下文和结构等重要的空间特征,因此,分类结果会产生很严重的“椒盐(salt and pepper)现象”,从而影响到分类的精度。虽然国内外的很多研究人员针对以上缺陷提出了很多新的方法,如支持向量机(Support Vector Machine,SVM) 、纹理聚类、分层聚类(Hierarchical Clustering) 、神经网络(Neural Network, NN)等,但仅依靠光谱特征的基于像元的方法很难取得更好的分类结果。基于“像元”的传统分类方法还有着另一个局限:无法很好的描述和应用地物目标的尺度特征,而多尺度特征正是遥感信息的基本属性之一。由于在不同的空间尺度上,同样的地表空间格局与过程会表现出明显的差异,因此,在单一尺度下对遥感影像进行分析和识别是不全面的。为了得到更好的分类结果,需要充分考虑多尺度特征。 针对以上问题,面向对象的处理方法应运而生,并且逐渐成为高空间分辨率遥感影像分析和识别的新途径。所谓“面向对象”,即影像分析的最小单元不再是传统的单个像元,而是由特定像元组成的有意义的同质区域,也即“对象”;因此,在对影像分析和识别的过程

遥感影像分类实验报告

面向对象分类实验报告 姓名: 学号: 指导老师: 地球科学与环境工程学院

一、实验目的 面向对象法模拟人类大脑认知过程,将图像分割为不同均质的对象,充分利用对象所包含的信息,将知识库转换为规则特征,从而提取影像信息。因为分析的是对象而不是像元,因此我们可以利用对象丰富的语义信息,结合各种地学概念,如面积、距离、光谱、尺度、纹理等进行分析。 面向对象的遥感影像分析方法与传统的面向像元的影像分析方法不同。首先我们要用一定方法对遥感影像进行分割,在提取分割单元(图像分割后所得到的内部属性相对一致或均质程度较高的图像区域)的各种特征后,在特征空间中进行对象识别和标识,从而最终完成信息的分类与提取。 二、实验意义 1、使用eCognition进行面向对象的影像分类的流程; 2、体会面向对象思想的内涵,学会将大脑认知过程转变为机器语言; 三、实验内容 3.1、影像的预处理 利用ERDAS软件将所给的全色影像和多光谱遥感影像进行融合,达到既满足高空间分辨率,又保留光谱信息。Image interperter-> spatial enhancement-> resolution merge.输入融合前的两幅影像,完成影像的预处理过程。 图 1 图像融合步骤

图 2 融合后的图像 3.2、使用eCongition 创建工程 a、使用规则集模式创建工程 图 3 模式选择 b、file->new projection ,打开Create Project和Import Image Layers两个

对话框,将上面的实验数据导入。(注意,数据以及工程文件保存路径不要有中文) 图 4 导入数据 c、选择数据修改波段名称,并设置Nodata选项。

高分辨率遥感卫星介绍

北京揽宇方圆信息技术有限公司 高分辨率遥感卫星有哪些 高分辨率遥感可以以米级甚至亚米级空间分辨率精细观测地球,所获取的高空间分辨率遥感影像可以清楚地表达地物目标的空间结构与表层纹理特征,分辨出地物内部更为精细的组成,地物边缘信息也更加清晰,为有效的地学解译分析提供了条件和基础。随着高分辨率遥感影像资源日益丰富,高分辨率遥感在测绘制图、城市规划、交通、水利、农业、林业、环境资源监测等领域得到了飞速发展。 北京揽宇方圆信息技术有限公司是国内的领先遥感卫星数据机构,而且是整合全球的遥感卫星数据资源,分发不同性能、技术应用上可以互补的多种卫星影像,包括光学、雷达卫星影像、历史遥感影像等各种卫星数据服务,各种专业应用目的的图像处理、解译、顾问服务以及基于卫星影像的各种解决方案等。遥感卫星影像数据贯穿中国1960年至今的所有卫星影像数据,是中国遥感卫星数据资源最多的专业遥感卫星数据服务机构,提供多尺度、多分辨率、全覆盖的遥感卫星影像数据服务,最大限度的保证了遥感影像数据获取的及时性和完整性。 一、卫星类型 (1)光学卫星:worldview1、worldview2、worldview3、worldview4、quickbird、geoeye、ikonos、pleiades、deimos、spot1、kompsat系例、spot2、spot3、spot4、spot5、spot6、spot7、landsat5(tm)、Sentinel-卫星、landsat(etm)、rapideye、alos、kompsat系例卫星、planet卫星、北京二号、高景一号、资源三号、高分一号、高分二号、环境卫星。 (2)雷达卫星:terrasar-x、radarsat-2、alos雷达卫星、高分三号卫星、哨兵卫星 (3)侦查卫星:美国锁眼卫星全系例(1960-1980) 二、卫星分辨率 (1)0.3米:worldview3、worldview4 (2)0.4米:worldview3、worldview2、geoeye、kompsat-3A (3)0.5米:worldview3、worldview2、geoeye、worldview1、pleiades

高空间分辨率遥感影像分割方法研究综述

高空间分辨率遥感影像分割方法研究综述 高空间分辨率遥感影像分割方法研究综述 刘建华毛政元 (福州大学,空间数据挖掘与信息共享教育部重点实验室,福建省空间信息工程研究中心,福州350002) 摘要:遥感影像分割是指把一幅影像划分为互不重叠的一组区域的过程,它要求得到的每个区域的内部具有某种一致性或相似性,而任意两个相邻的区域则不具有此种相似性。遥感影像分割是面向对象的遥感影像数据挖掘与应用中的一项关键技术,对于影像目标信息自动化提取与智能识别尤为重要,在面向对象的遥感影像处理工程中具有重要意义。本文对常见的高空间分辨率遥感影像分割方法与应用策略进行了分析,比较了各种分割方法的应用范围、优缺点及目前存在的改进措施。建立了面向对象的遥感影像分割方法的分类体系,最后指出了面向对象的遥感影像分割方法目前所存在的问题及应用前景。 关键词:高空间分辨率遥感影像影像分割方法应用策略进展 A Survey on High Spatial Resolution Remotely Sensed Imagery Segmentation Techniques and Application Strategy Liu Jian hua Mao zheng yuan (Fuzhou University, Spatial Information Research center, Fuzhou, 350002) Abstract: Remotely sensed imagery segmentation is a process of dividing an image into different regions such that each region is, but the union of any two adjacent regions is not, homogeneous. It is one of key techniques in the object-oriented remotely sensed imagery data mining and its application, also quite essential in remote sensing image processing engineering. In this paper, we have a rough survey on different methods of high spatial resolution remotely sensed imagery segmentation, categorizing them into four groups according to the gray or color information they are exploiting. The disadvantage of current methods and the proper progress which can be attained in the near future are pointed out at the end of this essay. Keywords: High Spatial Resolution Imagery, Segmentation methods, application strategy, advances and prospects 1 引言 高空间分辨率遥感影像(如GeoEye、WorldView、QuickBird、IKONOS等,本文简称高分影像)在诸多领域(地形图更新、地籍调查、城市规划、交通及道路设施、环境评价、精细农业、林业测量、军事目标识别和灾害评估等)得以广泛应用[1]。目前,影像信息提取自动化程度低是高分影像应用潜力得不到充分发挥的主要限制因素,是理论和应用研究中必须突破的瓶颈。 遥感影像分割是面向对象的遥感影像分析方法[2]的基础和关键,在遥感影像工程中处于影像处理与影像理解的中间环节,是面向对象的影像分析理论研究的突破口。按照一般的影像分割定义[3],分割出的影像对象区域需同时满足相似性和不连续性两个基本特性;其中相似性指该影像对象内的所有像元点都满足基于灰度、色彩、纹理等特征的某种相似性准则,不连续性是指影像对象的特征在区域边界处的不连续性。迄今为止,将计算机视觉领域的图像分割算法应用于图像分割过程中,已开展了较多的研究[4-7],并提出了大量的算法;但针对遥感影像尤其是高分影像的分割方法较少[8],仍不成熟。这是由于与其它类型图像的分割相比,高分影像分割难度更大,也更具挑战性。具体体现在高分影像其空间分辨率高、纹理信息丰富而光 基金项目: 国家重点基础研究发展计划项目(973)子课题“高空间分辨率遥感影像自适应数据挖掘方法研[2006CB708306]”,国家自然科学基金项目“基于场模型的自适应空间聚类方法研究[40871206]”。 作者简介: 刘建华,男,博士研究生,曾从事GIS与RS教学工作。目前主要研究方向为空间数据挖掘、遥感图像处理以及GIS与RS集成等。E-mail:sirc.liujh@https://www.360docs.net/doc/e71762935.html,。

遥感图像分类方法的国内外研究现状与发展趋势

遥感图像分类方法的国内外研究现状与发展趋势

遥感图像分类方法的研究现状与发展趋势 摘要:遥感在中国已经取得了世界级的成果和发展,被广泛应用于国民经济发展的各个方面,如土地资源调查和管理、农作物估产、地质勘查、海洋环境监测、灾害监测、全球变化研究等,形成了适合中国国情的技术发展和应用推广模式。随着遥感数据获取手段的加强,需要处理的遥感信息量急剧增加。在这种情况下,如何满足应用人员对于大区域遥感资料进行快速处理与分析的要求,正成为遥感信息处理面临的一大难题。这里涉及二个方面,一是遥感图像处理本身技术的开发,二是遥感与地理信息系统的结合,归结起来,最迫切需要解决的问题是如何提高遥感图像分类精度,这是解决大区域资源环境遥感快速调查与制图的关键。 关键词:遥感图像、发展、分类、计算机 一、遥感技术的发展现状 遥感技术正在进入一个能够快速准确地提供多种对地观测海量数据及应用研究的新阶段,它在近一二十年内得到了飞速发展,目前又将达到一个新的高潮。这种发展主要表现在以下4个方面: 1. 多分辨率多遥感平台并存。空间分辨率、时间分辨率及光谱分辨率普遍提高目前,国际上已拥有十几种不同用途的地球观测卫星系统,并拥有全色0.8~5m、多光谱3.3~30m的多种空间分辨率。遥感平台和传感器已从过去的单一型向多样化发展,并能在不同平台

上获得不同空间分辨率、时间分辨率和光谱分辨率的遥感影像。民用遥感影像的空间分辨率达到米级,光谱分辨率达到纳米级,波段数已增加到数十甚至数百个,重复周期达到几天甚至十几个小时。例如,美国的商业卫星ORBVIEW可获取lm空间分辨率的图像,通过任意方向旋转可获得同轨和异轨的高分辨率立体图像;美国EOS卫星上的MOiDIS-N传感器具有35个波段;美国NOAA的一颗卫星每天可对地面同一地区进行两次观测。随着遥感应用领域对高分辨率遥感数据需求的增加及高新技术自身不断的发展,各类遥感分辨率的提高成为普遍发展趋势。 2. 微波遥感、高光谱遥感迅速发展微波遥感技术是近十几年发展起来的具有良好应用前景的主动式探测方法。微波具有穿透性强、不受天气影响的特性,可全天时、全天候工作。微波遥感采用多极化、多波段及多工作模式,形成多级分辨率影像序列,以提供从粗到细的对地观测数据源。成像雷达、激光雷达等的发展,越来越引起人们的关注。例如,美国实施的航天飞机雷达地形测绘计划即采用雷达干涉测量技术,在一架航天飞机上安装了两个雷达天线,对同一地区一次获取两幅图像,然后通过影像精匹配、相位差解算、高程计算等步骤得到被观测地区的高程数据。高光谱遥感的出现和发展是遥感技术的一场革命。它使本来在宽波段遥感中不可探测的物质,在高光谱遥感中能被探测。高光谱遥感的发展,从研制第一代航空成像光谱仪算起已有二十多年的历史,并受到世界各国遥感科学家的普遍关注。但长期以来,高光谱遥感一直处在以航空为基础的研究发展阶段,且主要

高分辨率遥感影像数据一体化测图系统PixelGrid

高分辨率遥感影像数据一体化测图系统PixelGrid 北京四维空间数码科技有限公司 一、概况介绍 高分辨率遥感影像数据一体化测图系统PixelGrid(以下简称“PixelGrid”)是由中国测绘科学研究院自主研发的“十一五”重大科技成果,获得2009年度国家测绘科技进步一等奖。 为将这一重大科技成果实现产业化,2008年开始,由中国测绘科学研究院参股单位北京四维空间数码科技有限公司进行成果转化和产品化,并开展销售。 该软件是我国西部1:5万地形图空白区测图工程以及第二次全国土地调查工程的主力软件, 被誉为国产的“像素工厂”。 PixelGrid以其先进的摄影测量算法、集群分布式并行处理技术、强大的自动化业务化处理能力、高效可靠的作业调度管理方法、友好灵活的用户界面和操作方式,全面实现了对卫星影像数据、航空影像数据以及低空无人机影像数据的快速自动处理,可以完成遥感影像从空中三角测量到各种比例尺的DEM/DSM、DOM等测绘产品的生产任务。 PixelGrid软件主界面。 二、主要特点 PixelGrid系统以现代摄影测量与遥感科学技术理论为基础,融合计算机技术和网络通讯技术,采用基于RFM通用成像模型的大范围遥感影像稀少或无控制区域网平差、基于旋转/缩放不变性特征多影像匹配的高精度航空影像自动空三、基于多基线/多重特征的高精度DEM/DSM自动提取、等高线数据半自动采集及网络分布式编辑、基于地理信息数据库等多源控制信息的高效影像地图制作、基于松散耦合并行服务中间件的集群分布式并行计算等一系列核心关键技术,是中国测绘科学研究院研制的一款类似“像素工厂”(ISTAR PixelFactoryTM)的新一代多源航空航 天遥感数据一体化高效能处理系统。

改进CV模型在高分辨率遥感影像分割中的应用

改进CV模型在高分辨率遥感影像分割中的应用 许文宁;梅树立;王鹏新;杨勇 【期刊名称】《农业机械学报》 【年(卷),期】2011(042)003 【摘要】An improved CV model was presented according to the characters and the segmentation requirements of the remote sensing images. The correctness of the improved model was validated by the experiment. The results show that the new method can improve calculation efficiency effectively. Beside this, a continuous and closed boundary curve of the target objects can be obtained at the same time. Therefore, the land cover can be identified precisely with the help of the geometrical characteristic of the segmentation boundary.%针对遥感图像的特点及分割要求给出了一种CV简化模型,并对改进模型的正确性进行了实验验证.实验结果表明,该方法不但提高了运算速度,而且能够得到连续封闭的目标地物矢量数据,因此可方便地利用分割边界的几何特征实现地物目标的精确识别.【总页数】4页(180-183) 【关键词】遥感图像;区域分割;CV模型;应用 【作者】许文宁;梅树立;王鹏新;杨勇 【作者单位】中国农业大学信息与电气工程学院,北京,100083;中国农业大学信息与电气工程学院,北京,100083;中国农业大学信息与电气工程学院,北京,100083;中国农业机械化科学研究院,北京,100083 【正文语种】中文

一种改进的高分辨率遥感影像分割方法

第35卷第3期 地球科学———中国地质大学学报 Vol.35 No.32010年5月 Earth Science —Journal of China University of G eosciences May 2010 doi :10.3799/dqkx.2010.050 基金项目:教育部新世纪优秀人才计划资助项目(No.NCET 20720772);国家重点“863”项目(No.2007AA120503). 作者简介:高伟(1980-),男,博士生,主要从事遥感数据处理与信息提取的科研和教学工作.E 2mail :cuggaowei @hot https://www.360docs.net/doc/e71762935.html, 一种改进的高分辨率遥感影像分割方法 高 伟1,2,刘修国1,2,彭 攀1,2,陈启浩1,2 1.中国地质大学信息工程学院,湖北武汉430074 2.地理信息系统软件及其应用教育部工程中心,湖北武汉430074 摘要:分形网络演化算法是面向对象的遥感影像分类中比较成熟的一种构建对象的算法,但在分割效率上有待进一步提高, 而四叉树分割是一种高效的图像分割方法.提出了一种基于四叉树预分割的分形网络演化构建对象的方法.实验证明,该方法基本不影响影像分割的效果,而且提高了形成初始对象的效率,较大程度上提高了整体的分割效率.关键词:影像分割;分形网络演化;高空间分辨率;四叉树;地理信息系统.中图分类号:TP311 文章编号:1000-2383(2010)03-0421-05 收稿日期:2010-01-15 An Improved Method of High 2R esolution R emote Sense Image Segmentation GAO Wei 1,2,L IU Xiu 2guo 1,2,PEN G Pan 1,2,CH EN Qi 2hao 1,2 1.Facult y of I nf ormation Engineering ,China Uni versit y of Geosciences ,W uhan 430074,China 2.Engineering Research Center f or GIS S of t w are and A p plications ,Minist ry of Education ,W uhan 430074,China Abstract :Fractal net evolution approach (FN EA )is a relatively mature one among the object 2oriented image segmentation algo 2rithms ,but its efficiency is to be improved.Quad 2Tree segmentation is a kind of effective image segmentation method.In this paper ,an improved object oriented multi 2scale image segmentation method based on the quad 2tree pre 2segmentation and FN EA is introduced.The experiment shows that the effect of its segmentation result is almost the same as that of traditional FN EA method.Moreover ,It saves time. K ey w ords :image segmentation ;f ractal net evolution approach ;high 2nesolution remote sense ;quad 2tree ;geographic informa 2tion system (GIS ). 0 引言 近年来,以I KONOS 和Quick 2Bird 为代表的高空间分辨率遥感影像得到广泛应用(高伟,2006).高分辨率遥感影像具有丰富的空间信息,地物几何结构和纹理信息,便于认识地物目标的属性特征,如地物的图层值、形状、纹理、层次和专题属性,有助于提高地物定位和判读精度,使得在较小的空间尺度上观察地表细节变化,进行大比例尺遥感制图,以及监测人为活动对环境的影响成为可能.为土地利用、城市规划、环境监测等民用方面提供了更便利、更详细的数据源.高分辨率影像的广泛应用迫切要求人们对高分辨率遥感信息提取进行研究,以满足高分辨 率影像信息不断增长的应用和研究需要(Chen et al .,2009). 面向对象的高分辨率遥感影像的分类方法不仅利用地物的光谱信息,而且更多地利用几何信息和结构信息,可以结合其他空间知识和上下文信息来进行更为深入的分类,使得对高分辨率影像的分类更为合理和有效,这成为高分辨率影像信息提取的重要方法之一(Blaschke and Hay ,2001;陆关祥等,2002).在面向对象高分辨率影像的信息提取中,对遥感图像进行分割,形成具有一定特征相似性的影像区域,是实现从影像上进行地物目标计算机自动提取的第一步. 目前分形网络演化算法(Baatz and Schape ,

高分辨率遥感影像分类实验报告

高分辨率遥感影像分类实验报告 班级:___________________ 姓名:___________________ 学号:___________________ 指导老师:_______________ 地球科学与环境工程学院 二?一四年六月

目录 1 实验方法——面向对象方法 (1) 2 实验内容 (1) 2.1 影像预处理 (1) 2.1.1 影像数据融合 (1) 2.1.2 影像增强处理 (2) 2.2 创建工程 (2) 2.3 分割处理 (3) 2.4 分类 (4) 2.4.1 水体 (4) 2.4.2 陆地 (5) 2.4.3 植被 (6) 2.4.4 裸土 (7) 2.4.5 建筑物 (8) 2.4.6 道路 (9) 2.4.7 阴影 (10) 2.4.8 总体分类图 (12) 3 结语 (13)

1实验方法——面向对象方法 面向对象方法是一个模拟人类大脑认知的过程,将图像分割为不同均质的对 象,充分利用对象所包含的信息,将知识库转换为规则特征,从而提取影像信息。 因为分析的是对象而不是像元,因此我们可以利用对象丰富的语义信息, 结合各 种地学概念,如面积、距离、光谱、尺度、纹理等进行分析。 面向对象的遥感影像分析方法与传统的面向像元的影像分析方法不同。 首先 需要使用一定方法对遥感影像进行分割, 在提取分割单元(图像分割后所得到的 内部属性相对一致或均质程度较高的图像区域) 的各种特征后,在特征空间中进 行对象识别和标识,从而最终完成信息的分类与提取。 2实验内容及详细过程 2.1影像预处理 2.1.1影像数据融合 实验数据为QuickBird 影像,包括4个多光谱波段以及一个全色波段。 QuickBird 影像星下点分辨率:全色为 0.61m ,多光谱为2.44m 。对于面向对象 影像分类 来说,越高的高空间分辨率越好,但在对对象进行分类时,光谱信息同 样重要,因此,可将高分辨率的全色影像和多光谱影像进行数据融合。 使用 ERDAS 进行数据融合: Interprete u spatialenchancemen ^resolution mergeo 图1 全色影像与多光谱影像融合 Ib^pul Fh (*.网| MJitiMewl lfl img 乓 | nwin?_r?J_pM4 |i ■J Nurb-w of 4 Mai hod DiJput OpJcm: riHEWT^SBn-n r Bchnaiuar f* Fmcpai T Newwt Nd^ibor 厂 5Woh to Unsigned 6 W 厂 厂l|>Kj 沽Eti 臼? 一 Brcvay TividuirTi 件 iDi-tc T 呼 Nunt-B? Mulkip?cdi4 Inpui Lafin: 4 G 喑 Sca*e: Uns^ned 1E tt |1 Nlu ■弔 pecirot Uns^flrwd 1 百 b* U M ■ E -jiiiiH In EKH

高分辨率遥感影像分类实验报告

高分辨率遥感影像分类实验报告 班级: 姓名: 学号: 指导老师: 地球科学与环境工程学院 二〇一四年六月

目录 1实验方法——面向对象方法 (1) 2实验内容 (1) 2.1 影像预处理 (1) 2.1.1影像数据融合 (1) 2.1.2 影像增强处理 (2) 2.2 创建工程 (2) 2.3 分割处理 (3) 2.4 分类 (4) 2.4.1 水体 (4) 2.4.2陆地 (5) 2.4.3 植被 (6) 2.4.4 裸土 (7) 2.4.5 建筑物 (8) 2.4.6 道路 (9) 2.4.7 阴影 (10) 2.4.8 总体分类图 (12) 3 结语 (13)

1实验方法——面向对象方法 面向对象方法是一个模拟人类大脑认知的过程,将图像分割为不同均质的对象,充分利用对象所包含的信息,将知识库转换为规则特征,从而提取影像信息。因为分析的是对象而不是像元,因此我们可以利用对象丰富的语义信息,结合各种地学概念,如面积、距离、光谱、尺度、纹理等进行分析。 面向对象的遥感影像分析方法与传统的面向像元的影像分析方法不同。首先需要使用一定方法对遥感影像进行分割,在提取分割单元(图像分割后所得到的内部属性相对一致或均质程度较高的图像区域)的各种特征后,在特征空间中进行对象识别和标识,从而最终完成信息的分类与提取。 2实验内容及详细过程 2.1 影像预处理 2.1.1影像数据融合 实验数据为QuickBird影像,包括4个多光谱波段以及一个全色波段。QuickBird影像星下点分辨率:全色为0.61m,多光谱为2.44m。对于面向对象影像分类来说,越高的高空间分辨率越好,但在对对象进行分类时,光谱信息同样重要,因此,可将高分辨率的全色影像和多光谱影像进行数据融合。 使用ERDAS进行数据融合:Interpreter→spatialenchancement→resolution merge。 图 1 全色影像与多光谱影像融合

一种多尺度无监督遥感图像分割方法

一种多尺度无监督遥感图像分割方法 郭小卫,官小平 (北京东方泰坦科技有限公司,北京100083) 摘要:提出了一种多尺度无监督遥感图像分割方法。通过对多尺度图像数据在每个尺度上进行G auss 子集聚类,并将每个像素的邻域内的G auss 子集类别标记作为特征向量,利用Markov 四叉树模型进行二次聚类,从而实现无监督图像分割。与其他基于多尺度Markov 模型的无监督分割方法和传统动态聚类方法相比,该方法既无需假定每类的分布形式,又能较好地反映数据的概率结构。合成图像与SAR 图像的实验结果表明,该方法的分割精度接近于有监督的H 2MPM 和H 2SMAP 方法。 关键词:多尺度;四叉树;MPM (maximum posterior marginals );EM (expectation maximization )算法;无监督分割中图分类号:P237.3 文献标识码:A 文章编号:1000-3177(2006)88-0020-03 收稿日期:2006-04-06 作者简介:郭小卫,男(1971)~,博士,主要从事图像处理、模式识别和多尺度统计建模等方面的研究。 1 引 言 基于多尺度Markov 模型的图像分割方法[1~4],是近年来基于统计模型的图像分割方法的研究热点。多尺度 Markov 模型分割算法通常采用Bayes 估计。Bayes 估计的前 提条件是每类的概率密度已知。在无监督图像分割问题中,由于训练样本的类别未知,为估计每类的概率密度,需要假定每类的分布形式已知(通常假定每类服从G auss 分布或其他简单分布),从而,利用一些如EM (expectation 2maximiza 2 tion )、SEM (stochastic expectation 2maximization )或ICE (iter 2ative conditional estimation )等混合密度的估计方法,就可以 得到每类的分布参数。但在很多情况下,各类的分布可能无法用某种简单的分布形式来表示,甚至无法用参数化的方法来表示,因而也就不能应用这类方法来估计每类的概率密度。一种替代方法是将图像数据离散化,并应用EM 等算法来估计离散形式的混合分布。但直接对图像数据离散化一方面会造成分布参数过多,并带来计算量增加、EM 算法初始化困难等问题;另一方面,由于缺少足够的约束条件,导致离散形式混合密度的估计结果有很大的不确定性,典型的例子是在各类分布的交叠区,分布参数的估计严重甚至完全依赖于初值的选取。 针对此问题,本文提出一种基于Markov 四叉树模型的无监督图像分割方法。该方法通过对多尺度图像数据在每一尺度上进行G auss 子集聚类,并将聚类的结果(G auss 子集类标记)作为多尺度特征数据,进而应用Markov 四叉树模型和MPM (maximum posterior marginals )估计进行二次聚类,实现无监督图像分割。该方法无需假定每类的分布形式已知;与离散形式的多尺度Markov 模型方法相比,离散值的数目(G auss 子集数)通常很小,使得EM 算法的初值选择比较容易,并减小了参数估计的不确定性。 2 Markov 四叉树模型 本文采用的Markov 四叉树模型,其结构如图1所示。记树上的节点集为S ,根节点为r ,黑节点(隐节点)代表像素的未知类别,白节点(观测节点)代表像素值或像素的某种特征数据,在特定假设条件下[1,3],所有隐节点的集合与观测节点的集合构成一(隐)马尔可夫树。将该模型应用于图像分割,实际上就是根据观测值估计隐节点状态的问题。解决该问题的方法通常有两种,MAP 估计和MPM 估计,本文采用MPM 估计,其具体算法见文献[3] 。 图1 Markov 四叉树模型 要将上述模型应用于图像分割,需要首先估计模型参数。记πm =p (X r =m ),并对Πs ∈S (n ) ,记a m ,k ,n =p (X s =m |X s +=k ),f m ,n (l )=p (Y s =l |X s =m ),Markov 四叉 树模型参数可记为θ=(πm ,(a m ,k ,n )k =1…M ,n =0…N ,(f m ,n (l )) l ∈R ,n =0…N )m =1…M 。若假定转移概率和条件分布仅与尺 度有关,与具体节点无关,并进一步假定每类数据服从G auss 分布,此时,模型参数简化为θ=( πm ,(a m ,k ,n )k =1…M ,n =0…N ,(μm ,n ) n =0,…,N ,(∑m ,n )n =0,…,N )m =1…M 。利用EM 算法,可 得到θ的估计[7]。 3 基于Markov 四叉树模型的无监督分割 上述多尺度Markov 模型的无监督图像分割方法需要假定每类数据服从G auss 等简单分布形式,这种假定在很多情

面向对象的高分辨率遥感影像分类

二○一一届毕业设计 面向对象的高分辨率遥感影像分类Object-oriented Classification of high Resolution Remote Sensing images 学院:地质工程与测绘学院 专业:遥感科学与技术 姓名: 学号: 指导教师: 完成时间:2011年6月17日 二〇一一年七月

摘要 高空间分辨率遥感影像使得在较小的空间尺度上观察地表细节变化,进行大比例尺遥感制图,以及监测人为活动对环境的影响成为可能。随着高分辨率影像的应用越来越普及,迫切要求人们对高分辨率遥感信息提取进行研究,以满足高分辨率影像信息不断增长的应用和研究需要 高分辨率遥感影像光谱信息有限,空间信息丰富,地物的尺寸、形状及相邻地物间的关系都得到很好的反映。面向对象的分类方法与传统的基于像素的分类相比,不仅仅是依靠光谱信息,而且还充分利用影像的空间信息,分类时也克服了基于像元的逐点分类无法对相同语义特征的像素集合进行识别的缺点,是一种目前最适合于高分辨率遥感影像的分类方法。 本文采用面向对象的分类方法对高分辨率影像进行分类,该方法首先对影像进行多尺度分割获得同质区域对象,在此基础上利用模糊分类思想对分割后的对象进行分类。该方法不仅充分利用了高分辨率影像的空间信息,还将基于像素的分类提升到了基于对象的分类。 多尺度分割采用的是区域生长合并算法,通过对尺度阈值、光谱因子及形状因子等参数的控制,可以获得不同尺度下有意义的对象。分割后的对象不仅包含了原始的光谱信息,还可以提供大量辅助特征,如纹理、形状、拓扑等特征。综合利用这些特征以及模糊分类的思想,使得高分辨率影像分类在减少分类不确定性的同时,还提高了分类的精度。 最后将面向对象分类结果与传统的基于像素分类结果进行对比分析,发现其分类精度要明显高于传统法,且具有较强的抗噪声的功能,分类所得的地物结果相对较为完整,具有更丰富的语义信息,更加符合客观现实情形。 关键词:高分辨率遥感影像,面向对象的分类,影像分割,多尺度,最近邻分类

遥感图像分析

0、遥感图像分析 遥感实际上是通过接收(包括主动接收和被动接收方式)探测目标物电磁辐射信息的强弱来表征的,它可以转化为图像的形式以相片或数字图像表现。多波段影像是用多波段遥感器对同一目标(或地区)一次同步摄影或扫描获得的若干幅波段不同的影像。 在遥感影像处理分析过程中,可供利用的影像特征包括:光谱特征、空间特征、极化特征和时间特性。在影像要素中,除色调/彩色与物体的波谱特征有直接的关系外,其余大多与物体的空间特征有关。像元的色调/彩色或波谱特征是最基本的影像要素,如果物体之间或物体与背景之间没有色调/彩色上的差异的话,他们的鉴别就无从说起。其次的影像要素有大小、形状和纹理,它们是构成某种物体或现象的元色调/彩色在空间(即影像)上分布的产物。物体的大小与影像比例尺密切相关;物体影像的形状是物体固有的属性;而纹理则是一组影像中的色调/彩色变化重复出现的产物,一般会给人以影像粗糙或平滑的视觉印象,在区分不同物体和现象时起重要作用。第三级影像要素包括图形、高度和阴影三者,图形往往是一些人工和自然现象所特有的影像特征。 1、遥感信息提取方法分类 常用的遥感信息提取的方法有两大类:一是目视解译,二是计算机信息提取。 1.1目视解译 目视解译是指利用图像的影像特征(色调或色彩,即波谱特征)和空间特征(形状、大小、阴影、纹理、图形、位置和布局),与多种非遥感信息资料(如地形图、各种专题图)组合,运用其相关规律,进行由此及彼、由表及里、去伪存真的综合分析和逻辑推理的思维过程。早期的目视解译多是纯人工在相片上解译,后来发展为人机交互方式,并应用一系列图像处理方法进行影像的增强,提高影像的视觉效果后在计算机屏幕上解译。 1)遥感影像目视解译原则 遥感影像目视解译的原则是先“宏观”后“微观”;先“整体”后“局部”;先“已知”后“未知”;先“易”后“难”等。一般判读顺序为,在中小比例尺像片上通常首先判读水系,确定水系的位置和流向,再根据水系确定分水岭的位置,区分流域范围,然后再判读大片农田的位置、居民点的分布和交通道路。在此基础上,再进行地质、地貌等专门要素的判读。 2)遥感影像目视解译方法 (1)总体观察 观察图像特征,分析图像对判读目的任务的可判读性和各判读目标间的内在联系。观察各种直接判读标志在图像上的反映,从而可以把图像分成大类别以及其他易于识别的地面特

基于DCNN的高分辨率遥感影像场景分类

第53卷第4期华中师范大学学报(自然科学版) Vol.53No.4 2019年8月JOURNAL OF CENTRAL CHINA NORMAL  UNIVERSITY(Nat.Sci.)Aug .2019收稿日期:2019-03- 04.基金项目:十三五科技部国家重点研发计划项目(2016YFC0803107,2016YFB052601,2017YFB0504103). *通讯联系人.E-mail:duanxuelin@w hu.edu.cn.DOI:10.19603/j.cnki.1000-1190.2019.04.017文章编号:1000-1190(2019)04-0568- 07基于DCNN的高分辨率遥感影像场景分类孟庆祥,段学琳 (武汉大学遥感信息工程学院,武汉430000 )摘 要:针对传统场景分类方法不能准确地表达高分辨率遥感影像丰富的语义信息问题,提出了一种基于卷积神经网络的高分辨率影像场景分类方法.此方法大致分为3步:第1步,依据不同卷积窗口做卷积运算提取颜色, 纹理和形状等低阶特征;第2步,利用池化层将这些低阶特征进行过滤,得到重要特征;第3步,重组提取出来的特征以形成高阶语义特征进行场景分类.在具体实验中利用三个不同尺寸的卷积核对数据集进行分类探究,并且使用了数据增广、正则化和Dropout等手段,提升模型对新样本的适应能力,很好地解决了过拟合问题.该方法在所进行的实验中表现良好,在WHU-RS19数据集上取得了88.47%的准确率,和传统的场景分类方法相比,显著提升了分类精度. 关键词:高分辨率遥感影像;场景分类;深度学习;深度卷积神经网络中图分类号:P237 文献标识码:A 遥感技术的不断发展, 带来了影像分辨率的提升.这种高空间分辨率的遥感影像具有丰富的空间信息和纹理特征,包含了大量的语义信息.然而面向像素和面向对象的解译方法存在着很多不足,无法满足遥感影像高层次内容解译的需求.因此,对高分辨率遥感图像进行场景分类成为了当前遥感 图像解译中活跃的研究课题[1]. 场景分类是遥感研究领域的热点.通俗的来说,就是用给定的图像,通过其包含的内容对它的场景类别进行判断.传统的场景分类方法可以概括为两类:基于低层次特征的方法和基于中层语义 特征建模的方法[2] . 基于低层特征的场景分类,即依赖于颜色、纹理和形状等低层特征的分类方法,此类分类算法比较简单,但泛化能力较弱、精度不 够高[3-4]. 基于中间语义的图像分类,即先生成底层特征, 然后结合分类器实现图像场景分类,其代表有视觉词袋(BoVW)[5]以及由此衍生的空间金字塔匹配核(SPMK) [6]等,此类方法会导致信息的丢失,存在一定的局限性. 由于传统的场景分类方法无法满足大数据环 境下人们的分类要求,学者们开始将深度学习[7-8]算法应用到影像分类中.典型的深度网络模型[9]主要有深度置信网(DBN)[10] 、栈式自动编码器网络(SAE)[11]和卷积神经网络(CNN)[12- 13]. 其中,卷积神经网络是目前较为流行的基于监督的深度学习方法, 该方法在图像识别、物体识别、图像语义分割中都得到了广泛的应用.近年来,越来越多的学者将卷积神经网络运用于图像分类.文献[14]将卷积神经网络用于图像分类,在CIFAR-10数据集上取得了较好的分类效果.文献[15]用卷积神经网络对Landsat  TM5中等分辨率遥感影像进行了分类实验,并与支持向量机分类结果进行比较,在一定程度上体现了卷积神经网络在图像分类的优越性.与此同时,有学者将卷积神经网络运用于遥感影像的场景分类,并取得了一定的进展,这种场景分类方法很快受到了广泛的关注. 在此基础上,本文提出一种基于深度卷积神经网络的场景分类模型DCNN,将该模型用于高分辨率遥感影像的场景分类,加入数据增广并且利用正则化方法和丢弃函数调整模型参数,最终实现基于卷积神经网络的高分辨率遥感影像分类. 1卷积神经网络 卷积神经网络是一种受生物学启示的,包含卷积计算且具有深度结构的前馈神经网络.它可以进行监督分类,提取出遥感影像中的语义特征.一个 基本的卷积神经网络结构有3层[16- 17]:输入层-隐 含层-输出层, 隐含层又分为4部分———卷积层、

相关文档
最新文档