第四节 假设检验的基本原理与方法

第四节 假设检验的基本原理与方法
第四节 假设检验的基本原理与方法

第四节假设检验的基本原理与方法

4.4.1假设检验的基本思想[理解]

假设检验是除参数估计之外的另一类重要的统计推断问题。它的基本思想可以用小概率原理来解释。所谓小概率原理,就是认为小概率事件在一次试验中是几乎不可能发生的。也就是说,对总体的某个假设是真实的,那么不利于或不能支持这一假设的事件A在一次试验中是几乎不可能发一的;要是在一次试验中事件A竟然发生了,我们就有理由怀疑这一假设的真实性,拒绝这一假设。

例7:某公司想从国外引进一种自动加工装置。这种装置的工作温度X服从正态分布(μ,52),厂方说它的平均工作温度是80度。从该装置试运转中随机测试16次,得到的平均工作温度是83度。该公司考虑,样本结果与厂方所说的是否有显著差异?厂方的说法是否可以接受?

类似这种根据样本观测值来判断一个有关总体的假设是否成立的问题,就是假设检验的问题。我们把任一关于单体分布的假设,统称为统计假设,简称假设。上例中,可以提出两个假设:一个称为原假设或零假设,记为H0:μ=80(度);另一个称为备择假设或对立假设,记为H1 :μ≠80(度)这样,上述假设检验问题可以表示为:

H0:μ=80 H1:μ≠80

原假设与备择假设相互对立,两者有且只有一个正确,备择假设的含义是,一旦否定原假设H0,备择假设H1备你选择。所谓假设检验问题就是要判断原假设H0是否正确,决定接受还是拒绝原假设,若拒绝原假设,就接受备择假设。

应该如何作出判断呢?如果样本测定的结果是100度甚至更高(或很低),我们从直观上能感到原假设可疑而否定它,因为原假设是真实时,在一次试验中出现了与80度相距甚远的小概率事件几乎是不可能的,而现在竟然出现了,当然要拒绝原假设H0。现在的问题是样本平均工作温度为83度,结果虽然与厂方说的80度有差异,但样本具有随机性,80度与83度之间的差异很可能是样本的随机性造成的。在这种情况下,要对原假设作出接受还是拒绝的抉择,就必须根据研究的问题和决策条件,对样本值与原假设的差异进行分析。若有充分理由认为这种差异并非是由偶然的随机因素造成的,也即认为差异是显著的,才能拒绝原假设,否则就不能拒绝原假设。假设检验实质上是对原假设是否正确进行检验,因此,检验过程中要使原假设得到维护,使之不轻易被否定,否定原假设必须有充分的理由;同时,当原假设被接受时,也只能认为否定它的根据不充分,而不是认为它绝对正确。

4.4.2 假设检验规则[识记]

样本既然取自总体,样本均值就必然包含着总体均值μ大小的信息。如上例,若原假设H0:μ=80为真,则| -80|一般应该小;否则| -80|一般应较大。因此,我们可以根据| -80|的大小,也即差异是否显著来决定接受还是拒绝原假设.| -80|越大越倾向于拒绝原假设,那么| -80|大到何种程度才能作出拒绝原假设的决定呢?为此,就需要制定一个检验规则(简称检验):

当| -80|≥C时,拒绝原假设H0;当| -80|< C时,接受原假设H0。

其中C是一个特定的参数,称为临界值,不同的C 值表示不同的检验。我们把拒绝原假设H0的范围称为拒绝域,接受原假设H0的范围称为接受域,因此,确定一个检验规则,实质是确定一个拒绝域.

怎样确定拒绝域呢?这涉及假设检验中的两类错误问题。

由于样本具有随机性,因此,根据样本作出判断就有可能犯两类错误,一类错误是原假设是正确的,按检验规则却拒绝了原假设,这类错误称为弃真错误或第I 类错误,其发生的概率记为α;另一类错误是,原假设是不正确的而按检验规则接受了原假设,这类错误称为取伪错误或第Ⅱ类错误,其发生的概率记为β。检验决策与两类错误的关系如下:

表4-3、检验决策与两类错误关系表

我们希望犯这两类错误的概率都非常小,由于在一定的样本容量下,α和β此消彼长,因而奈曼(Neyman)和皮尔生(Pearson)提出一个原则,即在控制犯第一类错误的概率α的条件下,尽量使犯第二类错误的概率β小。这一原则的含义是,原假设要受到维护,不轻易被否定;若检验结果否定原假设,则说明否定的理由是充分的,同时作出否定判断的可靠程度(即概率)1-α也得到保证。所以在实际问题中,为了通过样本观测值对某一陈述取得强有力的支持,通常把这种陈述本身作为备择假设,而将这种陈述的否定作为原假设。

在推断统计中,这种只控制α而不考虑β的假设检验,称为显著性检验,α称为显著性水平。最常用的α值为0.01、0.05、0.10等。一般情况下,根据研究的问题,如果犯弃真错误损失大,为减少这类错误,α取值小些,反之,α取值大些。

上例,给定显著性水平α,当原假设H0:μ=80为真时,则临界值C应满足:P(| -80| ≥C ) =α

由于该装置的工作温度X∽N ( 80 , 52 ),于是,容量n=16的样本的平均工作温度服从N(80,52/16),

于是P(|Z|≥)=α

由于Z∽N( 0, 1 ),故,

统计量在假设检验中称为检验统计量,把称为临界值。

当|Z|>临界值时,拒绝原假设H0;当|Z|<临界值接受原假设H0

取α=0.05,查表得=1.96

|Z|=|83-80|/1.25=2.4>1.96

也即统计量Z值落在拒绝域,由此可以认为这种装置的实际平均工作温度与厂方说的有显著差异,故拒绝原假设H0。

假设检验是数理统计学中根据一定假设条件由样本推断总体的一种方法。具体作法是:根据问题的需要对所研究的总体作某种假设,记作H0;选取合适的统计量,这个统计量的选取要使得在假设H0成立时,其分布为已知;由实测的样本,计算出统计量的值,并根据预先给定的显著性水平进行检验,作出拒绝或接受假设H0的判断

假设检验亦称“显著性检验(Test of statistical significance)”,是假设检验用来判断样本与样本,样本与总体的差异是由抽样误差引起还是本质差别造成的统计推断方法。其基本原理是先对总体的特征作出某种假设,然后通过抽样研究的统计推理,对此假设应该被拒绝还是接受作出推断。生物现象的个体差异是客观存在,以致抽样误差不可避免,所以我们不能仅凭个别样本的值来下结论。当遇到两个或几个样本均数(或率)、样本均数(率)与已知总体均数(率)有大有小时,应当考虑到造成这种差别的原因有两种可能:一是这两个或几个样本均数(或率)来自同一总体,其差别仅仅由于抽样误差即偶然性所造成;二是这两个或几个样本均数(或率)来自不同的总体,即其差别不仅由抽样误差造成,而主要是由实验因素不同所引起的。假设检验的目的就在于排除抽样误差的影响,区分差别在统计上是否成立,并了解事件发生的概率。在质量管理工作中经常遇到两者进行比较的情况,

如采购原材料的验证,我们抽样所得到的数据在目标值两边波动,有时波动很大,这时你如何进行判定这些原料是否达到了我们规定的要求呢?再例如,你先后做了两批实验,得到两组数据,你想知道在这两试实验中合格率有无显著变化,那怎么做呢?这时你可以使用假设检验这种统计方法,来比较你的数据,它可以告诉你两者是否相等,同时也可以告诉你,在你做出这样的结论时,你所承担的风险。假设检验的思想是,先假设两者相等,即:µ=µ0,然后用统计的方法来计算验证你的假设是否正确。用的假设检验有Z检验、T检验、配对检验、比例检验、秩和检验、卡方检验等。

编辑本段意义

假设检验是抽样推断中的一项重要内容。它是根据原资料作出一个总体指标是否等于某一个数值,某一随机变量是否服从某种概率分布的假设,然后利用样本资料采用一定的统计方法计算出有关检验的统计量,依据一定的概率原则,以较小的风险来判断估计数值与总体数值(或者估计分布与实际分布)是否存在显著差异,是否应当接受原假设选择的一种检验方法。用样本指标估计总体指标,其结论有的完全可靠,有的只有不同程度的可靠性,需要进一步加以检验和证实。通过检验,对样本指标与假设的总体指标之间是否存在差别作出判断,是否接受原假设。这里必须明确,进行检验的目的不是怀疑样本指标本身是否计算正确,而是为了分析样本指标和总体指标之间是否存在显著差异。从这个意义上,假设检验又称为显著性检验。进行假设检验,先要对假设进行陈述。通过下例加以说明。例如,设某工厂制造某种产品的某种精度服从平均数为方差为的正态分布,据过去的数据,已知平均数为75,方差为100。现在经过技术革新,改进了制造方法,出现了平均数大于75,方差没有变更,但仍存在平均数不超过75的可能性。试陈述为统计假设。根据上述情况,可有两种假设,一个是假想平均数不超过75,即假设另一个假想是平均数大于75,即假设如果我们把作为原假设,即被检验的假设,称作零假设,记作于是,假设相对于假设来说,是约定的、补充的假设,记作它和有两者选择其一的意思,即作为被检验的假设,则就是备择的,故称为备择假设或对立假设。还须指出,哪个是零假设,哪个是备择假设,是无关紧要的。我们关心的问题,是要探索哪一个假设被接受的问题。被接受的假设是要作为推理的基础。在实际问题中,一般要考虑事情发生的逻辑顺序和关心的事件,来设立零假设和备择假设。在作出了统计假设之后,就要采用适当的方法来决定是否应该接受零假设。由于运用统计方法所遇到的问题不同,因而解决问题的方法也不尽相同。但其解决方法的基本思想却是一致的,即都是“概率反证法”思想,即:(1)为了检验一个零假设(即虚拟假设)是否成立,先假定它是成立的,然后看接受这个假设之后,是否会导致不合理结果。如果结果是合理的,就接受它;如不合理,则否定原假设。(2)所谓导致不合理结果,就是看是否在一次观察中,出现小概率事件。通常把出现小概率事件的概率记为0,即显著性水平。它在次数函数图形中是曲线两端或一端的面积。因此,从统计检验来说,就涉及到双侧检验和单侧检验问题。在实践中采用何类检验是由实际问题的性质来决定的。一般可以这样考虑:①双侧检验。如果检验的目的是检验抽样的样本统计量与假设参数的差数是否过大(无论是正方向还是负方向),就把风险平分在右侧和左侧。比如显著性水平为0.05,即概率曲线左右两侧各占,即0.025。②单侧检验。这种检验只注意估计值是否偏高或偏低。如只注意偏低,则临界值在左侧,称左侧检验;如只注意偏高,则临界值在右侧,称右侧检验。对总体的参数的检量,是通过由样本计算的统计量来实现的。所以检验统计量起着决策者的作用。参数估计与假设检验统计推断是由样本的信息来推测母体性能的一种方法,它又可以分为两类问题,即参数估计和假设检验。实际生产和科学实验中,大量的问题是在获得一批数据后,要对母体的某一参数进行估计和检验。例如,我们对45钢的断裂韧性作了测定,取得了一批数据,然后要求45钢断裂韧性的平均值,或要求45钢断裂韧性的单侧下限值,或要求45钢断裂韧性的分散度(即

离散系数),这就是参数估计的问题。又如,经过长期的积累,知道了某材料的断裂韧性的平均值和标准差,经改进热处理后,又测得一批数据,试问新工艺与老工艺相比是否有显著差异,这就是假设检验的问题。这样可以看出,参数估计是假设检验的第一步,没有参数估计,也就无法完成假设检验。

编辑本段基本思想

假设检验的基本思想是小概率反证法思想。小概率思想是指小概率事件(P<0.01或P<0.05)在一次试验中基本上不会发生。反证法思想是先提出假设(检验假设H0),再用适当的统计方法确定假设成立的可能性大小,如可能性小,则认为假设不成立,若可能性大,则还不能认为假设成立。

编辑本段基本步骤

1、提出检验假设(又称无效假设,符号是H0))和备择假设(符号是H1)。H0:样本与总体或样本与样本间的差异是由抽样误差引起的;H1:样本与总体或样本与样本间存在本质差异;预先设定的检验水准为0.05;当检验假设为真,但被错误地拒绝的概率,记作α,通常取α=0.05或α=0.01。

2、选定统计方法,由样本观察值按相应的公式计算出统计量的大小,如X2值、t值等。根据资料的类型和特点,可分别选用Z检验,T检验,秩和检验和卡方检验等。

3、根据统计量的大小及其分布确定检验假设成立的可能性P的大小并判断结果。若P>α,结论为按α所取水准不显著,不拒绝H0,即认为差别很可能是由于抽样误差造成的,在统计上不成立;如果P≤α,结论为按所取α水准显著,拒绝H0,接受H1,则认为此差别不大可能仅由抽样误差所致,很可能是实验因素不同造成的,故在统计上成立。P值的大小一般可通过查阅相应的界值表得到。教学中的做法 1.根据实际情况提出原假设和备择假设 2.根据假设的特征,选择合适的检验统计量 3.根据样本观察值,计算检验统计量的观察值(obs) 4.选择许容显著性水平,并根据相应的统计量的统计分布表查出相应的临界值(ctrit) 5.根据检验统计量观察值的位置决定原假设取舍

编辑本段注意的问题

1、做假设检验之前,应注意资料本身是否有可比性。

2、当差别有统计学意义时应注意这样的差别在实际应用中有无意义。

3、根据资料类型和特点选用正确的假设检验方法。

4、根据专业及经验确定是选用单侧检验还是双侧检验。

5、当检验结果为拒绝无效假设时,应注意有发生I类错误的可能性,即错误地拒绝了本身成立的H0,发生这种错误的可能性预先是知道的,即检验水准那么大;当检验结果为不拒绝无效假设时,应注意有发生II类错误的可能性,即仍有可能错误地接受了本身就不成立的H0,发生这种错误的可能性预先是不知道的,但与样本含量和I类错误的大小有关系。

6、判断结论时不能绝对化,应注意无论接受或拒绝检验假设,都有判断错误的可能性。

7、报告结论时是应注意说明所用的统计量,检验的单双侧及P值的确切范围。

编辑本段正文

又称统计假设检验,是一种基本的统计推断形式,也是数理统计学的一个重要的分支。“假设”是指关于总体分布的一项命题。例如,一群人的身高服从正态分布N(μ,σ),则命题“均值μ≤1.70(米)”是一个假设。又如,有一批产品,其废品率为p,则“p≤0.03”这个命题也是一个假设。假设是否正确,要用从总体中抽出的样本进行检验,与此有关的理论和方法,构成假设检验的内容。假设检验设A是关于总体分布的一项命题,所有使命题A成立的总体分布构成一个集合h0,称为原假设(常简称假设)。使命题A不成立的所有总体分布构成另一个集合h1,称为备择假设。如果h0可以通过有限个实参数来描述,则称为参数假设,否则称为非参数假设(见非参数统计)。如果h0(或h1)只包含一个分布,则称原假设(或备择假设)为简单假设,否则为复合假设。对一个假设h0进行检验,就是要制定一个

规则,使得有了样本以后,根据这规则可以决定是接受它(承认命题A正确),还是拒绝它(否认命题A正确)。这样,所有可能的样本所组成的空间(称样本空间)被划分为两部分HA和HR(HA的补集),当样本x∈HA时,接受假设h0;当x∈HR时,拒绝h0。集合HR常称为检验的拒绝域,HA称为接受域。因此选定一个检验法,也就是选定一个拒绝域,故常把检验法本身与拒绝域HR等同起来。显著性检验有时,根据一定的理论或经验,认为某一假设h0成立,例如,通常有理由认为特定的一群人的身高服从正态分布。当收集了一定数据后,可以评价实际数据与理论假设h0之间的偏离,如果偏离达到了“显著”的程度就拒绝h0,这样的检验方法称为显著性检验。怎样去规定什么时候偏离达到显著的程度?通常是指定一个很小的正数α(如0.05,0.01),使当h0正确时,它被拒绝的概率不超过α,称α为显著性水平。这种假设检验问题的特点是不考虑备择假设,就上例而言,问题可以说成是考虑实验数据与理论之间拟合的程度如何,故此时又称为拟合优度检验。拟合优度检验是一类重要的显著性检验。假设检验K.皮尔森在1900年提出的Ⅹ检验是一个重要的拟合优度检验。设原假设h0是:“总体分布等于某个已知的分布函数F(x)”。把(-∞,∞)分为若干个两两无公共点的区间I1,I2,…,Ik,对任一个区间,以vj记大小为n的样本X1,X2,…,Xn中落在Ij内的个数,称为区间Ij的观测频数,另外,求出Ij的理论频数(对j=1,2,…,k都这样做),再算出由下式定义的Ⅹ统计量,皮尔森证明了:若对j=1,2,…,k,则当n→∞时,Ⅹ的极限分布是自由度为k-1的Ⅹ分布。于是在样本大小n相当大时,从Ⅹ分布表可查得Ⅹ分布的上α分位数(见概率分布)Ⅹ(k-1)。由此即得检验水平为α的拒绝域:{Ⅹ≥Ⅹα(k-1)}。如果原假设h 0为:总体服从分布族{Fθ,θ∈嘷},式中θ为未知参数,嘷为θ的所有可能取值的集合(称参数空间),也可得到类似的拒绝域,只要在计算理论频数vj 时,将所包含的未知参数θ用适当的点估计代替,即可计算Ⅹ统计量。但此时极限分布的自由度为k-Л-1,式中Л为θ中的独立参数的个数。柯尔莫哥洛夫检验(见非参数统计)也是一个重要的拟合优度检验方法。奈曼-皮尔森理论J.奈曼与 E.S.皮尔森合作,从假设检验1928年开始,对假设检验提出了一假设检验项系统的理论。他们认为,在检验一个假设h0时可能犯两类错误:第一类错误是真实情况为h0成立(即θ∈嘷0),但判断h0不成立,犯了“以真为假”的错误。第二类错误是h0实际不成立(即θ∈嘷1),但判断它成立,犯了“以假为真”的错误(见表)。这里嘷0,嘷1分别是使假设h0成立或不成立的θ的集合,显然嘷=嘷0+嘷1。当θ∈嘷0,样本X(即X1,X2,…,Xn组成的向量)∈HR,其概率Pθ(X∈HR)就是犯第一类错误的概率α;当θ∈嘷1,样本X∈HA,其概率就是犯第二类错误的概率β。通常人们不希望轻易拒绝h0,例如工厂的产品一般是假设检验合格的,出厂进行抽样检查时不希望轻易地被认为不合格,于是在限定犯第一类错误的概率不超过某个指定值α(称为检验水平)的条件下,寻求犯第二类错误的概率尽可能小的检验方法。为了描述检验的好坏,称θ的函数Pθ(X∈HR)为检验的功效函数。例如上述产品检验的例子中,所采用的检验可以是:当样品中的废品个数超过一定限度时,认为该批产品不合格,否则就认为合格。这个检验的功效函数有图示的形状,图中的p0、p1、α、β根据需要选定。这种图形清楚地描述了犯两类错误的概率。优良性准则基于奈曼-皮尔森理论及统计决策理论,可以提出一些准则,来比较为检验同一假设而提出的各种检验。较重要的准则有:假设检验一致最大功效(UMP)准则欲检验h0:θ∈嘷0,h1:θ∈嘷1;当给定检验水平α后,在所有满足的可供选择的检验HR中,是否有一个最好的,亦即:是否存在拒绝域H,使得对于所有θ∈嘷1及一切检验水平为α的H皆有。若这样的检验存在,则称HR为检验水平α的一致最大功效检验,简称UMP检验。奈曼与皮尔森在1933年提出了著名的奈曼-皮尔森引理。这是对简单假设寻求UMP检验的一个构造性的结果,即假设检验此时似然比检验就是UMP检验。对某些复合假设也找到了UMP检验,但并不是所有情况都存在UMP检验。因此有必要在对检验作某些限制下寻找最大功效检验或建立另外一些优良性准则。无

偏性准则要求检验在备择假设h1成立时作出正确判断的概率不小于检验水平α,这就是说在h0不成立时拒绝h0的概率要不小于在h0成立时拒绝h0的概率,这种性质称为无偏性,具有这种性质的检验称为无偏检验。显然,如果在无偏检验中存在一致最大功效检验就称为一致最大功效无偏检验(简称UMPU检验)。UMP检验不存在时,仍可能有UMPU检验存在。例如正态总体中方差未知时,为检验均值μ=μ0的t检验就是UMPU检验,但不是UMP 检验。假设检验因为假设检验在统计决策理论中是一种特殊的统计决策问题,两类错误影响可用特殊损失来表示。例如选取特殊的损失函数,使正确判断时损失为零,错判时损失为1。它就可归结为犯第一类错误假设检验的概率α和犯第二类错误的概率β。这同用功效函数Pθ(X∈HR)来叙述是一致的。因此把统计决策理论中容许性、同变性、贝叶斯决策、最小化最大等概念引进来,而得到容许检验、同变检验、贝叶斯检验和最小化最大检验。在同变检验限制下,又可以建立一致最大功效同变检验的概念。这些准则又可作为假设检验的优良性准则,从而扩大了假设检验的内容。寻求在一定准则下的最优检验是很困难的,何况这种最优检验有时并不存在。于是提假设检验出了若干依据直观的推理法,其中最重要的是似然比法。似然比检验运用与最大似然估计(见点估计)类似的原理,可得到似然比检验法。设样本X的分布密度即似然函数为l(尣,θ),θ∈嘷,欲检验的假设为h0:θ∈嘷0,称为似然比。显然0≤(尣)≤1,当(尣)太小时就拒绝h0,否则接受h0,其临界值λ0由检验水平α和(尣)在h0成立时的分布确定,即。然而,在一般情况下,寻求(尣的精确分布并不容易。1938年S.S.威尔克斯证明了:在相当假设检验广泛的条件下,-2ln(尣)是渐近Ⅹ分布的, 这就为大样本的似然比检验提供了实行的可能。用似然比法导出的重要检验有:假设检验U检验若总体遵从正态分布N(μ,σ),其中σ已知,X=(X1,X2,…,Xn)是从总体中抽取的简单随机样本,记,则遵从标准正态分布N(0,1),于是可考虑对μ的以下几种假设的检验,其中μ0是给定的常数,α为检验的水平,uα为标准正态分布的上α分位数。上述检验称为U 检验。t检验若总体服从正态分布N(μ,σ),但σ未知,记,,则t=遵从自由度为n-1的t分布,可对μ有以下的水平为α的检验,其中t α为自由度为n-1的t分布的上α分位数。这些检验称为t检验。假设检验F检验若X=(X1,X2,…,)及Y=(Y1,Y2,…,)分别为来自正态总体N(μ1,σ娝)及N(μ2,σ娤)的简单随机样本,记,,,,则遵从自由度为n1-1,n2-1的F分布,对比较σ娝与σ娤的假设有以下的水平为α的检验,其中Fα为自由度为(n1-1,n2-1)的F分布的上α分位数。假设检验这些检验称为F检验,在方差分析中有广泛的应用。参考书目E.L.Lehmann,Testing Statistical Hypothesis,John Wiley & Sons, New

三峡大学理学院2008年10期

对假设检验中若干问题的思考《北京建筑工程学院学报》2006年第2期

大学数学, College Mathematics, 2008年05期.假设检验中的三个问题及其思考

假设检验的类型

假设检验的类型 ——方差分析& 检验2

目录 一、方差分析 1.原理 2.步骤 3.实例 二、检验 1.原理 2.实例2

1.原理 (1)应用背景 在许多实际问题的统计分析中,我们不仅要讨论两个总体均值相等的假设检验问题,而且还要讨论两个以上总体的均值是否相等的假设检验问题,在这种情况下,我们就选择方差分析的方法来检验这些样本的平均数差异的显著程度。 (2)应用条件(运用方差分析方法需要满足的假定) ①观察对象来自所研究因素的各个水平之下的独立随机抽样;②每个水平下的样本都取自正态分布的总体;③各个总体有相同的方差。2 独立性正态性 方差齐性

1.原理 (3)基本原理 假定容量为n的k个样本取自同一总体。用k个样本的方差估计总体的方差;用全体k个样本的所有元素作为一个样本(样本和),并依此估算总体的方差,如果“原假设”成立,这两个估计值应该十分接近,如果这两个估计值相差很大,这k个样本就不可能都取自同一个总体。 因为方差分析用两个方差的估计值的比F作单侧检验,所以这种方法又称F 检验。检验用F分布进行。

2.步骤 (1)建立方差分析的数学模型; (2)确定各个总体是否服从正态分布,且具有相等的方差; (3)建立检验用的原假设和备择假设,给出显著水平; (4)计算总体方差的估计值和统计量F ; (5)根据F 做出判断。2

3.实例 1)研究目的 为了研究学生学习数学的成绩是否受教师教学水平的影响,现将一个数学提高班的学生分成三个小班,分别由甲、乙、丙三位教师任教。三个班各随机抽取五个学生的最终成绩见表。假定三个学生的最终成绩服从正态分布,试问三个班学生的最终成绩是否存在显著的差异?如果有差异,应推举哪位教师担任此班教学使教学效果最好(α=0.05)?

假设检验的基本步骤

假设检验的基本步骤 (三)假设检验的基本步骤 统计推断 1.建立假设检验,确定检验水准 H0和H1假设都是对总体特征的检验假设,相互联系且对立。 H0总是假设样本差别来自抽样误差,无效/零假设 H1是来自非抽样误差,有单双侧之分,备择假设。 检验水准,a=0.05 检验水准的含义 2.选定检验方法,计算检验统计量 选择和计算检验统计量要注意资料类型和实验设计类型及样本量的问题, 一般计量资料用t检验和u检验; 计数资料用χ2检验和u检验。 3.确定P值,作出统计推理 P≤a ,拒绝H0,接受H1 P> a,按a=0.05水准,不拒绝H0,无统计学意义或显著性差异 假设检验结论有概率性,无论使拒绝或不拒绝H0,都有可能发生错误 (四)两均数的假设检验(各种假设检验方法的适用条件及假设的特点、计算公式、自由度确定以及确定概率P值并做出推断结论) u检验适用条件 t检验适用条件 t检验和u检验 1.样本均数与总体均数比较 2.配对资料的比较/成组设计的两样本均数的比较 配对设计的情况:3点 3. 两个样本均数的比较 (1)两个大样本均数比较的u检验 (2)两个小样本均数比较的t检验 (五)假设检验的两类错误及注意事项(Ⅰ和Ⅱ类错误) 1.两类错误 拒绝正确的H0称Ⅰ型错误-弃真,用检验水准α表示,α=0.05,犯I型错误概率为0.05,理论上平均每100次抽样有5次发生此类错误; 接受错误的H0称Ⅱ型错误-存伪。用β表示,(1-β)为检验效能或把握度,意义为两总体有差异,按α水准检出差别的能力,1-β=0.9,若两总体确有差别,理论上平均每100次抽样有90次得出有差别的结论。 两者的关系:α愈大β愈小;反之α愈小β愈大。 2.假设检验中的注意事项 (1)随机化:代表性和均衡可比性 (2)选用适当的检验方法 (3)正确理解统计学意义 (4)结论不绝对 (5)单侧与双侧检验的选择 四.分类变量资料的统计描述

关于假设检验中检验统计量的选择及拒绝域的确定问题

关于假设检验中检验统计量的选择及拒绝域的确定问题 假设检验是根据样本所提供的信息检验假设是否成立的一种统计推断方法。在检验之前总体参数未知,先对总体参数提出一个假设的值,然后根据样本所提供的信息检验假设是否成立。 在假设检验中,如何根据已知条件选择检验统计量,并确定拒绝域和临界值,是非常重要的两个环节。学员在理解时容易出现混淆。 一、 根据已知条件选择检验统计量 这里要注意,样本均值x 的分布与根据样本均值及总体方差(或样本方差)构造的检验统计量的分布是两个不同的概念。根据抽样分布的理论,只要总体服从正态分布,那么,无论是大样本,还是小样本,其样本均值的分布均服从正态分布;如果总体的分布是非正态分布,在大样本情况下,其样本均值的分布仍服从正态分布,小样本的样本均值的分布则服从非正态分布。 但是,检验统计量的分布则不然。 (一) 对于小样本量 分两种情况: 1、在总体是正态分布的情况下,如果总体方差未知、小样本(n<30),检验统计量n s x /0 μ-的分布服从t 分布; 2、在总体服从非正态分布、小样本的情况下,检验统计量的分布也服从t 分布。 由于一般情况下总体方差未知,需要用样本方差来代替,所以,一般准则是:小样本量时用t 检验。 (二) 对于大样本量 在大样本量( 30≥n )的情况下,检验统计量的分布与样本均值的分布相同,服从正态分布,这一点比较容易理解。所以,概括来说,大样本量时用Z 检验。 选择用t 检验还是Z 检验,直接关系到选择t 临界值还是Z 临界值。 二、 拒绝域和临界值的确定 应结合分布的图形来理解接受域、拒绝域以及临界值。 (一)对于双侧检验 一般在双侧检验时,使用正态分布对总体均值进行检验,拒绝域为:2αZ Z >或 2αZ Z -<(或2αZ Z >) ;使用t 分布进行检验,拒绝域为:2αt t >或2αt t -<,(或2αt t >) ;使用2χ分布进行检验时(对总体方差的检验),若检验的统计量222αχ>χ或2122αχχ-<时,拒绝原假设。注意,这里使用的是 2α,因为双侧检验中有两个拒绝域,各占2 α。只要满足其中一个拒绝域,即可拒绝原假设。

统计学(五):几种常见的假设检验

定义 假设检验是用来判断样本与样本,样本与总体的差异是由抽样误差引起还是本质差别造成的统计推断方法。其基本原理是先对总体的特征作出某种假设,然后通过抽样研究的统计推理,对此假设应该被拒绝还是接受作出推断。 基本原理 (1)先假设总体某项假设成立,计算其会导致什么结果产生。若导致不合理现象产生,则拒绝原先的假设。若并不导致不合理的现象产生,则不能拒绝原先假设,从而接受原先假设。 (2)它又不同于一般的反证法。所谓不合理现象产生,并非指形式逻辑上的绝对矛盾,而是基于小概率原理:概率很小的事件在一次试验中几乎是不可能发生的,若发生了,就是不合理的。至于怎样才算是“小概率”呢?通常可将概率不超过0.05的事件称为“小概率事件”,也可视具体情形而取0.1或0.01等。在假设检验中常记这个概率为α,称为显著性水平。而把原先设定的假设成为原假设,记作H0。把与H0相反的假设称为备择假设,它是原假设被拒绝时而应接受的假设,记作H1。 假设的形式 H0——原假设,H1——备择假设 双侧检验:H0:μ = μ0, 单侧检验:,H1:μ < μ0 或,H1:μ > μ0假设检验就是根据样本观察结果对原假设(H0)进行检验,接受H0,就否定H1;拒绝H0,就接受H1。 假设检验的种类 下面介绍几种常见的假设检验 1.T检验 亦称student t检验(Student's t test),主要用于样本含量较小(例如n<30),总体标准差σ未知的正态分布资料。 目的:比较样本均数所代表的未知总体均数μ和已知总体均数μ0。 计算公式:统计量: 自由度:v=n - 1 适用条件: (1) 已知一个总体均数; (2) 可得到一个样本均数及该样本标准误; (3) 样本来自正态或近似正态总体。 T检验的步骤 1、建立虚无假设H0:μ1= μ2,即先假定两个总体平均数之间没有显著差异; 2、计算统计量T值,对于不同类型的问题选用不同的统计量计算方法;

假设检验中两种类型错误的关系

假设检验中两种类型错误之间的关系 (一) α与β是在两个前提下的概率。α是拒绝H0时犯错误的概率(这时前提是“H0为真”);β是接受H0时犯错误的概率(这时“H0为假”是前提),所以α+β不一定等于1。结合图7—2分析如下: 图7-2 α与β的关系示意图 如果H0:μ1=μ0为真,关于与μ0的差异就要在图7—2中左边的正态分布中讨论。对于某一显著性水平α其临界点为。(将两端各α/2放在同一端)。 右边表示H0的拒绝区,面积比率为α;左边表示H0的接受区,面积比率为1-α。在“H0为真”的前提下随机得到的落到拒绝区时我们拒绝H0是犯了错误的。由于落到拒绝区的概率为α,因此拒绝“H0为真”时所犯错误(I型)的概率等于α。而落到H0的接受区时,由于前提仍是“H0为真”,因此接受H0是正确决定,落在接受区的概率为1-α,那么正确接受H0的概率就等于1-α。如α=0.05则1-α=0.95,这0.05和0.95均为“H0为真”这一前提下的两个概率,一个指犯错误的可能性,一个指正确决定的可能性,这二者之和当然为1。但讨论β错误时前提就改变了,要在“H0为假”这一前提下讨论。对于H0是真是假我们事先并不能确定,如果H0为假、等价于H l为真,这时需要在图7—2中右边的正态分布中讨论·(H1:μ1>μ0),它与在“H0为真”的前提下所讨论的相似,落在临界点左边时要拒绝H l (即接受H0),而前提H l为真,因而犯了错误,这就是II型错误,其概率为β。很显然,当α=0.05时,β不一定等于0.95。

(二)在其他条件不变的情况下,α与β不可能同时减小或增大。这一点从图7—2也可以清楚看到。当临界点向右移时,α减小,但此时β一定增大;反之向左移则α增大β减小。一般在差异检验中主要关心的是能否有充分理由拒绝H0,从而证实H l,所以在统计中规定得较严。至于β往往就不予重视了,其实许多情况需要在规定的同时尽量减小β。这种场合最直接的方法是增大样本容量。因为样本平均数分布的标准差为,当n增大时样本平均数分布将变得陡峭,在α和其他条件不变时β会减小(见图7—3)。 (三)在图7—2中H l为真时的分布下讨论β错误已指出落到临界点左边时拒绝H l所犯错误的概率为β。那么落在临界点右边时接受H l则为正确决定,其概率等于1一β。换言之,当H l为真,即μ1与μ0确实有差异时(图7—2中,μ1与μ0的距离即表示μ1与μ0的真实差异),能以(1—β)的概率接受之。 图7-3 不同标准差影响β大小示意图 如图7—2所示,当α以及其他条件不变时,减小μ1与μ0的距离势必引起β增大、(1一β)减小,也就是说,其他条件不变,μ1与μ0真实差异很小时,正确

假设检验习题

第6章 假设检验练习题 选择题 1. 对总体参数提出某种假设,然后利用样本信息判断假设是否成立的过程称为( ) A.参数估计 B.双侧检验 C.单侧检验 D.假设检验 2.研究者想收集证据予以支持的假设通常称为( ) A.原假设 B.备择假设 C.合理假设 D.正常假设 3. 在假设检验中,原假设和备择假设( ) A.都有可能成立 B.都有可能不成立 C.只有一个成立而且必有一个成立 D.原假设一定成立,备择假设不一定成立 4. 在假设检验中,第Ⅰ类错误是指( ) A.当原假设正确时拒绝原假设 B.当原假设错误时拒绝原假设 C.当备择假设正确时未拒绝备择假设 D.当备择假设不正确时拒绝备择假设 5. 当备择假设为: ,此时的假设检验称为( ) A.双侧检验 B.右侧检验 C.左侧检验 D.显著性检验 6. 某厂生产的化纤纤度服从正态分布,纤维纤度的标准均值为1.40。某天测得25根纤维的纤度的均值为x =1.39,检验与原来设计的标准均值相比是否有所下降,要求的显著性水平为α=0.05,则下列正确的假设形式是( ) H0: μ=1.40, H1: μ≠1.40 H0: μ≤1.40, H1: μ>1.40 H0: μ<1.40, H1: μ≥1.40 H0: μ≥1.40, H1: μ<1.40 7一项研究表明,司机驾车时因接打手机而发生事故的比例超过20%,用来检验这一结论的原假设和备择假设应为 A. H0:μ≤20%, H1: μ>20% B. H0:π=20% H1: π≠20% C. H0:π≤20% H1: π>20% D. H0:π≥20% H1: π<20% 8. 在假设检验中,不拒绝原假设意味着( )。 A.原假设肯定是正确的 B.原假设肯定是错误的 C.没有证据证明原假设是正确的 D.没有证据证明原假设是错误的 9. 若检验的假设为H0: μ≥μ0, H1: μ<μ0 ,则拒绝域为( ) A. z>zα B. z<- zα C. z>zα/2 或z<- zα/2 D. z>zα或 z<-zα 10.若检验的假设为H0: μ≤μ0, H1: μ>μ0 ,则拒绝域为( ) A. z> zα B. z<- zα C. z> zα/2 或z<- zα/2 D. z> zα或 z<- zα 11. 如果原假设H0为真,所得到的样本结果会像实际观测取值那么极端或更极端的概率称为 ( ) A.临界值 B.统计量 C. P 值 D. 事先给定的显著性水平 12. 对于给定的显著性水平α,根据P 值拒绝原假设的准则是( ) A. P= α B. P< α C. P> α D. P= α=0 13. 下列几个数值中,检验的p 值为哪个值时拒绝原假设的理由最充分( ) A.95% B.50% C.5% D.2% 14. 若一项假设规定显著性水平为α=0.05,下面的表述哪一个是正确的( ) A. 接受H0 时的可靠性为95% B. 接受H1 时的可靠性为95% C. H0为假时被接受的概率为5% D. H1为真时被拒绝的概率为5% 15. 进行假设检验时,在样本量一定的条件下,犯第一类错误的概率减小,犯第二类错误的概率就会( ) 01:μμ

关于假设检验中检验统计量的选择及拒绝域的确定问题

关于假设检验中检验统计量的选择及拒绝域的 确定问题 集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

关于假设检验中检验统计量的选择及拒绝域的确定问题 假设检验是根据样本所提供的信息检验假设是否成立的一种统计推断方法。在检验之前总体参数未知,先对总体参数提出一个假设的值,然后根据样本所提供的信息检验假设是否成立。 在假设检验中,如何根据已知条件选择检验统计量,并确定拒绝域和临界值,是非常重要的两个环节。学员在理解时容易出现混淆。 一、 根据已知条件选择检验统计量 这里要注意,样本均值x 的分布与根据样本均值及总体方差(或样本方差)构造的检验统计量的分布是两个不同的概念。根据抽样分布的理论,只要总体服从正态分布,那么,无论是大样本,还是小样本,其样本均值的分布均服从正态分布;如果总体的分布是非正态分布,在大样本情况下,其样本均值的分布仍服从正态分布,小样本的样本均值的分布则服从非正态分布。 但是,检验统计量的分布则不然。 (一)对于小样本量 分两种情况: 1、在总体是正态分布的情况下,如果总体方差未知、小样本 (n<30),检验统计量n s x /0 μ-的分布服从t 分布; 2、在总体服从非正态分布、小样本的情况下,检验统计量的分布也服从t 分布。 由于一般情况下总体方差未知,需要用样本方差来代替,所以,一般准则是:小样本量时用t 检验。

(二)对于大样本量 在大样本量( 30≥n )的情况下,检验统计量的分布与样本均值的分布相同,服从正态分布,这一点比较容易理解。所以,概括来说,大样本量时用Z 检验。 选择用t 检验还是Z 检验,直接关系到选择t 临界值还是Z 临界值。 二、 拒绝域和临界值的确定 应结合分布的图形来理解接受域、拒绝域以及临界值。 (一)对于双侧检验 一般在双侧检验时,使用正态分布对总体均值进行检验,拒绝域为:2αZ Z >或2αZ Z -<(或2αZ Z >);使用t 分布进行检验,拒绝域为: 2αt t >或2αt t -<,(或2αt t >);使用2χ分布进行检验时(对总体方差的检验),若检验的统计量22 αχ>χ或2122αχχ-<时,拒绝原假设。注意,这里使用的是2α,因为双侧检验中有两个拒绝域,各占2 α。只要满足其中一个拒绝域,即可拒绝原假设。 在双侧检验的情况下,拒绝域在接受域的两侧,或分布图形的两端。 (二)对于单侧检验 在进行单侧检验时,使用正态分布或t 分布对总体均值进行检验,拒绝域与备择假设“大于”或“小于”的方向相同。如,μ≥1.40 H 1:μ <1.40,则拒绝域为Z 或t 值<临界值。这里只有一个拒绝域,所以不需要将α除以2。 特别要注意,如果计算得到的检验统计量的值为负,则要取临界值的负值来进行比较。因为从数轴上看,临界值的正值在另一侧,将它与为

假设检验的基本步骤

假设检验的基本步骤

————————————————————————————————作者:————————————————————————————————日期:

假设检验的基本步骤 (三)假设检验的基本步骤 统计推断 1.建立假设检验,确定检验水准 H0和H1假设都是对总体特征的检验假设,相互联系且对立。 H0总是假设样本差别来自抽样误差,无效/零假设 H1是来自非抽样误差,有单双侧之分,备择假设。 检验水准,a=0.05 检验水准的含义 2.选定检验方法,计算检验统计量 选择和计算检验统计量要注意资料类型和实验设计类型及样本量的问题, 一般计量资料用t检验和u检验; 计数资料用χ2检验和u检验。 3.确定P值,作出统计推理 P≤a,拒绝H0,接受H1 P>a,按a=0.05水准,不拒绝H0,无统计学意义或显著性差异 假设检验结论有概率性,无论使拒绝或不拒绝H0,都有可能发生错误 (四)两均数的假设检验(各种假设检验方法的适用条件及假设的特点、计算公式、自由度确定以及确定概率P值并做出推断结论) u检验适用条件 t检验适用条件 t检验和u检验 1.样本均数与总体均数比较 2.配对资料的比较/成组设计的两样本均数的比较 配对设计的情况:3点 3. 两个样本均数的比较 (1)两个大样本均数比较的u检验 (2)两个小样本均数比较的t检验 (五)假设检验的两类错误及注意事项(Ⅰ和Ⅱ类错误) 1.两类错误 拒绝正确的H0称Ⅰ型错误-弃真,用检验水准α表示,α=0.05,犯I型错误概率为0.05,理论上平均每100次抽样有5次发生此类错误; 接受错误的H0称Ⅱ型错误-存伪。用β表示,(1-β)为检验效能或把握度,意义为两总体有差异,按α水准检出差别的能力,1-β=0.9,若两总体确有差别,理论上平均每100次抽样有90次得出有差别的结论。 两者的关系:α愈大β愈小;反之α愈小β愈大。 2.假设检验中的注意事项 (1)随机化:代表性和均衡可比性 (2)选用适当的检验方法 (3)正确理解统计学意义 (4)结论不绝对 (5)单侧与双侧检验的选择 四.分类变量资料的统计描述

假设检验习题

第6章 假设检验练习题 一. 选择题 1. 对总体参数提出某种假设,然后利用样本信息判断假设是否成立的过程称为( ) A.参数估计 B.双侧检验 C.单侧检验 D.假设检验 2.研究者想收集证据予以支持的假设通常称为( ) A.原假设 B.备择假设 C.合理假设 D.正常假设 3. 在假设检验中,原假设和备择假设( ) A.都有可能成立 B.都有可能不成立 ) C.只有一个成立而且必有一个成立 D.原假设一定成立,备择假设不一定成立 4. 在假设检验中,第Ⅰ类错误是指( ) A.当原假设正确时拒绝原假设 B.当原假设错误时拒绝原假设 C.当备择假设正确时未拒绝备择假设 D.当备择假设不正确时拒绝备择假设 5. 当备择假设为: ,此时的假设检验称为( ) A.双侧检验 B.右侧检验 C.左侧检验 D.显著性检验 6. 某厂生产的化纤纤度服从正态分布,纤维纤度的标准均值为。某天测得25根纤维的纤度的均值为x =,检验与原来设计的标准均值相比是否有所下降,要求的显著性水平为α=,则下列正确的假设形式是( ) A. H 0: μ=, H 1: μ≠ B. 】 C. H 0: μ≤, H 1: μ> D. H 0: μ<, H 1: μ≥ E. H 0: μ≥, H 1: μ< 7一项研究表明,司机驾车时因接打手机而发生事故的比例超过20%,用来检验这一结论的原假设和备择假设应为 A. H 0:μ≤20%, H 1: μ>20% B. H 0:π=20% H 1: π≠20% C. H 0:π≤20% H 1: π>20% D. H 0:π≥20% H 1: π<20% 8. 在假设检验中,不拒绝原假设意味着( )。 A.原假设肯定是正确的 B.原假设肯定是错误的 《 C.没有证据证明原假设是正确的 D.没有证据证明原假设是错误的 9. 若检验的假设为H 0: μ≥μ0, H 1: μ<μ0 ,则拒绝域为( ) A. z>z α B. z<- z α C. z>z α/2 或z<- z α/2 D. z>z α或 z<-z α 10.若检验的假设为H 0: μ≤μ0, H 1: μ>μ0 ,则拒绝域为( ) A. z> z α B. z<- z α C. z> z α/2 或z<- z α/2 D. z> z α或 z<- z α 11. 如果原假设H 0为真,所得到的样本结果会像实际观测取值那么极端或更极端的概率称为 ( ) A.临界值 B.统计量 C. P 值 D. 事先给定的显著性水平 12. 对于给定的显著性水平α,根据P 值拒绝原假设的准则是( ) 】 A. P= α B. P< α C. P> α D. P= α=0 01:μμ

假设检验方法选择

(一)完全随机设计: 1.计量资料: 推断两组总体均数是否相等推断多组总体均数是否不全相等 n均较大(≥60)①两大样本的u检验; ②两样本的t检验; 完全随机设计资料的方差分析 n不大&满足 正态性(或近似正态性)与方差齐性①两样本t检验; ②完全随机设计资料的方差分析 样本含量不大&不满足方差齐性①近似t(t')检验 ②非参数检验(wilcoxon、 Kruskal-Wallis秩和检验) ①近似F(F’)检验; ②非参数检验(Kruskal-w alli s秩 和检验…) 2.计数资料: 四格表资料RxC表资料 样本总例数n≥40且T≤5的格子数不超过1/5 ①两样本率比较的u检验; ②x2检验(卡方检验); ③Fisher确切概率检验 ①X2检验; ②Fisher确切概率检验; 样本总例数n≥40且 5 > T≥1的格子数超过1/5 ①两样本率比较的校正u检验; ②校正X2检验; ③Fishe r确切概率检验 Fisher确切概率检验 样本总例数 n<40或T<1 或P接近于α Fisher确切概率检验 3.等级资料: 主要用秩转换的非参数检验——推断总体分布(或分布位置)是否相同 ①两样本比较——wilcoxon秩和检验或Kruskal-Wallis秩和检验 ②多样本比较——Kruskal-Wallis秩和检验

(二) 配对设计、配伍组设计(随机区组设计): 1. 计量资料: 推断两个总体均数是否不等 (差值的总体均数与0是否不等) 推断多个总体均数是否不等 对子数n 较 大(n≥60) 配对差值的单样本u 检验; 随机区组设计资料的方差分析 对子数n 不太大&差值满足正态性要求(或数据变换后满足) ①配对t 检验; ②随机区组设计资料的方差分析 对子数n 不太大&差值不满足正态性要求 非参数检验 (配对wilcoxon 符号秩检验、随机区组设计资料的Friedman 秩和检验) 非参数检验 (Friedman 秩和检验) 2. 计数资料(多为配对四格表资料): 推断两个总体率是否不等时,不相同结果频数为b 与c: ① b +c ≥40:配对四格表资料X 2检验或Fisher 确切概率检验 ② b +c < 40:校正的配对四格表资料X 2检验或Fisher 确切概率检验 3.等级资料: 主要用秩转换的非参数检验——推断总体分布(或分布位置)是否相同 ① 配对设计:wilcoxon 符号秩和检验; ② 配伍组设计(随机区组设计): Friedman 秩和检验。 (三) 其他设计方案: 交叉设计、拉丁方设计、正交试验设计、嵌套设计、析因试验设计、重复测量设计等,若获取资料为计量资料,当满足相应条件时,可分别采用该设计方案对应的方差分析。

第四节 假设检验的基本原理与方法

假设检验地基本思想[理解] 假设检验是除参数估计之外地另一类重要地统计推断问题.它地基本思想可以用小概率原理来解释.所谓小概率原理,就是认为小概率事件在一次试验中是几乎不可能发生地.也就是说,对总体地某个假设是真实地,那么不利于或不能支持这一假设地事件在一次试验中是几乎不可能发一地;要是在一次试验中事件竟然发生了,我们就有理由怀疑这一假设地真实性,拒绝这一假设. 文档来自于网络搜索 例:某公司想从国外引进一种自动加工装置.这种装置地工作温度服从正态分布(μ,),厂方说它地平均工作温度是度.从该装置试运转中随机测试次,得到地平均工作温度是度.该公司考虑,样本结果与厂方所说地是否有显著差异?厂方地说法是否可以接受?文档来自于网络搜索 类似这种根据样本观测值来判断一个有关总体地假设是否成立地问题,就是假设检验地问题.我们把任一关于单体分布地假设,统称为统计假设,简称假设.上例中,可以提出两个假设:一个称为原假设或零假设,记为:μ(度);另一个称为备择假设或对立假设,记为:μ≠(度)这样,上述假设检验问题可以表示为:文档来自于网络搜索 :μ :μ≠ 原假设与备择假设相互对立,两者有且只有一个正确,备择假设地含义是,一旦否定原假设,备择假设备你选择.所谓假设检验问题就是要判断原假设是否正确,决定接受还是拒绝原假设,若拒绝原假设,就接受备择假设.文档来自于网络搜索 应该如何作出判断呢?如果样本测定地结果是度甚至更高(或很低),我们从直观上能感到原假设可疑而否定它,因为原假设是真实时,在一次试验中出现了与度相距甚远地小概率事件几乎是不可能地,而现在竟然出现了,当然要拒绝原假设.现在地问题是样本平均工作温度为度,结果虽然与厂方说地度有差异,但样本具有随机性,度与度之间地差异很可能是样本地随机性造成地.在这种情况下,要对原假设作出接受还是拒绝地抉择,就必须根据研究地问题和决策条件,对样本值与原假设地差异进行分析.若有充分理由认为这种差异并非是由偶然地随机因素造成地,也即认为差异是显著地,才能拒绝原假设,否则就不能拒绝原假设.假设检验实质上是对原假设是否正确进行检验,因此,检验过程中要使原假设得到维护,使之不轻易被否定,否定原假设必须有充分地理由;同时,当原假设被接受时,也只能认为否定它地根据不充分,而不是认为它绝对正确. 文档来自于网络搜索 假设检验规则[识记] 样本既然取自总体,样本均值就必然包含着总体均值μ大小地信息.如上例,若原假设:μ为真,则一般应该小;否则一般应较大.因此,我们可以根据地大小,也即差异是否显著来决定接受还是拒绝原假设越大越倾向于拒绝原假设,那么大到何种程度才能作出拒绝原假设地决定呢?为此,就需要制定一个检验规则(简称检验):文档来自于网络搜索当≥时,拒绝原假设;当< 时,接受原假设. 其中是一个特定地参数,称为临界值,不同地值表示不同地检验.我们把拒绝原假设地范围称为拒绝域,接受原假设地范围称为接受域,因此,确定一个检验规则,实质是确定一个拒绝域.文档来自于网络搜索 怎样确定拒绝域呢?这涉及假设检验中地两类错误问题. 由于样本具有随机性,因此,根据样本作出判断就有可能犯两类错误,一类错误是原假设是正确地,按检验规则却拒绝了原假设,这类错误称为弃真错误或第类错误,其发生地概率记为α ;另一类错误是,原假设是不正确地而按检验规则接受了原假设,这类错误称为取伪错误或第Ⅱ类错误,其发生地概率记为β.检验决策与两类错误地关系如下:文档来自于网络搜索 表、检验决策与两类错误关系表

07第七章 假设检验与方差分析 习题答案

第七章 假设检验与方差分析 习题答案 一、名词解释 用规范性的语言解释统计学中的名词。 1. 假设检验:对总体分布或参数做出某种假设,然后再依据抽取的样本信息,对假设是否正确做出统计判断,即是否拒绝这种假设。 2. 原假设:又叫零假设或无效假设,是待检验的假设,表示为 H 0,总是含有等号。 3. 备择假设:是零假设的对立,表示为 H 1,总是含有不等号。 4. 单侧检验:备择假设符号为大于或小于时的假设检验。 5. 显著性水平:原假设为真时,拒绝原假设的概率。 6. 方差分析:是检验多个总体均值是否相等的一种统计分析方法。 二、填空题 根据下面提示的内容,将适宜的名词、词组或短语填入相应的空格之中。 1. u ,n x σμ0 -,标准正态; ),(),(2/2/+∞--∞n z n z σ σ αα 2. 参数检验,非参数检验 3. 弃真,存伪 4. 方差 5. 卡方, F 6. 方差分析 7. t ,u 8. n s x 0 μ-,不拒绝 9. 单侧,双侧 10.新产品的废品率为5% ,0.01 11.相关,总变异,组间变异,组内变异 12.总变差平方和=组间变差平方和+组内变差平方和 13.连续,离散 14.总体均值 15.因子,水平 16.组间,组内 17.r-1,n-r 18. 正态,独立,方差齐

三、单项选择 从各题给出的四个备选答案中,选择一个最佳答案,填入相应的括号中。 1.B 2.B 3. B 4.A 5. C 6. B 7. C 8. A 9. D 10. A 11. D 12. C 四、多项选择 从各题给出的四个备选答案中,选择一个或多个正确的答案,填入相应的括号中。 1.AC 2.A 3.B 4.BD 5. AD 五、判断改错 对下列命题进行判断,在正确命题的括号内打“√”;在错误命题的括号内打“×”,并在错误的地方下划一横线,将改正后的内容写入题下空白处。 1. 在任何情况下,假设检验中的两类错误都不可能同时降低。 ( × ) 样本量一定时 2. 对于两样本的均值检验问题,若方差均未知,则方差分析和t 检验均可使用,且两者检验结果一致。 ( √ ) 3. 方差分析中,组间离差平方和总是大于组内离差平方和。( × ) 不一定 4. 在假设检验中,如果在显著性水平0.05下拒绝了 00:μμ≤H ,则在同一水平一定可以拒绝假设00:μμ=H 。( × ) 不一定 5. 为检验k 个总体均值是否显著不同,也可以用t 检验,且与方差分析相比,犯第一类错误的概率不变。( × ) 会增加 6. 方差分析中,若拒绝了零假设,则认为各个总体均值均有显著性差异。( × ) 不完全相等 六、简答题 根据题意,用简明扼要的语言回答问题。 1. 假设检验与统计估计有何区别与联系? 【答题要点】 假设检验是在给定显著性水平下,计算出拒绝域,并根据样本统计量信息来做出是否拒

最新第5章-假设检验思考与练习参考答案

第5章 假设检验 思考与练习参考答案 一、最佳选择题 1. 样本均数比较作t 检验时,分别取以下检验水准,以( E )所取Ⅱ类错误最小。 A.0.01α= B. 0.05α= C. 0.10α= D. 0.20α= E. 0.30α= 2. 在单组样本均数与一个已知的总体均数比较的假设检验中,结果t = 3.24,t 0.05,v =2.086, t 0.01,v =2.845。正确的结论是( E )。 A. 此样本均数与该已知总体均数不同 B. 此样本均数与该已知总体均数差异很大 C. 此样本均数所对应的总体均数与该已知总体均数差异很大 D. 此样本均数所对应的总体均数与该已知总体均数相同 E. 此样本均数所对应的总体均数与该已知总体均数不同 3. 假设检验的步骤是( A )。 A. 建立假设,选择和计算统计量,确定P 值和判断结果 B. 建立无效假设,建立备择假设,确定检验水准 C. 确定单侧检验或双侧检验,选择t 检验或Z 检验,估计Ⅰ类错误和Ⅱ类错误 D. 计算统计量,确定P 值,作出推断结论 E. 以上都不对 4. 作单组样本均数与一个已知的总体均数比较的t 检验时,正确的理解是( C )。 A. 统计量t 越大,说明两总体均数差别越大 B. 统计量t 越大,说明两总体均数差别越小 C. 统计量t 越大,越有理由认为两总体均数不相等 D. P 值就是α E. P 值不是α,且总是比α小 5. 下列( E )不是检验功效的影响因素的是: A. 总体标准差σ B. 容许误差δ C. 样本含量n D. Ⅰ类错误α E. Ⅱ类错误β 二、思考题 1.试述假设检验中α与P 的联系与区别。 答:α值是决策者事先确定的一个小的概率值。 P 值是在0H 成立的条件下,出现当前检验统计量以及更极端状况的概率。

熟练使用SPSS 17.0进行假设检验的方法

熟练使用SPSS 进行假设检验 [例] 某克山病区测得11例克山病患者与13名健康人的血磷值mmol/L如下,问该地急性克山病患者与健康人的血磷值是否不同。 表1 克山病区调查数据结果 患者 健康人 1.录入数据。将组别设为g,可将患者组设为1,健康人设为2,血磷值设为x,如患者组中第一个测量到的血磷值为,则g为1,x为,其他数据均仿此录入,如下图所示。 图1 数据输入界面 2.统计分析。依次选择“Analyze”、“ Compare means”、“ Independent Samples T Test”。

图2 选择分析工具 3.弹出对话框如下图所示,将x选入Test Variables、g选入Grouping Variable,并单击下方的Define Groups按钮,弹出定义组对话框,默认选项为Use Specified Value,在Group1和Group2框中分别填入1和2,即要对组别变量值为1和2的两个组做t检验,另外Options对话框中可选择置信度和处理缺失值的方法。 图3 选择变量进入右侧的分析列表 SPSS输出的结果和结果说明:

图4 输出结果 表2 统计量描述列表 组统计量 g N均值标准差均值的标准误 x111.42179.12718 213.42215.11708 表3 假设检验结果表 独立样本检验 方差方程的 Levene 检验均值方程的 t 检验 差分的 95% 置信区间 F Sig.t df Sig.(双侧)均值差值标准误差值下限上限 x 假设方差相等.032.86022.019.43629.17288.07777.79482 假设方差不相等.020.43629.17286.07716.79542第一个表格是统计描述,给出了两个组的样本数N、均值Mean、标准偏差、标准误差Std.

16种常用的数据分析方法汇总

16种常用的数据分析方法汇总 经常会有朋友问到一个朋友,数据分析常用的分析方法有哪些,我需要学习哪个等等之类的问题,今天数据分析精选给大家整理了十六种常用的数据分析方法,供大家参考学习。 一、描述统计 描述性统计是指运用制表和分类,图形以及计筠概括性数据来描述数据的集中趋势、离散趋势、偏度、峰度。 1、缺失值填充:常用方法:剔除法、均值法、最小邻居法、比率回归法、决策树法。 2、正态性检验:很多统计方法都要求数值服从或近似服从正态分布,所以之前需要进行正态性检验。常用方法:非参数检验的K-量检验、P-P图、Q-Q图、W检验、动差法。 二、假设检验 1、参数检验 参数检验是在已知总体分布的条件下(一股要求总体服从正态分布)对一些主要的参数(如均值、百分数、方差、相关系数等)进行的检验。 1)U验使用条件:当样本含量n较大时,样本值符合正态分布 2)T检验使用条件:当样本含量n较小时,样本值符合正态分布 A 单样本t检验:推断该样本来自的总体均数μ与已知的某一总体均数μ0 (常为理论值或标准值)有无差别; B 配对样本t检验:当总体均数未知时,且两个样本可以配对,同对中的两者在可能会影响处理效果的各种条件方面扱为相似; C 两独立样本t检验:无法找到在各方面极为相似的两样本作配对比较时使用。 2、非参数检验 非参数检验则不考虑总体分布是否已知,常常也不是针对总体参数,而是针对总体的某些一股性假设(如总体分布的位罝是否相同,总体分布是否正态)进行检验。 适用情况:顺序类型的数据资料,这类数据的分布形态一般是未知的。 A 虽然是连续数据,但总体分布形态未知或者非正态; B 体分布虽然正态,数据也是连续类型,但样本容量极小,如10以下; 主要方法包括:卡方检验、秩和检验、二项检验、游程检验、K-量检验等。 三、信度分析 检査测量的可信度,例如调查问卷的真实性。 分类: 1、外在信度:不同时间测量时量表的一致性程度,常用方法重测信度 2、内在信度;每个量表是否测量到单一的概念,同时组成两表的内在体项一致性如何,常用方法分半信度。 四、列联表分析

第四节 假设检验的基本原理与方法

第四节假设检验的基本原理与方法 4.4.1假设检验的基本思想[理解] 假设检验是除参数估计之外的另一类重要的统计推断问题。它的基本思想可以用小概率原理来解释。所谓小概率原理,就是认为小概率事件在一次试验中是几乎不可能发生的。也就是说,对总体的某个假设是真实的,那么不利于或不能支持这一假设的事件A在一次试验中是几乎不可能发一的;要是在一次试验中事件A竟然发生了,我们就有理由怀疑这一假设的真实性,拒绝这一假设。 例7:某公司想从国外引进一种自动加工装置。这种装置的工作温度X服从正态分布(μ,52),厂方说它的平均工作温度是80度。从该装置试运转中随机测试16次,得到的平均工作温度是83度。该公司考虑,样本结果与厂方所说的是否有显著差异?厂方的说法是否可以接受? 类似这种根据样本观测值来判断一个有关总体的假设是否成立的问题,就是假设检验的问题。我们把任一关于单体分布的假设,统称为统计假设,简称假设。上例中,可以提出两个假设:一个称为原假设或零假设,记为H0:μ=80(度);另一个称为备择假设或对立假设,记为H1 :μ≠80(度)这样,上述假设检验问题可以表示为: H0:μ=80 H1:μ≠80 原假设与备择假设相互对立,两者有且只有一个正确,备择假设的含义是,一旦否定原假设H0,备择假设H1备你选择。所谓假设检验问题就是要判断原假设H0是否正确,决定接受还是拒绝原假设,若拒绝原假设,就接受备择假设。 应该如何作出判断呢?如果样本测定的结果是100度甚至更高(或很低),我们从直观上能感到原假设可疑而否定它,因为原假设是真实时,在一次试验中出现了与80度相距甚远的小概率事件几乎是不可能的,而现在竟然出现了,当然要拒绝原假设H0。现在的问题是样本平均工作温度为83度,结果虽然与厂方说的80度有差异,但样本具有随机性,80度与83度之间的差异很可能是样本的随机性造成的。在这种情况下,要对原假设作出接受还是拒绝的抉择,就必须根据研究的问题和决策条件,对样本值与原假设的差异进行分析。若有充分理由认为这种差异并非是由偶然的随机因素造成的,也即认为差异是显著的,才能拒绝原假设,否则就不能拒绝原假设。假设检验实质上是对原假设是否正确进行检验,因此,检验过程中要使原假设得到维护,使之不轻易被否定,否定原假设必须有充分的理由;同时,当原假设被接受时,也只能认为否定它的根据不充分,而不是认为它绝对正确。 4.4.2 假设检验规则[识记] 样本既然取自总体,样本均值就必然包含着总体均值μ大小的信息。如上例,若原假设H0:μ=80为真,则| -80|一般应该小;否则| -80|一般应较大。因此,我们可以根据| -80|的大小,也即差异是否显著来决定接受还是拒绝原假设.| -80|越大越倾向于拒绝原假设,那么| -80|大到何种程度才能作出拒绝原假设的决定呢?为此,就需要制定一个检验规则(简称检验): 当| -80|≥C时,拒绝原假设H0;当| -80|< C时,接受原假设H0。 其中C是一个特定的参数,称为临界值,不同的C 值表示不同的检验。我们把拒绝原假设H0的范围称为拒绝域,接受原假设H0的范围称为接受域,因此,确定一个检验规则,实质是确定一个拒绝域. 怎样确定拒绝域呢?这涉及假设检验中的两类错误问题。 由于样本具有随机性,因此,根据样本作出判断就有可能犯两类错误,一类错误是原假设是正确的,按检验规则却拒绝了原假设,这类错误称为弃真错误或第I 类错误,其发生的概率记为α;另一类错误是,原假设是不正确的而按检验规则接受了原假设,这类错误称为取伪错误或第Ⅱ类错误,其发生的概率记为β。检验决策与两类错误的关系如下:

相关文档
最新文档