碳纤维风电叶片存在的缺陷及解决方法

碳纤维风电叶片存在的缺陷及解决方法
碳纤维风电叶片存在的缺陷及解决方法

碳纤维风电叶片存在的缺陷及解决方法

随着叶片长度的增加,对增强材料的强度和刚度等性能提出了新的要求,玻璃纤维在大型复合材料叶片制造

中逐渐显现出性能方面的不足。为了保证在极端风载下叶尖不碰塔架,叶片必须具有足够的刚度。减轻叶片的重量,又要满足强度与刚度要求,有效的办法是采用碳纤维增强。尽管如此,碳纤维在应用中也存在诸多的问题和缺陷。碳纤维应用的缺陷

(1)碳纤维是一种昂贵纤维材料,在碳纤维应用过程中,价格是主要障碍,另外,性价比影响了它在风力发电上

的大范围应用。必须当叶片超过一定尺寸后,因为材料用量下降,才能比玻纤叶片便宜。目前采用碳纤维和玻璃纤维共混结构是一种比较好的办法,而且还综合了两种材料的性能。另外一种方法是采用从沥青制造的成本较低的碳纤维,这种碳纤维的价格可以降到5美元/磅的心理价位。

(2)CFRP比GFRP更具脆性,一般被认为更趋于疲劳,但是研究表明,只要注意生产质量的控制以及材料和结构

的几何条件,就可足以保证长期的耐疲劳。

(3)直径较小的碳纤维表面积较大,复合材料成型加工浸润比较困难。由于碳纤维叫、片一般采川环氧树脂制造

,要通过降低环氧树脂制造的熟度而不降低它的力学性能是比较困难的,这也是一些厂家采用预浸料工艺的原因。此外碳纤维复合材料的性能受工艺眼影响敏感(如铺层方向),对工艺要求较高。

(4)碳纤维复合材料透明性差,难以进行内部检查。

但碳纤维在大型叶片中的应用已成为一种不可改变的趋势。目前,全球各大叶片制造商正在从原材料、工艺技术、质量控制等各方面进行深入研究,以求降低成本,使碳纤维能在风力发电上得到更多的应用。可通过如下的途径来促进碳纤维在风力发电中的应用:

解决途径

1)叶片尺寸越大,相对成本越低。因此对于3MW(40M)以上,尤其是5MW以上的产品。目前大规模安装的2.5

-3.5MW机组采用了轻质、高性能的玻璃纤维叶片,设计可靠,市场竞争力强,下一代5-10MW风力机的设计将更多的采用碳纤维。

2)采用特殊的织物混编技术。根据叶片结构要求,把碳纤维铺设在刚度和强度要求最高的方向,达到结构的最优化设计。如TPI公司采用碳纤维织物为800G三轴向织物(TRIAXIALFABRIC),由一层500G0°T-600碳纤维夹在两层15 0G成土45°的玻纤织物内。对于原型叶片中,碳纤维成20°,玻纤层的三轴向织物为土65°AND-25°,这种方向的铺层可充分地控制剪切负载。旋转织物意味着织物边沿和叶片方向成20°角,逐步地引入旋转耦合部件(THETWI ST-COUPLINGCOMPONENT)。

3)采用大丝束碳纤维。碳纤生产成本高,特别是高性能的碳纤维生产成本生高,而叶片生产中,采用大丝束碳纤

维可达到降低生产成本的目的。如一种新型丙烯酸碳纤维(美国专利US6103211申请人:TORAYINDUSTRIES(JP))该发明的目的在于提供一种高强度的碳纤维,所述的碳纤维主要包括大量的满足下列关系式的细纤维:SIGMA》/=11。L~0.75D,其中的SIGMA指碳纤维抗张强度,D指细纤维的平均直径。这种碳纤维适用于风力机叶片材料等与能源相关的设备,或者作为道路、大桥的加强结构层。

4)采用新型成型加工技术,如VARTM和LIGHT-RTM技术。

在目前的生产中,预浸料和真空辅助树脂传递模塑工艺已成为两种最常用替代湿法铺层技术;对于40M以上叶片,大多数制造商采用VARTM技术。但VESTAS和GAMESA仍使用预浸料工艺。技术关键是控制树脂粘度、流动性、注入孔设计和减少材料孔隙率。

在大型叶片制造中,由于碳纤维的使用,聚酯树脂已被环氧树脂来替代;利用天然纤维-热塑性树脂制造的“绿色叶片”近年来也倍受重视,如爱尔兰的GNTH公司负责制造12.6米长的热塑性复合材料叶片,MITSUBISHI(三菱)公司负责在风力发电机上进行“绿色叶片的试验”。如果试验成功后,他们将继续研究开发30米以上的热塑性复合材料标准叶片。

原文地址:https://www.360docs.net/doc/e7279555.html,/tech/16292.html

风电机组状态监测与故障诊断相关技术研究

新能源与风力发电? EMCA2014,41(2 =============================================================================================== )风电机组状态监测与故障诊断相关技术研究 张文秀1, 武新芳2 (1.南京理工大学能源与动力工程学院,江苏南京 210094; 2.上海电力学院能源与机械工程学院,上海 200090) 摘 要:对风电机组进行状态监测和故障诊断,可有效降低机组的运行维护成本,保证机组的安全稳定运行三首先概述了状态监测与故障诊断研究的研究情况,然后介绍了风电机组的状态监测技术和状态监控系统的应用开发情况,接着针对机组中的主要故障组件及整个风电系统,介绍了国内外状态监测和故障诊断方法的研究现状与研究进展,最后探讨了风力发电系统状态监测的发展趋势以及未来的研究方向三关键词:风电机组;状态监测;故障诊断;研究现状;发展趋势 中图分类号:TM307+.1∶TM614 文献标志码:A 文章编号:1673?6540(2014)02?0050?07 Research on Condition Monitoring and Fault Diagnosis Technology of Wind Turbines ZHANG Wenxiu1, WU Xinfang2 (1.School of Energy and Power Engineering,Nanjing University of Science&Technology, Nanjing210094,China;2.School of Energy and Mechanical Engineering,ShangHai University of Electric Power,Shanghai200090,China) Abstract:The technologies of condition monitoring and fault diagnosis can effectively reduce the cost of operation and maintenance,as well as ensure the security and stability of wind turbine.The research of condition monitoring and fault diagnosis were overviewed,then the status of the wind tubine monitoring technology and application development conditions of monitoring system were introduced,and aiming at the main failure parts for wind turbine and the wind power system,the research status and progress of condition monitoring and fault diggnosis methods in domestic and abroad were introduced.Finally the development trend of wind power generation system status montoring and research direction in the future were discussed. Key words:wind turbines;condition monitoring;fault diagnosis;research status;development trend 0 引 言 近年来,风能作为一种绿色能源在世界能源结构中发挥着愈来愈重要的作用,风电装备也因此得到迅猛发展三根据世界风能协会(WWEA)的报告,截止2009年底,全球风力发电机组发电量占全球电力消耗量的2%,根据目前的增长趋势,预计到2020年底,全球装机容量至少为1.9×106MW,是2009年的10倍[1]三在 九五”期间,我国风力发电场的建设快速发展,过去十年中,我国的风力发电装机容量以年均55%的速度高速增长,2010年已达1000万kW三 随着大规模风电场的投入运行,出现了很多运行故障,因而需要高额的运行维护成本,大大影响了风电场的经济效益三风电场一般处于偏远地区,工作环境复杂恶劣,风力发电机组发生故障的几率比较大,如果机组的关键零部件发生故障,将会使设备损坏,甚至导致机组停机,造成巨大的经济损失[2]三对于工作寿命为20年的机组,运行维护成本一般占到整个风电场总投入的10%~ 15%,而对于海上风电场,整个比例高达20%~ 25%[3]三因此,为了降低风电机组运行的风险,维护机组安全经济运行,都应该发展风电机组状态监测和故障诊断技术三 状态监测和故障诊断可以有效监测出传动系统二发电机系统等的内部故障,优化维修策略二减 05

风电机组故障诊断与处理方法及系统与相关技术

图片简介: 本技术介绍了一种风电机组故障诊断与处理方法及系统,系统包括数据解析模块,所述数据解析模块的输入端与风电机组相连,数据解析模块的输出端经过资料库与终端相连。方法包括:根据历史故障发生情况和处理经验,建立排查指导库;根据风电机组故障代码的触发条件和I/O点数据之间的关系,建立逻辑诊断库;建立专家信息模块并与处理指导方案相关联;在诊断分析报告和处理指导方案内设置评价信息,由现场人员评价并调整方案。上述技术方案直接面向现场故障处理业务的全过程,从故障发生,故障分析,故障解决全过程进行指导和支持,在故障发生时,即时的推送排查指导方案,有目的地进行排查精确的定位故障并提供处理指导方案,有效地解决故障。 技术要求 1.一种风电机组故障诊断与处理系统,其特征在于,包括数据解析模块(1),所述数据解析模块(1)的输入端与风电机组相连,数据解析模块(1)的输出端经过资料库(2)与终端(4)相连。 2.根据权利要求1所述的一种风电机组故障诊断与处理系统,其特征在于,所述资料库包括排查指导库(2.1)、逻辑诊断库(2.2)、处理指导库(2.3)、文档资料库(2.4)和专家信息模块(2.5),所述排查指导库(2.1)、逻辑诊断库(2.2)与处理模块(3)相连。 3.根据权利要求2所述的一种风电机组故障诊断与处理系统,其特征在于,所述处理模块(3)包括评价信息模块(3.1)和诊断报告模块(3.2),所述评价信息模块(3.1)与排查指导库(2.1)相连,所述诊断报告模块(3.2)与逻辑诊断库(2.2)相连。

4.一种风电机组故障诊断与处理系统的工作方法,其特征在于,包括以下步骤: ①根据历史故障发生情况和处理经验,建立排查指导库,当机组停机时,根据接收到的机组停机信息,匹配出与之对应的排查指导方案; ②根据风电机组故障代码的触发条件和I/O点数据之间的关系,建立逻辑诊断库,当机组发生故障时,分析故障日志并生成该次故障的诊断分析报告和处理指导方案; ③建立专家信息模块并与处理指导方案相关联; ④在诊断分析报告和处理指导方案内设置评价信息,由现场人员评价; ⑤采用权重比例调整的方法调整排查指导方案内排查内容的优先级和故障点的发生概率。 5.根据权利要求4所述的一种风电机组故障诊断与处理系统的工作方法,其特征在于,所述步骤1中的排查指导方案,包括故障代码名称、排查对象、排查对象出现故障的概率和排查方法。 6.根据权利要求4所述的一种风电机组故障诊断与处理系统的工作方法,其特征在于,所述步骤2中的故障日志包括主控停机时刻记录的I/O点数据和停机代码信息。 7.根据权利要求6所述的一种风电机组故障诊断与处理系统的工作方法,其特征在于,所述步骤2中通过分析故障日志提取关键数据点,所述关键数据点为故障发生时首先发生异变的信号或数值,用于确定故障点,所述故障点为与故障直接相关联的可更换的零部件或电气元件。 8.根据权利要求4所述的一种风电机组故障诊断与处理系统的工作方法,其特征在于,所述步骤2中的诊断分析报告,包括机组停机信息、关键数据点、故障点和故障原因;处理指导方案,包括复位建议,所需工具,处理方案,所需备件和专家通讯方式。 9.根据权利要求4所述的一种风电机组故障诊断与处理系统的工作方法,其特征在于,所述步骤4中的评价信息,包括故障点定位是否准确,实际故障点,排查指导方案是否有效。 10.根据权利要求4或9所述的一种风电机组故障诊断与处理系统的工作方法,其特征在于,所述步骤5中的权重比例排序的方法,指的是通过对评价信息进行权重分析,按照故障点定位是否准确,实际故障点、排查指导方案是否有效等进行加权排序,用于调整排查指导方案内排查内容的优先级和故障点的发生概率。 技术说明书 一种风电机组故障诊断与处理方法及系统 技术领域

最新风电领域复合材料的市场发展

最新风电领域复合材料的市场发展 风能在可再生能源领域继续占据主导地位,并且一直是世界上最大的玻璃纤维增强复合材料市场。随着叶片越来越长,叶片制造商正在寻找在不牺牲性能的情况下减轻大型结构重量的方法,也在使用碳纤维。风电叶片仍然是复合材料的关键市场领域。根据Acumen Research and Consulting 《全球行业分析,市场规模,机遇与预测,2017 – 2023年》的预测,全球风力涡轮机复合材料市场的价值到2023年可能超过120亿美元,并且预计到2023年将以9.6%的复合年增长率增长。 根据美国风能协会的报告,在过去的10年中,美国的风力发电量增加了近四倍,攀升至96,433兆瓦。在2019年第二季度,美国安装了736兆瓦的新风力发电能力。在今年上半年投产了1,577兆瓦,比2018年上半年增长了53%。根据AWEA的“美国风电行业2019年第二季度市场”数据,截至2019年第二季度末,在建和处于开发阶段的美国风电项目已达到41,801兆瓦,同比增长10%。据AWEA称,项目开发商在2019年第二季度签署了1,962兆瓦的购电协议(PPA),全年贡献了4,799兆瓦。其中一些增长可能是由美国生产税收抵免(PTC)推动的,这是一项联邦补贴,为风电场运营的前10年提供每千瓦时税收抵免。当前的PTC在2016年通过,并提供了2.3美分/千瓦时的信用额度。PTC信用额逐年递增,直到2020年底到期。由于风能行业有能力自行维持而不需补贴,因此PTC 不太可能续签。 至于美国的海上风电,截至2018年底,海上风电总管道超过25,000兆瓦。全球风能市场增长迅速,2018年增长了9.5%。根据AWEA的数据,全球目前有591吉瓦的风电场用于发电。根据全球风能理事会(GWEC)的《 2018年全球风能报告》,新风能为51.3吉瓦,2018年安装了-陆上为46.8吉瓦,海上为4.5吉瓦。与2017年相比略有下降4.0%,但仍然是强劲的一年。GWEC表示,尽管某些市场起伏不定,但自2014年以来,每年的安装量已超过50吉瓦。 中国在2018年继续以21.2吉瓦的新风电装机容量引领海上风电市场。2018年,陆上风电的第二大市场是美国,为7.6吉瓦,目前陆上总装机96吉瓦。至于海上风电,中国在2018年首次安装了1.8吉瓦的装机,其次是英国,其次是

风电叶片设计流程

叶片设计流程 一.空气动力设计 1.确定风轮的几何和空气动力设计参数 2.选择翼型 3.确定叶片的最佳形状 4.计算风轮叶片的功率特性 5.如果需要可以对设计进行修改并重复步骤4,以找到制造 工艺约束下的最佳风轮设计。 6.计算在所有可遇尖速比下的风轮特性 对于每个尖速比可采用上面步骤4所述的方法,确定每个叶素的空气动力状态,由此确定整个风轮的性能。 7.风力机叶片三维效应分析 8.非定常空气动力现象 9.风力机叶片的动态失速 10.叶片动态入流 二.风机载荷计算 作为风力机设计和认证的重要依据,用于风力机的静强度和疲劳强度分析。国际电工协会制定的IEC61400-1标准、德国船级社制定的GL 规范和丹麦制定的DS 472标准等对风力机的载荷进行了详细的规定。

2.1IEC61400-1 标准规定的载荷情况 2.2风机载荷计算 1计算模型 1)风模型 (1)正常风模型 (2)极端风模型 (3)三维湍流模型 2)风机模型 风机模型包括几何模型、空气动力学模型、传动系统动力学模型、控制系统闭环模型和运行状态监控模型等。 2风力机载荷特性 1)叶片上的载荷 (1)空气动力载荷 包括摆振方向的剪力Q yb和弯矩M xb、挥舞方向的剪力Q xb和弯矩M yb以及与变浆距力矩平衡的叶片俯仰力矩M zb。可根据叶片空气动力设计步骤4中求得的叶素上法向力系数Cn和切向力系数Ct, 通过积分求出作用在叶片上的空气动力载荷。 (2)重力载荷 作用在叶片上的重力载荷对叶片产生的摆振方向弯矩,随叶片方位角的变化呈周期变化,是叶片的主要疲劳载荷。 (3)惯性载荷

(4)操纵载荷 2)轮毂上的载荷 3)主轴上的载荷 4)机舱上的载荷 5)偏航系统上的载荷 6)塔架上的载荷 三.风力机气动弹性 当风力机在自然风条件下运行时,作用在风力机上的空气动力、惯性力和弹性力等交变载荷会使结构产生变形和振动,影响风力机的正常运行甚至导致风力机损坏。因此,在风力机的设计中必须考虑系统的稳定性和在外载作用下的动力响应,主要有①风力机气动弹性稳定性和动力响应②风力机机械传动系统的振动③风力机控制系统(包括偏航系统和变浆距系统等)的稳定性和动力响应④风力机系统的振动。 3.1风力机气动弹性现象 1.风力机叶片气动弹性稳定性问题 2.风力机系统振动和稳定性问题 3.2风力机气动弹性分析 目的是保证风力机在运行过程中不出现气动弹性不稳定。主要的方法是特征值法和能量法。特征值法是在求解弹性力学的基本方 程中,考虑作用在风力机叶片上的非定常空气动力,建立离散的描述风力机叶片气动弹性运动的微分方程。采用Floquet理论求解,最后 稳定性判别归结为状态转移矩阵的特征值计算。

风电机组状态检修的研究

风电机组状态检修的研究 摘要:本文介绍风电机组的组成和典型故障,阐述风电机组状态检修方法的内容、构成等,重点分析其数据收集系统和运行状态评估方法。 关键词:风电机组;状态检修;状态评估 1引言 随着世界经济的快速发展,能源紧缺和环境污染问题日益突显,我国在改革 开发初期就提出了可持续发展战略,其中一项最重要的措施就是要大力开发和利 用可再生能源,风能是一种清洁型的可再生能源,其分布范围广,可利用数量多,是目前应用技术最成熟的新能源种类。我国也出台了一系列政策鼓励风力发电的 开发和建设,目前的装机总量已超过百兆千瓦,并仍处于一个快速增长的阶段。 与此同时,风力发电站的安全稳定运行以及风能的有效利用成为目前关注的焦点,也是风能利用的挑战。近年来,随着我国风电站的建设发展,风电机组的各种故 障也层出不穷,其造成的停机时间严重降低了风电机组的效率,增加维护成本, 如果不能够进行有效的检修和控制,可能会造成严重的安全事故,危及从业人员 的生命安全。状态检修技术是目前应用比较广泛的先进的检修技术,能够明显降 低风电机组的故障概率,减少停机时间,降低维护成本。 2风电机组简介 2.1风电机组的组成 风电机组是将风能转化为机械能,再将机械能转化为电能的系统,其主要结 构有叶轮、传动系统、发电机、控制系统、偏航系统、塔架等,其中传送系统的 主要部件有主轴、齿轮箱、轴承、联轴器等,主要用于传递机械能,是风电机组 的主要机械部件,也是容易发生机械故障的部位;控制系统主要由传感器和控制 柜组成,对风电机组起到监测保护和运行控制的作用。 2.2风电机组的典型故障 风电机组的故障主要分为机械故障、电气故障和液压故障三种,而机械故障 中齿轮箱故障是比较常见的故障,电气故障中发电机和变频器等的故障也是风电 机组比较多发的故障种类。齿轮箱故障主要是由油温变化和气流变化引起的齿轮 点蚀、齿轮胶合、齿轮疲劳磨损、轮齿折断等;发电机故障主要有发电机振动过大、噪声过大、温度过高、轴承过热等,主要由定子绕组短路、转子绕组故障和 偏心振动等原因引起的,而轴承故障为主要故障原因;变频器故障主要有短路、 过电流、过载、过电压、过温、接地等故障。 3风电机组的状态检修 3.1风电机组状态检修的内容 风电机组的状态检修首先需要通过控制系统收集风电机组各组成部分的数据 参数,如风电机组的当前运行功率和风速、传送系统中齿轮箱的油温和轴承的温度、以及风电机组目前的运行状态等,以此掌握风电机组的各种参数,为状态检 修的决策提供原始依据。 其次由远程实时监测系统对经常发生故障的部位进行在线监测,了解风电机 组的常见故障种类,并进行分类统计汇总,分析常见故障的机理然后采用科学的 诊断方法对故障进行诊断分析。此外,风电机组的故障预测是实时状态检修的关 键技术,根据实时监测获取的各项数据参数,建立对应的预测模型,通过专业的 软件对比分析数据与实测数据,实现对故障的预测。 最后通过对风电机组的各种参数进行监测、收集、整理、分析、诊断、预测

大型风力发电机组故障诊断综述

大型风力发电机组故障诊断综述 发表时间:2018-05-22T10:02:18.487Z 来源:《基层建设》2018年第5期作者:李育波[导读] 摘要:近年来随着经济的不断发展,大型风力发电机组故障诊断的要求越来越高。国投白银风电有限公司甘肃兰州 730070 摘要:近年来随着经济的不断发展,大型风力发电机组故障诊断的要求越来越高。本文通过分析大型风力发电机组故障诊断方法,探讨及分析了风电机组故障诊断未来的发展方向。关键词:大型风力发电机组故障诊断引言:近年来,作为绿色、可再生能源的风能已成为解决能源污染问题必不可少的重要力量,截至2015年底,全球风电总装机容量已达427.4GW,其中陆上风电装机市场,中国仍居榜首。风力发电迅速发展带来巨大市场机遇的同时,也带来了巨大挑战。一方面,风电机组的工作条件十分恶劣,长期暴露在风速突变、沙尘、降雨、积雪等环境下,造成了风电机组故障频发。 1风电机组定性故障诊断方法和内容基于定性经验的风电机组故障诊断是一种利用不完备先验知识描述系统功能结构,并建立定性模型实现故障诊断过程的方法。大型风力发电机组故障诊断主要包括了2个方面,一个是风电机组定性故障诊断方法,另一种是风电机组定量诊断方法,这两种方法相辅相成。基于定性经验的风电机组故障诊断是一种利用不完备先验知识描述系统功能结构,并建立定性模型实现故障诊断过程的方法。基于ES风电机组故障诊断方法的基本思想是:运用专家在风力发电领域内积累的有效经验和专门知识建立知识库,并通过计算机模拟专家思维过程,对信息知识进行推理和决策以得到诊断结果。 1.1故障树分析法 FTA 是以故障树逻辑图为基础的一种演绎分析方法,20世纪60年代由美国贝尔实验室提出,既可以用作定性分析又可以用于定量分析。该方法以图形化为表达方式,从故障状态出发,逐级对故障模式和故障部件进行分析推理以确定故障原因和故障发生概率。其中,风电机组故障诊断大多是将其作为定性诊断方法进行分析。为获得清晰、形象地故障原因和宝贵的专家经验,并提供专家级的解决方案,文献结合FTA技术与专家系统应用于风电机组齿轮箱故障诊断中,结果表明该方法对专家库的依赖程度过大。提出了基于FTA的风电机组传动链故障诊断方法,采用框架结构的混合知识表达方式,建立了基于故障树的智能诊断系统。 1.2符号有向图(SDG)方法符号有向图SDG是基于定性经验或基本定律的一种故障诊断技术。可实现正、反向推理,在缺乏知识的详细过程背景下,能够捕捉有效信息并结合相关搜寻策略准确、快速地检测和定位故障。风电机组故障部件的检修顺序对降低风场运营成本起着举足轻重的作用,根据风电机组各部件的相互作用机理,建立了SDG故障诊断模型,并采用关联算法安排检修顺序,但文中仅仅针对控制回路较少的情况展开研究。结合SDG和模糊逻辑方法应用于风电机组故障诊断中,并采用了层次分析法设计故障诊断系统,有效地抑制了分辨率低等问题。基于SDG的风电机组故障诊断不要求完备的定量描述,能充分利用系统结构和正常运行条件下的不完全信息,但系统复杂程度的增加将导致SDG支路数和节点数之间复杂关系的增加,造成故障诊断的实时性和精准度较差。因此,该方法较少应用在风电机组故障诊断中。 2风电机组定量故障诊断方法 2.1基于解析模型的方法基于解析模型的故障诊断适用于观测对象传感器数量充足且具备精确数学模型的系统,通过与已知模型进行分析对比从而达到故障识别的目的,主要包括参数估计法、状态估计法等。文献建立了三叶片水平轴风电机组基准模型,采用 5种不同的故障监测与隔离方案评估了7种不同的测试系列,取得了较为满意的结果,但是基准模型的简单化不能体现风电机组的复杂功能。文献在考虑未知执行器增益和延迟两种情况下,提出了基于离散时间卡尔曼滤波器和交互多模型估计器的风电机组转换器故障诊断方法。以三叶片水平轴风电机组为研究对象,利用改进未知输入观测器方法进行故障识别,实现了干扰解耦和噪声降低的效果,提高了诊断精度,但该方法的自适应能力不强。 2.2基于数据驱动的方法基于数据驱动的诊断方法包含2种方式1分析处理监测信号以提取故障特征;2直接利用大量相关数据进行推理分析并得到诊断结果,主要包括信号处理法、人工智能定量法与统计分析法,是目前风电机组故障诊断所采用的主流方法。 3风力发电故障诊断系统为提高风场经济效益,改善运维现状,越来越多的机构致力于研发风电机组在线故障诊断系统,已经取得了许多卓有成效的成就,主要针对风电机组的关键部件,包括机舱、基础、塔架、叶片、齿轮箱等。数据采集与监控系统是目前较为成熟的商业软件之一,除了通过分析收集到的数据预测轴承和其他机械等最基本的故障以外,该系统还具有控制发电应用数据的作用。为提高风电机组故障预测精度,产生了许多结合SCADA数据进行状态监测的系统。其中通用电气的风电状态监测系统采用傅里叶频域和加速度包络分析机组运行信息,并对主轴承、发电机、机舱、齿轮箱等关键部件进行故障诊断,达到了每年每台风电机组节省 3000 美元的效果。Mita-Teknik的状态监测系统使用傅里叶振幅谱、傅里叶包络谱、峭度值分析等方法分析振动信号以判定主轴承、发电机、齿轮箱等部件的故障,大大地提高了机组的运行效率。为配合管理人员、操作人员和维修工程师的工作任务,斯凯孚的 3.0状态监测系统采用傅里叶频域分析、时域分析和包络分析等方法确定风电机组的故障类型,但该系统对风电机组主传动链的监测不太全面。相对国外而言,国内风力发电监测技术比较落后且故障自诊断技术较为不成熟,导致目前该系统以状态监测为主,并辅以专家远程人工分析,实现机组的故障诊断及其定位。主要有东北大学、华中科技大学的“风力发电在线监测和故障诊断系统”,以及金风科技公司的“风电机组在线监测系统”和唐智科技的风电机组在线故障诊断系统”等。 4结束语:随着大功率风电机组的快速发展和并网运行,对其运行可靠性与系统稳定性提出了更高的要求,必将促进风电机组状态监测、故障诊断和智能维护技术的进一步发展。任何一种单独技术或绝对方法都无法解决风电机组所有故障诊断问题,因此,采取多种技术方法相结合,取长补短实现风电机组的故障诊断将逐步成为未来的研究热点。参考文献:

风力发电叶片制作工艺介绍

风力发电叶片制作工艺 介绍 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

风力发电叶片制作工艺介绍风力发电机叶片是接受风能的最主要部件,其良好的设计、可靠的质量和优越的性能是保证发电机组正常稳定运行的决定因素,其成本约为整个机组成本的15%-20%。根据“风机功价比法则”,风力发电机的功率与叶片长度的平方成正比,增加长度可以提高单机容量,但同时会造成发电机的体积和质量的增加,使其造价大幅度增加。 1碳纤维在风力发电机叶片中的应用 叶片材料的发展经历了木制、铝合金的应用,进入了纤维复合材料时代。纤维材料比重轻,疲劳强度和机械性能好,能够承载恶劣环境条件和随机负荷,目前最普遍采用的是玻璃纤维增强聚酯(环氧)树脂。但随着大功率发电机组的发展,叶片长度不断增加,为了防止叶尖在极端风载下碰到塔架,就要求叶片具有更高的刚度。国外专家认为,玻璃纤维复合材料的性能已经趋于极限,不能满足大型叶片的要求,因此有效的办法是采用性能更佳的碳纤维复合材料。 1)提高叶片刚度,减轻叶片质量 碳纤维的密度比玻璃纤维小约30%,强度大40%,尤其是模量高3~8倍。大型叶片采用碳纤维增强可充分发挥其高弹轻质的优点。荷兰戴尔弗理工大学研究表明,一个旋转直径为120m的风机的叶片,由于梁的质量超过叶片总质量的一半,梁结构采用碳纤维,和采用全玻璃纤维的相比,质量可减轻40%左右;碳纤维复合材料叶片刚度是玻璃纤维复合材料叶片的2倍。据分析,采用碳纤维/玻璃纤维混杂增强方案,叶片可减轻20%~30%。VestaWindSystem公司的V90型发电机的叶片长44m,采用碳纤维代

风电机组故障诊断综述

风电机组故障诊断综述 对风电机组故障诊断技术进行综述,按照基于定性诊断、定量诊断的分类方式,针对现有风电机组故障诊断方法并结合故障诊断系统进行分析。对每一类故障诊断方法归类,指出这些方法的基本思想、适用条件和应用范围以及优缺点,并探讨了风电机组故障诊断技术未来可能的主要发展方向。 关键字:风力发电;风电机组;传动系统;维护检测 一、风机传动系统主要结构及部件 风机传动系统就安装的结构而言,一般分为两种情况:一种是水平轴风机传动,叶片是安装在水平面的轴承上;另一种是垂直轴风机传动,风轮与叶片是垂直摆放的,风使叶片转动,再带动与之垂直的轴承,发动机被带动以后就可以发电了。但目前大多都是水平轴风机,叶轮与轮毂通过轴承相连接,虽然结构较复杂,但能获得较好的性能,而且叶轮承受的载荷较小、重量轻。传动链主要由主轴、主轴承、偏航轴承、齿轮箱、联轴器、发电机和机座等组成。这些构成了风机中最重要的一个部分,同时因为风机传动系统带动的风叶,所以压力、温度过高都容易导致故障。维护时要特别注意受力铰链和传动机构的润滑、磨损及腐蚀情况,及时进行处理,以免影响机组的正常运行。 二、风电机组传动系统的日常维护 (一)主轴轴承的日常维护及保养(以大唐华创风能CCWE—3000/122.HD 风力发电机组为例) 轴承在工作的时候,会受到外界的影响,当受到一定量频率的震荡或者载荷重量增高,即使低速运行,都会影响到风电机组的安全运行。温度过高、过低,润滑不均匀、缺少润滑脂或者其他物质入侵轴承,就会导致主轴轴承的失效而无法继续运行,一般情况下,主轴承轴被磨损锈蚀都会导致轴承运转的不流畅,使运转的阻力增大直至卡死造成严重的后果。就目前的形式来看,滚动式的轴承仍旧是风力发电场最主要的选择,因为其具有很大的优势,节约成本而且效率很高,但与此同时因结构构造较为简单也容易受到损伤,轴承中出现故障的原因有很多,故进行维护人员要特别重视这项内容,大部分故障最后都导致主轴轴承卡死。如果出现主轴轴承卡死情况,首先考虑的就是轴承的质量问题,或者是安装的过程中出现了装配上的错误,大部分都是滚轴在润滑的中受天气的影响导致了污染。所以在日常维护和保养中,要全方位、多角度分析和考虑。第一就是外观检查有无油脂溢出,清理主轴轴承处溢出油脂和集收盘中的油脂,如果发现润滑油脂变质,油脂碳化或者凝固等都要及时疏通或更换,妥当处理,不能造成风机附近环境污染。正常运行的主轴轴承在没有堵塞的情况下,润滑油脂可以作为介质正常的在轴承内起到润滑的作用。还要检查轴承内的卫生情况,不能有其他杂物,保持轴承之间的接触面的整洁,日常维护过程中要借助工具对轴承进行清理,一旦杂物在里面堆积,就不能使轴承正常运转工作。第二则是检查轴承是否存在松

关于编制碳纤维风电叶项目可行性研究报告编制说明

碳纤维风电叶项目 可行性研究报告 编制单位:北京中投信德国际信息咨询有限公司编制时间:https://www.360docs.net/doc/e7279555.html, 高级工程师:高建

关于编制碳纤维风电叶项目可行性研究报 告编制说明 (模版型) 【立项 批地 融资 招商】 核心提示: 1、本报告为模板形式,客户下载后,可根据报告内容说明,自行修改,补充上自己项目的数据内容,即可完成属于自己,高水准的一份可研报告,从此写报告不在求人。 2、客户可联系我公司,协助编写完成可研报告,可行性研究报告大纲(具体可跟据客户要求进行调整) 编制单位:北京中投信德国际信息咨询有限公司 专 业 撰写节能评估报告资金申请报告项目建议书 商业计划书可行性研究报告

目录 第一章总论 (1) 1.1项目概要 (1) 1.1.1项目名称 (1) 1.1.2项目建设单位 (1) 1.1.3项目建设性质 (1) 1.1.4项目建设地点 (1) 1.1.5项目主管部门 (1) 1.1.6项目投资规模 (2) 1.1.7项目建设规模 (2) 1.1.8项目资金来源 (3) 1.1.9项目建设期限 (3) 1.2项目建设单位介绍 (3) 1.3编制依据 (3) 1.4编制原则 (4) 1.5研究范围 (5) 1.6主要经济技术指标 (5) 1.7综合评价 (6) 第二章项目背景及必要性可行性分析 (7) 2.1项目提出背景 (7) 2.2本次建设项目发起缘由 (7) 2.3项目建设必要性分析 (7) 2.3.1促进我国碳纤维风电叶产业快速发展的需要 (8) 2.3.2加快当地高新技术产业发展的重要举措 (8) 2.3.3满足我国的工业发展需求的需要 (8) 2.3.4符合现行产业政策及清洁生产要求 (8) 2.3.5提升企业竞争力水平,有助于企业长远战略发展的需要 (9) 2.3.6增加就业带动相关产业链发展的需要 (9) 2.3.7促进项目建设地经济发展进程的的需要 (10) 2.4项目可行性分析 (10) 2.4.1政策可行性 (10) 2.4.2市场可行性 (10) 2.4.3技术可行性 (11) 2.4.4管理可行性 (11) 2.4.5财务可行性 (11) 2.5碳纤维风电叶项目发展概况 (12)

大型风力发电机组远程故障诊断系统资料

大型风力发电机组远程故障诊断系统 南京协宏软件技术有限公司 2015年01月

目录 1系统概述 (4) 1.1系统名称 (4) 1.2风电背景 (4) 2编制依据及系统概述 (4) 2.1系统概述 (5) 2.2技术基础 (5) 2.3项目技术特点 (5) 2.4设计制造的行业技术标准 (6) 3系统结构与特点 (7) 3.1系统结构总图 (7) 3.2系统测点配置 (7) 3.3系统硬件特点 (8) 3.3.1数据采集监测站Drivetrain DAU (8) 3.3.2数据服务器 (9) 3.3.3传感器 (9) 3.4系统实时监测功能 (10) 3.4.1实时监测 (10) 3.4.1总貌图描述 (12) 3.4.2棒图描述 (13) 3.4.3波形频谱图描述 (13) 3.4.4趋势跟踪图描述 (14) 3.5分析诊断功能 (15) 3.6数据管理功能 (20) 3.6.1数据记录的存储策略 (20)

3.6.2事故追忆功能 (20) 3.6.3数据传输的可靠性策略 (20) 3.6.4数据记录稀疏策略 (21) 3.6.5数据备份方法 (21) 3.6.6用户数据检索功能 (21) 4远程监测与诊断中心 (22) 4.1远程监测中心系统结构图 (22) 4.2系统硬件特点 (22)

1系统概述 1.1系统名称 大型风力发电机组远程故障诊断系统 1.2风电背景 近十年来,风力发电在全世界范围内得到了持续高速发展,为应对全球气候变化作出了重要贡献。风能作为一种清洁的可再生能源已成为低碳经济的重要标志之一。我国在大规模的风能利用方面虽然起步较晚,但近些年来发展非常快,到2009年年底,全国风力机械标准化技术委员会共制定发布风力发电国家标准和行业标准61项,累计装机容量跃过20GW大关,达到25.8053GW。2009年当年,我国新增风机10129台,装机容量13,8032GW,占全球新增风电装机的1/3,超过美国排名全球第一。据国家发改委能源司对未来国家能源战略划,到2020年中国的风电装机总容量将达到30GW。 风力发电机组面对各种恶劣的工作环境及严格的电网条件,运行工况复杂多变,各种因素使风力发电机组的可利用率,风电转换效率及使用寿命受到很大影响,很多重大事故的发生,往往源于一个数据的错误或一种信息的疏忽。在一个现代化的大型风电场中,可能会有十几台甚至几十台上百台风力机,如何有效地对各风力机状态进行监测和分析,使整个风电场安全、可靠、经济地运行就变得至关重要。 由于风场的选址受到地理条件及风能资源的限制,各风场之间的距离可能会非常遥远,特别是对于海上风场的情况。在这样的前提下,如何方便快捷地对各风场运行状况进行监测和分析以及实现风场间的远距离数据通讯,保证多风场的统一管理运营及维护,并使得广泛的国内、国际技术合作和多方在线断得以实现,成为今后风电行业的新兴发展方向。 本技术方案是依据风力发电机组远程状态监测与故障诊断的需求,结合我公司多年从事旋转机械远程在线状态监测和分析诊断以及风电设备状态监测及分析产品的开发和规模应用经验而编制的。 2编制依据及系统概述

风电机组发电机故障分析诊断

风电机组发电机故障分析诊断 发表时间:2019-11-08T10:43:51.677Z 来源:《电力设备》2019年第14期作者:李拴生[导读] 摘要:近年来,人们的发电方式不断变化,从最初的烧煤发电,演变至现在的清洁能源发电,其中风力发电被人们广泛接受。 (山西龙源风力发电有限公司山西太原 030006) 摘要:近年来,人们的发电方式不断变化,从最初的烧煤发电,演变至现在的清洁能源发电,其中风力发电被人们广泛接受。虽然风力发电减少着对大气的污染,但是由于其技术不够成熟,导致运行时频发故障。本文从风力发电机组的概述出发,首先分析了风力发电机组的常见故障,最后探讨了风电机组发电机故障分析诊断措施,供同行参考。 关键字:风电机组发电机;故障分析诊断 1 风力发电机组的概述 1.1 风力发电机组的构成 风力发电机组是指将其他形式的能源,转变为电能机械设备,由风轮、对风装置、机头座和回转体、调速装置、传动装置、制动器、发电机等设备组成。现阶段,风力发电机组在科技、农业生产、国防等方面都得以广泛应用。发电机形式多样,但其原理都基于电磁力定律、电磁感应定律,因此其构造原则为:用合适的导电材料、导磁材料构成相互感应的电路和磁路,从而产生电磁功率,达到能量转换的效果。 1.2 风力发电机组的工作方式 在风力发电机组发电时,需要保证输出的电频率恒定。这无论是对风光互补发电,还是风机并网发电而言,都是非常必要的。要想保证频率恒定,一方面要保证发电机转速稳定,也就是恒频恒速的运行,因为发电机组经由传动装置运行,所以其必须保持恒定的转速,以免影响风能的转换效率。另一方面,发电机的转动速度随着风速变化,借助其他手段保证电能频率恒定,也就是变速恒频运行。风力发电机组的风能使用系数,和叶尖速比有着直接的关系,存在某些明确的叶尖速比,使CP值最大。因此,在变速恒定运行的情况下,发电机和风力机的转动速度,虽然发生着某种变化,但是并不影响电能的输出频率。 1.3 风力发电的优势 由于风电属于新能源,无论是技术还是成本,都和传统的水电、火电存在巨大差异,因此其要想快速发展,需要政策给予足够的扶持。分析得知,风力发电具有如下优势:(1)风是由大气受到太阳辐射引起的空气对流,可以说是太阳能的另外形式。风能是自然界的产物,不需要进行任何加工,也不会污染大气环境,可以直接拿来使用。相较于火力发电,其具备可再生、无污染的优势。(2)现阶段,风力发电机组已能批量生产,特别是风力发电技术成熟的国家,2MW、5MW这种容量较高的机组,已正式投入运行。相较之下,我国的风力发电发展空间较大。(3)风力发电占地面积小,建设周期短,成本低,发电量大,可灵活用于不同环境下,不受地形限制。而且,随着科学技术的发展,可实现远程控制。 2风电机组发电机故障统计 在设备出现故障需要进行检定时,一定要按统一规定来确定故障原因。明确了各种故障发生的原因,就可以依据故障原因的不同进行统计,以便及时解决故障问题。 (1)机组故障数据统计。笔者对达里风电场在一年度所出现的风电机组故障情况进行了统计,并把故障参数分别列了出来,例如停机台次、停机时间、损失电量比例等。经分析得出,设备运行初期,传感器和液压系统故障相对较多,其次是机械系统、电气系统和控制系统故障。工作一段时间之后,机械系统故障率开始增加。 (2)机组液压故障统计。定桨距风电机组液压系统主要用于控制叶尖制动、机械刹车和系统动作。笔者对一年达里风电场各风电机组出现液压故障的次数进行了统计,并对多种故障原因进行分析,得出以下结论机械刹车系统出现故障的次数比叶尖系统出现故障的次数少很多。其中,叶尖压力最大时报警次数最多,但它对电量损失的影响相对较小。电路断路器故障和叶尖液压系统故障出现的次数较多,但它们造成的电量损失都较大,因此应高度重视。 (3)机组机械故障统计。风电机组功能主体是机械系统,它包括了大部分零部件,在工作中承受交变载荷,所以故障率相对较高,是风电机组检修和维护的主要对象。机械系统故障会影响到机械刹车、齿轮箱、偏航系统、发电机以及叶尖机械结构等,主要故障形式是齿轮箱油温过高,其出现次数最多,造成电量损失较大。这种故障一般是由润滑油选择不合理导致,它使齿轮箱工作过程中散发出大量的热量,这就要求要选择合适的润滑油也有可能是齿轮箱润滑系统散热装置设计不科学,致使热量不能及时排散引起的,这就要求重新设计和更换散热装置。从维护和运行角度考虑,一定要采取有效的措施,严密维护和监视齿轮箱润滑系统散热装置,减少齿轮箱油温超标故障次数,从而确保风电机组的发电量。 (4)机组重大问题统计。这里所说的重大问题,就是指风电机组出现了相当严重的故障,风电场现场检修人员和运行人员无法进行处理,一定要求助于综合素质较高的专业技术人员,甚至一定要把大型部件全部更换掉才能解决,这样会使机组长时间处于停机状态,从而导致电量损失较大。这类故障包括齿轮箱损坏、叶片裂纹、轮毅裂纹、主控模块损坏等,通常情况下风电场不会存储这些备件,所以一旦出现相关问题,就必须去专业公司或设备生产厂家维修或采购。整体来看,造成停机时间最长的是齿轮箱损坏,更换齿轮箱会造成相当大的电量损失。前几年,叶片裂纹故障出现次数较多,可是叶片修补相对简单,所以电量损失较小。除此之外,还存在其他重大故障,比如电控柜烧毁等,不过这只是个别案例,发生几率较小。笔者通过对这类重大故障的统计得知,早期投运的风电机组主要问题是齿轮箱故障,其严重影响了风电机组的可靠经济运行,这就要求相关人员一定要对风电机组设计、制造、运行和管理的每个环节高度重视,运用特定的方法提升齿轮箱的运行监测技术和设计制造水平,进而确保风电机组齿轮箱运行的安全性和可靠性。 3风电机组发电机故障诊断方法 3.1基于解析模型的故障诊断法 在故障诊断刚起步时就开始应用这种故障诊断方法。使用该方法时,必须有准确的数学模型。该方法是把实测信息和模型输出信息进行分析对比,计算出实际输出和和理论输出之间的差值,根据对这些差值的分析、运算来进行故障分析诊断。在运算过程中,参数与状态是难点,需要对系统比较了解的前提下计算出系统的精确数学模型。在实际工况下,需要进行建模的生产设备具有不确定性,生产设备的模型会随着时间、温度和人为因素进行变化。

关于编制碳纤维在风电叶片项目可行性研究报告编制说明

碳纤维在风电叶片项目 可行性研究报告 编制单位:北京中投信德国际信息咨询有限公司编制时间:https://www.360docs.net/doc/e7279555.html, 高级工程师:高建

关于编制碳纤维在风电叶片项目可行性研 究报告编制说明 (模版型) 【立项 批地 融资 招商】 核心提示: 1、本报告为模板形式,客户下载后,可根据报告内容说明,自行修改,补充上自己项目的数据内容,即可完成属于自己,高水准的一份可研报告,从此写报告不在求人。 2、客户可联系我公司,协助编写完成可研报告,可行性研究报告大纲(具体可跟据客户要求进行调整) 编制单位:北京中投信德国际信息咨询有限公司 专 业 撰写节能评估报告资金申请报告项目建议书 商业计划书可行性研究报告

目录 第一章总论 (1) 1.1项目概要 (1) 1.1.1项目名称 (1) 1.1.2项目建设单位 (1) 1.1.3项目建设性质 (1) 1.1.4项目建设地点 (1) 1.1.5项目主管部门 (1) 1.1.6项目投资规模 (2) 1.1.7项目建设规模 (2) 1.1.8项目资金来源 (3) 1.1.9项目建设期限 (3) 1.2项目建设单位介绍 (3) 1.3编制依据 (3) 1.4编制原则 (4) 1.5研究范围 (5) 1.6主要经济技术指标 (5) 1.7综合评价 (6) 第二章项目背景及必要性可行性分析 (7) 2.1项目提出背景 (7) 2.2本次建设项目发起缘由 (7) 2.3项目建设必要性分析 (7) 2.3.1促进我国碳纤维在风电叶片产业快速发展的需要 (8) 2.3.2加快当地高新技术产业发展的重要举措 (8) 2.3.3满足我国的工业发展需求的需要 (8) 2.3.4符合现行产业政策及清洁生产要求 (8) 2.3.5提升企业竞争力水平,有助于企业长远战略发展的需要 (9) 2.3.6增加就业带动相关产业链发展的需要 (9) 2.3.7促进项目建设地经济发展进程的的需要 (10) 2.4项目可行性分析 (10) 2.4.1政策可行性 (10) 2.4.2市场可行性 (10) 2.4.3技术可行性 (11) 2.4.4管理可行性 (11) 2.4.5财务可行性 (12) 2.5碳纤维在风电叶片项目发展概况 (12)

风电叶片设计流程

叶片设计流程 一. 空气动力设计 1.确定风轮的几何和空气动力设计参数 2.选择翼型 3.确定叶片的最佳形状 4.计算风轮叶片的功率特性 5.如果需要可以对设计进行修改并重复步骤4,以找到制造 工艺约束下的最佳风轮设计。 6.计算在所有可遇尖速比下的风轮特性 对于每个尖速比可采用上面步骤4所述的方法,确定每个叶素的空气动力状态,由此确定整个风轮的性能。 7.风力机叶片三维效应分析 8.非定常空气动力现象 9.风力机叶片的动态失速 10.叶片动态入流 .风机载荷计算 作为风力机设计和认证的重要依据,用于风力机的静强度和疲劳强度分析。国际电工协会制定的IEC61400-1标准、德国船级社制定的GL 规范和丹麦制定的DS 472标准等对风力机的载荷进行了详细的规定。

2.1 IEC61400-1标准规定的载荷情况 2.2 风机载荷计算 1计算模型 1)风模型 (1)正常风模型 (2)极端风模型 (3)三维湍流模型 2)风机模型 风机模型包括几何模型、空气动力学模型、传动系统动力学模型、控制系统闭环模型和运行状态监控模型等。 2风力机载荷特性 1)叶片上的载荷 (1)空气动力载荷 包括摆振方向的剪力Q yb和弯矩M Xb、挥舞方向的剪力Q b和弯矩M Jb以及与变浆距力矩平衡的叶片俯仰力矩M b。可根据叶片空气动力设计步骤4中求得的叶素上法向力系数Cn和切向力系数Ct,通过积分求出作用在叶片上的空气动力载荷。 (2)重力载荷 作用在叶片上的重力载荷对叶片产生的摆振方向弯矩,随叶片方位角的变化呈周期变化,是叶片的主要疲劳载荷。 (3)惯性载荷 (4)操纵载荷

2 )轮毂上的载荷 3)主轴上的载荷 4)机舱上的载荷 5)偏航系统上的载荷 6)塔架上的载荷 三.风力机气动弹性 当风力机在自然风条件下运行时,作用在风力机上的空气动力、惯性力和弹性力等交变载荷会使结构产生变形和振动,影响风力机的正常运行甚至导致风力机损坏。因此,在风力机的设计中必须考虑系统的稳定性和在外载作用下的动力响应,主要有①风力机气动弹性稳定性和动力响应②风力机机械传动系统的振动③风力机控制系统(包括偏航系统和变浆距系统等) 的稳定性和动力响应④风力机系统的振动。 3.1风力机气动弹性现象 1.风力机叶片气动弹性稳定性问题 2.风力机系统振动和稳定性问题 3.2 风力机气动弹性分析 目的是保证风力机在运行过程中不出现气动弹性不稳定。主要的方法 是特征值法和能量法。特征值法是在求解弹性力学的基本方 程中,考虑作用在风力机叶片上的非定常空气动力,建立离散的描述风力机叶片气动弹性运动的微分方程。采用Floquet理论求解,最后稳定性判别归结为状态转移矩阵的特征值 计算。 1.风力机气动弹性模型 1)结构模型

相关文档
最新文档