语音信号采集与处理

语音信号采集与处理
语音信号采集与处理

学号11780113

天津城建大学

信息处理系统综合设计

设计说明书

语音信号采集与处理

起止日期:2014 年12 月29 日至2015 年1 月23 日

学生姓名MM

班级电信科一班

成绩

指导教师(签字)

计算机与信息工程学院

2015年1月23日

天津城建大学

课程设计任务书

2014 —2015学年第一学期

计算机与信息工程学院电子信息科学与技术专业11信科一班班级

课程设计名称:信息处理系统综合设计

设计题目:语音信号采集与处理

完成期限:自2014 年12 月29 日至2015 年 1 月23 日共 4 周

设计依据、要求及主要内容(可另加附页):

内容及任务:

1.要有整体网络仿真过程说明,测试结果达到相应技术指标。

2.按规范撰写设计报告,主题明确,内容完整,能体现作者的设计意图和设计构思文字图形编排处理合理。

拟达到的要求或技术指标:

本设计要求学生录制一段自己的语音信号后,在MATLAB软件中采集语音信号、回放语音信号并画出语音信号的频谱图;对所采集的语音信号加入干扰噪声,对加入噪声的信号进行播放,并进行频谱分析;对比加噪前后的频谱图,分析讨论采用什么样的滤波器进行滤除噪声。

目录

第一章前言__________________________________________________________________ 1 1.1 研究的意义 ______________________________________________________________ 1 1.2研究的内容_______________________________________________________________ 1 第二章语音信号去噪方法的研究_________________________________________________ 3 2.1 采样定理 ________________________________________________________________ 3 2.2采样频率_________________________________________________________________ 3 2.3去噪的方法_______________________________________________________________ 3 第三章语音信号采集与处理_____________________________________________________ 4 3.1 语音文件在MATLAB平台上的录入与打开 _____________________________________ 4 3.2原始语音信号在MATLAB中的最简单表现______________________________________ 4 3.3 加噪语音信号频谱分析及仿真 ______________________________________________ 5 3.4 去噪及仿真 ______________________________________________________________ 6 第四章总结___________________________________________________________________ 8 参考文献______________________________________________________________________ 9

第一章前言

1.1 研究的意义

语音是语言的声学表现,是人类交流信息最自然、最有效、最方便的手段。随着社会文化的进步和科学技术的发展,人类开始进入了信息化时代,用现代手段研究语音处理技术,使人们能更加有效地产生、传输、存储、和获取语音信息,这对于促进社会的发展具有十分重要的意义,因此,语音信号处理正越来越受到人们的关注和广泛的研究。

语音信号是信息技术处理中最重要的一门科学,是人类社会几步的标志。那么什么是语音?语音是人类特有的功能,也是人类获取外界信息的重要工具,也是人与人交流必不可少的重要手段。那么什么又是信号?那信号是什么呢?信号是传递信息的函数。离散时间信号——序列——可以用图形来表示。

语音信号处理是一门用研究数字信号处理研究信号的科学。它是一新兴的信

息科学,同时又是综合多个学科领域的一门交叉科学。语音在我们的日常生

活中随时可见,也随处可见,语音很大程度上可以影响我们的生活。所以研究语音信号无论是在科学领域上还是日常生活中都有其广泛而重要的意义。

1.2 国内外研究现状

20世纪60年代中期形成的一系列数字信号处理的理论和算法,如数字滤波器、快速傅立叶变换(FFT)等是语音信号数字处理的理论和技术基础。随着信息科学技术的飞速发展,语音信号处理取得了重大的进展:进入70年代之后,提出了用于语音信号的信息压缩和特征提取的线性预测技术(LPC),并已成为语音信号处理最强有力的工具,广泛应用于语音信号的分析、合成及各个应用领域,以及用于输入语音与参考样本之间,时间匹配的动态规划方法;80年代初一种新的基于聚类分析的高效数据压缩技术—矢量量化(VQ)应用于语音信号处理中;而用隐马尔可夫模型(HMM)描述语音信号过程的产生是80年代语音信号处理技术的重大发展,目前HMM已构成了现代语音识别研究的重要基石。近年来人工神经网络(ANN)的研究取得了迅速发展,语音信号处理的各项课题是促进其发展的重要动力之一,他的各项成果也体现在语音信号处理的各项技术之中。

1.2研究的内容

本论文主要介绍的是的语音信号的简单处理。本论文针对以上问题,运用数字信号学基本原理实现语音信号的处理,在matlab环境下综合运用信号提取,幅频变换以及傅里叶变换、滤波等技术来进行语音信号处理。我所做的工作就是在matlab软件上编写一个处理语音信号的程序,能对语音信号进行采集,并对其进行各种处理,达到简单语音信号处理的目的。

对语音信号的研究,本论文采用了滤波器的基本研究方法来达到研究语音信号去噪的目的,最终结合图像以及对语音信号的回放,通过对比,得出结论。

本课题的研究基本步骤如下:

1.语音信号的录制。

2.在MATLAB平台上读入语音信号。

3.绘制频谱图并回放原始语音信号。

4.利用MATLAB编程加入一段随机噪音信号,设计滤波器去噪,并分别绘制频谱图、回放语音信号。流程框图可如下表示:(图1-1)

语音信号采集

语音信号录入语音信号变换信号加噪语音信号滤波

效果显示

图1-1 论文设计的流程

第二章语音信号去噪方法的研究

2.1 采样定理

在进行模拟/数字信号的转换过程中,当采样频率fs.max大于信号中,最高频率fmax的2倍时,即:fs.max>=2fmax,则采样之后的数字信号完整地保留了原始信号中的信息,一般实际应用中保证采样频率为信号最高频率的5~10倍;采样定理又称奈奎斯特定理。 1924年奈奎斯特(Nyquist)就推导出在理想低通信道的最高大码元传输速率的公式: 理想低通信道的最高大码元传输速率=2W*log2 N (其中W是理想低通信道的带宽,N是电平强度)为什么把采样频率设为8kHz?在数字通信中,根据采样定理, 最小采样频率为语音信号最高频率的2倍。

2.2采样频率

采样频率,也称为采样速度或者采样率,定义了每秒从连续信号中提取并组成离散信号的采样个数,它用赫兹(Hz)来表示。采样频率的倒数是采样周期或者叫作采样时间,它是采样之间的时间间隔。通俗的讲采样频率是指计算机每秒钟采集多少个声音样本,是描述声音文件的音质、音调,衡量声卡、声音文件的质量标准。

采样频率只能用于周期性采样的采样器,对于非周期性采样的采样器没有规则限制。采样频率的常用的表示符号是 fs。通俗的讲采样频率是指计算机每秒钟采集多少个声音样本,是描述声音文件的音质、音调,衡量声卡、声音文件的质量标准。采样频率越高,即采样的间隔时间越短,则在单位时间内计算机得到的声音样本数据就越多,对声音波形的表示也越精确。采样频率与声音频率之间有一定的关系,根据采样定理,只有采样频率高于声音信号最高频率的两倍时,才能把数字信号表示的声音还原成为原来的声音。这就是说采样频率是衡量声卡采集、记录和还原声音文件的质量标准。

采样位数和采样率对于音频接口来说是最为重要的两个指标,也是选择音频接口的两个重要标准。无论采样频率如何,理论上来说采样的位数决定了音频数据最大的力度范围。每增加一个采样位数相当于力度范围增加了6dB。采样位数越多则捕捉到的信号越精确。对于采样率来说你可以想象它类似于一个照相机,44.1kHz意味着音频流进入计算机时计算机每秒会对其拍照达441000次。显然采样率越高,计算机摄取的图片越多,对于原始音频的还原也越加精确

2.3去噪的方法

数字信号处理技术经过几十年的发展,在国内外已经取得了很大的成绩。到目前为止,已经比较成熟的去噪方法比较典型的有:切比雪夫去噪法、双线性变换去噪法、窗函数去噪法、等有名的去噪方法。下面分别对上述去噪方法中比较有代表性的IIR滤波法做一个简单的介绍。 IIR滤波器去噪法(IIRnfinite Impulse Response)数字滤波器,又名“无限脉冲响应数字滤波器”,或“递归滤波器”。递归滤波器,也就是IIR数字滤波器,顾名思义,具有反馈,一般认为具有无限的脉冲响应。

IIR数字滤波器的设计利用 MATALAB工具箱分析工具(FDATool)可以很方便地设计出符合应用要求的未经量化的IIR数字滤波器。

第三章语音信号采集与处理

3.1 语音文件在MATLAB平台上的录入与打开

单击自己的电脑开始程序,选择所有程序,接着选择附件,再选择娱乐,最后选择录音。自己录入“综合设计”语音信号,然后保存在MA TLAB文件夹里面,命名为“test.wav”。

利用MATLAB中的wavread命令来读入(采集)语音信号,将它赋值给某一向量。

[y,fs,bits]=wavread(' [N1 N2]);用于读取语音,采样值放在向量y中,fs表示采样频率(Hz),bits表示采样位数。[N1 N2]表示读取从N1点到N2点的值(若只有一个N的点则表示读取前N点的采样值)。

3.2原始语音信号在MATLAB中的最简单表现

用MATLAB中的wavread命令来读入(采集)语音信号,将它赋值给某一向量。再将该向量看作一个普通的信号。选择设计此方案,是对数字信号处理的一次实践。在数字信号处理的课程学习过程中,我们过多的是理论学习,几乎没有进行实践方面的运用。这个课题正好是对数字语音处理的一次有利实践,而且语音处理也可以说是信号处理在实际应用中很大众化的一方面。这个方案用到的软件也是在数字信号处理中非常通用的一个软件——MATLAB软件。所以这个课题的设计过程也是一次数字信号处理在MATLAB中应用的学习过程。课题用到了较多的MATLAB语句,而由于课题研究范围所限,真正与数字信号有关的命令函数却并不多。sound(x,fs,bits); 用于对声音的回放。向量y则就代表了一个信号(也即一个复杂的“函数表达式”)也就是说可以像处理一个信号表达式一样处理这个声音信号。下面的一段程序是语音信号在MATLAB中的最简单表现,它实现了语音的读入打开,以及绘出了语音信号的波形频谱图。

[x,fs,bits]=wavread('wangqingtian.wav’);

sound(x,fs,bits);

X=fft(x,4096);

magX=abs(X);

angX=angle(X);

subplot(221);plot(x);title('原始信号波形');

subplot(222);plot(X); title('原始语音信号采样后的频谱图‘)

subplot(223);plot(magX);title('原始信号幅值');

subplot(224);plot(angX);title('原始信号相位');

程序运行可以听到声音,得到的图形为:

012

345

6

x 10

5

-0.6

-0.4

-0.2

0.2

0.4

0.6

0.8

原始音频信号

时间轴

幅值A

图4-1 原始信号波形

3.3 加噪语音信号频谱分析及仿真

(1)random 信号加入原始语音信号

前面已经介绍了MATLAB 软件相关知识,那么我们怎么在NATLAB 平台上实现对一段原始语音信号加入一个正弦波信号呢?

下面一段程序实现了在原始语音信号加入random 信号。程序见附录5

分析此段程序可知,此程序是先对原始语音信号做时域波形分析和频谱分析,然后再对加噪的语音信号做时域波形分析和频谱分析。

首先通过MATLAB 中调用和回放语音信号命令来实现对原始语音信号的调用和回放,程序如下: SNR=5; %设置信噪比 noise=10^(-SNR/10)*(randn(size(signal))); b=firlvbo(256,5e3,Fs,Fs,'hpf');

noise=filter(b,1,noise); %产生信号 signal_noise=signal + noise; %加入噪声 figure

plot(signal_noise); %画出加噪声后的音频信号波形 上段程序中,函数noise 是random 信号噪音,加噪后的时域波形和频谱图如下:

012

345

6

x 10

5

-0.6

-0.4

-0.2

0.2

0.4

0.6

0.8

时间轴

幅值A

加噪后的音频信号

随机噪音信号加入原始语音信号

人耳可以明显辨别出两种语音信号不一样了,加噪后的语音信号在听觉上比原始语音信号要浑浊很多,而且还有吱吱嘎嘎的混杂音。

3.4 去噪及仿真

(1)滤波器法去噪

下面的一段程序是语音信号在MATLAB 中的滤波器法去噪 title('加噪后的音频信号')

msgbox('正在播放加噪声后的音频!'); %弹出提示框 wavplay(signal_noise,Fs);

b=firlvbo(256,0,5e3,Fs,'lpf'); %生成低通滤波器系数

signal_fir=filter(b,1,signal_noise); %对加噪声的信号进行滤波去除噪声

figure; %下面是画出最后处理完去除完噪声

012

345

6

x 10

5

-0.6

-0.4

-0.2

0.2

0.4

0.6

0.8

时间轴

幅值A

滤波后音频信号

再从对语音信号的回放,人耳可以明显辨别语音信号。滤波后,语音信号较加噪后的信号有了明显的改善,可以听清楚了。

第四章总结

语音信号处理是语音学与数字信号处理技术相结合的交叉学科,课题在这里不讨论语音学,而是将语音当做一种特殊的信号,即一种“复杂向量”来看待。也就是说,课题更多的还是体现了数字信号处理技术。

从课题的中心来看,课题“在MATLAB平台上实现对语音信号的去噪研究和仿真”是希望将数字信号处理技术应用于某一实际领域,这里就是指对语音及加噪处理。作为存储于计算机中的语音信号,这一过程的实现,用到了处理数字信号的强有力工具MATLAB。通过MATLAB里几个命令函数的调用,很轻易的在实际语音与数字信号的理论之间搭了一座桥。

课题的特色在于它将语音信号看作一个向量,于是就把语音数字化了。那么,就可以完全利用数字信号处理的知识来解决语音及加噪处理问题。我们可以像给一般信号做频谱分析一样,来对语音信号做频谱分析,也可以较容易的用数字滤波器来对语音进行滤波处理。通过比较加噪前后,语音的频谱和语音回放。从含噪语音信号的频谱图中可以看出含噪声的语音信号频谱,在整个频域范围内分是布均匀。其实,这正是干扰所造成的,低通滤波后效果不错。

参考文献

[1] Boll S F.Suppression of Acoustic Noise in Speech Using Spectral Subtraction[J].IEEE Trans.on Acoustics,Speech,and Signal Processing,1979,27(2):113-120.

[2] Berouti M,Schwartz R,Makhoul J.Enhancement of SpeechCorrupted by Acoustic Noise[J].IEEE Trans.on Acoustics,Speech,and Signal Processing,1979,4:208-211.

[3] 胡航,语音信号处理,哈尔滨工业大学出版社,2000 年 5 月

[4]ThomsonDJ.SpectrumEstimationand armonicAnalysis[J].Proc.IEEE,1982,70(9):1 055-1 096.

[5]皇甫堪,陈建文,楼生强.现代数字信号处理[M].北京:电子工业出版社,2003.

[6]Hu Yi,Loizou P C.Speech Enhancement Based on WaveletThresholding the Multitaper Spectrum[J]. IEEE Trans.onSpeech and Audio Processing,2004,12(1):59-67.

[7]吴红卫,吴镇扬,赵力.基于多窗谱的心理声学语音增强[J].声学学报,2007,32(3):275-281.

[8]潘欣裕,童兴法,赵鹤鸣,基于谱能比例加权的谱减法语音增强研究[J]. 中国电子学会第十五届信息论学术年会暨第一届全国网络编码学术年会论文集

[9] 程正,赵鹤鸣. 基于多频带谱减法的语音增强算法的研究[J]. 002-8331(2007)36-0040-03.

[10] 曹瑜镠,方元,吕勇.基于最小统计及谱减法的语音增强[J]. 语音技术. 002-8684(2006)12-0043-04 [11]白文雅,黄健群,陈智伶.基于维纳滤波语音增强算法的改进实现[J].电声技术,2007,31(1):44-46.

[12]蔡斌.一种改进型 MMSE 语音增强方法[J].信号处理,2004,20(1):70-74.

[13]陈俊,孙洪,董航.基于 MMSE 先验信噪比估计的语音增强[J].武汉大学学理学版,2005,51(5):638-642.

[14]樊昌信,曹丽娜.通信原理[M].北京:国防工业出版社,2008.

[15]姚天任.数字语音处理[M].武汉:华中科技大学出版社,2005.

基于dsp的语音信号采集与回放系统的设计--开题报告

HEFEI UNIVERSITY 课程设计开题报告 题目:《基于DSP系统的语音采集与回放系统》 专业:11 级电子信息工程 姓名:章健吴广岭何志刚 学号:1105011029 1105011030 1105011044 指导老师:汪济洲老师 完成时间:2014年12月1日

一、开题报告题目 基于DSP系统的语音采集与回放系统。 二、研究背景与意义 语音处理是数字信号处理最活跃的研究方向之一,它是信息高速公路、多媒体技术、办公自动化、现代通信及职能系统等新兴领域应用的核心技术之一。用数字化的方法进行语音的传送、存储、分析、识别、合成、增强等是整个数字化通信网中的最重要、最基本的组成部分之一。一个完备的语音信号处理系统不但要具有语音信号的采集和回放功能, 还要能够进行复杂的语音信号分析和处理。通常这些信号处理算法的运算量很大, 而且又要满足实时的快速高效处理要求, 随着DSP 技术的发展, 以DSP 为内核的 设备越来越多。为语音信号的处理提供了优质可靠的平台. 软件编程的灵活性给很多设备增加不同的功能提供了方便, 利用软件在已有的硬件平台上实现不同的功能已成为 一种趋势。近年来,随着DSP的功能日益增强,性能价格比不断上升,开发手段不断改进,DSP在数据采集系统的应用也在不断完善。 三、主要内容与目标 随着计算机多媒体技术,网络通信技术和DSP(Digital Signal Processor)技术的飞速发展,语音的数字通信得到越来越多的应用,语音信号的数字化一直是通信发展的主要方向之一,语音的数字通信和模拟通信相比,无疑有着更大的优越性,这主要体现在以下几个方面:数字语音比模拟语音具有更好的话音质量;具有更强的干扰性,并易于加密;可节省带宽,能更有效的利用网络资源;更加易于存储和处理。最简单的数字化就是直接对原始语音信号进行A/D 转换,但这样得到的语音的数据量非常大。为了减少语音信号所占用的带宽或存储空间,就必须对数字语音信号进行压缩编码。语音编码的目的就在于在保证语音音质和可懂度的条件下,采用尽可能少的比特数来表示语音,即尽可能的降低编码比特率,以便在有限的传输带宽内让出更多的信道来传输图像和其他数据流,从而达到传输资源的有效利用和网络容量的提高。在通信越来越发达的当今世界,尤其最近几十年,语音压缩编码技术在移动通信、IP 电话通信、保密通信、卫星通信以及语音存储等很多方面得到了广泛的应用。 语音信号处理在手持设备、移动设备和无线个人设备中的应用正在不断增加。今天的个人手持设备语音大多时候仅仅局限于语音拨号,但是已经出现了适用于更广泛开发语音识别和文本到语音应用的技术。语音功能为用户提供自然的输入和输出方式,它比其他形式的I/O更安全,尤其是当用户在开车期间。在大多数应用中,语音都是键盘和显示器的理想补充。其他潜在的语音应用包括如下几个方面。 (1)语音电子邮件。包括浏览邮箱、利用语音输入写电子邮件以及收听电子邮件的读出。 (2)信息检索。股票价格、标题新闻、航班信息、天气预报等都可以通过语音从互联网收听。例如,用户不用先进入某个网址并输入股票名字或者浏览预定义列表,可以通过语音命令实现。 (3)个人信息管理。允许用户通过语音指定预约、查看日历、添加联络信息等等。 (4)语音浏览。利用语音程序菜单,用户可以在网上冲浪、添加语音收藏夹并收听网页内容的读出。 (5)语音导航。在自动和人眼不够用的条件下获取导航的完全语音输入/输出驾驶

语音信号处理与及其MATLAB实现分析

目录 摘要 (2) 第一章绪论 (3) 1.1 语音课设的意义 (3) 1.2 语音课设的目的与要求 (3) 1.3 语音课设的基本步骤 (3) 第二章设计方案论证 (5) 2.1 设计理论依据 (5) 2.1.1 采样定理 (5) 2.1.2 采样频率 (5) 2.1.3 采样位数与采样频率 (5) 2.2 语音信号的分析及处理方法 (6) 2.2.1 语音的录入与打开 (6) 2.2.2 时域信号的FFT分析 (6) 2.2.3 数字滤波器设计原理 (7) 2.2.4 数字滤波器的设计步骤 (7) 2.2.5 IIR滤波器与FIR滤波器的性能比较 (7) 第三章图形用户界面设计 (8) 3.1 图形用户界面概念 (8) 3.2 图形用户界面设计 (8) 3.3 图形用户界面模块调试 (9) 3.3.1 语音信号的读入与打开 (9) 3.3.2 语音信号的定点分析 (9) 3.3.3 N阶高通滤波器 (11) 3.3.4 N阶低通滤波器 (12) 3.3.5 2N阶带通滤波器 (13) 3.3.6 2N阶带阻滤波器 (14) 3.4 图形用户界面制作 (15) 第四章总结 (18) 附录 (19) 参考文献 (24)

摘要 数字信号处理是将信号以数字方式表示并处理的理论和技术。数字信号处理与模拟信号处理是信号处理的子集。 数字信号处理的目的是对真实世界的连续模拟信号进行测量或滤波。因此在进行数字信号处理之前需要将信号从模拟域转换到数字域,这通常通过模数转换器实现。而数字信号处理的输出经常也要变换到模拟域,这是通过数模转换器实现的。 数字信号处理的算法需要利用计算机或专用处理设备如数字信号处理器(DSP)和专用集成电路(ASIC)等。数字信号处理技术及设备具有灵活、精确、抗干扰强、设备尺寸小、造价低、速度快等突出优点,这些都是模拟信号处理技术与设备所无法比拟的。 数字信号处理的核心算法是离散傅立叶变换(DFT),是DFT使信号在数字域和频域都实现了离散化,从而可以用通用计算机处理离散信号。而使数字信号处理从理论走向实用的是快速傅立叶变换(FFT),FFT的出现大大减少了DFT的运算量,使实时的数字信号处理成为可能、极大促进了该学科的发展。 MATLAB是矩阵实验室(Matrix Laboratory)的简称,和Mathematica、Maple 并称为三大数学软件。它在数学类科技应用软件中在数值计算方面首屈一指。MATLAB可以进行矩阵运算、绘制函数和数据、实现算法、创建用户界面、连接其他编程语言的程序等,主要应用于工程计算、控制设计、信号处理与通讯、图像处理、信号检测、金融建模设计与分析等领域。 MATLAB的基本数据单位是矩阵,它的指令表达式与数学、工程中常用的形式十分相似,故用MATLAB来解算问题要比用C,FORTRAN等语言完相同的事情简捷得多,并且mathwork也吸收了像Maple等软件的优点,使MATLAB成为一个强大的数学软件。在新的版本中也加入了对C,FORTRAN,C++ ,JAVA的支持。可以直接调用,用户也可以将自己编写的实用程序导入到MATLAB函数库中方便自己以后调用,此外许多的MATLAB爱好者都编写了一些经典的程序,用户可以直接进行下载就可以用。

语音信号处理实验指导书

语音信号处理实验指导书 实验一 语音信号采集与简单处理 一、 实验目的、要求 (1)掌握语音信号采集的方法 (2)掌握一种语音信号基音周期提取方法 (3)掌握短时过零率计算方法 (4)了解Matlab 的编程方法 二、 实验原理 基本概念: (a )短时过零率: 短时内,信号跨越横轴的情况,对于连续信号,观察语音时域波形通过横轴的情况;对于离散信号,相邻的采样值具有不同的代数符号,也就是样点改变符号的次数。 对于语音信号,是宽带非平稳信号,应考察其短时平均过零率。 其中sgn[.]为符号函数 ?? ?? ?<=>=0 x(n)-1sgn(x(n))0 x(n)1sgn(x(n)) 短时平均过零的作用 1.区分清/浊音: 浊音平均过零率低,集中在低频端; 清音平均过零率高,集中在高频端。 2.从背景噪声中找出是否有语音,以及语音的起点。 (b )基音周期 基音是发浊音时声带震动所引起的周期性,而基音周期是指声带震动频率的倒数。基音周期是语音信号的重要的参数之一,它描述语音激励源的一个重要特征,基音周期信息在多个领域有着广泛的应用,如语音识别、说话人识别、语音分析与综合以及低码率语音编码,发音系统疾病诊断、听觉残障者的语音指导等。因为汉语是一种有调语言,基音的变化模式称为声调,它携带着非常重要的具有辨意作用的信息,有区别意义的功能,所以,基音的提取和估计对汉语更是一个十分重要的问题。 ∑--= -=1 )]1(sgn[)](sgn[21N m n n n m x m x Z

由于人的声道的易变性及其声道持征的因人而异,而基音周期的范围又很宽,而同—个人在不同情态下发音的基音周期也不同,加之基音周期还受到单词发音音调的影响,因而基音周期的精确检测实际上是一件比较困难的事情。基音提取的主要困难反映在:①声门激励信号并不是一个完全周期的序列,在语音的头、尾部并不具有声带振动那样的周期性,有些清音和浊音的过渡帧是很难准确地判断是周期性还是非周期性的。②声道共振峰有时会严重影响激励信号的谐波结构,所以,从语音信号中直接取出仅和声带振动有关的激励信号的信息并不容 易。③语音信号本身是准周期性的(即音调是有变化的),而且其波形的峰值点或过零点受共振峰的结构、噪声等的影响。④基音周期变化范围大,从老年男性的50Hz 到儿童和女性的450Hz ,接近三个倍频程,给基音检测带来了一定的困难。由于这些困难,所以迄今为止尚未找到一个完善的方法可以对于各类人群(包括男、女、儿童及不向语种)、各类应用领域和各种环境条件情况下都能获得满意的检测结果。 尽管基音检测有许多困难,但因为它的重要性,基音的检测提取一直是一个研究的课题,为此提出了各种各样的基音检测算法,如自相关函数(ACF)法、峰值提取算法(PPA)、平均幅度差函数(AMDF)法、并行处理技术、倒谱法、SIFT 、谱图法、小波法等等。 三、使用仪器、材料 微机(带声卡)、耳机,话筒。 四、 实验步骤 (1)语音信号的采集 利用Windows 语音采集工具采集语音信号,将数据保存wav 格式。 采集一组浊音信号和一组清音信号,信号的长度大于3s 。 (2)采用短时相关函数计算语音信号浊音基音周期,考虑窗长度对基音周期计算的影响。采用倒谱法求语音信号基音周期。 (3)计算短时过零率,清音和浊音的短时过零率有何区别。 五、实验过程原始记录(数据,图表,计算) 短时过零率 短时相关函数 P j j n s n s j R N j n n n n ,,1) ()()(1 =-=∑-= ∑--=-=10 )]1(sgn[)](sgn[21N m n n n m x m x Z

基于MATLAB的语音信号采集与处理

工程设计论文 题目:基于MATLAB的语音信号采集与处理 姓名: 班级: 学号: 指导老师:

一.选题背景 1、实践意义: 语音信号是一种非平稳的时变信号,它携带着各种信息。在语音编码、语音合成、语音识别和语音增强等语音处理中无一例外需要提取语音中包含的各种信息。语音信号分析的目的就在于方便有效地提取并表示语音信号所携带的信息。所以理解并掌握语音信号的时域和频域特性是非常重要的。 通过语音相互传递信息是人类最重要的基本功能之一.语言是人类特有的功能.声音是人类常用工具,是相互传递信息的最重要的手段.虽然,人可以通过多种手段获得外界信息,但最重要,最精细的信息源只有语言,图像和文字三种.与用声音传递信息相比,显然用视觉和文字相互传递信息,其效果要差得多.这是因为语音中除包含实际发音容的话言信息外,还包括发音者是谁及喜怒哀乐等各种信息.所以,语音是人类最重要,最有效,最常用和最方便的交换信息的形式.另一方面,语言和语音与人的智力活动密切相关,与文化和社会的进步紧密相连,它具有最大的信息容量和最高的智能水平。 语音信号处理是研究用数字信号处理技术对语音信号进行处理的一门学科,处理的目的是用于得到某些参数以便高效传输或存储;或者是用于某种应用,如人工合成出语音,辨识出讲话者,识别出讲话容,进行语音增强等. 语音信号处理是一门新兴的学科,同时又是综合性的多学科领域,

是一门涉及面很广的交叉学科.虽然从事达一领域研究的人员主要来自信息处理及计算机等学科.但是它与语音学,语言学,声学,认知科学,生理学,心理学及数理统计等许多学科也有非常密切的联系. 语音信号处理是许多信息领域应用的核心技术之一,是目前发展最为迅速的信息科学研究领域中的一个.语音处理是目前极为活跃和热门的研究领域,其研究涉及一系列前沿科研课题,巳处于迅速发展之中;其研究成果具有重要的学术及应用价值. 数字信号处理是利用计算机或专用处理设备,以数值计算的方法对信号进行采集、抽样、变换、综合、估值与识别等加工处理,借以达到提取信息和便于应用的目的。它在语音、雷达、图像、系统控制、通信、航空航天、生物医学等众多领域都获得了极其广泛的应用。具有灵活、精确、抗干扰强、度快等优点。 数字滤波器, 是数字信号处理中及其重要的一部分。随着信息时代和数字技术的发展,受到人们越来越多的重视。数字滤波器可以通过数值运算实现滤波,所以数字滤波器处理精度高、稳定、体积小、重量轻、灵活不存在阻抗匹配问题,可以实现模拟滤波器无法实现的特殊功能。数字滤波器种类很多,根据其实现的网络结构或者其冲激响应函数的时域特性,可分为两种,即有限冲激响应( FIR,Finite Impulse Response)滤波器和无限冲激响应( IIR,Infinite Impulse Response)滤波器。 FIR滤波器结构上主要是非递归结构,没有输出到输入的反馈,系统函数H (z)在处收敛,极点全部在z = 0处(因果系统),因而只能

基于Matlab的语音信号处理与分析

系(院)物理与电子工程学院专业电子信息工程题目语音信号的处理与分析 学生姓名 指导教师 班级 学号 完成日期:2013 年5 月 目录 1 绪论.............................................................................................................. 错误!未定义书签。 1.1课题背景及意义................................................................................. 错误!未定义书签。 1.2国内外研究现状................................................................................. 错误!未定义书签。 1.3本课题的研究内容和方法................................................................. 错误!未定义书签。 1.3.1 研究内容................................................................................ 错误!未定义书签。 1.3.2 开发环境................................................................................ 错误!未定义书签。 2 语音信号处理的总体方案............................................................................ 错误!未定义书签。 2.1 系统基本概述.................................................................................... 错误!未定义书签。 2.2 系统基本要求与目的........................................................................ 错误!未定义书签。 2.3 系统框架及实现................................................................................ 错误!未定义书签。 2.3.1 语音信号的采样.................................................................... 错误!未定义书签。 2.3.2 语音信号的频谱分析............................................................ 错误!未定义书签。 2.3.3 音乐信号的抽取.................................................................... 错误!未定义书签。 2.3.4 音乐信号的AM调制.............................................................. 错误!未定义书签。 2.3.5 AM调制音乐信号的同步解调............................................... 错误!未定义书签。 2.4系统设计流程图................................................................................. 错误!未定义书签。 3 语音信号处理基本知识................................................................................ 错误!未定义书签。 3.1语音的录入与打开............................................................................. 错误!未定义书签。 3.2采样位数和采样频率......................................................................... 错误!未定义书签。 3.3时域信号的FFT分析......................................................................... 错误!未定义书签。 3.4切比雪夫滤波器................................................................................. 错误!未定义书签。 3.5数字滤波器设计原理......................................................................... 错误!未定义书签。 4 语音信号实例处理设计................................................................................ 错误!未定义书签。 4.1语音信号的采集................................................................................. 错误!未定义书签。

语音信号采集与回放系统设计

语音采集与回放系统设计
l 竞赛真题 l 总体方案选择 l 具体方案设计 l 设计阶段划分
一、竞赛真题
1999 年第四届 E 题 数字化语音存储与回放系统 一、题目:数字化语音存储与回放系统 二、任务 设计并制作一个数字化语音存储与回放系统,其示意图如下:
三、要求 1.基本要求 (1)放大器 1 的增益为 46dB,放大器 2 的增益为 40dB,增益均可调; (2)带通滤波器:通带为 300Hz~3.4kHz ; (3)ADC:采样频率 fs= 8kHz,字长= 8 位; (4)语音存储时间≥10 秒; (5)DAC:变换频率 fc= 8kHz,字长= 8 位; (6)回放语音质量良好。 2.发挥部分 在保证语音质量的前提下: (1)减少系统噪声电平,增加自动音量控制功能; (2)语音存储时间增加至 20 秒以上; (3)提高存储器的利用率(在原有存储容量不变的前提下,提高语音存储时间) ;

(4)其它(例如: 四、评分意见
校正等) 。


满 分 50 50 15 5 15 15
基 设计与总结报告: 方案设计与论证, 理论分析与计算, 电路图, 本 测试方法与数据,对测试结果的分析 要 实际制作完成情况 求 完成第一项 发 挥 完成第二项 部 完成第三项 分 完成第四项 五、说明 不能使用单片语音专用芯片实现本系统。
训练侧重点 l 题目中给出一些提示性设计参数,设计中应予以重点理解
1. 放大器 1 的增益,放大器 1 的增益为 46dB 2. 带通滤波器的频率范围通带为 300Hz~3.4kHz(方便测试) 3. AD 采样的字长和采样频率(保证公平竞争)
l
题目中部分非技术性指标在培训中可以适当简化
1. 语音存储与回放时间≥10 秒 2. 语音存储时间增加至 20 秒以上;
二、总体方案选择
1. 控制平台选择 2. 前级放大模块 3. 带通滤波器 4. 模数、数模转换部分 5. 存储器 6. 编码方案
1. 控制平台选择
供选平台: A. B. 单片机平台 FPGA 开发平台

语音信号处理实验报告

语音信号处理实验 班级: 学号: 姓名: 实验一基于MATLAB的语音信号时域特征分析(2学时)

1)短时能量 (1)加矩形窗 a=wavread('mike.wav'); a=a(:,1); subplot(6,1,1),plot(a); N=32; for i=2:6 h=linspace(1,1,2.^(i-2)*N);%形成一个矩形窗,长度为2.^(i-2)*N En=conv(h,a.*a);% 求短时能量函数En subplot(6,1,i),plot(En); if(i==2) ,legend('N=32'); elseif(i==3), legend('N=64'); elseif(i==4) ,legend('N=128'); elseif(i==5) ,legend('N=256'); elseif(i==6) ,legend('N=512'); end end

00.51 1.52 2.5 3 x 10 4 -1 1 x 10 4 024 x 10 4 05 x 10 4 0510 x 10 4 01020 x 10 4 02040 (2)加汉明窗 a=wavread('mike.wav'); a=a(:,1); subplot(6,1,1),plot(a); N=32; for i=2:6 h=hanning(2.^(i-2)*N);%形成一个汉明窗,长度为2.^(i-2)*N En=conv(h,a.*a);% 求短时能量函数En subplot(6,1,i),plot(En); if(i==2), legend('N=32'); elseif(i==3), legend('N=64'); elseif(i==4) ,legend('N=128');

语音信号处理实验报告实验一

通信工程学院12级1班罗恒2012101032 实验一语音信号的低通滤波和短时分析综合实验 一、实验要求 1、根据已有语音信号,设计一个低通滤波器,带宽为采样频率的四分之一,求输出信号; 2、辨别原始语音信号与滤波器输出信号有何区别,说明原因; 3、改变滤波器带宽,重复滤波实验,辨别语音信号的变化,说明原因; 4、利用矩形窗和汉明窗对语音信号进行短时傅立叶分析,绘制语谱图并估计基音周期,分析两种窗函数对基音估计的影响; 5、改变窗口长度,重复上一步,说明窗口长度对基音估计的影响。 二、实验目的 1.在理论学习的基础上,进一步地理解和掌握语音信号低通滤波的意义,低通滤波分析的基本方法。 2.进一步理解和掌握语音信号不同的窗函数傅里叶变化对基音估计的影响。 三、实验设备 1.PC机; 2.MATLAB软件环境; 四、实验内容 1.上机前用Matlab语言完成程序编写工作。 2.程序应具有加窗(分帧)、绘制曲线等功能。 3.上机实验时先调试程序,通过后进行信号处理。 4.对录入的语音数据进行处理,并显示运行结果。 5. 改变滤波带宽,辨别与原始信号的区别。 6.依据曲线对该语音段进行所需要的分析,并且作出结论。 7.改变窗的宽度(帧长),重复上面的分析内容。 五、实验原理及方法 利用双线性变换设计IIR滤波器(巴特沃斯数字低通滤波器的设计),首先要设计出满足指标要求的模拟滤波器的传递函数Ha(s),然后由Ha(s)通过双线性变换可得所要设计的IIR滤波器的系统函数H(z)。如果给定的指标为数字滤波器的指标,则首先要转换成模拟滤波器的技术指标,这里主要是边界频率Wp和Ws 的转换,对ap和as指标不作变化。边界频率的转换关系为∩=2/T tan(w/2)。接着,按照模拟低通滤波器的技术指标根据相应设计公式求出滤波器的阶数N和3dB截止频率∩c ;根据阶数N查巴特沃斯归一化低通滤波器参数表,得到归一化传输函数Ha(p);最后,将p=s/ ∩c 代入Ha(p)去归一,得到实际的模拟滤波器传输函数Ha(s)。之后,通过双线性变换法转换公式s=2/T((1-1/z)/(1+1/z))得到所要设计的IIR滤波器的系统函数H(z)。

语音信号采集与回放系统

电子与信息工程学院 综合实验课程报告 课题名称 语音采集及回放系统设计 专 业 电子信息工程 班 级 07电子2班 学生姓名 Y Y Y 学 号 07002 指导教师 X X X 2010年 7月 5日

1 总体设计方案介绍: 1.1语音编码方案: 人耳能听到的声音是一种频率范围为20 Hz~20000 Hz ,而一般语音频率最高为3400 Hz。语音的采集是指语音声波信号经麦克风和高频放大器转换成有一定幅度的模拟量电信号,然后再转换成数字量的全过程。根据“奈奎斯特采样定理”, 采样频率必须大于模拟信号最高频率的两倍,由于语音信号频率为300~3 400 Hz ,所以把语音采集的采样频率定为8 kHz。从语音的存储与压缩率来考虑,模型参数表示法明显优于信号波形表示法[4]。但要将之运用于单片机,显然信号波形表示法相对简单易实现。基于这种思路的算法,除了传统的一些脉冲编码调制外,目前已使用的有VQ技术及一些变换编码和神经网络技术,但是算法复杂,目前的单片机速度底,难以实现。结合实际情况,提出以下几种可实现的方案。 (1)短时平均跨零记数法该方案通过确定信号跨零数,将语音信号编码为数字信号,常用于语音识别中。但对于单片机,由于处理数据能力底,该方法不易实现。 (2)实时副值采样法采样过程如图2.1所示。 图2.1 采样过程 具体实现包括直存取法、欠抽样采样法、自相似增量调制法等三种基本方法。其中第三种实现方法最具特色,该方法可使数据压1:4.5,既有M ?调制的优点,又同时兼有PCM编码误差较小的优点,编码误差不向后扩散。 1.2 A/D、D/A及存储芯片的选择 单片机语音生成过程,可以看成是语音采集过程的逆过程,但又不是原封不动地恢复原来的语音,而是对原来语音的可控制、可重组的实时恢复。在放音时,只要依原先的采样直经D/ A 接口处理,便可使原音重现。 (1)A/D转换芯片的选择根据题目要求采样频率f s=8K H Z,字长=8位, 可选择转换时间不超过125s的八位A/D转换芯片。目前常用的A/D转换实现的

语音信号处理试验教程

语音信号处理试验 实验一:语音信号时域分析 实验目的: (1)录制两段语音信号,内容是“语音信号处理”,分男女声。 (2)对语音信号进行采样,观察采样后语音信号的时域波形。 实验步骤: 1、使用window自带录音工具录制声音片段 使用windows自带录音机录制语音文件,进行数字信号的采集。启动录音机。录制一段录音,录音停止后,文件存储器的后缀默认为.Wav。将录制好文件保存,记录保存路径。男生女生各录一段保存为test1.wav和test2.wav。 图1基于PC机语音信号采集过程。 2、读取语音信号 在MATLAB软件平台下,利用wavread函数对语音信号进行采样,记住采样频率和采样点数。通过使用wavread函数,理解采样、采样频率、采样位数等概念! Wavread函数调用格式: y=wavread(file),读取file所规定的wav文件,返回采样值放在向量y中。

[y,fs,nbits]=wavread(file),采样值放在向量y中,fs表示采样频率(hz),nbits表示采样位数。 y=wavread(file,N),读取前N点的采样值放在向量y中。 y=wavread(file,[N1,N2]),读取从N1到N2点的采样值放在向量y中。 3、编程获取语音信号的抽样频率和采样位数。 语音信号为test1.wav和test2.wav,内容为“语音信号处理”,两端语音保存到工作空间work文件夹下。在M文件中分别输入以下程序,可以分两次输入便于观察。 [y1,fs1,nbits1]=wavread('test1.wav') [y2,fs2,nbits2]=wavread('test2.wav') 结果如下图所示 根据结果可知:两端语音信号的采样频率为44100HZ,采样位数为16。 4、语音信号的时域分析 语音信号的时域分析就是分析和提取语音信号的时域参数。进行语音分析时,最先接触到并且夜市最直观的是它的时域波形。语音信

语音信号处理实验一采集和预处理

实验一语音信号的采集及预处理 一、实验目的 在理论学习的基础上,进一步地理解和掌握语音信号预处理及短时加窗的意义及基于matlab的实现方法。 二、实验原理 1.语音信号的录音、读入、放音等:练习matlab中几个音频处理函数,利用函数wavread 对语音信号进行采样,记住采样频率和采样点数,给出以下语音的波形图(2.wav)。利用wavplay或soundview放音。也可以利用wavrecord自己录制一段语音,并进行以上操作(需要话筒)。 2.语音信号的分帧:对语音信号进行分帧,可以利用voicebox工具箱中的函数enframe。 voicebox工具箱是基于GNU协议的自由软件,其中包含了很多语音信号相关的函数。3.语音信号的加窗:本步要求利用window函数设计窗口长度为256(N=256)的矩形窗(rectwin)、汉明窗(hamming)及汉宁窗(hann)),利用wvtool函数观察其时域波形图及频谱特性,比较得出结论。观察整个信号加矩形窗及汉明窗后的波形,利用subplot与reshape函数将分帧后波形、加矩形窗波形及加汉明窗波形画在一张图上比较。取出其中一帧,利用subplot与reshape函数将一帧语音的波形、加矩形窗波形及加汉明窗波形画在一张图上比较将得出结论。 4.预加重:即语音信号通过一个一阶高通滤波器1 9375 1- -z。 .0 三、实验步骤、实验程序、图形及结论 1.语音信号的录音、读入、放音等 程序: [x,fs,nbit]=wavread('D:\2.wav'); %fs=10000,nbit=16 y=soundview('D:\2.wav') 2.语音信号的分帧 程序: [x,fs,nbit]=wavread('D:\2.wav'); len=256; inc=128; y=enframe(x,len,inc); figure; subplot(2,1,1),plot(x) subplot(2,1,2),plot(y)

数字信号处理在语音信号分析中的应用

《数字信号处理》 课程设计报告 数字信号处理在语音信号分析中的应用 专业班级: 姓名: 学号:

目录 摘要 (3) 1、绪论 (3) 2、课程设计的具体容 (4) 2.1.1、读取语音信号的任务 (4) 2.1.2、任务分析和解决方案 (5) 2.1.4、运行结果和相应的分析 (5) 2.2、IIR滤波器设计和滤波处理 (6) 2.2.1、设计任务 (6) 2.2.2、任务分析和解决方案 (7) 2.2.3、编程得到的MATLAB代码 (7) 2.2.4、运行结果和相应的分析 (7) 2.3、FIR滤波器设计和滤波处理 (9) 2.3.1、设计任务 (9) 2.3.2、任务分析和解决方案 (9) 2.3.3、编程得到的MATLAB代码 (9) 2.3.4、运行结果和相应的分析 (11) 3、总结 (13) 4、存在的不足及建议 (13) 5、参考文献 (13)

数字信号处理设计任务书 摘要 语音信号滤波处理是研究用数字信号处理技术和语音学知识对语音信号进行处理的新兴的学科,是目前 发展最为迅速的信息科学研究领域的核心技术之一。通过语音传递信息是人类最重要、最有效、最常用和最方便的交换信息形式。 Matlab语言是一种数据分析和处理功能十分强大的计算机应用软件,它可以将声音文件变换为离散的数据文件,然后利用其强大的矩阵运算能力处理数据,如数字滤波、傅里叶变换、时域和频域分析、声音回放以及各种图的呈现等,它的信号处理与分析工具箱为语音信号分析提供了十分丰富的功能函数,利用这些功能函数可以快捷而又方便地完成语音信号的处理和分析以及信号的可视化,使人机交互更加便捷。信号处理是Matlab重要应用的领域之一。本设计通过录制一段语音,对其进行了时域分析,频谱分析,分析语音信号的特性。并应用matlab平台对语音信号进行加噪然后再除去噪声,进一步设计两种种滤波器即高通滤波器、带通滤波器,基于这两种滤波器设计原理,对含加噪的语音信号进行滤波处理。最后对比滤波前后的语音信号的时域和频域特性,回放含噪语音信号和去噪语音信号。论文从理论和实践上比较了不同数字滤波器的滤波效果。 1.绪论 通过语音传递倍息是人类最重要、最有效、最常用和最方便的交换信息的形式。语言是人类持有的功能,声音是人类常用的工具,是相互传递信息的最主要的手段。因此,语音信号是人们构成思想疏通和感情交流的最主要的途径。并且,由于语言和语音与人的智力活动密切相关,与社会文化和进步紧密相连,所以它具有最大的信息容量和最高的智能水平。现在,人类已开始进入了信息化时代,用现代手段研究语音信号,使人们能更加有效地产生、传输、存储、获取和应用语音信息,这对于促进社会的发展具有十分重要的意义。让计算机能听懂人类的语言,是人类自计算机诞生以来梦寐以求的想法。 随着计算机越来越向便携化方向发展,随着计算环境的日趋复杂化,人们越来越迫切要求摆脱键盘的束缚而代之以语音输人这样便于使用的、自然的、人性化的输人方式。作为高科鼓应用领域的研究热点,语音信号采集与分析从理论的研究到产品的开发已经走过了几十个春秋并且取得了长足的进步。它正在直接与办公、交通、金融、公安、商业、旅游等行业的语音咨询与管理.工业生产部门的语声控制,、电信系统的自动拨号、辅助控制与查询以及医疗卫生和福利事业的生活支援系统等各种实际应用领域相接轨,并且有望成为下一代操作系统和应用程序的用户界面。可见,语音信号采集与分析的研究将是一项极具市场价值和挑战性的工作。我们今天进行这一领域的研究与开拓就是要让语音信号处理技术走人人们的日常生活当中,并不断朝更高目标而努力。数字滤波器是数字信号处理的基础,用来对信号

语音信号处理实验报告

通信与信息工程学院 信息处理综合实验报告 班级:电子信息工程1502班 指导教师: 设计时间:2018/10/22-2018/11/23 评语: 通信与信息工程学院 二〇一八年 实验题目:语音信号分析与处理 一、实验内容 1. 设计内容 利用MATLAB对采集的原始语音信号及加入人为干扰后的信号进行频谱分析,使用窗函数法设计滤波器滤除噪声、并恢复信号。 2.设计任务与要求 1. 基本部分

(1)录制语音信号并对其进行采样;画出采样后语音信号的时域波形和频谱图。 (2)对所录制的语音信号加入干扰噪声,并对加入噪声的信号进行频谱分析;画出加噪后信号的时域波形和频谱图。 (3)分别利用矩形窗、三角形窗、Hanning窗、Hamming窗及Blackman 窗几种函数设计数字滤波器滤除噪声,并画出各种函数所设计的滤波器的频率响应。 (4)画出使用几种滤波器滤波后信号时域波形和频谱,对滤波前后的信号、几种滤波器滤波后的信号进行对比,分析信号处理前后及使用不同滤波器的变化;回放语音信号。 2. 提高部分 (5)录制一段音乐信号并对其进行采样;画出采样后语音信号的时域波形和频谱图。 (6)利用MATLAB产生一个不同于以上频段的信号;画出信号频谱图。 (7)将上述两段信号叠加,并加入干扰噪声,尝试多次逐渐加大噪声功率,对加入噪声的信号进行频谱分析;画出加噪后信号的时域波形和频谱图。 (8)选用一种合适的窗函数设计数字滤波器,画出滤波后音乐信号时域波形和频谱,对滤波前后的信号进行对比,回放音乐信号。 二、实验原理 1.设计原理分析 本设计主要是对语音信号的时频进行分析,并对语音信号加噪后设计滤波器对其进行滤波处理,对语音信号加噪声前后的频谱进行比较分析,对合成语音信号滤波前后进行频谱的分析比较。 首先用PC机WINDOWS下的录音机录制一段语音信号,并保存入MATLAB软件的根目录下,再运行MATLAB仿真软件把录制好的语音信号用audioread函数加载入MATLAB仿真软件的工作环境中,输入命令对语音信号进行时域,频谱变换。 对该段合成的语音信号,分别用矩形窗、三角形窗、Hanning窗、Hamming窗及Blackman窗几种函数在MATLAB中设计滤波器对其进行滤波处理,滤波后用命令可以绘制出其频谱图,回放语音信号。对原始语音信号、合成的语音信号和经过滤波器处理的语音信号进行频谱的比较分析。 2.语音信号的时域频域分析 在Matlab软件平台下可以利用函数audioread对语音信号进行采样,得到了声音数据变量y,同时把y的采样频率Fs=44100Hz放进了MATALB的工作空间。

大学本科语音信号处理实验讲义8学时

语音信号处理实验讲义 时间:2011-12

目录 实验一语音信号生成模型分析 (3) 实验二语音信号时域特征分析 (7) 实验三语音信号频域特征分析 (12) 实验四语音信号的同态处理和倒谱分析 (16)

实验一 语音信号生成模型分析 一、实验目的 1、了解语音信号的生成机理,了解由声门产生的激励函数、由声道产生的调制函数和由嘴唇产生的辐射函数。 2、编程实现声门激励波函数波形及频谱,与理论值进行比较。 3、编程实现已知语音信号的语谱图,区分浊音信号和清音信号在语谱图上的差别。 二、实验原理 语音生成系统包含三部分:由声门产生的激励函数()G z 、由声道产生的调制函数()V z 和由嘴唇产生的辐射函数()R z 。语音生成系统的传递函数由这三个函数级联而成,即 ()()()()H z G z V z R z = 1、激励模型 发浊音时,由于声门不断开启和关闭,产生间隙的脉冲。经仪器测试它类似于斜三角波的脉冲。也就是说,这时的激励波是一个以基音周期为周期的斜三角脉冲串。单个斜三角波的频谱表现出一个低通滤波器的特性。可以把它表示成z 变换的全极点形式 12 1()(1) cT G z e z --= -? 这里c 是一个常数,T 是脉冲持续时间。周期的三角波脉冲还得跟单位脉冲串的z 变换相乘: 112 1 ()()()1(1)v cT A U z E z G z z e z ---=?= ?--? 这就是整个激励模型,v A 是一个幅值因子。 2、声道模型 当声波通过声道时,受到声腔共振的影响,在某些频率附近形成谐振。反映在信号频谱图上,在谐振频率处其谱线包络产生峰值,把它称为共振峰。 一个二阶谐振器的传输函数可以写成 12 ()1i i i i A V z B z C z --= -- 实践表明,用前3个共振峰代表一个元音足够了。对于较复杂的辅音或鼻音共振峰要到5个以上。多个()i V z 叠加可以得到声道的共振峰模型 12 1 11 ()()11R r r M M i r i N k i i i i k k b z A V z V z B z C z a z -=---======---∑∑∑ ∑ 3、辐射模型 从声道模型输出的是速度波,而语音信号是声压波。二者倒比称为辐射阻抗,它表征了

实验九 音频信号采集及处理

音频信号采集及处理程序代码及实验结果图: [voice,fs]=audioread('notify.wav');%声音读取 sound(voice,fs); %声音回放 n=length(voice);%计算长度 voice1=fft(voice,n); %快速傅里叶变换 figure(1);subplot(2,1,1);plot(voice); %绘出时域波 xlabel('t');ylabel('amp');%坐标名称 title('初始音频信号时域波形');grid on; subplot(2,1,2);plot(abs(fftshift(voice1))); %绘出原始音频信号频谱 title('初始音频信号频域波形'); xlabel('f');ylabel('amp');grid on; t=0:1/fs:(n-1)/fs; noise=0.05*sin(2*pi*100000*t');%100kHz正弦波噪声 s=voice+noise;%加噪后的音频信号 pause;sound(s,fs); %播放加噪的语音 n=length(s); S=fft(s,n);%计算频谱 figure(2);subplot(2,1,1);plot(s);%画出加噪之后的音频信号时域波 形 title('加噪声后的音频信号时域波形'); xlabel('t');ylabel('amp');grid on; subplot(2,1,2);plot(abs(fftshift(S)));%零频移到频谱中心后,绘制加噪 之后的音频信号频谱 xlabel('f');ylabel('amp'); title('加噪声后的音频信号频域波形');grid on; pause; rp=2; rs=80; Ft=8000;Fp=1000;Fs=1300; wp=2*pi*Fp/Ft; ws=2*pi*Fs/Ft; %求出待设计的模拟滤波器的边界频率 [n,wn]=buttord(wp,ws,rp,rs,'s'); %低通滤波器的阶数和截止频率 [b,a]=butter(n,wn,'s'); %S域频率响应的参数即:滤波器的传输函数 [bz,az]=bilinear(b,a,0.5); %利用双线性变换实现频率响应S域到Z域的变换 [h,w]=freqz(bz,az); figure(3);plot(w*fs/(2*pi),abs(h));%绘制IIR低通滤波器特性曲线 title('IIR低通滤波器特性曲线');grid on; z=filter(bz,az,s); %滤波 pause;sound(z,fs); %回放滤波后的信号 Z=fft(z); %滤波后的信号频谱 figure(4);subplot(2,2,2);plot(z);%绘制低通滤波后的音频信号时域

相关文档
最新文档