基于Linux的实时音频与视频传输

嵌入式Linux系统中音频驱动的设计与实现

第31卷 第2期 2008年4月 电子器件 Ch in es e Jo u rnal Of Electro n Devi ces Vol.31 No.2Apr.2008 Design and Implementation of Audio Driver for Embedded Linux System YU Yue,YA O G uo -liang * (N ational A S I C S ystem Eng ine ering Center ,S outhe ast Unive rsity ,N anj ing 210096,China) Abstract:This paper intro duces the fundam ental principle and architecture of the audio system w hich con -sists of the CODEC UCB1400and the 805puls,and describes the design of audio dev ice dr iv er based on Audio Codec .97for Embedded Linux System.The paper focuses o n the implementatio n of the DM A trans -port and ioctl interface.T he audio dr iv e is running w ell in actual Embedded Linux system equipments.Key words:805plus;embedded Linux;Audio A C .97driver;DM A;ioctl interface EEACC :1130B 嵌入式Linux 系统中音频驱动的设计与实现 虞 跃,姚国良 * (东南大学国家专用集成电路系统工程中心,南京210096) 收稿日期:2007-07-09 作者简介:虞 跃(1982-),男,东南大学电子工程系国家专用集成电路工程技术研究中心硕士研究生,研究方向为嵌入式系统设计; 姚国良(1979-),男,东南大学电子工程系博士研究生,yuyueo@https://www.360docs.net/doc/e73885570.html,. 摘 要:介绍了由805puls 处理器和U CB1400编解码芯片构成的音频系统体系结构及工作原理,接着阐述了嵌入式Linux 操作系统下基于A C .97协议标准的音频设备驱动程序的设计与实现。其中着重讲述了采用循环缓冲区进行音频数据的DM A 传输流程以及ioctl 接口的实现。此设计方案已在嵌入式L inux 系统中得到使用,运行效果良好。 关键词:805plus;嵌入式L inux ;AC .97音频驱动;DM A;ioctl 接口中图分类号:TP391 文献标识码:A 文章编号:1005-9490(2008)02-0709-03 嵌入式音频系统广泛应用于GPS 自动导航、PDA,3G 手机等移动信息终端,具备播放、录音功能的音频系统的应用使得移动信息终端上视听娱乐IP 电话、音频录制等成为可能,并推动了移动信息终端设备的发展。 在软件上,嵌入式操作系统的新兴力量Linux 的开源性,内核可定制等优点吸引了许多的开发者与开发商。它是个和U nix 相似、以核心为基础的、完全内存保护、多任务多进程的操作系统。支持广泛的计算机硬件,包括X86,A lpha,Sparc,M IPS,PPC,ARM ,NEC,MOT OROLA 等现有的大部分芯片[1]。 本文针对805puls 微处理器选用Philips 公司的编解码芯片(CODEC)U CB1400,构建了基于Au -dio Codec .97(AC .97)标准的音频系统。并介绍了该音频系统在Linux 操作系统2.4.19内核下驱动 程序的实现技术。 1 音频系统构架 1.1 微处理器805plus 805plus 是东南大学ASIC 系统工程技术研究中心和北京大学微处理器研究开发中心共同设计和开发的32bit 嵌入式微处理器,是采用H ar vard 结构的RISC 处理器。内部采用五级流水线结构,兼容16bit 和32bit 的指令系统805plus 嵌入式微处理器集成了存储接口EMI,时钟和功耗管理PM C,中断控制器INTC,通用定时器T IM ER,脉宽调制器PWM,实时时钟RT C,通用串口UA RT,LCD 控制器LCDC,AC .97控制器,同步外设接口SPI 。1.2 AC .97协议标准[2] AC'97协议标准是一套关于A C'97数字音频处理(AC'97Digital Controller)、AC '97数字串口(AC

常见的视频传输方式

常见的视频传输方式 1、视频基带传输:是最为传统的电视监控传输方式,对0~6MHz视频基带信号不作任何处理,通过同轴电缆(非平衡)直接传输模拟信号。其优点是:短距离传输图像信号损失小,造价低廉,系统稳定。缺点:传输距离短,300米以上高频分量衰减较大,无法保证图像质量;一路视频信号需布一根电缆,传输控制信号需另布电缆;其结构为星形结构,布线量大、维护困难、可扩展性差,适合小系统。 2、光纤传输:常见的有模拟光端机和数字光端机,是解决几十甚至几百公里电视监控传输的最佳解决方式,通过把视频及控制信号转换为激光信号在光纤中传输。其优点是:传输距离远、衰减小,抗干扰性能好,适合远距离传输。其缺点是:对于几公里内监控信号传输不够经济;光熔接及维护需专业技术人员及设备操作处理,维护技术要求高,不易 升级扩容。 3、网络传输:是解决城域间远距离、点位极其分散的监控传输方式,采用MPEG2/ 4、 H.264音视频压缩格式传输监控信号。其优点是:采用网络视频服务器作为监控信号上传设备,只要有Internet网络的地方,安装上远程监控软件就可监看和控制。其缺点是:受网络带宽和速度的限制,目前的ADSL只能传输小画面、低画质的图像;每秒只能传输几到十几帧图像,动画效果十分明显并有延时,无法做到实时监控。 4、微波传输:是解决几公里甚至几十公里不易布线场所监控传输的解决方式之一。采用调频调制或调幅调制的办法,将图像搭载到高频载波上,转换为高频电磁波在空中传输。其优点是:综合成本低,性能更稳定,省去布线及线缆维护费用;可动态实时传输广播级图像,图像传输清晰度不错,而且完全实时;组网灵活,可扩展性好,即插即用;维护费用低。其缺点是:由于采用微波传输,频段在1GHz以上,常用的有L波段(1.0~2.0GHz)、S波段(2.0~3.0GHz)、Ku波段(10~12GHz),传输环境是开放的空间,如果在大城市使用,无线电波比较复杂,相对容易受外界电磁干扰;微波信号为直线传输,中间不能有山体、建筑物遮挡;如果有障碍物,需要加中继加以解决,Ku波段受天气影响较为严重,尤其是雨雪天气会有比较严重的雨衰现象。不过现在也有数字微波视频传输产品,抗干扰能 力和可扩展性都提高不少。 5、双绞线传输(平衡传输):也是视频基带传输的一种,将75Ω的非平衡模式转换为平衡模式来传输的。是解决监控图像1Km内传输,电磁环境相对复杂、场合比较好的解决方式,将监控图像信号处理通过平衡对称方式传输。其优点是:布线简易、成本低廉、抗共模干忧性能强。其缺点是:只能解决1Km以内监控图像传输,而且一根双绞线只能传输一路图像,不适合应用在大中型监控中;双绞线质地脆弱抗老化能力差,不适于野外传输; 双绞线传输高频分量衰减较大,图像颜色会受到很大损失。 6、宽频共缆传输:视频采用调幅调制、伴音调频搭载、FSK数据信号调制等技术,将数十路监控图像、伴音、控制及报警信号集成到“一根”同轴电缆中双向传输。其优点是:充分利用了同轴电缆的资源空间,三十路音视频及控制信号在同一根电缆中双向传输、实

高清视频会议基本技术要求

一、技术要求 第1.1节概述 MCU要求 1.1.1MCU应符合H.323和H.320标准及SIP协议,支持H.323 V4以上版本。 1.1.2MCU应采用整机一体化的体系结构,为保证系统的高度稳定性,MCU的操作系统必 须为嵌入式操作系统,MTBF不小于100000小时。 1.1.3MCU采用中文WEB管理界面,采用图形化控制界面。无需安装客户端软件,只需 要通过帐号就可以实现对于MCU会议管理及系统配置的所有操作。 1.1.4MCU支持高清晰分辨率,可支持30帧/秒的H.264 HD(1280×720)活动视频编码 协议。 1.1.5MCU具备H.264HD视频编码,同时支持H.263、H.263+视频编码,H.263、H.264 协议的速率应达到2M。 1.1.6MCU能在同一个会议中接入标清(CIF、4CIF)及720P高清视频终端,不能降低高清 终端分辨率及声音及图像质量。 1.1.7MCU具备H.239高清(720P)双流协议,可以实现全网的双流会议,并且双流会议时 不降低会议容量。 1.1.8MCU支持终端以128Kbps/s-4Mbps/s速率接入,投标方应明确设备所支持的用户 速率范围。 1.1.9容量 1)考虑到系统可靠性、系统处理能力及今后的扩展性,MCU应至少具有24个2Mbps 速率以上终端的接入能力,能够同时召开多组会议。 1.1.10音频指标 1)投标方应说明支持的音频编码,语音编解码应符合ITU-T G.711、G.722、G.722.1 和G.728等建议。支持MPEG-4 AAC/LC的宽频声音,如果有高于上述标准的编解 码技术请详细说明。 2)投标方需给出MCU会议中同时混音的数量。混音数量不能低于4方。 3)具有自动唇音同步,误差应不可察觉,音频视频相对延迟小于40ms。 4)多个会议同时召开的时候,各个会议的声音互不影响。 1.1.11视频指标 1)视频编码应支持H.263、H.263+、H.264建议,各编码速率要求达到4M。 2)图像分辨率:支持QCIF、CIF、4CIF,HD(720P)。 3)在图像带宽上,要求在384Kb/s速率时达到25帧CIF连续运动图像,512Mbp时 达到30帧/秒连续的DVD画质,在1Mbps以上带宽时达到30帧/秒连续的720P高

Linux系统中用ALSA驱动声卡流程详解

Linux系统中用ALSA驱动声卡流程详解 一、什么是ALSA Advanced Linux Sound Architecture 的简称为 ALSA ,译成中文的意思是 Linux 高级声音体系(这是我直译的,可能译的不对)。一谈到体系就有点范围就太大了,所以ALSA不仅仅是包括对声卡的支持和驱动。 ALSA具有如下特征: 1、对所有音频接口的高效支持,从普通用户的声卡到专业级别多路音频设备。 2、声卡驱动完全模块化设计。 3、SMP and thread-safe design。 4、开发库(alsa-lib)为程序设计提供了简单、方便,并且拥有有高级的效果和功能。 5、支持旧版本的OSS API 结口,能为大多数的OSS应用程序提供兼容。OSS是一个商业性的驱动,OSS有一个简装本的代码已经移入内核和ALSA,其中alsa-oss就是。OSS公司据说目前已经并不存在了。我们没有必要用OSS 公司提供的商业版本。用ALSA和OSS简装版足够。 二、关于硬件驱动驱动的必备基础 1、如何查看硬件芯片 在Linux操作系统中,所有的硬件都是以芯片组来区分的,品牌并不是最重要的。硬件最重要的标识是芯片组。所以您在讨论区求助的时候,只说硬件品牌,而不提供芯片组,大家是帮助不了您的,切记。 我们查看硬件的芯片组是的命令是 lspci -v 或者是dmesg,由于dmesg输出的信息不太多,不够直观。所以经常用的还是lspci -v 。也可以用lshal 获取。最方便的还是lspci -v。初学者还是用 lspci -v 更好一点。 我们运行lspci -v 后,如果查看声卡芯片组,发会现有类似下面的一段:

视频传输标准

视频传输标准 部门: xxx 时间: xxx 整理范文,仅供参考,可下载自行编辑

VGA概述 VGA(Video Graphics Array>是IBM在1987年随PS/2机一起推出的一种视频传输标准,具有分辨率高、显示速率快、颜色丰富等优点,在彩色显示器领域得到了广泛的应用。 目录[隐藏] VGA应用 VGA原理 内存寻址 程序技巧 技术性细节 标准文字模式 VGA色版 VGA线路 VGA 公插头(通常位于显示器侧> [编辑本段]VGA应用 VGA技术的应用还主要基于VGA显示卡的计算机、笔记本等设备,而在一些既要求显示彩色高分辨率图像又没有必要使用计算机的设备上,VGA技术的应用却很少见到。本文对嵌入式VGA显示的实现方法进行了研究。基于这种设计方法的嵌入式VGA显示系统,可以在不使用VGA显示卡和计算机的情况下,实现VGA图像的显示和控制。系统具有成本低、结构简单、应用灵活的优点,可广泛应用于超市、车站、飞机场等公共场所的广告宣传和提示信息显示,

也可应用于工厂车间生产过程中的操作信息显示,还能以多媒体形式应用于日常生活。b5E2RGbCAP [编辑本段]VGA原理 1 显示原理与VGA时序实现 通用VGA显示卡系统主要由控制电路、显示缓存区和视频BIOS程序三个部分组成。控制电路如图1所示。控制电路主要完成时序发生、显示缓冲区数据操作、主时钟选择和D/A转换等功能;显示缓冲区提供显示数据缓存空间;视频BIOS作为控制程序固化在显示卡的ROM中。p1EanqFDPw 1.1 VGA时序分析 通过对VGA显示卡基本工作原理的分析可知,要实现VGA显示就要解决数据来源、数据存储、时序实现等问题,其中关键还是如何实现VGA时序。 VGA的标准参考显示时序如图2所示。行时序和帧时序都需要产生同步脉冲(Sync a>、显示后沿(Back porch b>、显示时序段(Display interval c>和显示前沿(Front porch d>四个部分。几种常用模式的时序参数如表1所示。DXDiTa9E3d 1.2 VGA时序实现 首先,根据刷新频率确定主时钟频率,然后由主时钟频率和图像分辨率计算出行总周期数,再把表1中给出的a、b、c、d各时序段的时间按照主计数脉冲源频率折算成时钟周期数。在CPLD中利用计数器和RS触发器,以计算出的各时序段时钟周期数为基准,产生不同宽度和周期的脉冲信号,再利用它们的逻辑组合构成图2中的

网络高清传输的六种方案

网络高清传输的六种方案 一、常规方式——使用网线加交换机 网线传输网络高清信号最远不能超过100米距离,所以这种方式只限于较近距离,中小项目使用。 二、较远距离,及要求效果、画质推荐使用——光纤收发器 光纤收发器是一种将短距离的双绞线电信号和长距离的光信号进行互换的信号转换传输设备,将前端的以太网信号,通过光纤收发器的发射端将以太网的电信号转换器成光信号进行远距离传输,光纤收发器的接收端将光信号还有成电信号。

三,远距离光纤传输,任意间设备可作为终端——高清网络一纤通 高清一纤通传输方式采用一芯光纤上传输多达60个光网点,实现百万高清视频、报警、对讲、控制信号同时传输。 组网方式: 1.串联组网 鸿泰一纤通采用串联组网方式将设备逐级连入线路中,避免每对设备都要使用一芯光纤。节省了光纤。 如图所示:

2.混合组网 一纤通还可与交换机一起混合组网使用,在摄像机集中的地方可以先把信号传入到交换机中,再由高清一纤通传入到机房中。 如图所示: 扩展能力强 如果需要增加节点,无需重新布线。每个光网点可以根据需要放置1-8个网络摄像机,在首尾两台设备的上光口与下光口联上光缆,可以实现环网传输,即使中间节点光缆出现异常,也可以正常传输其它无故障的视频信号。 高性能 每芯光纤最多可支持250个高清网络摄像机,在联接250个摄像机时,最远节点信号延时小于0.2MS,实现所有画面有延时,无拖尾现象。 安装简单 即插即用,无需软件硬件设置。传输稳定,网络失帧率少,实时性高,节省光纤线材,环网传输能做到有备无患。 成本低低价位的光纤传输方式。 升级快可将原系统升级成数字化,应用更全面。 质量保证三级防雷设计,品质保证。工业级设计,100%老化测试,确保产品质量万无一失。

多站点远程实时视频传输与控制系统

ISSN 1000-0054CN 11-2223/N 清华大学学报(自然科学版)J T singh ua Un iv (Sci &Tech ),2008年第48卷第7期 2008,V o l.48,N o.723/41 1154-1156   多站点远程实时视频传输与控制系统 刘小康, 戴梅萼, 王 昊, 吴照人, 孟凡博, 叶 银 (清华大学计算机科学与技术系,北京100084) 收稿日期:2006-01-22 基金项目:国家自然科学基金资助项目(60773148,60503039); 航天部创新基金项目(J0320060003) 作者简介:刘小康(1983—),男(汉),湖南,硕士研究生。通讯联系人:戴梅萼,教授,E-mail:me@tirc.cs.ts inghua.ed https://www.360docs.net/doc/e73885570.html, 摘 要:为了实现远程监控图像的清晰,并保障系统的实时性和可靠性,需要高效率和高质量地进行视频压缩,无差错地进行快速网络传输,有效地进行命令控制。通过优化最新的H .264视频编码算法,设计有效的传输方案和引入自适应的传输机制来解决远程活动图像传输系统中存在的清晰、实时、高效、可靠性问题。实验结果表明:改进后的算法较原有的T .264编码方案速度提高了30%以上,设计的传输策略在保障传输速度的同时,能有效地适应不同的网络环境。在系统中引入的几个关键技术对远程视频传输系统提供了有力的支持。 关键词:应用软件;视频编码;视频传输;命令控制;自适 应;远程控制 中图分类号:T P 317 文献标识码:A 文章编号:1000-0054(2008)07-1154-03 Multiple site ,real -time video transmissions for remote control systems LIU Xiaokang ,DAI M ei ’e ,WANG Hao ,WU Zhaoren , MENG Fanbo ,YE Yin (Department of Computer Science and T echnology , T s inghua University ,Beij ing 100084,China ) Abstract :High image quality,fast,reliable rem ote control sys tems requ ire efficient video com pres sion algor ith ms, robus t netw ork tran smis sion strategies and effective control meth ods.T he H.264algorithm w as optim ized to des ign an effective tr ans miss ion meth od for a s elf-adaptive remote control sys tem.Tests sh ow that the optimized algorithm is more than 30%faster than the T.264algorithm. T he sys tem can b e applied to various netw ork en vir on men ts w ith more efficient transm ission.Th es e techniqu es sign ifican tly im prove remote con tr ol s ystem s. Key words :application software;video coding;video transm ission ; com man d control;s elf-adaptive,remote con tr ol 近年来网络多媒体技术越来越成熟,视频编码/解码技术也不断进步,H.264视频编码标准 [1] 的出 现,极大地提高了视频编码的压缩率,并能获得更好的视频重构质量。由于它支持多种视频格式和不同 网络条件,从而被迅速应用到各个领域,如视频点播、广播、视频压缩存储等。另一方面,视频监控技术的应用也越来越广泛,如交通管理中心对车流的监 控,护理中心对病人状况的监控等。该技术的核心问题是视频采集端的数据压缩、视频监控端的解压缩和二者之间的数据有效传输 [2,3] 。为减轻网络带宽负 荷,需要更高的视频压缩比;为实现更好的监控效果,需要更好的视频解码重构质量。 本文作者选用H.264进行视频压缩解压缩,并通过有效的传输方案和命令控制手段,实现了一个基于H.264的高保真活动图像远程传输与控制平台。 1 系统结构 整个视频传输与控制平台采用Client/Server 架构。采集端为Ser ver 端,获取原始的视频数据,作为服务器提供数据源;控制端作为Client 端,主动连接采集端获取视频数据,通过监控窗口显示远程视频图像,并对远程采集端进行命令控制。控制端通过多线程方式,可启动多个监控窗口,从而实现对多个采集站点进行实时监控。 整个视频远程传输与命令控制平台可分为3个子系统,具体包含9个小的功能模块。这3个子系统及其对应的模块描述如下。 1)视频编解码及传输子系统,包括模块如下。 a )视频采集与压缩模块。 从摄像头获取原始视频流,经H .264算法,形成压缩视频数据。 b)视频传输模块。将压缩视频数据经Internet 从采集端传输到控制端。 c )视频解压缩与显示模块。控制端解码并回放。

移动无线高清晰度视频实时传输系统解决方案

LB2000?移动无线高清晰度视频实时传输系统解决方案 中国船舶重工集团公司第七二四研究所 2005.04 Copyrights ?

LB2000无线高清晰度视频实时传输系统解决方案 无线图像传输即视频实时传输主要有两个概念,一是移动中传输,即移动通信,二是宽带传输,即宽带通信,因此,研制能够在高速移动过程中将频带很宽的高清晰度视频进行稳定传输的无线图像传输系统,就要解决二个主要问题:一是由多径传播引起的回波干扰;二是频率资源的使用率和渐趋饱和的问题。在过去的无线图像传输,主要是以单向的模拟电视广播业务为主,一套电视节目采用一个单独的频点,单频网可以提高频率资源的利用率,但是在不同地点用相同频率同频发射播出电视节目时,它们之间会有相互干扰,另外,由于接收或发射的一方处于移动状态,无论是发射或接收都会遇到强烈的多径干扰即回波干扰,因此,对回波干扰的处理方式可能从根本上影响一个无线高清晰度视频实时传输系统的性能,而LB2000无线数字高清晰度视频实时传输系统中的COFDM传输技术正是可以有效地利用回波而不是消极地排除回波引起的问题。因此,在城市环境里,LB2000特别适合解决当今摩天大厦林立的现代都市环境。 LB2000无线高清晰度视频实时传输系统利用未来3G移动通信的成熟技术,利用多载波调制技术和高清晰度视频编解码技术,开创性的解决了在非视距环境下传输“实时视频”的问题,下面我们重点探讨的是,LB2000在不同使用环境的各种应用的解决方案。 无论是那个部门,那个行业,使用无线高清晰度视频实时传输设备,我们可以按不同的功能分为以下几项: 一,系统从传输功能上分为: 1.发射前端; 2.接收端; 3.中继; 二,系统传输结构分为: 1.点对点应用; 2.点对多点应用; 3.多点对多点应用; 三,而从传输工作方式上则可以分为下列四种方式应用:

Linux Audio ALSA Technical specification

Linux Audio ALSA Technical specification SPREADING VISAS HISTORY OF THE REVISIONS CHECKER

TABLE OF CONTENTS 1ALSA OVERVIEW (3) 1.1ALSA FEATURES (3) 1.2ALSA子项目 (3) 1.3ALSA接口 (3) 1.4ALSA体系结构 (4) 1.5ALSA-DRIVER文件结构 (5) 2音频基础 (7) 2.1数字音频基础 (7) 2.2ALSA基础 (8) 2.3设备命名 (8) 2.4声音缓存和数据传输 (8) 2.5访问音频设备 (9) 2.6音频设备文件 (11) 3ALSA EXAMPLE (13) 3.1EXAMPLE1. DISPLAY SOME PCM TYPES AND FORMATS (13) 3.2EXAMPLE2. OPENING PCM DEVICE AND SETTING PARAMETERS (16) 3.3EXAMPLE3.SIMPLE SOUND PLAYBACK (19) 3.4EXAMPLE4. SIMPLE SOUND RECORDING (21) 3.5高级特性 (23) 4ALSA移植 (23) 5PREFERENCE (23)

1ALSA Overview ALSA(Advanced Linux Sound Architecture(高级Linux声音体系)的缩写)是为声卡提供驱动的Linux内核组件,以替代原先的OSS(开放声音系统)。ALSA除了像OSS那样提供一组内核驱动程序模块以外,还专门为简化应用程序的编写提供了相应的库函数,与OSS提供的基于ioctl的原始编程接口相比,ALSA函数库使用起来要更加方便一点。 1.1ALSA features ALSA has the following significant features: 1.Efficient support for all types of audio interfaces, from consumer sound cards to professional multichannel audio interfaces. (支持多种声卡设备) 2.Fully modularized sound drivers. (模块化的内核驱动程序) 3.SMP and thread-safe design. (支持SMP和多线程) https://www.360docs.net/doc/e73885570.html,er space library (alsa-lib) to simplify application programming and provide higher level functionality. (提供应用开发函数库以简化应用程序开发) 5.Support for the older Open Sound System (OSS) API, providing binary compatibility for most OSS programs. (支持OSS API,兼容OSS应用程序) 1.2ALSA子项目 ALSA具有更加友好的编程接口,并且完全兼容于OSS,对应用程序来讲无疑是一个更佳地选择。ALSA系统包括以下7个子项目,其中只有驱动包是必须的: 驱动包alsa-driver 开发包alsa-libs 开发包插件alsa-libplugins 设置管理工具包alsa-utils 其他声音相关处理小程序包alsa-tools 特殊音频固件支持包alsa-firmware OSS接口兼容模拟层工具alsa-oss. alsa-driver指内核驱动程序,包括硬件相关的代码和一些公共代码,非常庞大。 alsa-libs指用户空间的函数库,提供给应用程序使用,应用程序应包括头文件asoundlib.h。并使用共享库libasound.so。 alsa-utils包含一些基于ALSA的用于控制声卡的应用程序,如alsaconf(侦测系统中声卡并写一个适合的ALSA配置文件),aplay(基于命令行的声音文件播放),arecord(基于命令行的声音文件录制)等。 1.3ALSA接口 目前ALSA内核提供给用户空间的接口有: 信息接口(proc/asound)

实时视频传输与控制协议-v2

全球眼 实时视频传输和控制协议v2 修改历史 复审人

一、说明 这份协议描述了视频服务器与流媒体分发服务器、视频服务器与企业客户端之间传输实时视频的方法。文档中没有针对媒体分发服务器与企业客户端(第三方播放器)之间的通信方法,但是媒体分发服务器与企业客户端(第三方播放器)之间的通信方法尊守RTC1889和RPC2326定义的规范。 在这篇文档里我们把象视频服务器这样能够给观看者提供视频数据的设备称为逻辑上的服务端角色(也就是视频源),象企业客户端这样播放视频的终端设备称为逻辑上的客户端角色(也就是接收者或观看者)。流媒体分发服务器同时具有两种角色。 交互流程中列出了两种模式,我们当前要先实现接模式。推模式是为了视频服务器在私网环境时也可以通过流媒体发服务器向用户提供视频服务。推模式暂不实现。 协议中没有提及RTCP协议,但并不影响视频通信质量,而且目前很难实现有效的编解码之间返馈的处理方法,所以现在,以及将来的一段时间都不会考虑RTCP协议,除非出现有效的视频质量控制机制。 本文参考RFC 1889、1890、2326、3550完成,如有不符合标准的、或者不完善的陈述,请提出来,发电子邮件到piaoxichuang@。如果您有更好的想法也可以通过邮件进行交流。 二、协议 通信方式使用RTP over TCP方式。(RTC1889、RFC2326) 1、一个完整的包 网络字节顺序

2、RTP包的封装(RTP over TCP) 网络字节顺序 Channel Identifier:取值0。因为只有一个流在一个TCP连接中传递,同时不使用RTCP协议。参见RFC 2326 [10.12]节。 Lenth:取值为RTP包的大小,包括RTP头部,但不包含本身的4个字节,以BYTE为单位。 3、RTP 12字节头部 网络字节顺序 V:版本,取值2。[可能会使用0值,还没想清楚,可能的使用情况是为了实现防火墙穿透] P:附加数据,取值为0。 X:扩展头,取值为1。 CC:CSRC列表数量,取值为0。 M:记号,取值0或1。关于M字段的取值:如果扩展头中T字段为1,则当一个包(RTP Packet)是一个帧(Sample)的最后一个包时取值1,否则取值0;扩展头中T字段为1时,由于指令长度较小,一个RTP就可以传输完成,所以取值为1。除非要使用多个RTP包传输,最后一个RTP包取值为1,前面的包取值为0。 PT:负载类型,动态,取值96。参见RFC 1890 [7]节。 Sequence Number:RTP包的序号,初始值是随机的,不是0。 Timestamp:以视频编码算法提供者的需要填写或单调增长的时间戳。[将来可能把这个值也传递给视频解码算法中去。] SSRC:随机数,用于在同一个会话中区分不同的流。建议使用MD32。 UINT Y[4] If Y = MD5(X) Then MD32(X) = Y[1] ^ Y[2] ^ Y[3] ^ Y[4] 注:RTP包大小最大值为2048。(因为DSS支持的最大包为2048Bytes)

Linux音频设置

Linux音频设置 By Shadow(山斗) 2020年3月15日 linux声音系统是比较复杂的,最近在做一个基于linux的音乐程序,碰到了好多问题,网上关于linux音频设置的资料比较少,所幸的是折腾了好几天后基本上解决了所有问题,现将自己的理解写下来。 设置音频输入输出先要明白见个概念: 1.声音是哪里来?即音频从哪里采集的,声音可以来源于麦克风、音乐播放器、程序生成等。 2.声音到哪里去?即音频要被输出到哪里去,可以是诸如音箱、耳机的物理设备,也可能其它音频处理程序(比如变声器等声音特效程序)。 3.在pulseaudio架构中,音频来源与sink-input、source有关,音频输出与sink有关。 PulseAudio是当前linux发行版主流的音频架构,它是一个声音服务器,一个后台进程从一个或多个音源(进程或输入设备)接受声音输入然后重定向声音到一个或多个槽(声卡,远程网络PulseAudio服务,或其他进程)。 pactl是pulseaudio的命令行接口,详细的用法请参照man pactl输出的说明。 设置音频输出设备 pactl info # 查看PulseAudio的配置信息. Server String: /run/user/0/pulse/native Library Protocol Version: 33 Server Protocol Version: 33 Is Local: yes Client Index: 199 Tile Size: 65472 User Name: root Host Name: kali Server Name: pulseaudio Server Version: 13.0 Default Sample Speci?cation: s16le 2ch 44100Hz Default Channel Map: front-left,front-right Default Sink: bluez_sink.41_42_9E_70_BF_A7.a2dp_sink #当前默认的音频输出设备 Default Source: alsa_https://www.360docs.net/doc/e73885570.html,b-C-Media_Electronics_https://www.360docs.net/doc/e73885570.html,B_PnP_Sound_Device-00.mono-fallback #当前默认的音频输入设备 Cookie: 04e1:8ccc pactl list short sinks #查看当前可用的音频输出设备,请记住每个列表项第一个数字设备ID,后面要用到 5 alsa_https://www.360docs.net/doc/e73885570.html,b-C-Media_Electronics_Inc._USB_PnP_Sound_Device-00.analog-stereo module-alsa-card.c s16le 2ch 44100Hz RUNNING 7 bluez_sink.41_42_9E_70_BF_A7.a2dp_sink module-bluez5-device.c s16le 2ch 44100Hz SUSPENDED pactl list short sink-inputs $查看当前音源从哪里来的,以下为ID为77的程序产生ID为75的音频流并输入到ID为5的音频设备 75 5 77 protocol-native.c s16le 2ch 22050Hz pactl move-sink-input 75 7 #将ID为75的音源的输出导向到ID为7的音频输出设备的输入中(改变当前音频输出设备,假如你同时连接了蓝牙耳机、有线音箱,那么可用此命令切换) pactl set-sink-volume 7 0.5 #设置音频输出设备的音量

视频传输类型及原理简介

视频传输类型及原理简介 视频传输 规定:视频设备的输入输出阻抗75Ω(相互配接和通用性) 种类:1、基带同轴传输。 2、基带双绞线传输。 3、射频调制解调传输。 4、光缆调制解调传输。 5、视频数字(网络)传输。 6、微波传输。 7、无线天线视频监控系统。 一、基带同轴传输:{0~6M,1V p-p,75Ω} 图: 同轴电缆是唯一可以不用附加传输设备也能有效传输视频信号方法。(绝对衰减最小)。突出矛盾就是频率失真,在传输通道视频失真度条件下,75-5可传输120m(200m以上可观察到失真)。 “频率加权放大技术”目前已成熟,仅用一个末端补偿设备,75-5→2000m;若前后补偿,可到3000m。 单端不平衡传输,一根为信号线;一根为零线,优点:传输阻抗,不受外界干扰和不对外产生干扰。缺点:分布参量值较大,损耗严重。线越长越严重。 线缆衰减是指线缆传输信息期发生的能量降低或损耗,它遵循一种叫趋肤效应和近似效应的物理定理,随着频率的增加会增大,导体内部的电子流产生的磁场迫使电子向导体表面聚集,频率越高这个表层越薄,这一效应对电缆的衰减影响相当显著,且衰减与频率的平方根近似成正比。 可知要求 75-5≤200m 75-7≤400m 75-9≤600m 75-13≤800m 如超过800m,不建议用同轴传输,由于分布参数更大,寄生干扰引入,图像质量下降。 二、双绞线传输: 图: 平衡传输方式:不平衡输入的视频经发送器A转换为平衡输出,传输回路的两根线分别是幅度相等相位相反的差分信号,在接收器B中将平衡信号再转换回不平衡信号,以便与现行设备配接。 由于双绞线上的两个信号大小相等,极性相反,且两线相绞(不断改变方向),这样线间的寄生电抗与其相邻电抗也极性相反大小相等。(两线完全平衡时)图: C1、C2、…C n是每对双绞线每一绕结的分布电容。 L1、L2、…L n是每对双绞线每一绕结的感应电感。

在手机上使用USB传输高清视频

在手机上使用USB传输高清视频 为了应对手机传输高清摄像的挑战,需要在USB标准中定义一个USB音视频类来规范USB 视频传输(Video-over-USB)技术。 手机的摄像功能已经从一种新鲜事物发展为主流配置,移动供应商策略性地把高清录像作为他们的高端产品。在手机中整合高清视频将会进一步体现其实用价值,因为它已不仅是一个数码相机,还是一个数码摄像机。 把高清录像放到手机会带来新的问题:如何使高清视频回放。在手机上直接回放视频是很普遍的,但屏幕的尺寸和分辨率的限制使高清视频无法向用户传递其动人的高清体验。和共享移动文档和照片类似,开发人员所面临的挑战是如何分享高清视频而不令其仅限于手机内部。 在手机上采用高清视频输出接口 当前的手机视频输出接口的发展跟不上手机高清视频的传输需求。USB数据传输速度足以传输照片,但连接到高清电视、显示器和其他显示设备的高清视频则需要实时的流传输。与此同时,当前的高清视频手机不是配备标清的模拟视频输出就是采用高清电视所用的高清视频标准,这些都没有专门针对移动手机进行过优化(见表1)。 表1:各手机厂商的高清视频整合。 传统高清视频标准 HDMI是当今高清视频最好的标准之一,到2009年第二季度,超过850家公司取得了HDMI 授权。 In-Stat曾预测,在2010年,市面上支持HDMI的设备超过十亿。这些设备包括HDTV、投影机以及诸如媒体播放器和手机等手持设备。HDMI(图1下)采用3个TMDS(最小化传输差分信号) 数据通道和一个单独的时钟通道来传输未压缩的视听信号,最快可达10.2 Gbps (3.4 Gbps每通道)。在这样的带宽下,HDMI支持超过1080p数据流从而兴起了数字三维体验。

AVB下一代网络音视频实时传输技术

下一代下一代网络网络网络音视频音视频音视频实时传输实时传输实时传输技术技术 -- Ethernet AVB 作者作者::何冬(首席工程师, Dong.He@https://www.360docs.net/doc/e73885570.html, ) 黄晟(工程师, Sheng.Huang@https://www.360docs.net/doc/e73885570.html, ) Charles Wang (技术总监, Charles.Wang@https://www.360docs.net/doc/e73885570.html, ) 哈曼哈曼((上海上海))研发中心集团技术研究部 摘要 以太网音视频桥接技术(Ethernet Audio/Video Bridging ,以下简称Ethernet A VB )是一项新的IEEE 802标准,其在传统以太网络的基础上,通过保障带宽(Bandwidth ),限制延迟(Latency )和精确时钟同步(Time synchronization),提 供完美的服务质量(Quality of Service, 简称QoS ) ,以支持各种基于音频、视频的网络多媒体应用。Ethernet A VB 关注于增强传统以太网的实时音视频性能,同时又保持了100%向后兼容传统以太网,是极具发展潜力的下一代网络音视频实时传输技术。 引言 1982年12月IEEE 802.3标准的发布,标志着以太网技术的起步。经过不到30年的发展时间,以太网的传输速度已经从最初的10Mbps 发展到100Mbps 、1000Mbps 、10Gbps ,甚至即将出现的100Gbps 。以太网低廉的端口价格和优越的性能,使得以太网占据了整个局域网的85%左右,而基于以太网的网桥、集线器、交换机和路由器则构成了互联网体系相当重要的组成部分。 近十几年来,消费者对于以太网上的多媒体应用的需求日益剧增,这对网络的带宽及服务质量都提出了更高的要求。不过,由于以太网原本只设计用于处理纯粹的静态非实时数据和保证其可靠性,至于顺序和包延迟等并非作为重要的考虑因素。尽管传统二层网络已经引入了优先级(Priority)机制,三层网络也已内置了服务质量(QoS )机制,但由于多媒体实时流量与普通异步TCP 流量存在着资源竞争,导致了过多的时延(Delay )和抖动(Jitter ),使得传统的以太网无法从根本上满足语音、多媒体及其它动态内容等实时数据的传输需要。 IEEE 802.1 A VB 工作组正致力于制定一系列的新标准, 对现有的以太网进行功能扩展,通过建立高质量、低延迟、时间同步的音视频以太网络,为家庭或企业提供各种普通数据及实时音视频流的局域网配套解决方案。 Ethernet A VB 网络的构成 为了在以太网上提供同步化低延迟的实时流媒体服务,需要建立A VB 网络,称之为A VB “云”(Cloud )。A VB “云”的建立需要至少速度在100Mbps 以上的全双工(Full-duplex )以太链路,这就需要能保障传输延迟的A VB 交换机(Switch)和终端设备(End Point),以及逻辑链路发现协议(IEEE 802.1AB - LLDP ),用于设备之间交换支持A VB 的协议信息。 如图1所示,在A VB “云”内,由于延迟和服务质量得到保障,能够高质

高清视频编解码网络传输解决方案

随着高清信号的广泛应用,机场、地铁、商场、会议室等场所都统统换上了高清设备,因此,高清视频的距离传输并成了一个关键的问题。为了解决这样的用户高清视频长距离传输,目前最好的的解决方案就是通过Smartair技术。 该方案采用TCP/IP技术进行数字信号传输,只需单根网线就可以延长HDMI信号,用户可以把显示屏幕放到距离主机100米以上的地方使用。该方案已经在视频广告,数字家庭,多媒体教学广电,投影会议等得到广泛应用,其稳定性得到了验证,适中的价格更是使客户很容易接受。 规格特点: 1、采用单网线,标准的TCP/IP 传输HDMI高清信号传输设备。 2、可采用点对点、点对多点、级联传输的方式传输HDMI数字信号、立体声音频信号。 3、此设备是把高清音视频信号进行数字化处理,通过网络方式进行传输,传输线缆为超五类网线组成的局域网,一台编码器可以带上百台解码器,通过这种传输方式可以把一个广告播放区域内的所有液晶屏采用一根网线解决了高清音视频信号的传输。同样也可以适应网络的各种联接方式,中间可采用交换机等网络设备延长传输距离。 4、图像清晰度高,可直接输入1080P高清视频,图像不失真,图像抗干扰能力强,稳定性 高。 5、该方案同时支持IR和RS232的控制传输 规格 分辨率Resolution Frame rate Ratio 640x480P60Hz4:3 720x480P59.94Hz/60Hz4:3/16:9 1280x720P 50Hz/59.94Hz/60Hz16:9 720x576P 50Hz 4:3/16:9 1920x1080P 23.97Hz/24Hz/25Hz16:9 29.97Hz/30Hz/50Hz 1920x1080P 50Hz/59.94Hz/60Hz16:9 音频LPCM up to 8 channels Sampling rate: 32kHz, 44.1kHz and 48kHz Sample depth: 24bit, 20bit and 16bit HDMI HDMI 1.3 HDCP HDCP 1.2

相关文档
最新文档