交流阻抗测量系统中交流小电流测量方法

交流阻抗测量系统中交流小电流测量方法
交流阻抗测量系统中交流小电流测量方法

交流阻抗怎么测量

交流阻抗怎么测量 交流阻抗法是电化学测试技术中一类十分重要的方法,是研究电极过程动力学和表面现象的重要手段。特别是近年来,交流阻抗的测试精度越来越高,超低频信号阻抗谱也具有良好的重现性,再加上计算机技术的进步,对阻抗谱解析的自动化程度越来越高,这就使我们能更好的理解电极表面双电层结构,活化钝化膜转换,孔蚀的诱发、发展、终止以及活性物质的吸脱附过程。 (1)交流阻抗:交流阻抗即阻抗,在电子学中,是指电子部件对交流激励信号呈现出的电阻和电抗的复合特性;在电化学中,是指电极系统对所施加的交流激励信号呈现出的电阻和电抗的复合特性。阻抗模的单位为欧姆,阻抗辐角(相角)的单位为弧度或度。 (2)交流阻抗谱:在测量阻抗的过程中,如果不断地改变交流激励信号的频率,则可测得随频率而变化的一系列阻抗数据。这种随频率而变的阻抗数据的集合被称为阻抗频率谱或阻抗谱。阻抗谱是频率的复函数,可用幅频特性和相频特性的组合来表示;也可在复平面上以频率为参变量将阻抗的实部和虚部展示出来。测量频率范围越宽,所能获得的阻抗谱信息越完整。RST5200电化学工作站的频率范围为:0.00001Hz~1MHz,可以很好地完成阻抗谱的测量。 (3)电化学阻抗谱:电化学阻抗谱是一种电化学测试方法,采用的技术是小信号交流稳态测量法。对于电化学电极体系中的溶液电阻、双电层电容以及法拉第电阻等参量,用电化学阻抗谱方法可以很精确地测定;而用电流阶跃、电位阶跃等暂态方法测定,则精度要低一些。另外,像扩散传质过程等需要用较长时间才能测定的特性,用暂态法是无法实现的,而这却是电化学阻抗谱的长项。 (4)电化学阻抗谱测量的特殊性:就测量原理而言,在电化学中测量电极体系的阻抗谱与在电子学中测量电子部件的阻抗谱并没有本质区别。通常,我们希望获得电极体系处于某一状态时的电化学阻抗谱。而维持电极体系的状态,须使电极电位保持不变。通常认为,电极电位变化50mV以上将会破坏现有的状态。因此,在电化学阻抗谱测量中,必须注意两个关键点,即:偏置电位和正弦交流信号幅度。 (5)正弦交流信号的幅度:为了避免对电化学电极体系产生大的影响以及希望其具有较好的线性响应,正弦交流信号的幅度通常可设在2~20mV之间。 (6)自动去偏:在电化学阻抗谱测量过程中,由于偏置电位不一定等于开路电位以及少量的非线性作用,在工作电极电流中还会含有直流成分。去除这个直流成分(偏流),可扩大交流信号的动态范围、提高信噪比。RST5200电化学工作站,可在测量过程中动态地调整去偏电流,使获得的阻抗谱数据更精准。另外,在软件界面的状态栏中,可实时显示工作电极的极化电流,供操作者参考。 以上为交流阻抗的相关说明,下面我们就实验设置过程中遇到的专业名词

漏电流测试方法

测量接地漏电流 漏电比对人墙MD(地),容易理解和考虑漏电流接地端子的电流。 上的MD(红色和黑色),您认为图左侧的代码表示你的手或脚 测量正常状态 ?连接? 连接到墙上的插座适配器· 2P 3P 3P插头连接到被测设备ME。 插入之间的地面和地面终端适配器导致3P · 2P墙的MD,测量电流从插入被测ME设备的3P接地引脚泄漏。 开关电源极性连接到墙上的插头转接器转换成半旋转3P · 2P。

?测量? 打开电源测试ME设备,对MD(最好的测量范围从最高量程)输出电压测量。 其结果是除以1kΩ的当前记录测量(因为它可能被转换成测量μAMV)。 再次切换极性,测量功率,并具有重要价值的测量。 ?决定? 另一种形式,无论附加,0.5毫安大致正常 单一故障条件(一电源线开路)测量 ?连接? 删除连接2P 3P ·正常情况下,适配器,该适配器只有一个刀片极2P 3P连接· 2P剥离(漏电电流∵ 单一故障条件下,只有电力导线断开one 。) 壁挂2P插头插座条。 开关电源极性连接到墙上插座旋转2P半条。 交换式电源供应断开的导线连接到其他2P刀片更换地带极适配器3P · 2P。

?测量? 打开电源测试ME设备,对MD(最好的测量范围从最高量程)输出电压测量。 其结果是除以1kΩ的当前记录测量(因为它可能被转换成测量μAMV)。 极性开关电源,开关电源的测量4供应断开的导线,最大测量值。 ?决定? 另一种形式连接,正常值小于1mA无关。 外部泄漏电流测量 测量正常状态 ?连接? 连接到墙上的插座适配器· 2P 3P 3P插头连接到被测设备ME。3P · 2P适配器地线连接到地面的墙。 ME的设备金属部件测试(如果外部覆盖着绝缘设备,如铝箔贴为20cm × 10CM部分)之间插入墙壁和地面终端的医师,设备的测试ME外观测量泄漏电流。 开关电源极性连接到墙上的插头转接器转换成半旋转3P · 2P。

大学物理实验多种方法测量直流电阻

用多种方法测量直流电阻 一、实验目的 1、熟悉各种电学仪器及电路技巧; 2、掌握多种方法测量直流电阻 3、巩固不确定度的评定方法 二、仪器 DH6108赛电桥综合实验仪,直流稳压电源,万用电表,电阻箱,两个待测电阻,千分尺,直流电流表,直流电压表,滑线变阻器,检流计等 三、实验原理 电阻是电磁学实验工作中的常用元件,可分为高值电阻(兆欧以上)、中值电阻(10欧~兆欧)、低值电阻(10欧以下)。测量电阻的方法有许多种,常用的如伏安法、电桥法、比较测量方法(电压比等于电阻比)。 (一)伏安法测量电阻的原理(适用于测中值电阻) 1、实验线路的比较和选择 当电流表内阻为0,电压表内阻无穷大时,下述两种测试电路的测量不确定度是相同的。 图1 电流表外接测量电路 图2 电流表内接测量电路 被测电阻的阻值为: I V R = 。 但实际的电流表具有一定的内阻,记为R I ;电压表也具有一定的内阻,记为R V 。因为R I 和R V 的存在,如果简单地用I V R = 公式计算电阻器电阻值,必然带来附加测量误差。为了减少这种附加误差,测量电路可以粗略地按下述办法选择:

比较(R/R I )和(R V /R )的大小,比较时R 取粗测值或已知的约值。如果前者大则选电流表内接法,后者大则选择电流表外接法。 如果要得到测量准确值,就必须按下(1)、(2)两式,予以修正。 即电流表内接测量时,I R I V R -= (1) 电流表外接测量时, V R V I R 11-= (2) 2、测量误差与不确定度的评定 实验使用的电压表和电流表的量程和准确度等级一定时,可以估算出U V 、U I ,再用简化公式I R I V R -= 计算时的相对不确定度 (3) 式中U R 表示测量R 的不确定度,并非指R 的电压值。 可见要使测量的准确度高,应选择线路的参数使数字表的读数尽可能接近满量程,因为这时的V 、I 值大,U R /R 就会小些。 当电压表、电流表的内阻值R V 、R I 及其不确定度大小U RI 、U RV 已知时,可用公式(1)、(2)更准确地求得R 的值,相对不确定度由下式求出: 电流表内接时: (4) 电流表外接时: (5) 这就知道由公式(1)、(2)来得到电阻值R 时,线路方案和参数的选择应使U R /R 尽可能最小(选择原则3)。 (二)惠斯通电桥测量未知电阻的原理 (适用于测中值电阻) 现代计量中直流电桥正逐步被数字仪表所替代. 以往在电阻测量中电桥起了重要作用。 惠斯通电桥(Wheatstone ,s bridge )沿用了近二百年,1833年由克里斯泰(Cheistie )首先提出,后来以惠斯通名字命名. 电桥产生的背景是: 1)在数字仪表发展之前的时期,如果用伏安法测量电阻/R V I =,需要同时准确测量电压V 和电流I ,当时0.2级模拟式电表的制造成本与价格就已经显著高于准确度约0.05% 6位旋转式电阻箱. 2)伏安法测量的条件要求较高,如0.2级电表的使用与检定的条件要求较高,对电源 2 2?? ? ??+??? ??=I U V U R U I V R ?? ????-??? ?????? ??+??? ??+??? ??=I V R I V R R U I U V U R U I I I R I V R I /1/2222????? ?-???? ?????? ??+??? ??+??? ??=V V V R I V R R I V R I V R U I U V U R U V /1/222 2

交流阻抗参数的测量和功率因数的改善东南大学

东南大学电工电子实验中心 实验报告 课程名称:电路实验 第三次实验 实验名称:交流阻抗参数的测量和功率因数的改善院(系):专业: 姓名:学号: 实验室: 103 实验组别: 同组人员:实验时间:2011/11/22 评定成绩:审阅教师:

交流阻抗参数的测量和功率因数的改善 一、 实验目的 1、 学习测量阻抗参数的基本方法,通过实验加深对阻抗概念的理解; 2、 掌握电压表、电流表、功率表和单相自耦调节器等电工仪表的正确使用方法。 二、 实验原理 对于交流电路中的元件阻抗值(r 、L 、C ),可以用交流阻抗电桥直接测量,也可以用下面两种方法来进行测量。 1. 三电压表法 先将一已知电阻R 与被测元件Z 串联,如实验内容图一(a )所示。当通过一已知频率的正弦交流信号时,用电压表分别测出电压U 、U1和U2,然后根据这三个电压向量构成的三角形矢量图和U2分解的直角三角形矢量图,从中可求出元件阻抗参数,如图一(b )所示。这种方法称为三电压表法。 由矢量图可得: 222 12 12 22cos 2cos sin r x U U U U U U U U U θθ θ --= == 111r x x RU r U RU L wU U C wRU = = = 2.三表法 图如图二所示: 首先用交流电压表,交流电流表和功率表分别测出元件Z 两端电压U 、电流I 和消耗的有功功率P ,并且根据电源角频率w,然后通过计算公式间接求得阻抗参数。这种测量方法称为三表法,它是测量交流阻抗参数的基本方法。 被测元件阻抗参数(r 、L 、C )可由下列公式确定: 2cos cos U z I P IU P r z I ?? = = == sin 1x z x L w C xw ? ==== 三、 实验内容 1、三电压表法

电流检测最的三个最基础知识点

电流检测最的三个最基础知识点 目前,电流检测的阻值非常低,其主要用于测量流经其山的电流。通过该电阻的电流主要是通过电阻两端的电压反映出来,所以通过应用公式l=V/R该公式是由某著名学校的老师乔治西蒙欧姆提出的:即 电阻上的电流与电压成正比。 上面简单的介绍就当作抛砖引玉了,本文的主题一一阻选择、高边或低边监测以及检测放大器的选择—— 都是以这个电气工程基本公式为基础的。 电流检测监控有助于提高一些系统的效率,减少损失。例如,许多手机实现了电流检测监控,提高电池寿命, 同时提高可靠性。如果电流消耗太大,手机可以做岀决定,降低CPU频率来减少电池负载以此延长电池寿命,同时防止手机过热来增加稳定性。甚至有手机应用程序可以访问电流检测并且对优化手机的性能做出决策。除了电流检测监控使用了一个电阻,另外两个不太常用的方法也使用了电阻。其一是使用霍尔效应传感器来测量产生通量场的电流。虽然这是非侵入性的,并且具有非插入损耗的优点。它相对来说有点贵, 并且要求一个相对大的PCB基板。另一种方法,使用变压器测量感应的交流电流,也属于面积和成本密集型;并且同时只对交流电流有用。 本文将介绍使用一个电阻进行电流检测监控的三个基本方面: 1、选择一个低阻值精度采样电阻。如果说基板是基于位置,位置,位置”,然而选择一个电阻就是基于精度,精度,精度”原则。 2、选择一个检测放大器芯片。当感应到在小于1欧姆电阻,电压很小的变化也会产生一个很大的结果。检测放大器将电压变化放大,使无意义的事情变的更有意义。 3、检测电阻的位置,位置,位置”。这个若检测参考电源,称为高边检测,或者如果连接地,又叫作低边检测。 精密电流传感应用程序不再是自制食物电路;制造商已经做了所有的研究和现代设计的大部分工作。 电阻选择 选择电阻值,精度和物理尺寸都取决于预期的电流测量值。电阻值越大,测量可能就越精确,但大的电阻值 也会导致更大的电流损失。对于低功率电池驱动的设备,必须减少损失,电阻大约一毫米的长度值并且带有 成百上千欧姆的电阻经常被使用。对于一个或更多的放大器的更高电流,电阻可以使用更大的阻值,这将得 到更准确的测量与可接受的损失。 尽管电阻器通常认为是一个简单的二端设备,为准确测量当前的四端电阻比如VishayWSK系列,在每个 电阻的末端都使用了二端。这为二端提供了应用电路的电流路径,和另一对感测放大器的电压检测路径。 这四端设置,也称为开尔文传感,确保在每个连接尽可能最小的阻力,确保感测放大器的测量电压就是电阻两端的的实际电压并且包括小电阻的组合连接。这将使得更加容易相互连接并且减少电阻温度系数造成的影响(TCR)。TCR是一个电阻随着温度的升高而阻值增加的效果。电源接到检测电阻上通常都会使电阻加热并且可能连接到100°C或者远远高于该温度的环境温度下。尽管检测电阻设计成具有非常低的 TCR,但是有线或PCB布线连接起来组合的TCR可能使阻值增加5%到10%。开尔文传感通过改进传感系统温度的稳定性

微电流检测资料

目录 1、设计背景 (1) 2、设计方案选择 (1) 2.1典型的微电流测量方法 (1) 2.1.1开关电容积分法[1] (1) 2.1.2运算放大器法 (2) 2.1.3场效应管+运算放大器法 (2) 2.2总体设计方案 (3) 3、具体设计方案及元器件的选择 (4) 3.1稳流信号源问题 (4) 3.2I/V转换及信号滤波放大 (5) 3.2.1前级放大 (5) 3.2.2滤波及后级放大电路 (6) 3.2.3运算放大器的选取 (6) 3.3量程自动转换 (6) 3.4信号采集处理 (7) 4、软件仿真结果 (8) 5、参考资料 (9)

微电流测试电路设计 1、设计背景 微电流是指其值小于-6 10A的电流,微电流检测属于微弱信号检测的一个分支,是一门针对噪声的技术,它注重的是如何抑制噪声和提高信噪比。该技术在军事侦察、物理学、化学、电化学、生物医学、天文学、地学、磁学等许多领域具有广泛的应用。我们所研究的微电流检测主要针对电力系统中的绝缘材料,因为现代国民经济对电力供应的依赖性日益增大,电力系统的规模、容量也在不断扩大。而电气设备的绝缘材料往往是电力系统中的重要组成部分,绝缘材料的漏电流情况严重会造成电力系统的重大损失。微电流检测是通过对泄漏电流的测量来评估绝缘材料状况的有效方法。近年来,针对微弱电流的信噪改善比SNIR已能达到1了,目前国内做得比较好的单位是南京大学,其独家生产的ND-501型微弱信号检测实验综合装置己被国内至少76家高等院校使用。但其产品价格昂贵,少则几千元,多则几万元,例如HB-831型pA级电流放大器、HB-834型四通道pA级电流放大器、HB-838型八通道pA级电流放大器的售价分别为4100元/台、13000元/台、22000元/台。所以,研制高精度、寿命长、成本低、电路简单的微电流检测仪具有重要的现实意义及理论参考价值。为了达成目标,我们需要重点考虑以下几个问题: 10 A(本设计要求)的稳流信号源的实现(1)如何获得实验信号,即电流为12 问题; (2)如何将微弱电流信号转换成易于操作的信号; (3)怎样将微弱信号提取放大; (4)如何实现量程的自动转换问题; (5)将实际中的模拟信号转换成数字信号; (6)实现对数字信号的处理和显示。 2、设计方案选择 2.1典型的微电流测量方法 2.1.1开关电容积分法[1] 开关电容式微电流测量方法的前级是在利用开关电容实现电流向电压转换的同时对电压信号进行调制和放大,达到微伏级;后级电路通过选频放大电路实

发电机转子交流阻抗试验技术方案

#2发电机转子交流阻抗试验 技术方案 批准人: 审定人: 审核人: 编写人: 贵州黔东电力有限公司 2011年07月07日

#2发电机转子交流阻抗试验技术方案 1、试验目的: 针对#2发电机运行中震动较大等原因,对#2发电机进行:转子绕组直流电阻试验、发电机堂内转子交流阻抗试验、发电机转子两极分担电压试验。来判断发电机转子绕组是否存在匝间短路,为查找发电机震动较大提供技术数据和分析判断依据。 2、引用标准 DLT1051-2007 《电力技术监督导则》 DL/T 596-1996 《电力设备预防性试验规程》 3、使用仪器仪表 FULK 兆欧表 HDBZ-5 直流电阻测试仪 HDJZ 型发电机转子交流阻抗测试仪 5 测试内容及工作程序 5.1试验内容 5.1.1 试验方法

用铜电刷通过滑环向转子绕组施加交流电压,同时读取电流、电压和功率损耗值。 5.1.2试验接线见图1。 图1试验接线 本图较一般接线图增加了隔离变压器,因为现在大多检修电源开关都装了漏电保安器,由于转子绕组对地有电容,当交流电源接上后对地会有电容电流,就会导致漏电保安器动作跳开电源开关,因此建议前极加上一隔离变压器。如果没有隔离变压器,可直接将调压器接220V 交流电源,但接的开关不能有漏电保安器。开关容量需要60A 。 5. 2试验操作程序(步骤): (1)试验前先确认转子绕组的励磁回路已全部断开并验电; (2)现场封闭:对试验现场进行封闭,用围栏或绳子将试验现场围起,并悬挂标示牌。 (3)按图1接好试验接线,带电空试以检查试验设备和各仪器仪表是否正常; (4)试验电压的确定 对于额定励磁电压在400V 及以下的绕组,施加的电压一般考虑为其电压峰值等于额定励磁电压。额定励磁电压大于400V 时,电压可适当降低。本机转子绕组交流阻抗较小,外施电压到100V 电流已超过40A ,故历次试验都只加到100V 电压,本次试验也可加到100V ,以便与以往数据比较。 (5)用铜电刷通过滑环向转子绕组施加交流电压,同时读取电流、电压和功率损耗值。 (6)应在静止状态下的定子膛内、膛外和在超速试验前后的额定转速下分别测量,每种工况都应在几个不同的电压下进行测量。 (7)试验完毕后,断开电源,然后需检查试验仪表是否正常。 (8)记录温度和湿度。 5. 3试验时注意事项:合电源开关向转子施加电压前必须大声通知。 转子绕组 铜刷

电气设备泄漏电流测试方法及注意事项

电气设备泄漏电流测试方法及注意事项? ? ??测量泄漏电流的原理和测量绝缘电阻的原理本质上是完全相同的,而且能检出缺陷的 (1)试验电压高,并且可随意调节,容易使绝缘本身的弱点暴露出来。因为绝缘中的某些缺陷或弱点,只有在较高的电场强度下才能暴露出来。 (2)泄漏电流可由微安表随时监视,灵敏度高,测量重复性也较好。 (3)根据泄漏电流测量值可以换算出绝缘电阻值,而用兆欧表测出的绝缘电阻值则不可换算出泄漏电流值。 (4)可以用i=f(u)或i=f(t)的关系曲线并测量吸收比来判断绝缘缺陷。泄漏电流与加压时间的关系曲线如图1-1所示。在直流电压作用下,当绝缘受潮或有缺陷时,电流随加压时间下降得比较慢,最终达到的稳态值也较大,即绝缘电阻较小。 1. 测量原理 对于良好的绝缘,其泄漏电流与外加电压的关系曲线应为一直线。但实际上的泄漏电流与外加电压的关系曲线仅在一定的电压范围内才是近似直线,如图1-2中的OA段。若超过此范围后,离子活动加剧,此时电流的增加要比电压增加快得多,如AB段,到B点后,如果电压继续再增加,则电流将急剧增长,产生更多的损耗,以致绝缘被破坏,发生击穿。在预防性试验中,测量泄漏电流时所加的电压大都在A点以下。 将直流电压加到绝缘上时,其泄漏电流是不衰减的,在加压到一定时间后,微安表的读数就

等于泄漏电流值。绝缘良好时,泄漏电流和电压的关系几乎呈一直线,且上升较小;绝缘受潮时,泄漏电流则上升较大;当绝缘有贯通性缺陷时,泄漏电流将猛增,和电压的关系就不是直线了。通过泄漏电流和电压之间变化的关系曲线就可以对绝缘状态进行分析判断。2. 影响测量结果的主要因素 (1)高压连接导线 由于接往被测设备的高压导线是暴露在空气中的,当其表面场强高于约20kV/cm时,沿导线表面的空气发生电离,对地有一定的泄漏电流,这一部分电流会流过微安表,因而影响测量结果的准确度。 一般都把微安表固定在试验变压器的上端,这时就必须用屏蔽线作为引线,用金属外壳把微安表屏蔽起来。电晕虽然还照样发生,但只在屏蔽线的外层上产生电晕电流,而这一电流就不会流过微安表,防止了高压导线电晕放电对测量结果的影响。 根据电晕的原理,采取用粗而短的导线,并且增加导线对地距离,避免导线有毛刺等措施,可减小电晕对测量结果的影响。 (2)表面泄漏电流 (a)未屏蔽(b)屏蔽 反映绝缘内部情况的是体积泄露电流。但是在实际测量中,表面泄露电流往往大于体积泄漏电流,这给分析、判断被试设备的绝缘状态带来了困难,因而必须消除表面泄漏电流对真实测量结果的影响。 消除的办法是使被试设备表面干燥、清洁、且高压端导线与接地端要保持足够的距离;另一

电化学分析系统中pA_A微电流测量

第25卷 第11期 电子测量与仪器学报 Vol. 25 No.11 · 972 · JOURNAL OF ELECTRONIC MEASUREMENT AND INSTRUMENT 2011年11月 本文于2011年9月收到。 DOI: 10.3724/SP.J.1187.2011.00972 电化学分析系统中pA~μA 微电流测量 王 俊 (福州大学 至诚学院, 福州 350002) 摘 要: 为了提高电化学分析系统的分析速度和测量的准确度。探究如何对电化学分析系统中,既有慢变化又有快变化的pA~μA 范围的微电流进行快速、准确的测量。基于定阻式I/V 转换的方法,对pA~μA 范围的微电流,设置了由微机控制的多个电流量程及自动调零电路,以及从软?硬件上进行抗工频干扰的设计。实现对宽范围微电流测量的量程快速搜索?转换,提高了电化学分析系统中pA~μA 范围微电流测量的准确度? 关键词: 微电流; 测量; pA~μA; 电化学分析系统 中图分类号: TH399 文献标识码: A 国家标准学科分类代码: 460.40 pA~μA micro-current measurement in electrochemical analysis system Wang Jun (Zhicheng College, Fuzhou University, Fuzhou 350002, China) Abstract: In order to improve the speed of analysis and the accuracy of measurement in electrochemical analysis system, the fast-speed and accurate measurement of micro current of pA~μA range in both slow and fast change was researched. Based on the constant resistance I/V conversion method, for the pA~μA micro-current measurement range, a number of current computer control and automatic zero-adjusting circuit was set up, and anti-frequency interference design of software and hardware were carried out. The fast search and conversion in wide micro current measurement range were realized. Thereby the scope of pA~μA micro-current measurement accuracy is enhanced. Keywords: micro-currents; measurements; pA~μA; Electrochemical analysis system 1 引 言 应用在电化学、生物电化学和生命科学等作为物质组分分析和测量的电化学分析系统。随着超微电极技术的突破性进展, 使用具有信?噪比高、反应速度快等优良电化学特性的微电极、超微电极作为电化学分析系统的传感器, 大大提高了该系统对微小量测量的准确度[1-2]。微电极、超微电极由于化学反应所生成的微电流(极化电流), 其范围为pA~μA, 对该范围的微电流测量, 正是文中要讨论的。 把反映被测物质含量的微电流信号, 经过电流—电压转换, 形成相应的电压信号。 利用计算机技术对产生的电压信号进行一系列的数据处理, 电化学分析系统可以较容易实现最优化选择, 实现数据处理过程的全部自动化, 但系统的分析速度和测量的准确 度之关键在于对微电流的测量。 鉴于微电极、超微电极其尺寸及表面形状、测试它们的化学反应体系及其控制电位(电压)的波型、扫描速度以及电化学分析方法等不同, 其极化电流峰值大小差别很大, 达几个数量级[3]。微电极一般为nA~μA, 超微电极一般为pA~nA, 极化电流的时间曲线和电位曲线也不同。有的变化较缓慢, 有的变化较快, 有的曲线的频谱还包含工频50 Hz 频率分量, 而且测试环境往往是高阻抗, 工频干扰尤显严重, 对测量小至pA 级微电流的元器件的温、湿度影响很大。因此, 要快速、准确地测量电化学分析系统中pA~μA 微电流难度较大[9]。 电化学分析系统中测量的微电流可小至pA 级, 要实现对既有慢变化的, 又有快变化的pA~μA 宽范围微电流量程自动地快速搜索、转换有以下难点:

电流检测方法

电流检测方法 1 传统的电流检测方法 1. 1 利用功率管的RDS进行检测( RDS SENSIN G) 当功率管(MOSFET) 打开时,它工作在可变电阻区,可等效为一个小电阻。MOSFET 工作在可变电阻区时等效电阻为: 式中:μ为沟道载流子迁移率; COX 为单位面积的栅电容;V TH 为MOSFET 的开启电压。 如图1 所示,已知MOSFET 的等效电阻,可以通过检测MOSFET 漏源之间的电压来检测开关电流。 这种技术理论上很完美,它没有引入任何额外的功率损耗,不会影响芯片的效率,因而很实用。但是这种技术存在检测精度太低的致命缺点: (1) MOSFET 的RDS本身就是非线性的。 (2) 无论是芯片内部还是外部的MOSFET ,其RDS受μ, COX ,V TH影响很大。 (3) MOSFET 的RDS随温度呈指数规律变化(27~100 ℃变化量为35 %) 。 可看出,这种检测技术受工艺、温度的影响很大,其误差在- 50 %~ + 100 %。但是因为该电流检测电路简单,且没有任何额外的功耗,故可以用在对电流检测精度不高的情况下,如DC2DC 稳压器的过流保护。 图1 利用功率管的RDS进行电流检测

1. 2 使用检测场效应晶体管(SENSEFET) 这种电流检测技术在实际的工程应用中较为普遍。它的设计思想是: 如图2 在功率MOSFET两端并联一个电流检测FET ,检测FET 的有效宽度W 明显比功率MOSFET 要小很多。功率MOSFET 的有效宽度W 应是检测FET 的100 倍以上(假设两者的有效长度相等,下同) ,以此来保证检测FET 所带来的额外功率损耗尽可能的小。节点S 和M 的电流应该相等,以此来避免由于FET 沟道长度效应所引起的电流镜像不准确。 图2 使用场效应晶体管进行电流检测 在节点S 和M 电位相等的情况下,流过检测FET的电流IS 为功率MOSFET 电流IM 的1/ N ( N 为功率FET 和检测FET 的宽度之比) , IS 的值即可反映IM 的大小。 1. 3 检测场效应晶体管和检测电阻相结合 如图3 所示,这种检测技术是上一种的改进形式,只不过它的检测器件不是FET 而是小电阻。在这种检测电路中检测小电阻的阻值相对来说比检测FET 的RDS要精确很多,其检测精度也相对来说要高些,而且无需专门电路来保证功率FET 和检测FET 漏端的电压相等,降低了设计难度,但是其代价就是检测小电阻所带来的额外功率损耗比第一种检测技术的1/ N 2还要小( N 为功率FET 和检测FET 的宽度之比) 。此技术的缺点在于,由于M1 ,M3 的V DS不相等(考虑VDS对IDS的影响), IM 与IS 之比并不严格等于N ,但这个偏差相对来说是很小的,在工程中N 应尽可能的大, RSENSE应尽可能的小。在高效的、低压输出、大负载应用环境中,就可以采用这种检测技术。

发电机转子交流阻抗试验方法

发电机转子交流阻抗试验方法 一、发电机转子交流阻抗试验的目的 如果转子绕组出现匝间短路,则转子绕组有效匝数就会减小,其交流阻抗就会减小,损耗会有所增大,因此,通过测量转子绕组交流阻抗和功率损耗,与历次试验数据相比,就可以有效地判断转子绕组是否有匝间短路。 二、试验方法及注意事项 1. 试验方法 向转子绕组施加交流电压,读取电压、电流及功率损耗值。 施加电压的大小通过调压器调节。 2. 试验用仪器 (1)转子交流阻抗测试仪、调压器。 (2)在现场没有转子交流阻抗测试仪时,可使用调压器、标准CT、交流电压表、交 流电流表、有功功率表。 3. 用交流阻抗测试仪测量 发电机转子交流阻抗测试仪为新型的测试仪器,装置内部自动计算电流、电压、功率、阻抗及曲线等相关数据,试验时只需调压即可,仪器会自动读取数据,并带过流过压保护报警功能。 4. 无功补偿装置的作用 无功补偿装置是通过感性电流和容性电流之间的关系,可补偿试验电流30A到100A,对于大型发电机组,本试验使用的调压器如果有条件并接无功补偿装置,则调压器容量可以大大减小,可使用6KVA、250V的调压器。如果没有无功补偿箱,调压器容量将达到10KVA,比较笨重。 5. 注意事项 (1) 阻抗和功率损耗值自行规定。在相同试验条件下与历年数值比较,不应有显著变化。 (2) 隐极式转子在膛外或膛内以及不同转速下测量。 (3)每次试验应在相同条件、相同电压下进行,试验电压峰值不超过额定励磁电压。 (4)转子到现场后,未穿入发电机前,应做膛外转子交流阻抗试验,穿入发电机后, 可做膛内测试。此项目属于单体试验,应由安装单位进行。 (5)机组整套启动前,提前准备试验仪器及接线。测试工作负责单位由调试单位和安 装单位协商进行。 (6)在机组升速过程中,选取不同的转速点测试,直到机组定速3000转。 (7)机组超速试验后,应再次进行本试验。 (8)试验时,应注意与励磁回路断开。以避免对励磁回路造成损害;受励磁设备的影 响,不能加压。 (9)试验时,应选取足够容量的外接临时电源,并不使用带漏电保护的电源开关。 (10)试验前,应确认碳刷研磨符合工艺要求,以避免影响试验数据的准确性。 6. 碳刷研磨的必要性 碳刷的弧度应研磨至和滑环的弧度一样,不然升速时转子打火很厉害,况且电弧产生熄灭间会有过电压,另外也直接影响到试验接线各环节接触的良好性,从而影响试验数据的准确性。 另外,所有的测量线最好用粗短线,因为有功功率损耗大部分消耗在转子线圈上,还有一部分会消耗在测量导线上,应尽量减少测量导线的有功损耗.

超全的常用测试电流检查方法

指针式直流电流表 数值式万用表能测交直流 电流一电压转换,A/D转换,显示

钳流表非接触式,交直流精度较上面仪器要低些霍尔原理 电流探头配合示波器使用,用于观察电流波形交直流霍尔原理

-gkongi.Eom 常用的用于测量电流的仪表,显示出来的电流大小大多是有效值。 有效值也指均方根值,其物理意义:一个交流电流和一个直流电流作用在同一电阻上,若在相同的时间内它们所产生的热量相等,则交流电流的有效值I等于该直流电流值。假设 交流信号的周期为T: T 2 2MT 2 由P 0i (t)Rdt=l RT I 勺〒0i (t)dt 显然,直流电流的有效值和平均值是相等的。 平均值: 1 T I i(t)dt 显然正负对称的交流信号平均值为0 T o 另种定义: 1 T I |i(t) |dt 全波整流之后的平均值 波形系数K F定义:信号的有效值与平均值(全波整流后的值)之比,K F -。 I 显然,不同类型信号的波形系数不同。 波峰系数Kp定义:信号的峰值与有效值之比,Kp “ F表为一些常见信号的一些参数

知道了波形系数和波峰系数之后,对特定信号可以很容易的进行不同值之间的转换。实际上,直接获取信号的有些仪表就利用了这一转换原理进行有效值的测量。 一.直接测量法 在被测电电路中串入适当量程的电流表,让被测电流流过电流表,从表上直接读取被测 电流值。 中学实验室里常用的直流电流表是指针式磁电系电流表,它由灵敏电流计(俗称表头)改装而成。灵敏电流计主要由永磁铁、可动线圈、螺旋弹簧(游丝)和指针刻度盘等组成。如下图: 图2-1电流计原理图 当线圈通以电流时,线圈的两边受到安培力,设导线所处位置磁感应强度大小为B线 框长为L、宽为d、匝数为n,当线圈中通有电流时,则安培力的大小为:F=nBIL。安培 力对转轴产生的力矩:M仁Fd= nBILd。不论线圈转到什么位置,它的平面都跟磁感线平行, 安培力的力矩不变。在这一力矩的作用下,线圈就会顺时针转动。当线圈转过0角时(指针偏角也为0),两弹簧相应地会产生阻碍线圈转动的扭转力矩M2 (M2=k 0,胡克定律)。

物理实验的基本方法及数据处理基本方法

摘要:物理学是实验性学科,而物理实验在物理学的研究中占有非常重要的地位。本文着重介绍工科大学物理实验蕴涵的实验方法,提出工科大学物理实验的新类型。并介绍相关的数据处理的方法。 关键词:大学物理实验方法数据处理 正文: 一、大学物理实验方法 实验的目的是为了揭示与探索自然规律。掌握有关的基本实验方法,对提高科学实验能力有重要作用。实验离不开测量,如何根据测量要求,设计实验途径,达到实验目的?是一个必须思考的重要问题。有许多实验方法或测量方法,就是同一量的测量、同一实验也会体现多种方法且各种方法又相互渗透和结合。实验方法如何分类并无硬性规定。下面总结几种常用的基本实验方法。 根据测量方法和测量技术的不同,可以分为比较法、放大法、平衡法、转换法、模拟法、干涉法、示踪法等。 (一)比较法 根据一定的原理,通过与标准对象或标准量进行比较来确定待测对象的特征或待测量数值的实验方法称为比较法。它是最普遍、最基本、最常用的实验方法,又分直接比较法、间接比较法和特征比较法。直接比较法是将被测量与同类物理量的标准量直接进行比较,直接读数直接得到测量数据。例如,用游标卡尺和千分尺测量长度,用钟表测量时间。间接比较法是借助于一些中间量或将被测量进行某种变换,来间接实现比较测量的方法。例如,温度计测温度,电流表测电流,电位差计测电压,示波器上用李萨如图形测量未知信号频率等。特征比较法是通过与标准对象的特征进行比较来确定待测对象的特征的观测过程。例如,光谱实验就是通过光谱的比较来确定被测物体的化学成分及其含量的。 (二)放大法 由于被测量过小,用给定的某种仪器进行测量会造成很大的误差,甚至小到无法被实验者或仪器直接感觉和反应。此时可以先通过某种途径将被测量放大,然后再进行测量。放大被测量所用的原理和方法称为放大法。放大法分累计放大法、机械放大法、电磁放大法和光学放大法等。 1、累计放大法在被测物理量能够简单重叠的条件下,将它展延若干倍再进行测量的方法称为累计放大法。例如,在转动惯量的测量中用秒表测量三线摆的周期。

大电流测量方案对比

大电流测量方案对比 大电流检测在工业、电力电子、航空、军工等领域应用广泛,下表为电流检测方案的信息汇总及其特点。 一、分流器原理: 将已知的纯电阻放在被测电流的电路里,回路中的电流可以通过测量电阻上的电压来求得,分流器利用了欧姆定理进行测量。实际应用中分流器的电阻数值在毫欧或微欧级别,目前常规的分流器规格有100A/75mV、500A/75mV、1000A/75mV等。 分流器存在较小的电感L1,其等效电路如图1,正弦电流通过分流器时,分流器两侧上的电压为U=I×(R1+jwL1)。要使分流器测量精度高并且响应速度快,要降低被测电流的频率和幅度,否则当频率和幅度变高,会使分流器的发热量大幅度增加,严重影响分流器的测量精度。结构设计上,应尽量减少分流器的自感,并对外界磁场有较好的屏蔽能力,而且具有一定的动态稳定性能。

图1 分流器等效电路 为了减少电磁力和热应力对分流器测量结果的影响程度,科学家们对分流器的结构进行了分析和改进。但由于分流器自身的缺陷,有很多问题是无法利用补偿和设计来弥补的,例如发热和频率特性等问题。 二、直流互感器原理: 1936年德国的克莱麦尔教授第一个研制成功直流电流互感器,通过测量原边电流对带有铁芯线圈的感抗的改变来测量直流电流的大小,这和交流互感器的原理是不同的。结构如图2。 直流电流互感器的副边和原边电流也有可能满足公式(2.1),即在不计铁芯损耗、不计副边组的内阻及铁芯均匀磁化的情况下。但是直流电流互感器的测量结果很容易受到外界磁场的影响从而产生很大的误差,比如当测量电流的激磁电流小于直流互感器时,不论是哪一种软磁材料的磁化特性曲线都不是完美的,都是存在着缺陷的。 图2 直流互感器原理

各种电流检测方式的比较

浅谈电流检测方式 一、检测电阻+运放 优势: 成本低、精度较高、体积小 劣势: 温漂较大,精密电阻的选择较难,无隔离效果。 分析: 这两种拓扑结构,都存在一定的风险性,低端检测电路易对地线造成干扰;高端检测,电阻与运放的选择要求高。 检测电阻,成本低廉的一般精度较低,温漂大,而如果要选用精度高的,温漂小的,则需要用到合金电阻,成本将大大提高。运放成本低的,钳位电压低,而特殊工艺的,则成本上升很多。 二、电流互感器CT/电压互感器PT 在变压器理论中,一、二次电压比等于匝数比,电流比为匝数比的倒数。而CT和PT就是特殊的变压器。基本构造上,CT的一次侧匝数少,二次侧匝数多,如果二次开路,则二次侧电压很高,会击穿绕阻和回路的绝缘,伤及设备和人身。PT相反,一次侧匝数多,二次侧匝数少,如果二次短路,则二次侧电流很大,使回路发热,烧毁绕阻及负载回路电气。 CT,电流互感器,英文拼写Current Transformer,是将一次侧的大电流,按比例变为适合通过仪表或继电器使用的,额定电流为5A或1A的变换设备。它的工作原理和变压器相似。也称作TA 或LH(旧符号)工作特点和要求: 1、一次绕组与高压回路串联,只取决于所在高压回路电流,而与二次负荷大小无关。 2、二次回路不允许开路,否则会产生危险的高电压,危及人身及设备安全。 3、CT二次回路必须有一点直接接地,防止一、二次绕组绝缘击穿后产生对地高电压,但仅一点接地。

4、变换的准确性。 PT,电压互感器,英文拼写Phase voltage Transformers,是将一次侧的高电压按比例变为适合仪表或继电器使用的额定电压为100V的变换设备。电磁式电压互感器的工作原理和变压器相同。也称作TV或YH(旧符号)。 工作特点和要求: 1、一次绕组与高压电路并联。 2、二次绕组不允许短路(短路电流烧毁PT),装有熔断器。 3、二次绕组有一点直接接地。 4、变换的准确性 模块型霍尔电流传感器 模块型霍尔电流传感器分开环模式与闭环模式。 开环模式又称为直接测量式霍尔电流传感器,输入为电流,输出为电压。这种方式的优点是结构简单,测量结果的精度和线性度都较高。可测直流、交流和各种波形的电流。但它的测量范围、带宽等受到一定的限制。在这种应用中,霍尔器件是磁场检测器,它检测的是磁芯气隙中的磁感应强度。电流增大后,磁芯可能达到饱和;随着频率升高,磁芯中的涡流损耗、磁滞损耗等也会随之升高。这些都会对测量精度产生影响。当然,也可采取一些改进措施来降低这些影响,例如选择饱和磁感应强度高的磁芯材料;制成多层磁芯;采用多个霍尔元件来进行检测等等。 开环模式的结构原理见下图 根据检测量程的需求,一般分为以下两种绕线模式,左图为小量程的结构图,右图为大量程的结构图。 闭环模式又称为零磁通模式或磁平衡模式,其输入与输出端均为电流信号。原理见下图

微电流测量

微电流测量(nA级交流、直流) 一、直流微电流测量 基于I-V变换的弱电流测量方法是常用的弱电流检测方法,其中的反馈电流放大型测量电路结构较简单,转换的线性较好,电路频率响应特性较好,在加入有效的硬件和软件抗干扰措施后,可以提高测量精度和稳定性。因此测量的电路是按照基于反馈式电流放大器型I-V转换原理进行设计,其基本电路如图1所示。 图1 I/V转换原理图 假定运放为理想运放,利用运算放大器的虚地概念和结点电流代数和为0的定律得出 (1) 输出电压V o与测量电流I s成线性比侧关系,比例系数为R f,因此根据放大要求选取R f值即可获得所需的放大倍数。 电流测量电路整体框架如图2,其中反馈电流放大电路采用的是两级放大方式。 图2 电路整体框图 由于待测电流信号为10-9A,所需放大倍数较高,若采用一级放大,则需要R f约为1010Ω。当R f过大时会产生较大的电阻热噪声电流,增大了分布电容,同时要求运放的输入电阻更大以减小分流;根据式(1),一级放大后信号与输人为反相,所以采用两级放大电路,这样可以通过调整每一级放大倍数,来选择阻值适当的R f,减小由R f引起的误差;并通过两次电压反相,使放大电路的最终输出电压与输入信号同相,两级放大电路如图3。

图3 两级放大电路图 为减小噪声干扰和运算放大器负担,通常要求输出电压应比运算放大器的噪声电压值至少大两个数量级或更高;但输出电压太大,必然要增大R f,同时增大对运算放大器性能的要求。所以第一级放大器输出电压应设计为50~100mV,由式(1),R f应为100MΩ。图3中C f表示R f引入的杂散电容,通常为0.5pF。当R f为100MΩ时,电路的截止频率约为0.3kHz,严重影响放大电路的频率响应特性。为改进频率响应,可以引入补偿电容C来消除C f的影响。根据运算放大器以及流入节点电流与流出节点电流相等特性,得出 (2)由于R f1为kΩ级电阻,其杂散电容可忽略,可得 (3)代入式(2),拉式变换并消去V x(s)后,得出传递函数为 (4)为消除C f影响,取RC=R f C f,得 (5)由式(3)可知,截止频率为无穷大,理论上频带已经扩展到整个区域,因此频率响应得到改善。通过RC网络补偿可改善系统的动态特性,实际中100kHz 的带宽完全可以达到。但因为电路中还有其他的杂散电容,不可能被简单的RC 网络完全补偿。为减小由大电阻引入的噪声电流和分布电容,R f可采用T型网络结。 第二级放大电路将第一级输出电压信号进一步放大,并反向输出,保证最终电压输出与检测的电流输入同相。第二级放大倍数为10倍,由式(1),取R f/R1为10。 为消除背景噪声影响,在运放输出端和A/D转换电路之问加入双T型50Hz 信号带阻滤波器将这个主要干扰谐波成分滤除,其电路如图4。

微电流测量总结

直流微电流前置放大器的研究 Ib是运放的偏置电流,当Ib大于Is,则Is信号被淹没,将无法测量,由以上分析可以看出,影响微电流测量的首要因素是运放的偏置电流Ib,其次是噪声电压和零点漂移。 微电流放大器要满足以下两个条件: (1)放大器输入阻抗要足够大,即Ri要远远大于Rf,Ri表示运放输入阻抗,Rf表示反馈电阻 (2)噪声和漂移要小于被测信号电流,即信噪比要高,否则输出的噪声电压或漂移电压将使输出的信号电压淹没或使输出信号难以辨别 放大器的灵敏度:直流微电流放大器能有效放大的最小电流。 I-V变换式直流微电流放大器的灵敏度一般能达到10-15 因此可知电阻Rf的数值越大,放大器的灵敏度越高。但是由于电阻本身的热噪声及分布电容跟电阻阻值成正比,Rf增大时漂移及噪声亦随之上升。所以当Rf足够大时,再继续增加Rf的数值,并不能使放大器的灵敏度继续提高。 增大Rf还受到下面两方面的限制: (1)当Rf过大时,要求放大器的输入阻抗更大,否则将对信号有很大的分流作用。由于放大器的输入阻抗是有限的,所以当Rf大到一定程度后,将不会有效的增加灵 敏度。 (2)Rf过大时,放大器的响应时间要增长。在I-V变换式直流微电流放大器中,输入待测电流后,放大器的输出电压不是立刻就达到稳定值,而是需要一定的时间, 这就是放大器的响应时间Tc。决定响应时间的因素有:放大器的输入电容、反馈 电阻Rf、反馈电阻Rf两端的电容C等

减小噪声及干扰的措施 (1)在I-V变换式直流微电流放大器的设计中,运放的选择至关重要,主要考虑以下几个参数。 一、偏置电流Ib足够小; 二、失调电压Vos要足够小; 三、输入阻抗要足够大; 四、温漂及噪声系数要尽量小。 (2)电路设计工艺 一、引线合理 二、屏蔽密封 三、电源及接地 提高测量精度的措施及电路设计 (1)基流补偿电路 在许多情况下,输入电流包含有较大的本地电流(基流或初始电流),如运算放大 器的偏置电流等。常用的基流补偿电路有两种:串联补偿和并联补偿电路 串联补偿:

相关文档
最新文档