采集数据模型预测控制解析

采集数据模型预测控制解析
采集数据模型预测控制解析

Sampled-Data Model Predictive Control for Nonlinear Time-Varying Systems: Stability and Robustness

Fernando A. C. C. Fontes, Lalo Magni, Eva Gyurkovics PhD, Imperial College London

IEEE Transactions on Power Delivery, V ol. 8, No. 1, Jariuary 1993.

Keyword barbalat Principle Nonlinear time-varying systems Stability and robustness Summary. We describe here a sampled-data Model Predictive Control framework that uses continuous-time models but the sampling of the actual state of the plant as well as the computation of the control laws, are carried out at discrete instants of time. This framework can

address a very large class of systems, nonlinear, time-varying, and nonholonomic.

As in many others sampled-data Model Predictive Control schemes, Barbalat’s lemma has

an important role in the proof of nominal stability results. It is argued that the generalization

of Barbalat’s lemma, described here, can have also a similar role in the proof of robust stability results, allowing also to address a very general class of nonlinear, time-varying, nonholonomic systems, subject to disturbances. The possibility of the framework to accommodate discontinuous feedbacks is essential to achieve both nominal stability and robust stability for such general classes of systems.

1 Introduction

Many Model Predictive Control (MPC) schemes described in the literature use continuous-time models and sample the state of the plant at discrete instants of time. See e.g. [3, 7, 9, 13] and also [6]. There are many advantages in considering a continuous-time model for the plant. Nevertheless,

any implementable MPC scheme can only measure the state and solve an optimization problem

at discrete instants of time.

In all the references cited above, Barbalat’s lemma, or a modification of it, is used as an important ste p to prove stability of the MPC schemes. (Barbalat’s lemma is a well-known and Powerful

tool to deduce asymptotic stability of nonlinear systems, especially time-varying systems,

using Lyapunov-like approaches;see e.g. [17] for a discussion and applications). To show that an MPC strategy is stabilizing (in the nominal case), it is shown that if certain design parameters (objective function, terminal set, etc.) are conveniently selected, then the value function is monotone

decreasing. Then, applying Barbalat’s lemma, attractiveness of the trajectory of the nominal model can be established (i.e. x(t) → 0 as t → ∞). This stability property can be deduced for a very general class of nonlinear systems: including time-varying systems, nonholonomic systems, systems allowing discontinuous feedbacks, etc. If, in addition, the value functionpossesses some continuity properties, then Lyapunov stability (i.e. the trajectory stays arbitrarily close to the origin provided it starts close enough to the origin) can also be guaranteed (see e.g. [11]). However, this last property might not be possible to achieve for certain classes of systems, for example a car-like vehicle (see [8] for a discussion of this problem and this example).

A similar approach can be used to deduce robust stability of MPC for systems allowing uncertainty. After establishing monotone decrease of the value function, we would want to guarantee that the state trajectory asymptotically approaches some set containing the origin. But, a difficulty encountered is thatthe predicted trajectory only coincides with the resulting trajectory at specificsampling instants. The robust stability properties can be obtained, as we show,using a

generalized version of Barbalat’s lemma. These robust stability resultsare also v alid for a very general class of nonlinear time-varying systems allowing discontinuous feedbacks.

The optimal control problems to be solved within the MPC strategy are here formulated with

very general admissible sets of controls (say, measurable control functions) making it easier to guarantee, in theoretical terms, the existence of solution. However, some form of finite parameterization of the control functionsis required/desirable to solve on-line the optimization problems. It can be shown that the stability or robustness results here described remain valid when the optimization is carried out over a finite parameterization of the controls, such as piecewise constant controls (as in [13]) or as bang-bang discontinuous feedbacks (as in [9]).

2 A Sampled-Data MPC Framework

We shall consider a nonlinear plant with input and state constraints, where the evolution of the state after time t0 is predicted by the following model.

The data of this model comprise a set containing all possible initial states at the

initial time t0, a vector xt0 that is the state of the plant measured at time t0, a given function

of possible control

values.

We assume this system to be asymptotically controllable on X0 and that for all t ≥ 0 f(t, 0, 0)

= 0. We further assume that the function f is continuous and locally Lipschitz with respect to the second argument.

The construction of the feedback law is accomplished by using a sampleddata MPC strategy. Consider a sequence of sampling instants π := {ti}i≥0 with a constant inter-sampling time δ > 0 such that ti+1 = ti+δ for all i ≥ 0. Consider also the control horizon and predictive horizon, Tc

and Tp, with Tp ≥ Tc > δ, and an auxiliary control law kaux : IR×IR n → IR m. The feedback control is obtained by repeatedly solving online open-loop optimal control problems P(ti, xti, Tc, Tp) at each sampling instant ti ∈π, every time using the current measure of the state of the plant xti .

Note that in the interval [t + Tc, t + Tp] the control value is selected from a singleton and therefore the optimization decisions are all carried out in the interval [t, t + Tc] with the expected benefits in the computational time.

The notation adopted here is as follows. The variable t represents real time while we reserve s

to denote the time variable used in the prediction model. The vector xt denotes the actual state of the plant measured at time t. The process (x, u) is a pair trajectory/control obtained from the model of the system. The trajectory is sometimes denoted as s _→ x(s; t, xt, u) when we want to make explicit the dependence on the initial time, initial state, and control function. The pair (ˉx, ˉu) denotes our optimal solution to an open-loop optimal control problem. The process (x?, u?) is the closed-loop trajectory and control resulting from the MPC strategy. We call design parameters the variables present in the open-loop optimal control problem that are not from the system model (i.e. variables we are able to choose); these comprise the control horizon Tc, the prediction horizon Tp, the running cost and terminal costs functions L and W, the auxiliary control law kaux, and the terminal constraint set S ? IR n.

The resultant control law u?is a “sampling-feedback” control since during each sampling interval, the control u? is dependent on the state x?(ti). More precisely the resulting trajectory is given by

and the function t _→ _t_π gives the last sampling instant before t, that is

Similar sampled-data frameworks using continuous-time models and sampling the state of the plant at discrete instants of time were adopted in [2, 6, 7, 8, 13] and are becoming the accepted framework for continuous-time MPC. It can be shown that with this framework it is possible to address —and guarantee stability, and robustness, of the resultant closed-loop system — for a very large class of systems, possibly nonlinear, time-varying and nonholonomic.

3 Nonholonomic Systems and Discontinuous Feedback

There are many physical systems with interest in practice which can only be modelled appropriately as nonholonomic systems. Some examples are the wheeled vehicles, robot manipulators, and many other mechanical systems.

A difficulty encountered in controlling this kind of systems is that any linearization around the origin is uncontrollable and therefore any linear control methods are useless to tackle them. But, perhaps the main challenging characteristic of the nonholonomic systems is that it is not possible to stabilize it if just time-invariant continuous feedbacks are allowed [1]. However, if we allow discontinuous feedbacks, it might not be clear what is the solution of the dynamic differential equation. (See [4, 8] for a further discussion of this issue).

A solution concept that has been proved successful in dealing with stabilization by discontinuous feedbac ks for a generalclass of controllablesystems is the concept of “sampling-feedback”solution proposed in [5]. It can be seenthat sampled-data MPC framework described can be combined naturally with a “sampling-feedback” law and thus define a trajectory in a way which

is verysimilar to the concept introduced in [5]. Those trajectories are, under mild conditions,

well-defined even when the feedback law is discontinuous.

There are in the literature a few works allowing discontinuous feedback laws in the context of MPC. (See [8] for a survey of such works.) The essential feature of those frameworks to allow discontinuities is simply the sampled-data feature — appropriate use of a positive inter-sampling time, combined with an appropriate interpretation of a solution to a discontinuous differential equation.

4 Barbalat’s Lemma and Variants

Barbalat’s lemma is a well-known and powerful tool to deduce asymptotic stability of nonlinear systems, especially time-varying systems, using Lyapunov-like approaches (see e.g. [17] for a discussion and applications).

Simple variants of this lemma have been used successfully to prove stability results for Model Predictive Control (MPC) of nonlinear and time-varying systems [7, 15]. In fact, in all the sampled -data MPC frameworks cited above, Barbalat’slemma, or a modification of it, is used as an important step to prove stabilityof the MPC schemes. It is shown that if certain design parameters

(objectivefunction, terminal set, etc.) are conveniently selected, then the value function is monotone decreasing. Then, applying Barbalat’s lemma, attractiveness of the trajectory of the nominal model can be established (i.e. x(t) → 0 as t → ∞). This stability property can be deduced for a very general class of nonlinear systems: including time-varying systems, nonholonomic systems, systems allowing discontinuous feedbacks, etc.

A recent work on robust MPC of nonlinear systems [9] used a generalization of Barbalat’s

lemma as an important step to prove stability of the algorithm. However, it is our believe that such generalization of the lemma might provide a useful tool to analyse stability in other robust continuous-time MPC approaches, such as the one described here for time-varying systems.

A standard result in Calculus states that if a function is lower bounded and decreasing, then it converges to a limit. However, we cannot conclude whether its derivative will decrease or not unless we impose some smoothness property on f˙(t). We have in this way a well-known form of the Barbalat’s lemma (see e.g. [17]).

5 Nominal Stability

A stability analysis can be carried out to show that if the design parameters are conveniently selected (i.e. selected to satisfy a certain sufficient stability condition, see e.g. [7]), then a certain MPC value function V is shown to be monotone decreasing. More precisely, for some δ > 0small

enough and for any 。

where M is a continuous, radially unbounded, positive definite function. TheMPC value function V is defined as

where is the value function for the optimal control problem

(the optimal control problem defined where the horizon isshrank

in its initial part by ).

From (7) we can then write that for any t ≥ t0

Since is finite, we conclude that the function is

bounded and then that ds is also bounded. Therefore is bounded and, since f is continuous and takes values on bounded sets of

is also bounded. All the conditions to apply Barbalat’s lemma 2 are met, yielding that the trajectory

asymptotically converges to the origin. Note that this notion of stability does not necessarily include the Lyapunov stability property as is usual in other notions of stability; see [8] for a discussion.

6 Robust Stability

In the last years the synthesis of robust MPC laws is considered in different works [14].

The framework described below is based on the one in [9], extended to timevarying systems.

Our objective is to drive to a given target set the state of the nonlinear system subject to bounded disturbances

Since is finite, we conclude that the function is

bounded and then that is also bounded. Therefore is

bounded and, since f is continuous and takes values on bounded sets of

is also bounded. Using the fact that x?is absolutely continuous and coincides with ?x at all

sampling instants, we may deduce that are also bounded. We are

in the conditions to apply the previously established Generalization of Barbalat’s Lemma 3, yielding the assertion of the theorem.

7 Finite Parameterizations of the Control Functions

The results on stability and robust stability were proved using an optimal control problem

where the controls are functions selected from a very general set (the set of measurable functions taking values on a set U, subset of Rm). This is adequate to prove theoretical stability results and it even permits to use the results on existence of a minimizing solution to optimal control problems (e.g. [7,Proposition 2]). However, for implementation, using any optimization algorithm, the control functions need to be described by a finite number of parameters (the so called finite parameterizations of the control functions). The control can be parameterized as piecewise constant controls (e.g. [13]), polynomials or splines described by a finite number of coeficients, bang-bang controls (e.g. [9, 10]), etc.Note that we are not considering discretization

of the model or the dynamic equation. The problems of discrete approximations are discussed in detail e.g. in [16] and [12].

But, in the proof of stability, we just have to show at some point that the optimal cost (the

value function) is lower than the cost of using another admissible control. So, as long as the set

of admissible control values U is constant for all time, an easy, but nevertheless important,

corollary of the previous stability results follows

If we consider the set of admissible control functions (including the auxiliary control law) to

be a finitely parameterizable set such that the set of admissible control values is constant for all time, then both the nominal stability and robust stability results here described remain valid.

An example, is the use of discontinuous feedback control strategies of bang-bang type, which

can be described by a small number of parameters and so make the problem computationally tractable. In bang-bang feedback strategies, the controls values of the strategy are only allowed

to be at one of the extremes of its range. Many control problems of interest admit a bang-bang stabilizing control. Fontes and Magni [9] describe the application of this parameterization to a unicycle mobile robot subject to bounded disturbances.

Sampled-Data Model Predictive Control for Nonlinea

Time-Varying Systems:Stability and Robustness.

IEEE Transactions on Power Delivery, V ol. 8, No. 1, Jariuary 1993. 采集数据模型预测控制非线性时变系统的稳定性和鲁棒性

Fernando A.C.C.Fontes

英国伦敦皇家学院

摘要我们这里所叙述的是一采样数据模型预测控制的框架,使用连续时间模型,采样的实际状况以及计算控制的状态,在离散时刻的时间进行。这个框架可以解决一个非常大的非线性、时变、非完整系统。

像许多其他采样数据模型预测控制计划,barbalat引理一个重要的角色证明名义稳定的结果。这是认为泛为barbalat的引理,这里所描述的在证明的鲁棒稳定性的结果也有类似的的作用,也可以解决一个非常一般的一类非线性,时变,非完整受到扰动的系统。在那个可能性的框架内,以容纳间断的意见是必要的实现名义的稳定性和鲁棒稳定性,例如一般类别的系统。

关键词barbalat引理、非线性时变系统、稳定性和鲁棒性

1、引言

多模型预测控制(MPC)计划使用连续时间描述的文献模型和样本工厂在离散时刻的状态的时间。例如[3,7,9,13] 和[6] 。在考虑连续时间模型时有许多好处。尽管如此,任何可执行的模型预测控制计划只能衡量和解决再离散时刻时

间的优化问题。

引用上述所提到的情况, barbalat的引理,或者修改它,使其用来作为一个重要步骤,以证明稳定的MPC的计划。(barbalat引理是众所周知的并且强有力以推断的渐近稳定性的非线性系统的工具,尤其是在推断时间变量系统上面,利用Lyapunov办法; 见例如[17]的讨论和应用)。显示模型预测控制的一项战略是稳定(在名义上是如此),这表明,如果某些设计参数(例如目标函数,码头设置等)方便选定,那么价值函数就是单调递减的。然后运用barbalat引理,该吸引力轨迹的模型名义上可以建立为(i.e. x(t) →0 as t →∞).从这种稳定的状态可以推断,一个很笼统的非线性系统:包括时变系统,非完整系统,系统允许间断意见等除外,如果值函数具有一定的连续性属性,然后Lyapunov稳定性(即轨迹停留任意接近的起源提供了足

够向原产地的密切开始)也可以得到保障(见例如[11])。不过,这为某些类别系统的最后状态可能不会实现,,例如轮式车的例子(见例[8]所讨论的问题)。

类似的做法,建立单调减少的价值功能之后,我们想要设置一些包含原点以保证状态轨迹的渐近方法。但是,困难所在是预测的轨迹只有刚好与由此产生的轨迹在特定的抽样instants时鲁棒稳定性能才可以得到,因为我们用一种广义版本的barbalat的引理。这些鲁棒稳定性结果也有效期为一个很一般类非线性时变系统的允许间断的意见。

最优控制有待解决的问题与模型预测控制的战略是在这里制定了非常笼统的受理套管制(例如,可衡量的控制职能),使结果更容易得到保证。在理论上讲,存在解决办法。不过,某种形式的有限参数的控制功能需要/可取的解决上线的优化问题。它可以证明即稳定或鲁棒性的结果在这里所描述的仍然有效,当优化进行了有限的参数化的管制,如分段常数控制(如在[13]),或帮邦间断反馈(如在[9])。

2、数据采样MPC框架

我们会考虑一种非线性的静态具有输入与状态的限制,凡变化状态后,时间t0 ,预计由以下模型。

这个模型的数据包括了一套所有可能的初始状态,在最初的时间

矢量这是状态的测量时间,某一函数f :

一套的尽可能控制值。

我们假设这个制度,以渐近的可控性对,并为所有我们进一步假设函数f是连续的和局部Lipschitz方面的第二个论点。

注意到,在区间控制值的选定是由一个单值决定,因此优化

的设定都是进行在区间内的。

这里采用的符号如下所示。实时变量t代表我们的储备,我们保留S来表示时间变量,用于在预测模型。向量xt是指的实际状态。核电厂的测量时间t过程

的是一对从系统模型取得的弹道/控制。那个轨迹,有时是标注为

的,当我们想作明确地依赖于初始时间、初始状态和控制功

能。两变量是指我们的最优解,这是一个开放的闭环优化控制问题。过

程中是闭环系统的轨迹和控制造成的从MPC的策略。我们要求设计参数

的变数,目前,在开环最优控制问题是没有从系统模型(即变量,我们可以选择);这些包括控制TC ,该预测地平线总磷,运行成本和终端成本的职能升和W,辅助控制律kaux,和终端约束集是由此产生的轨迹是由

决定的

这里

和功能于是

类似的采样数据框架使用的连续时间模型和采样国家的核电厂在离散instants的时间通过了在[ 2 , 6 , 7 , 8 , 13 ] 并正成为公认的框架,连续时间的MPC。它的结果可以表明,在此框架内有可能的地址和保证稳定性和鲁棒性,由此产生的闭环控制系统是一个非常大的类系统,可能是非线性,时变的和非完整性的。

3、非完整系统的和间断的反馈意见

在实践中有许多关于物理系统的兴趣,只能适当的作为非完整性系统。有一些例子,如轮式车辆,机器人,以及其他许多机械系统。

在控制这种系统时遇到的困难是任何线性化的原起源是无法控制的,因此任何的线性控制方法是无用的。不过,可能是主要的富有挑战性的特点是对非完整系统的,,刚才时间不变连续反馈获准[ 1 ]是不可能稳定的。但是,如果我们容许间断意见,它可能并不清楚什么是解决动态微分方程。(见[ 4, 8]为进一步讨论这个问题)。

解决该问题的概念已被证明是成功的,在处理与稳定由间断的意见是一种通用类别的可控系统概念是“采样-反馈”提出的解决办法[ 5 ] 。可以看出,采样数据所描述的MPC的框架内,可结合自然与“抽样反馈法”,从而确定一个轨迹的方式,这是非常类似的概念,介绍了在[ 5 ] 。这些轨迹在温和条件下,即使反馈法是间断的也是定义良好的。

在文献中的几个工程,允许间断的反馈意见的法律的背景下货币政策委员会(见[ 8 ]的调查工作)。这些框架内,允许间断只不过是采样数据的特点,适当使用一种积极的跨采样时间,再加上一个适当的解释解决一个间断微分方程。

4、barbalat的引理和变种

barbalat的引理是众所周知的以推断渐近稳定性非线性系统有力的工具,尤其是时变系统,利用Lyapunov样办法(见例如[ 17 ]为讨论和应用)。

简单的变种,这引理已成功地用来证明稳定的结果为模型预测控制(货币政策委员会)的非线性和时变系统的[ 7 ,15 ] 。事实上,在所有采样数据MPC 框架内列举出的上述情况, barbalat的引理,或修改它,是用来作为一个重要步骤,以证明稳定MPC的计划。这表明,如果某些设计参数(目标功能,码头设置等),方便的选定,则值函数是单调递减。然后,运用barbalat的引理,吸引力的轨迹的名义模型可以建立。这种稳定的财产可以推断,一个很笼统的类非线性系统:包括时变系统的,非完整系统,系统允许间断意见等等。

最近的工作,稳健的MPC的非线性系统[ 9 ]用了一个泛化对barbalat引理的一个重要步骤,以证明稳定的算法。

不过,这是我们认为,这种泛化的引理可能提供一个有用的工具来分析稳定在其他稳健的连续时间的货币政策委员会的做法,如一个形容这里时变系统的。

再微积分范畴内的一个标准的结果是如果一个函数有界较低和减少,那么会收敛到一个极限。不过,我们不能断定其衍生物是否会减少或消失,除非我们对

f施加了一些平滑的数据(t)。于是我们有了这样一个众所周知的形式,即barbalat引理(见例如: [ 17 ] )。

5、名义的稳定

如果设计参数方便选定(即选定,以满足某一个足够稳定的条件,例如[ 7 ] )稳定性分析可以进行显示,然后在MPC的价值函数V是表明要单调递减的。更确切地说,

对于和

这里M是连续的,径向无界,正定功能。函数V的MPC值被定义为

这里是为最优控制问题的函数

值。

从(7)我们可以知道对任意

因为是有限的。我们得出和

因此,

,因为f是连续的,我们得出所有的条件,申请barbalat

的引理2可见该轨迹渐近收敛到原点。注意:这个概念的稳定,并不一定包括Lyapunov稳定性财产以往其他稳定的的概念,请参阅[8]。

6、鲁棒稳定性

在过去的几年中合成的MPC被认为是在不同的工程[ 14 ]。下文所述的框架是基于一个在[ 9 ] ,扩展至timevarying 的系统。我们的目标是推动一个给定的状态非线性系统受扰动

反馈MPC的策略,是在每个采样即时状态由多次获得解决上线。

在这个优化问题,我们使用公约,如果一些约束不满意,那么价值的游戏+ ∞。这可确保价值的游戏是有限的,最优控制策略保证满意的程度限制,为一切可能的干扰情况。

7、有限参数的控制功能

结果的稳定性和鲁棒稳定性,证明了用最优控制解决问题所在是控制职能,选定一个非常一般的设置(一套可衡量的职能)。这个足够证明理论的稳定结果,它甚至允许使用的结果存在一个最小的解决方案,以实现最优控制问题(如[ 7 ,命题2 ] )。然而,对于实现任何优化算法的描述控制功能需要加以形容一个有限的参数数目(即所谓的有限参数的控制功能)。控制参数为分段常数控制(如[ 13 ] ),多项式或由有限数量的样条函数描述得到,如枪声控件(例如, [ 9 ,10 ] )等。注意,我们是不会考虑离散模型或动态方程。问题的离散逼近,详细讨论了在[ 16 ]及[ 12 ] 。

但是,在证明稳定时,我们只要表明,在一些点就是最优成本(值函数)是低于成本的使用另一受理控制。因此,只要设定可接受的控制值U的常数所有的时间,轻而易举的事,无论如何必然前稳定结果如下如果我们考虑到一套接纳控制功能(包括辅警控制法)是一个有限parameterizable,设置这样的一套受理的控制值是不断为所有的时间,那么双方的名义稳定性和鲁棒稳定的结果,这里所描述的仍然有效。

举例来说,是不连续的使用反馈控制继电器式控制策略类型,可以通过少量的描述参数,使得问题计算易处理。控制策略的值只允许再一个极端的范围内。许多控制问题如枪声稳定控制问题丰特斯和马尼[9]描述这种参数化的应用独轮脚踏车移动机器人有界干扰。

MATLAB模型预测控制工具箱函数

MATLAB模型预测控制工具箱函数 8.2 系统模型建立与转换函数 前面读者论坛了利用系统输入/输出数据进行系统模型辨识的有关函数及使用方法,为时行模型预测控制器的设计,需要对系统模型进行进一步的处理和转换。MATLAB的模型预测控制工具箱中提供了一系列函数完成多种模型转换和复杂系统模型的建立功能。 在模型预测控制工具箱中使用了两种专用的系统模型格式,即MPC状态空间模型和MPC传递函数模型。这两种模型格式分别是状态空间模型和传递函数模型在模型预测控制工具箱中的特殊表达形式。这种模型格式化可以同时支持连续和离散系统模型的表达,在MPC传递函数模型中还增加了对纯时延的支持。表8-2列出了模型预测控制工具箱的模型建立与转换函数。 表8-2 模型建立与转换函数 8.2.1 模型转换 在MATLAB模型预测工具箱中支持多种系统模型格式。这些模型格式包括: ①通用状态空间模型; ②通用传递函数模型; ③MPC阶跃响应模型; ④MPC状态空间模型; ⑤MPC传递函数模型。

在上述5种模型格式中,前两种模型格式是MATLAB通用的模型格式,在其他控制类工具箱中,如控制系统工具箱、鲁棒控制工具等都予以支持;而后三种模型格式化则是模型预测控制工具箱特有的。其中,MPC状态空间模型和MPC传递函数模型是通用的状态空间模型和传递函数模型在模型预测控制工具箱中采用的增广格式。模型预测控制工具箱提供了若干函数,用于完成上述模型格式间的转换功能。下面对这些函数的用法加以介绍。 1.通用状态空间模型与MPC状态空间模型之间的转换 MPC状态空间模型在通用状态空间模型的基础上增加了对系统输入/输出扰动和采样周期的描述信息,函数ss2mod()和mod2ss()用于实现这两种模型格式之间的转换。 1)通用状态空间模型转换为MPC状态空间模型函数ss2mod() 该函数的调用格式为 pmod= ss2mod(A,B,C,D) pmod= ss2mod(A,B,C,D,minfo) pmod= ss2mod(A,B,C,D,minfo,x0,u0,y0,f0) 式中,A, B, C, D为通用状态空间矩阵; minfo为构成MPC状态空间模型的其他描述信息,为7个元素的向量,各元素分别定义为: ◆minfo(1)=dt,系统采样周期,默认值为1; ◆minfo(2)=n,系统阶次,默认值为系统矩阵A的阶次; ◆minfo(3)=nu,受控输入的个数,默认值为系统输入的维数; ◆minfo(4)=nd,测量扰的数目,默认值为0; ◆minfo(5)=nw,未测量扰动的数目,默认值为0; ◆minfo(6)=nym,测量输出的数目,默认值系统输出的维数; ◆minfo(7)=nyu,未测量输出的数目,默认值为0; 注:如果在输入参数中没有指定m i n f o,则取默认值。 x0, u0, y0, f0为线性化条件,默认值均为0; pmod为系统的MPC状态空间模型格式。 例8-5将如下以传递函数表示的系统模型转换为MPC状态空间模型。 解:MATLAB命令如下:

剖析大数据分析方法论的几种理论模型

剖析大数据分析方法论的几种理论模型 做大数据分析的三大作用,主要是:现状分析、原因分析和预测分析。什么时候开展什么样的数据分析,需要根据我们的需求和目的来确定。 作者:佚名来源:博易股份|2016-12-01 19:10 收藏 分享 做大数据分析的三大作用,主要是:现状分析、原因分析和预测分析。什么时候开展什么样的数据分析,需要根据我们的需求和目的来确定。 利用大数据分析的应用案例更加细化的说明做大数据分析方法中经常用到的几种理论模型。 以营销、管理等理论为指导,结合实际业务情况,搭建分析框架,这是进行大数据分析的首要因素。大数据分析方法论中经常用到的理论模型分为营销方面的理论模型和管理方面的理论模型。 管理方面的理论模型: ?PEST、5W2H、时间管理、生命周期、逻辑树、金字塔、SMART原则等?PEST:主要用于行业分析 ?PEST:政治(Political)、经济(Economic)、社会(Social)和技术(Technological) ?P:构成政治环境的关键指标有,政治体制、经济体制、财政政策、税收政策、产业政策、投资政策、国防开支水平政府补贴水平、民众对政治的参与度等。?E:构成经济环境的关键指标有,GDP及增长率、进出口总额及增长率、利率、汇率、通货膨胀率、消费价格指数、居民可支配收入、失业率、劳动生产率等。?S:构成社会文化环境的关键指标有:人口规模、性别比例、年龄结构、出生率、死亡率、种族结构、妇女生育率、生活方式、购买习惯、教育状况、城市特点、宗教信仰状况等因素。

?T:构成技术环境的关键指标有:新技术的发明和进展、折旧和报废速度、技术更新速度、技术传播速度、技术商品化速度、国家重点支持项目、国家投入的研发费用、专利个数、专利保护情况等因素。 大数据分析的应用案例:吉利收购沃尔沃 大数据分析应用案例 5W2H分析法 何因(Why)、何事(What)、何人(Who)、何时(When)、何地(Where)、如何做(How)、何价(How much) 网游用户的购买行为: 逻辑树:可用于业务问题专题分析

实时控制系统一种基于模型预测控制的反馈调度

第40卷第5期 2006年5月 上海交通大学学报 J OU RNAL OF SHAN GHA I J IAO TON G UNIV ERSIT Y Vol.40No.5  May 2006  收稿日期:2005206208 作者简介:周平方(19762),男,湖南常宁人,博士生,主要从事实时系统、计算机控制系统等研究,E 2mail :zhoupf @https://www.360docs.net/doc/e78593124.html,. 谢剑英(联系人),男,教授,博士生导师,电话(Tel.):021*********. 文章编号:100622467(2006)0520838205 实时控制系统一种基于模型预测控制的反馈调度 周平方, 谢剑英 (上海交通大学自动化系,上海200030) 摘 要:提出一种基于模型预测控制(M PC )的反馈调度算法(FS 2M PC ),可以在有限计算资源的 情况下改进实时控制系统的性能.将被控的实时调度过程模型化为受约束的任务集密度控制问题.在FS 2MPC 算法中,约束条件保证任务集在最早截止时限优先(EDF )算法下是可调度的;同时,M PC 的优化目标通过减小控制任务的截止时限使整个任务集的密度尽可能接近100%,从而提高控制任务的优先级,降低输出抖动.仿真结果表明,在有限计算资源的情况下,FS 2M PC 显著地降低了由调度过程引起的控制性能损失. 关键词:实时控制系统;反馈调度;模型预测控制;最早截止时限优先中图分类号:TP 273 文献标识码:A A Model Predictive Control 2Based Feedback Scheduling for Real 2T ime Control Systems Z HOU Pi ng 2f ang , X I E J i an 2y i ng (Dept.of Automation ,Shanghai Jiaotong Univ.,Shanghai 200030,China ) Abstract :A feedback scheduling based on model p redictive control (FS 2M PC )was presented to improve t he cont rol performance of real 2time control system subject to limited comp utational resource.The controlled real 2time scheduling is modelled as a const rained density cont rol p roblem of t he total task set.In t he FS 2M PC ,t he const raint s guarantee t hat t he task set is schedulable by EDF (earliest deadline first )algorit hm.At t he same time ,t he optimization goal of M PC (model p redictive cont rol )makes t he density of t he total task set as clo se to 1as po ssible t hrough shortening cont rol tasks ’deadlines.As a result ,t he cont rol tasks obtain higher p riorities and t he outp ut jitter is reduced.The simulation result s illust rate t hat t he schedu 2ling induced control performance lo ss is reduced greatly by t he FS 2M PC subject to limited comp utational resource. Key words :real 2time cont rol system ;feedback scheduling (FS );model p redictive control (M PC );earliest deadline first (EDF ) 现代实时控制系统(R TCS )通常是基于一个实时内核,多个闭环控制任务在内核的基础上竞争性地使用共享的处理器时间.因此,处理器的时间被当作是一种最重要的资源,需要一定的调度算法来将其分配给各个任务.这样就可能引起控制任务的抖动,尤其是当周期很短、处理器利用率很高的时候.

模糊控制规则表生成程序

模糊控制规则表生成程序 %偏差E的赋值表 E=[1.0 0.8 0.7 0.4 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.7 1.0 0.7 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.3 0.7 1.0 0.7 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.6 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.6 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.7 1.0 0.7 0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.7 1.0 0.7 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.4 0.7 0.8 1.0]; %偏差变换率EC的赋值表 Ec=[1.0 0.7 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.7 1.0 0.7 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.7 1.0 0.7 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.7 1.0 0.7 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.7 1.0 0.7 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.7 1.0 0.7 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.7 1.0]; %输出U的赋值表 u=[1.0 0.7 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.7 1.0 0.7 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.7 1.0 0.7 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.7 1.0 0.7 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3 0.7 1.0 0.7 0.3 0.0 0.0

MATLAB工具箱介绍.

MATLAB工具箱介绍 软件Matlab由美国MathWorks, Inc.公司出品,它的前身是C1eveMoler教授(现为美国工程院院士,Mathworks公司首席科学家)为著名的数学软件包LINPACK和EISPACK所写的一个接口程序。经过近20年的发展,目前Matlab已经发展成一个系列产品,包括它的内核及多个可供选择的工具箱。Matlab的工具箱数目不断增加,功能不断改善,这里简要介绍其中的几个。MATLAB 的M文件、工具箱索引和网上资源,可以从https://www.360docs.net/doc/e78593124.html,处查找。 (1)通讯工具箱 (Communication ToolboX) ★提供100多个函数及150多个SIMULINK模块,用于系统的仿真和分析 ★可由结构图直接生成可应用的C语言源代码 (2)控制系统工具箱 (Control System Too1box) ★连续系统设计和离散系统设计 ★状态空间和传递函数 ★模型转换 ★频域响应:Bode图、Nyquist图、Nichols图 ★时域响应:冲击响应、阶跃响应、斜波响应等 ★根轨迹、极点配置、LQG (3)金融工具箱 (Financial Loo1boX) ★成本、利润分析,市场灵敏度分析 ★业务量分析及优化 ★偏差分析 ★资金流量估算 ★财务报表

(4)频率域系统辨识工具箱 (Frequency Domain System Identification Toolbox) ★辨识具有未知延迟的连续和离散系统 ★计算幅值/相位、零点/极点的置信区间 ★设计周期激励信号、最小峰值、最优能量谱等 (5)模糊逻辑工具箱 (Fuzzy Logic Too1box) ★友好的交互设计界面 ★自适应神经—模糊学习、聚类以及Sugeno推理 ★支持SIMULINK动态仿真 ★可生成C语言源代码用于实时应用 (6)高阶谱分析工具箱 (Higher—Order Spectral Analysis Toolbox) ★高阶谱估计 ★信号中非线性特征的检测和刻划 ★延时估计 ★幅值和相位重构 ★阵列信号处理 ★谐波重构 (7)图像处理工具箱 (Image Processing Toolbox) ★二维滤波器设计和滤波 ★图像恢复增强 ★色彩、集合及形态操作

模糊控制详细讲解实例之欧阳歌谷创作

一、速度控制算法: 欧阳歌谷(2021.02.01) 首先定义速度偏差-50 km/h≤e(k)≤50km/h,-20≤ec(i)=e(k)-e(k-1)≤20,阀值eswith=10km/h 设计思想:油门控制采用增量式PID控制算法,刹车控制采用模糊控制算法,最后通过选择规则进行选择控制量输入。 选择规则: e(k)<0 ①e(k)>-eswith and throttlr_1≠0 选择油门控制 ②否则:先将油门控制量置0,再选择刹车控制 0

E/EC和U取相同的隶属度函数即: 说明:边界选择钟形隶属度函数,中间选用三角形隶属度函数,图像略 实际EC和E输入值若超出论域范围,则取相应的端点值。 3.模糊控制规则 由隶属度函数可以得到语言值隶属度(通过图像直接可以看出)如下表: 表1:E/EC和U语言值隶属度向量表 设置模糊规则库如下表: 表2:模糊规则表 3.模糊推理 由模糊规则表3可以知道输入E与EC和输出U的模糊关系,这里我取两个例子做模糊推理如下: if (E is NB) and (EC is NM) then (U is PB) 那么他的模糊关系子矩阵为:

三电平三相逆变器快速有限控制集模型预测控制方法

第20卷 第8期 2016年8月  电 机 与 控 制 学 报Electric Machines and Control Vol畅20No畅8Aug.2016 三电平三相逆变器快速有限控制集模型预测控制方法 杨勇1, 樊明迪1, 谢门喜1, 汪义旺2 (1.苏州大学城市轨道交通学院,江苏苏州215137;2.上海交通大学电子与电气工程学院,上海200240) 摘 要:针对有限控制集模型预测控制方法在多电平多相逆变器中预测模型和目标函数在线计算量大的不足,提出一种快速有限控制集模型预测控制方法。该方法根据参考矢量的空间位置,让远离参考矢量的电压矢量不参与预测模型在线计算和目标函数在线评估。对于三电平三相逆变器,快速有限控制集模型预测控制方法使参与计算的电压矢量由27个减少到12个,大大提高计算效率。最后,建立起5kW二极管钳位型三电平三相逆变器实验平台。对于传统有限控制集模型预测控制和快速有限控制集模型预测控制进行对比稳态和动态实验。实验结果表明:所提出快速有限控制集模型预测控制方法使系统具有良好的静、动态性能。 关键词:预测模型;目标函数;快速有限控制集模型预测控制;二极管钳位型三电平三相逆变器DOI:10.15938/j.emc.2016.08.011 中图分类号:TM721文献标志码:A文章编号:1007-449X(2016)08-0083-09 收稿日期:2015-10-12 基金项目:国家自然科学青年基金(51407124);中国博士后科学基金(2015M581857);江苏省高校自然科学基金(15KJD470005)作者简介:杨 勇(1981—)男,博士,讲师,研究方向为光伏发电与电力电子变换器; 樊明迪(1987—),男,博士,讲师,研究方向为电机及其控制; 谢门喜(1983—),男,博士研究生,研究方向为锁相环技术; 汪义旺(1981—),男,博士研究生,讲师,研究方向为电力电子变换器。 通信作者:樊明迪Fastfinitecontrolsetmodelpredictivecontrolmethodforthree-levelthree-phaseinverters YANGYong1, FANMing-di1, XIEMen-xi1, WANGYi-wang2 (1.SchoolofUrbanRailTransportation,SoochowUniversity,Suzhou215137,China; 2.SchoolofElectronicInformationandElectricalEngineering,ShanghaiJiaoTongUniversity,Shanghai200240,China)Abstract:Duetolargeonlinecalculationofpredictivemodelandcostfunctionwhenusingfinitecontrolsetmodelpredictivecontrol(FCS-MPC)inamulti-levelmulti-phaseinverter,afastFCS-MPCmethodisproposedinthispaper.ThevoltagevectorsfarawayfromthereferencevectordidnotparticipateinonlinecalculationofpredictivemodelandcostfunctionfortheFCS-MPCmethod,whichmadethecalculatedvoltagesdecreasefrom27to12andimprovethecalculationefficiency.Atlast,adiode-clampedthree-levelthree-phaseinverterexperimentalplatformratedat5kWwasestablished.Thecomparativesteady-stateanddynamicexperimentalwaveformsfortheconventionalFCS-MPCmethodandthefastFCS-MPCmethodwerestudied.TheexperimentalresultsshowthattheproposedfastFCS-MPCalgorithmhasgoodsteady-stateanddynamicperformance.Keywords:predictivemodel;costfunction;fastfinitecontrolsetmodelpredictivecontrol;diode-clampedthree-levelthree-phaseinverter

实验指导书ARIMA模型建模与预测范本

实验指导书ARIMA 模型建模与预测

实验指导书(ARIMA模型建模与预测) 例:中国1952- 的进出口总额数据建模及预测 1、模型识别和定阶 (1)数据录入 打开Eviews软件,选择“File”菜单中的“New--Workfile”选项,在“Workfile structure type”栏选择“Dated –regular frequency”,在“Date specification”栏中分别选择“Annual”(年数据) ,分别在起始年输入1952,终止年输入,文件名输入“im_ex”,点击ok,见下图,这样就建立了一个工作文件。 在workfile中新建序列im_ex,并录入数据(点击File/Import/Read Text-Lotus-Excel…, 找到相应的Excel数据集,打开数据集,出现如下图的窗口,

在“Data order”选项中选择“By observation-series in columns”即按照观察值顺序录入,第一个数据是从B15开始的,因此在“Upper-left data cell”中输入B15,本例只有一列数据,在“Names for series or number if named in file”中输入序列的名字im_ex,点击ok,则录入了数据): (2)时序图判断平稳性 双击序列im_ex,点击view/Graph/line,得到下列对话框:

得到如下该序列的时序图,由图形能够看出该序列呈指数上升趋势,直观来看,显著非平稳。 IM_EX 240,000 200,000 160,000 120,000 80,000 40,000 556065707580859095000510 (3 因为数据有指数上升趋势,为了减小波动,对其对数化,在Eviews命令框中输入相应的命令“series y=log(im_ex)”就得到对数序列,其时序图见下图,对数化后的序列远没有原始序列波动剧烈:

模糊控制程序实例学习资料

5.2.2.6 模糊控制器设计实例 1、单输入模糊控制器的设计 【例5.12】已知某汽温控制系统结构如图5.10所示,采用喷水减温进行控制。设计单输入模糊控制器,观察定值扰动和内部扰动的控制效果。 R = 图5.10 单回路模糊控制系统 按表5-2确定模糊变量E 、U 的隶属函数,按表5-3确定模糊控制规则,选择温度偏差e 、控制量u 的实际论域:[ 1.5,1.5]e u =∈-,则可得到该系统的单输入模糊控制的仿真程序如FC_SI_main.m 所示,仿真结果如图5.11所示。 设温度偏差e 、控制量u 的实际论域:[ 1.5,1.5]e u =∈-,选择e 、u 的等级量论域为 {3,2,1,0,1,2,3}E U ==---+++ 量化因子2) 5.1(5.13 2=--?= K 。 选择模糊词集为{NB,NS,ZO,PS,PB },根据人的控制经验,确定等级量E ,U 的隶属函数曲线如图5-8 所示。根据隶属函数曲线可以得到模糊变量E 、U 的赋值表如表5-3所示。 图5-8 E ,U 的隶属函数曲线 -3 -2 -1 1 2 3

依据人手动控制的一般经验,可以总结出一些控制规则,例如: 若误差E 为O ,说明温度接近希望值,喷水阀保持不动; 若误差E 为正,说明温度低于希望值,应该减少喷水; 若误差E 为负,说明温度高于希望值,应该增加喷水。 若采用数学符号描述,可总结如下模糊控制规则: 若E 负大,则U 正大; 若E 负小,则U 正小; 若E 为零,则U 为零; 若E 正小,则U 负小; 若E 正大,则U 负大。 写成模糊推理句: if E=NB then U=PB if E=NS then U=PS if E=ZO then U=ZO if E=PS then U=NS if E=PB then U=NB 由上述的控制规则可得到模糊控制规则表,如表5-4所示。 表5-4 模糊控制规则表 模糊控制规则实际上是一组多重条件语句,它可以表示从误差论域E 到控制量论域U 的模糊关系R 。 按着上述控制规则,可以得到该温度偏差与喷水阀门开度之间的模糊关系R : ()()()()() E U E U E U E U E U R E U NB PB NS PS ZO ZO PS NS PB NB - - =?=?????U U U U 计算模糊关系矩阵R 的子程序如F_Relation_1.m 所示。 %模糊关系计算子程序F_Relation_1.c function [R,mfe,mfu,ne,nu,Me]=F_Relation_1 %#############################输入模糊变量赋值表(表5-3)############################ ne=7;%等级量e 的个数 nu=7;%等级量u 的个数 Me=[0 0 0 0 0 0.5 1;0 0 0 0 1 0.5 0;0 0 0.5 1 0.5 0 0; 0 0.5 1 0 0 0 0;1 0.5 0 0 0 0 0]; Mu=Me; %##定义模糊变量及其语言值 1=PB,2=PS,3=O,4=NS,5=NB ,并输入模糊控制规则表(表5-4)## mfc=5;%模糊变量E 的语言值个数,控制规则表列数

MA AB模型预测控制工具箱函数

M A T L A B模型预测控制工具箱函数 8.2系统模型建立与转换函数 前面读者论坛了利用系统输入/输出数据进行系统模型辨识的有关函数及使用方法,为时行模型预测控制器的设计,需要对系统模型进行进一步的处理和转换。MATLAB的模型预测控制工具箱中提供了一系列函数完成多种模型转换和复杂系统模型的建立功能。 在模型预测控制工具箱中使用了两种专用的系统模型格式,即MPC状态空间模型和MPC传递函数模型。这两种模型格式分别是状态空间模型和传递函数模型在模型预测控制工具箱中的特殊表达形式。这种模型格式化可以同时支持连续和离散系统模型的表达,在MPC传递函数模型中还增加了对纯时延的支持。表8-2列出了模型预测控制工具箱的模型建立与转换函数。 表8-2模型建立与转换函数 8.2.1模型转换 在MATLAB模型预测工具箱中支持多种系统模型格式。这些模型格式包括: ①通用状态空间模型; ②通用传递函数模型; ③MPC阶跃响应模型; ④MPC状态空间模型;

⑤MPC传递函数模型。 在上述5种模型格式中,前两种模型格式是MATLAB通用的模型格式,在其他控制类工具箱中,如控制系统工具箱、鲁棒控制工具等都予以支持;而后三种模型格式化则是模型预测控制工具箱特有的。其中,MPC状态空间模型和MPC传递函数模型是通用的状态空间模型和传递函数模型在模型预测控制工具箱中采用的增广格式。模型预测控制工具箱提供了若干函数,用于完成上述模型格式间的转换功能。下面对这些函数的用法加以介绍。 1.通用状态空间模型与MPC状态空间模型之间的转换 MPC状态空间模型在通用状态空间模型的基础上增加了对系统输入/输出扰动 和采样周期的描述信息,函数ss2mod()和mod2ss()用于实现这两种模型格式之间的转换。 1)通用状态空间模型转换为MPC状态空间模型函数ss2mod() 该函数的调用格式为 pmod=ss2mod(A,B,C,D) pmod=ss2mod(A,B,C,D,minfo) pmod=ss2mod(A,B,C,D,minfo,x0,u0,y0,f0) 式中,A,B,C,D为通用状态空间矩阵; minfo为构成MPC状态空间模型的其他描述信息,为7个元素的向量,各元素分别定义为: ◆minfo(1)=dt,系统采样周期,默认值为1; ◆minfo(2)=n,系统阶次,默认值为系统矩阵A的阶次; ◆minfo(3)=nu,受控输入的个数,默认值为系统输入的维数; ◆minfo(4)=nd,测量扰的数目,默认值为0; ◆minfo(5)=nw,未测量扰动的数目,默认值为0; ◆minfo(6)=nym,测量输出的数目,默认值系统输出的维数; ◆minfo(7)=nyu,未测量输出的数目,默认值为0; 注:如果在输入参数中没有指定m i n f o,则取默认值。 x0,u0,y0,f0为线性化条件,默认值均为0; pmod为系统的MPC状态空间模型格式。 例8-5将如下以传递函数表示的系统模型转换为MPC状态空间模型。 解:MATLAB命令如下:

模型预测控制

云南大学信息学院学生实验报告 课程名称:现代控制理论 实验题目:预测控制 小组成员:李博(12018000748) 金蒋彪(12018000747) 专业:2018级检测技术与自动化专业

1、实验目的 (3) 2、实验原理 (3) 2.1、预测控制特点 (3) 2.2、预测控制模型 (4) 2.3、在线滚动优化 (5) 2.4、反馈校正 (5) 2.5、预测控制分类 (6) 2.6、动态矩阵控制 (7) 3、MATLAB仿真实现 (9) 3.1、对比预测控制与PID控制效果 (9) 3.2、P的变化对控制效果的影响 (12) 3.3、M的变化对控制效果的影响 (13) 3.4、模型失配与未失配时的控制效果对比 (14) 4、总结 (15) 5、附录 (16) 5.1、预测控制与PID控制对比仿真代码 (16) 5.1.1、预测控制代码 (16) 5.1.2、PID控制代码 (17) 5.2、不同P值对比控制效果代码 (19) 5.3、不同M值对比控制效果代码 (20) 5.4、模型失配与未失配对比代码 (20)

1、实验目的 (1)、通过对预测控制原理的学习,掌握预测控制的知识点。 (2)、通过对动态矩阵控制(DMC)的MATLAB仿真,发现其对直接处理具有纯滞后、大惯性的对象,有良好的跟踪性和较强的鲁棒性,输入已 知的控制模型,通过对参数的选择,来获得较好的控制效果。 (3)、了解matlab编程。 2、实验原理 模型预测控制(Model Predictive Control,MPC)是20世纪70年代提出的一种计算机控制算法,最早应用于工业过程控制领域。预测控制的优点是对数学模型要求不高,能直接处理具有纯滞后的过程,具有良好的跟踪性能和较强的抗干扰能力,对模型误差具有较强的鲁棒性。因此,预测控制目前已在多个行业得以应用,如炼油、石化、造纸、冶金、汽车制造、航空和食品加工等,尤其是在复杂工业过程中得到了广泛的应用。在分类上,模型预测控制(MPC)属于先进过程控制,其基本出发点与传统PID控制不同。传统PID控制,是根据过程当前的和过去的输出测量值与设定值之间的偏差来确定当前的控制输入,以达到所要求的性能指标。而预测控制不但利用当前时刻的和过去时刻的偏差值,而且还利用预测模型来预估过程未来的偏差值,以滚动优化确定当前的最优输入策略。因此,从基本思想看,预测控制优于PID控制。 2.1、预测控制特点 首先,对于复杂的工业对象。由于辨识其最小化模型要花费很大的代价,往往给基于传递函数或状态方程的控制算法带来困难,多变量高维度复杂系统难以建立精确的数学模型工业过程的结构、参数以及环境具有不确定性、时变性、非线性、强耦合,最优控制难以实现。而预测控制所需要的模型只强调其预测功能,不苛求其结构形式,从而为系统建模带来了方便。在许多场合下,只需测定对象的阶跃或脉冲响应,便可直接得到预测模型,而不必进一步导出其传递函数或状

模糊控制算法c程序

由于项目需要,需要模糊控制算法,之前此类知识为0,经过半个多月的研究,终于有的小进展。开始想从强大的互联网上搜点c代码来研究下,结果搜遍所有搜索引擎都搜不到,以下本人从修改的模糊控制代码,经过自己修改后可在,运行!输入e表示输出误差,ec表示误差变化率,经过测试具有很好的控制效果,对于非线性系统和数学模型难以建立的系统来说有更好的控制效果!现将其公开供大家学习研究! #include <> #include"" #define PMAX 100 #define PMIN -100 #define DMAX 100 #define DMIN -100 #define FMAX 100 /*语言值的满幅值*/ int PFF[4]={0,12,24,48}; /*输入量D语言值特征点*/ int DFF[4]={0,16,32,64}; /*输出量U语言值特征点*/ int UFF[7]={0,15,30,45,60,75,90}; /*采用了调整因子的规则表,大误差时偏重误差,小误差时偏重误差变化*/ /*a0=,a1=,a2=,a3= */ int rule[7][7]={ //误差变化率 -3,-2,-1, 0, 1, 2, 3 // 误差 {-6,-6,-6,-5,-5,-5,-4,}, // -3 {-5,-4,-4,-3,-2,-2,-1,}, // -2 {-4,-3,-2,-1, 0, 1, 2,}, // -1 {-4,-3,-1, 0, 1, 3, 4,}, // 0 {-2,-1, 0, 1, 2, 3, 4,}, // 1 { 1, 2, 2, 3, 4, 4, 5,}, // 2 { 4, 5, 5, 5, 6, 6, 6}}; // 3 /**********************************************************/ int Fuzzy(int P,int D) /*模糊运算引擎*/ { int U; /*偏差,偏差微分以及输出值的精确量*/ unsigned int PF[2],DF[2],UF[4]; /*偏差,偏差微分以及输出值的隶属度*/ int Pn,Dn,Un[4]; long temp1,temp2; /*隶属度的确定*/ /*根据PD的指定语言值获得有效隶属度*/

基于BP网络的股票数据预测模型

基于BP网络的股票数据 预测模型 姓名:江政 班级:控制2015级 学号:2015028081100015 2016 年6月 26日

需求分析和网络结构设计 根据我们对自然神经系统的构造和机理的认识,神经系统是由大量的神经细胞(神经元)构成的复杂的网络,人们对这一网络建立一定的数学模型和算法,设法使它能够实现诸如基于数据的模式识别,函数映射等带有“智能”的功能,这种网络就是神经网络。其中,BP (Back Propagation )神经网络是1986年由Rumelhart 和McCelland 为首的科学家小组提出,是一种按误差反向传播算法训练的多层前馈网络。BP 网络能学习和存贮大量的输入—输出模式映射关系,而 其他神经网络具有重要作用。 针对150组股票数据进行拟合(详细数据请见《附件1》),选取其中的开盘、最高、最低、收盘和成交次数五组数据,用当日的这五组数据来预测次日的收盘数据,从而等效建立一个股票数据预测模型。采用包括输入层、隐含层和输出层的三层BP 网络结构,如图1所示,输入层包含五个神经元,隐含层包含三个神经元,输出层为一个神经元。其中,隐含层神经元的激活函数采用非对称型Sigmoid 函数,函数表达式为:))exp(1/(1)(x x f -+=,输出层神经元的激活函数采用线性函数,表达式为:x x f =)(。将150组数据分为三等份,其中两份作为训练样本,用来对网络进行训练学习;另外一份作为测试样本,用来检验所训练出的网络的泛化能力。采用BP 算法对隐含层和输出层权值进行修正,以达到计算输出和实际样本输出相差最小,最终实现较精确预测的目的。 图1 预测模型的网络结构

神经网络模型预测控制器

神经网络模型预测控制器 摘要:本文将神经网络控制器应用于受限非线性系统的优化模型预测控制中,控制规则用一个神经网络函数逼近器来表示,该网络是通过最小化一个与控制相关的代价函数来训练的。本文提出的方法可以用于构造任意结构的控制器,如减速优化控制器和分散控制器。 关键字:模型预测控制、神经网络、非线性控制 1.介绍 由于非线性控制问题的复杂性,通常用逼近方法来获得近似解。在本文中,提出了一种广泛应用的方法即模型预测控制(MPC),这可用于解决在线优化问题,另一种方法是函数逼近器,如人工神经网络,这可用于离线的优化控制规则。 在模型预测控制中,控制信号取决于在每个采样时刻时的想要在线最小化的代价函数,它已经广泛地应用于受限的多变量系统和非线性过程等工业控制中[3,11,22]。MPC方法一个潜在的弱点是优化问题必须能严格地按要求推算,尤其是在非线性系统中。模型预测控制已经广泛地应用于线性MPC问题中[5],但为了减小在线计算时的计算量,该部分的计算为离线。一个非常强大的函数逼近器为神经网络,它能很好地用于表示非线性模型或控制器,如文献[4,13,14]。基于模型跟踪控制的方法已经普遍地应用在神经网络控制,这种方法的一个局限性是它不适合于不稳定地逆系统,基此本文研究了基于优化控制技术的方法。 许多基于神经网络的方法已经提出了应用在优化控制问题方面,该优化控制的目标是最小化一个与控制相关的代价函数。一个方法是用一个神经网络来逼近与优化控制问题相关联的动态程式方程的解[6]。一个更直接地方法是模仿MPC方法,用通过最小化预测代价函数来训练神经网络控制器。为了达到精确的MPC技术,用神经网络来逼近模型预测控制策略,且通过离线计算[1,7.9,19]。用一个交替且更直接的方法即直接最小化代价函数训练网络控制器代替通过训练一个神经网络来逼近一个优化模型预测控制策略。这种方法目前已有许多版本,Parisini[20]和Zoppoli[24]等人研究了随机优化控制问题,其中控制器作为神经网络逼近器的输入输出的一个函数。Seong和Widrow[23]研究了一个初始状态为随机分配的优化控制问题,控制器为反馈状态,用一个神经网络来表示。在以上的研究中,应用了一个随机逼近器算法来训练网络。Al-dajani[2]和Nayeri等人[15]提出了一种相似的方法,即用最速下降法来训练神经网络控制器。 在许多应用中,设计一个控制器都涉及到一个特殊的结构。对于复杂的系统如减速控制器或分散控制系统,都需要许多输入与输出。在模型预测控制中,模型是用于预测系统未来的运动轨迹,优化控制信号是系统模型的系统的函数。因此,模型预测控制不能用于定结构控制问题。不同的是,基于神经网络函数逼近器的控制器可以应用于优化定结构控制问题。 在本文中,主要研究的是应用于非线性优化控制问题的结构受限的MPC类型[20,2,24,23,15]。控制规则用神经网络逼近器表示,最小化一个与控制相关的代价函数来离线训练神经网络。通过将神经网络控制的输入适当特殊化来完成优化低阶控制器的设计,分散和其它定结构神经网络控制器是通过对网络结构加入合适的限制构成的。通过一个数据例子来评价神经网络控制器的性能并与优化模型预测控制器进行比较。 2.问题表述 考虑一个离散非线性控制系统: 其中为控制器的输出,为输入,为状态矢量。控制

MATLAB模型预测控制工具箱函数

M A T L A B模型预测控制 工具箱函数 TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】

M A T L A B模型预测控制工具箱函数 系统模型建立与转换函数 前面读者论坛了利用系统输入/输出数据进行系统模型辨识的有关函数及使用方法,为时行模型预测控制器的设计,需要对系统模型进行进一步的处理和转换。MATLAB的模型预测控制工具箱中提供了一系列函数完成多种模型转换和复杂系统模型的建立功能。 在模型预测控制工具箱中使用了两种专用的系统模型格式,即MPC状态空间模型和MPC传递函数模型。这两种模型格式分别是状态空间模型和传递函数模型在模型预测控制工具箱中的特殊表达形式。这种模型格式化可以同时支持连续和离散系统模型的表达,在MPC传递函数模型中还增加了对纯时延的支持。表8-2列出了模型预测控制工具箱的模型建立与转换函数。 表8-2 模型建立与转换函数 模型转换 在MATLAB模型预测工具箱中支持多种系统模型格式。这些模型格式包括: ①通用状态空间模型; ②通用传递函数模型; ③MPC阶跃响应模型; ④MPC状态空间模型; ⑤MPC传递函数模型。

在上述5种模型格式中,前两种模型格式是MATLAB通用的模型格式,在其他控制类工具箱中,如控制系统工具箱、鲁棒控制工具等都予以支持;而后三种模型格式化则是模型预测控制工具箱特有的。其中,MPC状态空间模型和MPC传递函数模型是通用的状态空间模型和传递函数模型在模型预测控制工具箱中采用的增广格式。模型预测控制工具箱提供了若干函数,用于完成上述模型格式间的转换功能。下面对这些函数的用法加以介绍。 1.通用状态空间模型与MPC状态空间模型之间的转换 MPC状态空间模型在通用状态空间模型的基础上增加了对系统输入/输出扰动和采样周期的描述信息,函数ss2mod()和mod2ss()用于实现这两种模型格式之间的转换。 1)通用状态空间模型转换为MPC状态空间模型函数ss2mod() 该函数的调用格式为 pmod= ss2mod(A,B,C,D) pmod= ss2mod(A,B,C,D,minfo) pmod= ss2mod(A,B,C,D,minfo,x0,u0,y0,f0) 式中,A, B, C, D为通用状态空间矩阵; minfo为构成MPC状态空间模型的其他描述信息,为7个元素的向量,各元素分别定义为: ◆minfo(1)=dt,系统采样周期,默认值为1; ◆minfo(2)=n,系统阶次,默认值为系统矩阵A的阶次; ◆minfo(3)=nu,受控输入的个数,默认值为系统输入的维数; ◆minfo(4)=nd,测量扰的数目,默认值为0; ◆minfo(5)=nw,未测量扰动的数目,默认值为0; ◆minfo(6)=nym,测量输出的数目,默认值系统输出的维数; ◆minfo(7)=nyu,未测量输出的数目,默认值为0; 注:如果在输入参数中没有指定m i n f o,则取默认值。 x0, u0, y0, f0为线性化条件,默认值均为0; pmod为系统的MPC状态空间模型格式。 例8-5将如下以传递函数表示的系统模型转换为MPC状态空间模型。 解:MATLAB命令如下:

相关文档
最新文档