基准电压源和电压放大实验设计样本

基准电压源和电压放大实验设计样本
基准电压源和电压放大实验设计样本

基准电压源及电压放大实验设计

学号:姓名:张强强

一、实验目

1.采用基准电压源产生一种2.0V稳定电压。

2. 采用运放对基准电压源进行放大。

二、实验原理

1.基准电压源

抱负电压基准源应当具备完美初始精度,并且在负载电流、温度和时间变化时电压保持稳定不变。实际应用中,设计人员必要在初始电压精度、电压温漂、迟滞以及供出/吸入电流能力、静态电流(即功率消耗)、长期稳定性、噪声和成本等指标中进行权衡与折衷。

两种常用基准源是齐纳和带隙基准源。齐纳基准源普通采用两端并联拓扑;带隙基准源普通采用三端串连拓。

齐纳二极管可克服正向二极管作为基准电压某些缺陷,但其温度系数是正,约为+2mV/℃

温度补偿性齐纳二极管体积小、重量轻、构造简朴便于集成;但存在噪声大、负荷能力弱、稳定性差以及基准电压较高、可调性较差等缺陷。这种基准电压源不合用于便携式和电池供电场合。

带隙基准源(采用CMOS,TTL等技术实现)运用半导体集成电路技术制成基准电压源种类较多,如深埋层稳压管集成基准源、双极型晶体管集成带隙基准源、CMOS集

成带隙基准源等。由于带隙基准源具备高精度、低噪声、长处,因而广泛应用于电压调节器、数据转换器(A/D,D/A)、集成传感器、大器等,以及单独作为精密电压基准件,低温漂等许多微功耗运算放。

实验所用基准电压源为MC1403,其参数、内部构造及引脚图如下:

MC1403内部原理图

运用MC1403可以获得2.5V稳压,但实验规定获得2V电压。采用电阻分压原理,在器件输出端加滑动变阻器,调节阻值获得2V稳压,并在电阻两端并联一旁路电容,消除干扰。

2.放大电路

集成电路运算放大器是一种电子器件,她是采用一定制造工艺将大量半导体三极管、电阻、电容等元件及它们之间连线制作在一块单晶体硅芯片上,并具备一定功能电子电路。

运算放大器具备增益大、传播损耗小特点,但其带宽为零,也就意味着其无法进行信号传播,因而采用反馈实现其对信号放大。

运算放大器分为同向运算放大器和反向运算放大器。同向运算放大器输出电压与输入电压同向,反向运算放大器输出电压与输入电压反向。

实验用同相比例放大器。同相放大器工作电路原理图为:

当输入信号电压u i瞬时电位变化极性如图中(+)号所示,由于u i(u p)加到同向端,输出电压u o极性与u i相似。反向输入端电压u n为反馈电压,极性亦为(+),而净输入电压u id=u i-u f=u p-u n比无反馈时反而减小了,放大电路电压增益Av=u o/u i也减小。但当|u p-u n|>60uV时,运放进入非线性区。

同相比例放大器增益为:

实验用同相放大器LM358,其特性及引脚图如下:

三、实验仪器与器件:

1.MC1403基准电压源(1个)

2.LM358P运算放大器(2个)

3.100nF电容(1个)

4.1K电阻(1个)

5.1KΩ滑动变阻器(1个)

6.5KΩ滑动变阻器(1个)

7.直流稳压源(1台)

8.万用表

四、实验内容

测量电阻阻值为997Ω

电容大小为94nF

依照规定在multisim中设计基准电压源和电压放大仿真图如图所示:

2V基准电压源电压放大电路

通过仿真得到当滑动变阻器为798Ω时,基准电压源为2.01V。在电路板上按仿真图焊接实际电路。焊接电路和pcb板电路如下图所示:

正面反面

pcb板

记录实验数据如下。

五、数据记录与分析

仿真数据

反馈电阻R/Ω1000 3000 4000 5000 输出电压U/V 4.01 6.02 8.03 10.03 12.04

实测数据

反馈电阻R/Ω1000 3000 4000 5000 输出电压U/V 4.04 6.06 8.21 10.17 12.23

反馈电阻与输出电压关系如图:

误差分析:

1.实际所用器件并不抱负,电阻阻值不能正好调节到所要值。

带隙基准电压源的设计

哈尔滨理工大学 软件学院 课程设计报告 课程大三学年设计 题目带隙基准电压源设计 专业集成电路设计与集成系统班级集成10-2 班 学生唐贝贝 学号1014020227 指导老师董长春 2013年6月28日

目录 一.课程设计题目描述和要求………………………………………… 二.课程设计报告内容………………………………………………… 2.1课程设计的计算过程…………………………………………. 2.2带隙电压基准的基本原理……………………………………. 2.3指标的仿真验证结果…………………………………………. 2.4 网表文件……………………………………………………… 三.心得体会……………………………………………………………四.参考书目………………………………………………………….

一.课程设计题目描述和要求1.1电路原理图: (1).带隙基准电路 (2).放大器电路

1.2设计指标 放大器:开环增益:大于70dB 相位裕量:大于60度 失调电压:小于1mV 带隙基准电路:温度系数小于10ppm/C ? 1.3要求 1>手工计算出每个晶体管的宽长比。通过仿真验证设计是否正确,是否满足指标的要求,保证每个晶体管的正常工作状态。 2>使用Hspice 工具得到电路相关参数仿真结果,包括:幅频和相频特性(低频增益,相位裕度,失调电压)等。 3>每个学生应该独立完成电路设计,设计指标比较开放,如果出现雷同按不及格处理。 4>完成课程设计报告的同时需要提交仿真文件,包括所有仿真电路的网表,仿真结果。 5>相关问题参考教材第六章,仿真问题请查看HSPICE 手册。 二. 课程设计报告内容 由于原电路中增加了两个BJT 管,所以Vref 需要再加上一个Vbe ,导致最后结果为(ln )8.6M n β??≈,最后Vref 大概为1.2V ,且电路具有较大的电流,可以驱动较大的负载。 2.1课程设计的计算过程 1> M8,M9,M10,M11,M12,M13宽长比的计算 设Im8=Im9=20uA (W/L)8=(W/L)9=20uA 为了满足调零电阻的匹配要求,必须有Vgs13=Vgs6 ->因此还必须满足(W/L)13=(Im8/I6)*(W/L)6 即(W/L)13/(W/L)6=(W/L)9/(W/L)7 取(W/L)13=27 取(W/L)10=(W/L)11=(W/L)13=27 因为偏置电路存在整反馈,环路增益经计算可得为1/(gm13*Rb),若使环路

带隙基准电路设计要点

帯隙基准电路设计 (东南大学集成电路学院) 一.基准电压源概述 基准电压源(Reference V oltage)是指在模拟电路或混合信号电路中用作电压基准的具有相对较高精度和稳定度的参考电压源,它是模拟和数字电路中的核心模块之一,在DC/DC ,ADC ,DAC 以及DRAM 等集成电路设计中有广泛的应用。它的温度稳定性以及抗噪性能影响着整个电路系统的精度和性能。模拟电路使用基准源,是为了得到与电源无关的偏置,或是为了得到与温度无关的偏置,其性能好坏直接影响电路的性能稳定。在CMOS 技术中基准产生的设计,着重于公认的“帯隙”技术,它可以实现高电源抑制比和低温度系数,因此成为目前各种基准电压源电路中性能最佳、应用最广泛的电路。 基于CMOS 的帯隙基准电路的设计可以有多种电路结构实现。常用的包括Banba 和Leung 结构带薪基准电压源电路。在综合考虑各方面性能需求后,本文采用的是Banba 结构进行设计,该结构具有功耗低、温度系数小、PSRR 高的特点,最后使用Candence 软件进行仿真调试。 二.帯隙基准电路原理与结构 1.工作原理 带隙基准电压源的设计原理是根据硅材料的带隙电压与电源电压和温度无关的特性,通过将两个具有相反温度系数的电压进行线性组合来得到零温度系数的电压。用数学方法表示可以为:2211V V V REF αα+=,且02211 =??+??T V T V αα。 1).负温度系数的实现 根据双极性晶体管的器件特性可知,双极型晶体管的基极-发射极电压BE V 具有负温度系数。推导如下: 对于一个双极性器件,其集电极电流)/(exp T BE S C V V I I =,其中q kT V T /=,

ADC选择最合适的基准电压源和放大器

如何为您的ADC选择最合适的基准电压源和放大器 主题: 驱动精密ADC:如何为您的ADC选择最合适的基准电压源和放大器? 在线问答: [问:callhxw] 如何评定一颗ADC非线性?丢码? [答:Jing] you can use ADC"s INL and DNL parameter to evaluate the non-linearity and you can also use ENOB parameter to check code loss. Thanks!Generally ENOB releated with ADC"s SNR [2006-2-28 10:32:08] [问:吉星] 在差分输入时,不考虑直流,使用差分放大器和变压器哪个更好.[答:Mariah] Transformer is better for the better noise and distortion performance, especially in very high frequencies. [2006-2-28 10:32:14] [问:Jane Yang] 请问应如何处理板级噪声对于高精度AD的影响?特别是输入部分的噪声? [答:Jing] This is a good question and it"s very difficult to answer. Generally, You should consider all the input noise derived from sensor/AMP/BUFFER. You can also use a LPF to reduce the input noise. Remember the BGP of AMP should be 100x of ADC"s throughput. Thanks! [2006-2-28 10:34:30] [问:石林艳] AD变换的参考基准源很重要,对模拟供电电源和数字供电电源的要求也很高吗 [答:Rui] 模拟供电电源,和数字供电电源相对基准源来说,精度要求相对较低,一般情况下用10uF的电容和0.1uF滤波即可。 [2006-2-28 10:34:31] [问:zcs_1] 请解释一下,分辨率和转换精度之间的区别 [答:Mariah] For conversion accuracy, it involves many aspecs. For example, INL, DNL, offset, gain error. [2006-2-28 10:34:46] [问:Leemour] 對不起能否講一下什麼是:RAIL TO RAIL,這個我一直不太明白。 [答:Xiangquan] 轨到轨指输入轨到轨,或输出轨到轨,具体指的是输入信号或者输出信号的范围基本接近于电源,譬如电源是+-5V,输入信号或输出信号可以达到+-4.9几V以上 [2006-2-28 10:35:25] [问:jlwg] 很多种adi的a/d转换器件都自带有标准电压源,请问是使用器件自带的标准电压源好还是另外使用独立的标准电压源更精确? 另外使用ad7710时,每次转换通道后的第一次转换结果是否是有效的? [答:Troy] Use an independant reference to get the highest accuracy and lowest temperature drift. It depends on how much accuracy your application needs over temperature. [2006-2-28 10:37:14] [问:xwlcba] 您提到驱动AD的运放增益带宽积要求大于100倍采样速率,请问对运放的转换速率有何具体要求? [答:Troy] To get the lowest distortion (THD), we recommend using an amplifier with at least 100x gain-bandwidth product greater than the sample rate. [2006-2-28 10:39:36] [问:bly1979m] 本人最近做了一个项目用于精确测量温度的,就用到了这两种器件!请推荐几款贵司产品?并说说它的大概价格是多少? [答:Jing] It"s depend on the accuracy of your system requirement. I am

基准电压源

电压基准芯片的参数解析及应用技巧 电压基准芯片是一类高性能模拟芯片,常用在各种数据采集系统中,实现高精度数据采集。几乎所有电压基准芯片都在为实现“高精度”而努力,但要在各种不同应用场合真正实现高精度,则需要了解电压基准的内部结构以及各项参数的涵义,并要掌握一些必要的应用技巧。 电压基准芯片的分类 根据内部基准电压产生结构不同,电压基准分为:带隙电压基准和稳压管电压基准两类。带隙电压基准结构是将一个正向偏置PN结和一个与VT(热电势)相关的电压串联,利用PN 结的负温度系数与VT的正温度系数相抵消实现温度补偿。稳压管电压基准结构是将一个次表面击穿的稳压管和一个PN结串联,利用稳压管的正温度系数和PN结的负温度系数相抵消实现温度补偿。次表面击穿有利于降低噪声。稳压管电压基准的基准电压较高(约7V);而带隙电压基准的基准电压比较低,因此后者在要求低供电电压的情况下应用更为广泛。 根据外部应用结构不同,电压基准分为:串联型和并联型两类。应用时,串联型电压基准与三端稳压电源类似,基准电压与负载串联;并联型电压基准与稳压管类似,基准电压与负载并联。带隙电压基准和稳压管电压基准都可以应用到这两种结构中。串联型电压基准的优点在于,只要求输入电源提供芯片的静态电流,并在负载存在时提供负载电流;并联型电压基准则要求所设置的偏置电流大于芯片的静态电流与最大负载电流的总和,不适合低功耗应用。并联型电压基准的优点在于,采用电流偏置,能够满足很宽的输入电压范围,而且适合做悬浮式的电压基准。 电压基准芯片参数解析 安肯(北京)微电子即将推出的ICN25XX系列电压基准,是一系列高精度,低功耗的串联型电压基准,采用小尺寸的SOT23-3封装,提供1.25V、2.048V、2.5V、3.0V、3.3V、4.096V 输出电压,并提供良好的温度漂移特性和噪声特性。

带隙基准电压源设计解析

0 引言 基准电压是集成电路设计中的一个重要部分,特别是在高精度电压比较器、数据采集系统以及A/D和 D/A转换器等中,基准电压随温度和电源电压波动而产生的变化将直接影响到整个系统的性能。因此,在高精度的应用场合,拥有一个具有低温度系数、高电源电压抑制的基准电压是整个系统设计的前提。传统带隙基准由于仅对晶体管基一射极电压进行一阶的温度补偿,忽略了曲率系数的影响,产生的基准电压和温度仍然有较大的相干性,所以输出电压温度特性一般在20 ppm/℃以上,无法满足高精度的需要。 基于以上的要求,在此设计一种适合高精度应用场合的基准电压源。在传统带隙基准的基础上利用工作在亚阈值区MOS管电流的指数特性,提出一种新型二阶曲率补偿方法。同时,为了尽可能减少电源电压波动对基准电压的影响,在设计中除了对带隙电路的镜相电流源采用cascode结构外还增加了高增益反馈回路。在此,对电路原理进行了详细的阐述,并针对版图设计中应该的注意问题进行了说明,最后给出了后仿真结果。 l 电路设计 1.1 传统带隙基准分析 通常带隙基准电压是通过PTAT电压和CTAT电压相加来获得的。由于双极型晶体管的基一射极电压Vbe呈负温度系数,而偏置在相同电流下不同面积的双极型晶体管的基一射极电压之差呈正温度系数,在两者温度系数相同的情况下将二者相加就得到一个与温度无关的基准电压。 传统带隙电路结构如图1所示,其中Q2的发射极面积为Q1和Q3的m倍,流过Q1~Q3的电流相等,运算放大器工作在反馈状态,以A,B两点为输入,驱动Q1和Q2的电流源,使A,B两点稳定在近似相等的电压上。

假设流过Q1的电流为J,有: 由于式(5)中的第一项具有负温度系数,第二项具有正温度系数,通过调整m值使两项具有大小相同而方向相反的温度系数,从而得到一个与温度无关的电压。理想情况下,输出电压与电源无关。 然而,标准工艺下晶体管基一射极电压Vbe随温度的变化并非是纯线性的,而且由于器件的非理想性,输出电压也会受到电源电压波动的影响。其中,曲线随温度的变化主要取决于Vbe自身特性、集电极电流和电路中运放的失调电压,Vbe

低压基准电压源电路的版图设计_毕业设计

摘要 集成电路版图是集成电路系统与集成电路工艺之间的中间重要环节,集成电路版图设计是指把一张经过设计的电路图转变为用于集成电路制造的光刻掩膜版图形,再经过相应的工艺加工制造出能够实际应用的集成电路芯片。版图设计的优劣直接影响电路生成的芯片的成品率及可靠性。而集成电路中的基准电压源可以在温度和电压不断变化的环境中保持相对稳定的参考电压,基准电压源的性能直接影响到整个系统的精度和性能。因此,低压基准电压源版图设计具有非常有意义。 本文基于Cadence软件版图设计平台,采用的是XiYue 3um 40V Bipolar Design Rule。设计的版图元件包括NPN、PNP、二极管、电阻、电容。本次设计的主要目的是熟练使用cadence版图设计软件,熟悉电路知识和版图设计规则,掌握基本元器件的内部结构及版图画法,学会布局布线及其优化,从而掌握版图设计方法。 本次设计的版图顺利通过DRC和LVS验证,表明本版图设计符合要求。 关键词 cadence软件,版图设计,TL431 Subject: The Layout Design of Low-voltage reference voltage source circui Specialty: Microelectronics Name:Yuan XiaoWei (Signature)____ Instructor:Liu ShuLin (Signature)____ Abstract The IC layout is in the middle of an essential link between the IC system

带隙基准源电路和版图设计

论文题目:带隙基准源电路与版图设计 摘要 基准电压源具有相对较高的精度和稳定度,它的温度稳定性以及抗噪性能影响着整个系统的精度和性能。模拟电路使用基准源,或者是为了得到与电源无关的偏置,或者为了得到与温度无关的偏置,其性能好坏直接影响电路的性能稳定,可见基准源是子电路不可或缺的一部分,因此性能优良的基准源是一切电子系统设计最基本和最关键的要求之一,而集成电路版图是为了实现集成电路设计的输出。本文的主要目的是用BiCMOS工艺设计出基准源电路的版图并对其进行验证。 本文首先介绍了基准电压源的背景发展趋势及研究意义,然后简单介绍了基准电压源电路的结构及工作原理。接着主要介绍了版图的设计,验证工具及对设计的版图进行验证。 本设计采用40V的0.5u BiCMOS工艺库设计并绘制版图。仿真结果表明,设计的基准电压源温度变化为-40℃~~85℃,输出电压为2.5V及1.25V。最后对用Diva 验证工具对版图进行了DRC和LVS验证,并通过验证,表明本次设计的版图符合要求。 关键字:BiCMOS,基准电压源,温度系数,版图 I

Subject: Research and Layout Design Of Bandgap Reference Specialty: Microelectronics Name: Zhong Ting (Signature)____Instructor: Liu Shulin (Signature)____ ABSTRACT The reference voltage source with relatively high precision and stability, temperature stability and noise immunity affect the accuracy and performance of the entire system. Analog circuit using the reference source, or in order to get the bias has nothing to do with power, or in order to be independent of temperature, bias, and its performance directly affects the performance and stability of the circuit shows that the reference source is an integral part of the sub-circuit, excellent reference source is the design of all electronic systems the most basic and critical requirements of one of the IC layout in order to achieve the output of integrated circuit design. The main purpose of this paper is the territory of the reference circuit and BiCMOS process to be verified. This paper first introduces the background of the trends and significance of the reference voltage source, and then briefly introduced the structure and working principle of the voltage reference circuit. Then introduces the layout design and verification tools to verify the design of the territory. This design uses a 40V 0.5u BiCMOS process database design and draw the layout.The simulation results show that the design of voltage reference temperature of -40 ° C ~ ~ 85 ° C, the output voltage of 2.5V and 1.25V. Finally, the Diva verification tool on the territory of the DRC and LVS verification, and validated, show that the territory of the design meet the requirements. Keywords: BiCMOS,band gap , temperature coefficient, layout II

带隙基准学习笔记

带隙基准设计 A.指标设定 该带隙基准将用于给LDO提供基准电压,LDO的电源电压 变化范围为1.4V到3.3V,所以带隙基准的电源电压变化范围与 LDO的相同。LDO的PSR要受到带隙基准PSR的影响,故设计 的带隙基准要有高的PSR。由于LDO是用于给数字电路提供电源,所以对噪声要求不是很高。下表该带隙基准的指标。 电源电压1.4V~3.3V 输出电压0.4V 温度系数35ppm/℃ PSR@DC,@1MHz-80dB,-20dB 积分噪声电压(1Hz~100kHz)<1mV 功耗<25uA 线性调整率<0.01%

B.拓扑结构的选择 上图是传统结构的带隙基准,假设M 1~M尺寸相同,那么输 3 出电压为 R 2 V REF VlnNV BE T3 R 1 V是负温度系数,对温度求导数,得到公式(Razavi, BE Page313): V BE3BE3(4)Tg/ VmVE TT q 其中, 3 m。如果输出电压为零温度系数,那么: 2 V REF V BE 3 TT k q lnN R 2 R 1 得到: kV BE(4m)V T E g/ R 3 2 lnN qRT 1 q 带入: R

2 V REF VlnNV BE T3 R 1 得到:

E g V REF(4m)V T q 在27°温度下,输出电压等于1.185V,小于电源电压1.4V,可这个电路并不能工作在1.4V电源电压下,因为对于带隙基准 里的运放来说,共模输入范围会受到电源电压限制,电源电压的最小值为: VDD min V BE VV 2GS_input_differential_pairover _drive_of_current_source 其中,V是三极管Q2的导通电压,V GS_input_differential_pair是运放差 BE2 分输入管对的栅源电压,V____是运放差分输入管对尾 overdriveofcurrentsource 电流源的过驱动电压。 对于微安级别的电流,可以认为: V GS V TH 这里将差分输入对的体和源级短接以减小失配,同时阈值电 压不会受到体效应的影响。假设差分对尾电流源的过驱动电压为 100mV,那么,电源电压的最小值为: VDD min V BE2V TH_input_differential_pair100mV 下表列出了smic.13工艺P33晶体管阈值电压和三极管的导通电压随Corner角和温度变化的情况: V-40°27°80° TH slow-826mV-755mV-699mV typical-730mV-660mV-604mV fast-637mV-567mV-510mV BJT的V-40°27°80° BE slow830mV720mV630mV typical840mV730mV640mV fast860mV750mV660mV 可以计算出在不同温度的Corner角下电源电压的最小值: VDD-40°27°80° min slow1.756V1.575V1.429V typical1.67V1.49V1.344V fast1.597V1.417V1.27V 可以看出,对于大部分情况,1.4V电源电压无法保证带隙基 准中运放的正常工作,所以必须改进电路结构,使其可以工作在 1.4V电源电压下。

低电压带隙基准电压源设计

低电压带隙基准电压源设计 基准电压是数模混合电路设计中一个不可缺少的参数,而带隙基准电压源又是产生这个电压的最广泛的解决方案。在大量手持设备应用的今天,低功耗的设计已成为现今电路设计的一大趋势。随着CMOS 工艺尺寸的下降,数字电路的功耗和面积会显著下降,但电源电压的下降对模拟电路的设计提出新的挑战。传统的带隙基准电压源结构不再适应电源电压的要求,所以,新的低电压设计方案应运而生。本文采用一种低电压带隙基准结构。在TSMC0.13μmCMOS工艺条件下完成,包括核心电路、运算放大器、偏置及启动电路的设计,并用Cadence Spectre对电路进行了仿真验证。 1 传统带隙基准电压源的工作原理 传统带隙基准电压源的工作原理是利用两个温度系数相抵消来产生一个零温度系数的直流电压。图1所示是传统的带隙基准电压源的核心部分的结构。其中双极型晶体管Q2的面积是Q1的n倍。 假设运算放大器的增益足够高,在忽略电路失调的情况下,其输入端的电平近似相等,则有: VBE1=VBE2+IR1 (1)

其中,VBE具有负温度系数,VT具有正温度系数,这样,通过调节n和R2/R1,就可以使Vref得到一个零温度系数的值。一般在室温下,有: 但在0.13μm的CMOS工艺下,低电压MOS管的供电电压在1.2 V左右,因此,传统的带隙基准电压源结构已不再适用。 2 低电源带隙基准电压源的工作原理 低电源电压下的带隙基准电压源的核心思想与传统结构的带隙基准相同,也是借助工艺参数随温度变化的特性来产生正负两种温度系数的电压,从而达到零温度系数的目的。图2所示是低电压下带隙基准电压源的核心部分电路,包括基准电压产生部分和启动电路部分。

带隙基准设计实例

带隙基准设计实例-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

带隙基准电路的设计 基准电压源是集成电路中一个重要的单元模块。目前,基准电压源被广泛应用在高精度比较器、A/ D 和D/ A 转换器、动态随机存取存储器等集成电路中。它产生的基准电压精度、温度稳定性和抗噪声干扰能力直接影响到芯片,甚至整个控制系统的性能。因此,设计一个高性能的基准电压源具有十分重要的意义。自1971 年Robert Widla 提出带隙基准电压源技术以后,由于带隙基准电压源电路具有相对其他类型基准电压源的低温度系数、低电源电压,以及可以与标准CMOS 工艺兼容的特点,所以在模拟集成电路中很快得到广泛研究和应用。 带隙基准是一种几乎不依赖于温度和电源的基准技术,本设计主要在传统电路的基础上设计一种零温度系数基准电路。 一 设计指标: 1、 温度系数:ref F V TC V T ?=? 2、 电压系数:ref F dd V VC V V ?=? 二 带隙基准电路结构:

三 性能指标分析 如果将两个具有相反温度系数(TCs )的量以适合的权重相加,那么结果就会显示出零温度系数。在零温度系数下,会产生一个对温度变化保持恒定的量V REF 。 V REF = a 1V BE + a 2V T ㏑(n) 其中, V REF 为基准电压, V BE 为双极型三极管的基极-发射极正偏电压, V T 为热电压。对于a 1和a 2的选择,因为室温下/ 1.5m /BE T V V K ??≈-,然而/0.087m /T V T V K ??≈+,所以我们可以选择令a 1=1,选择a 2lnn 使得2(ln )(0.087/) 1.5/n mV K mV K α=,也就是2ln 17.2n α≈,表明零温度系数的基准为: 17.2 1.25REF BE T V V V V ≈+≈ 对于带隙基准电路的分析,主要是在Cadence 环境下进行瞬态分析、dc 扫描分析。 1、瞬态分析 电源电压Vdd=5v 时,Vref ≈,下图为瞬态分析图。 2.电压系数的计算: 下图为基准电压Vref 随电源电压Vdd 变化dc 分析扫描。 扫描电压范围为:3到6v ,基准电压Vref 为,保持基本不变。

带隙基准实验报告

基本带隙基准电压源设计 一、实验要求 1、设计出基本的带隙基准 2、设计出低压带隙基准 二、实验目的 1、掌握PSPICE的仿真 2、熟悉带隙基准电压设计的原理 三、实验原理 模拟电路广泛的包含电压基准和电流基准。这种基准是直流量,它与电源和工艺参数的关系很小,但与温度的关系是确定的。产生基准的目的是建立一个与电源和工艺无关,具有确定温度特性的直流电压或电流。要实现基准电压源所需解决的主要问题是如何提高其温度抑制与电源抑制,即如何实现与温度有确定关系且与电源基本无关的结构。由于在现实中半导体几乎没有与温度无关的参数,因此只有找到一些具有正温度系数和负温度系数的参数,通过合适的组合,可以得到与温度无关的量,且这些参数与电源无关。 负温度系数电压:双极性晶体管的基极-发射极电压,或者更一般的说,p-n 结二极管的正向电压,具有负的温度系数。 正温度系数电压:如果两个双极晶体管工作在不相等的电流密度下,那么它们的基极-发射极电压的差值与绝对温度成正比,且正温度系数与温度或集电极电流的特性无关。 利用上面得到的正、负温度系数的电压,通过合适的组合,我们就可以设计出一个零温度系数的基准。由于这个基准电压与硅的带隙电压差不多,因而称为带隙基准。 1、基本带隙基准 1.1基本的原理图如图1所示:

图1 基本带隙基准原理图 其中,MOS 管M1-M3的宽长比相同,Q1由n 个与Q2相同的晶体管并联而成。运放起嵌位作用,使得X 点和Y 点稳定在近似相等的电压。 1.2带隙电压公式推导: 对于一个双极性晶体管,我们可以写出其集电极电流公式为:BE T V V C S I I e =,其中 T kT V q = ,S I 为饱和电流,则可以推导出: ln C EB T S I V V I =。 假设运算放大器的增益足够高,在忽略电路失调的情况下有: 21 122 EB EB R R V V I I R -== 2 ln ln C C T T S S I I V V I nI R -= 2 ln T V n R = 则带隙基准电压为: (1) (2)

电压基准源的选择

电压基准源的选择 在DAC和DAC里面都有电压基准源,它可以是芯片内部提供的基准也可以是外接的电压基准芯片。 基准源的类型 两种常见的基准源是齐纳和带隙基准源。齐纳基准源通常采用两端并联拓扑;带隙基准源通常采用三端串连拓扑。选择依据如下表: 并联结构的齐纳基准与串联结构的带隙基准的对照表。 表1.电压基准对照表 齐纳二极管缺点: 1)精确度达不到高精度应用的要求,而且,很难胜任低功耗应用的要求。例如: BZX84C2V7LT1,它的击穿电压,即标称基准电压是2.5V,在2.3V至2.7V 之间变化,即精确度为±8%,这只适合低精度应用。 2)齐纳基准源的另一个问题是它的输出阻抗。上例中器件的内部阻抗为5mA 时100Ω和1mA时600Ω。非零阻抗将导致基准电压随负载电流的变化而发生变化。选择低输出阻抗的齐纳基准源将减小这一效应。 所以在高精度应用的场合通常用带隙基准源。如14bit,210MSPS(刷新速率 UpDate Rate)的DAC9744内部就带一个2.1V的带隙基准源。

AD9744内部基准源配置 AD9744外部基准源配置 AD9744基准源配置管脚 (这个是AD9742的基准源配置管脚,AD9744的我怀疑错了,AD9742是与AD9744同系列的,一样管脚,只是AD9742是12bit,AD9744 16bit) REFLO——内部参考基准源地端。当使用内部1.2V参考基准源时,接AGND。当使用外部参考源时,接AVDD REFIO——参考基准源输入输出/输入端。 REFLO=AVDD,内部参考基准源无效,REFIO用作外部参考基准源输入。 REFLO=AGND=ACOM,REFIO用作内部基准源1.2V输出(100nA),REFIO 接0.1μF接ACOM(AGND)。

带隙电压基准源的设计与分析

带隙电压基准源的设计与分析 摘要介绍了基准源的发展和基本工作原理以及目前较常用的带隙基准源电路结构。设计了一种基于Banba结构的基准源电路,重点对自启动电路及放大电路部分进行了分析,得到并分析了输出电压与温度的关系。文中对带隙电压基准源的设计与分析,可以为电压基准源相关的设计人员提供参考。可以为串联型稳压电路、A/D和D/A转化器提供基准电压,也是大多数传感器的稳压供电电源或激励源。 基准源广泛应用于各种模拟集成电路、数模混合信号集成电路和系统集成芯片中,其精度和稳定性直接决定整个系统的精度。在模/数转换器(ADC)、数/模转换器(DAC)、动态存储器(DRAM)等集成电路设计中,低温度系数、高电源抑制比(PSRR)的基准源设计十分关键。 在集成电路工艺发展早期,基准源主要采用齐纳基准源实现,如图1(a)所示。它利用了齐纳二极管被反向击穿时两端的电压。由于半导体表面的沾污等封装原因,齐纳二极管噪声严重且不稳定。之后人们把齐纳结移动到表面以下,支撑掩埋型齐纳基准源,噪声和稳定性有较大改观,如图1(b)所示。其缺点:首先齐纳二极管正常工作电压在6~8 V,不能应用于低电压电路;并且高精度的齐纳二极管对工艺要求严格、造价相对较高。 1971年,Widlar首次提出带隙基准结构。它利用VBE的正温度系数和△VBE的负温度系数特性,两者相加可得零温度系数。相比齐纳基准源,Widlar型带隙基准源具有更低的输出电压,更小的噪声,更好的稳定性。接下来的1973年和1974年,Kujik和Brokaw分别提出了改进带隙基准结构。新的结构中将运算放大器用于电压钳位,提高了基准输出电压的精度。 以上经典结构奠定了带隙基准理论的基础。文中介绍带隙基准源的基本原理及其基本结构,设计了一种基于Banba结构的带隙基准源,相对于Banba结构,增加了自启动电路模块及放大电路模块,使其可以自动进入正常工作状态并增加其稳定性。 1 带隙基准源工作原理 由于带隙电压基准源能够实现高电源抑制比和低温度系数,是目前各种基准电压源电路中性能最佳的基准源电路。 为得到与温度无关的电压源,其基本思路是将具有负温度系数的双极晶体管的基极-发射极电压VBE与具有正温度系数的双极晶体管VBE的差值△VBE以不同权重相加,使△VBE 的温度系数刚好抵消VBE的温度系数,得到一个与温度无关的基准电压。图2为一个基本的CMOS带隙基准源结构电路。

带隙基准

带隙基准电压源实验报告 一、实验名称:带隙基准电压源 二、实验目的: 1.熟悉掌握Orcad captureCIS的使用方法以及常见的仿真方法和参数设置。 2.利用Orcad captureCIS设计带隙基准电压源,并完成要求功能。 3.掌握带隙基准电压源的设计原理及计算方法。 三、实验步骤: (一)参数设置: 1.电源电压VCC= 2.7V,室温下(T=300K)时,IEQ=10uA。 2.确定电路结构后,预选两三极管的发射结面积之比为8,则有公式IEQ=VT*ln(8)/R1,计算可得R1=5.4K。 3.且由Vref=Vbe+αVT,当α=17.2时,使得Vref对温度T的偏导数为0,构成一个带隙基准电压源。而α=(1+R2/R1)ln(8),由R1=5.4K计算得R2=39.3K。 5.再由各级电流确定各放大MOS管以及启动电路MOS管的宽长比。 6.进行仿真验证。 (二)步骤及结果: 1、画出电路结构,按照以上计算的参数设置,电路如图所示: 如上图所示,R1取值为5.4K时,进行温度扫描,所得结果,如下图所示:

由图形曲线可以看出,温度偏移了我预想设置的温度,说明计算存在偏差,我通过改变R1的值来调节,使Vref在室温下是一个定值,且达到最大。如下为参数扫描的曲线,确定R1: 由图形可以看出,在不同的温度下,Vref的变化,以及其随R1的变化。当R1=5.6K时,所有曲线相交于一点,说明当R1=5.6K时,Vref在室温时能达到最大值,更改R1的值后,所得扫描曲线Vref 随温度的变化为: 由图所示,当温度在22~35度之间,Vref为一定值,所得基准电压比较稳定,结果比较满意。 2、仿真验证正温度系数电压,结果如图所示:

基准电压源设计及选用介绍

基准电压源设计及选用介绍 通常我们选用稳压二极管作为基准电压源,这是最简单、也是最传统的方法,按照所需电压值选一个对应型号的稳压管当然可以,但选得是否合适、是否最佳,却大有讲究。 最基本的电压基准源电路如图1(a)、稳压管的击穿特性如图1(b)所示。由 图1(b)可见,不同稳压值的击穿特性并不相同,4V以下稳压管的击穿特性非常“软”(动态电阻可高达100Ω以上),其端电压随通过电流的不同、变化很大; 而6V以上的特性就非常“硬”、尤以8V左右的特性最硬(动态电阻约4~15Ω),击穿电压越高动态电阻也越大,例如30V稳压管的动态电阻约为50~100Ω。 环境温度变化时稳压管的击穿特性还会产生漂移。6V以下的稳压管具有负 温度系数、温度升高时稳压值减小。击穿电压越低则负温度系数越大,例如3V 稳压管的温度系数约为-1.5mV/℃;6V以上为正温度系数、温度升高时稳压值增大,击穿电压越高的温度系数越大,例如30V稳压管的温度系数约为33mV/℃; 而6V左右稳压管的温度系数最小、且在正负之间变化。因而在允许情况下应尽可能选用击穿特性较硬、温度系数最小的6V稳压管。这类稳压管的另一个缺点是同一型号管子其击穿电压的离散性很大,例如2CW1为7~8.5V、2CW5 为11.5~14V,要想挑出合适电压值的管子是非常困难的。但如果对稳压值要求不高、电路又比较简单的场合,选用普通稳压管还是合适的。 如需要很低的基准电压,要求不高、而又不希望增加成本时,也可利用二极管的正向特性做为约0.7V的稳压管使用。笔者曾用图示仪对大量二极管的正向特性做过观察,发现稳压管的正向特性相对其它二极管而言最硬,整流管次之、开关管最差,因此可用稳压管正向串联的办法组成0.7V、1.4V、2.1V等的低压 基准源,还可以通过改变通过电流的办法微调其端电压值。其温度系数约为-2mV/℃左右。 另一类常用的电压基准是采用半导体集成工艺生产的“基准二极管”和“精密电压基准”。“基准二极管”是一个双端单片式器件,其电特性和使用方法等同于稳压二极管,由于设计时已经考虑了动态电阻和温度系数问题,因而其性能(尤其是低电压器件)要比普通稳压管优越得多。例如LM103基准二极管,击穿电

带隙基准源电路与版图设计

带隙基准源电路与版图设计

论文题目:带隙基准源电路与版图设计 摘要 基准电压源具有相对较高的精度和稳定度,它的温度稳定性以及抗噪性能影响着整个系统的精度和性能。模拟电路使用基准源,或者是为了得到与电源无关的偏置,或者为了得到与温度无关的偏置,其性能好坏直接影响电路的性能稳定,可见基准源是子电路不可或缺的一部分,因此性能优良的基准源是一切电子系统设计最基本和最关键的要求之一,而集成电路版图是为了实现集成电路设计的输出。本文的主要目的是用BiCMOS工艺设计出基准源电路的版图并对其进行验证。 本文首先介绍了基准电压源的背景发展趋势及研究意义,然后简单介绍了基准电压源电路的结构及工作原理。接着主要介绍了版图的设计,验证工具及对设计的版图进行验证。 本设计采用40V的0.5u BiCMOS工艺库设计并绘制版图。仿真结果表明,设计的基准电压源温度变化为-40℃~~85℃,输出电压为2.5V及1.25V。最后对用Diva 验证工具对版图进行了DRC和LVS验证,并通过验证,表明本次设计的版图符合要求。 关键字:BiCMOS,基准电压源,温度系数,版图

Subject: Research and Layout Design Of Bandgap Reference Specialty: Microelectronics Name: Zhong Ting (Signature)____Instructor: Liu Shulin (Signature)____ ABSTRACT The reference voltage source with relatively high precision and stability, temperature stability and noise immunity affect the accuracy and performance of the entire system. Analog circuit using the reference source, or in order to get the bias has nothing to do with power, or in order to be independent of temperature, bias, and its performance directly affects the performance and stability of the circuit shows that the reference source is an integral part of the sub-circuit, excellent reference source is the design of all electronic systems the most basic and critical requirements of one of the IC layout in order to achieve the output of integrated circuit design. The main purpose of this paper is the territory of the reference circuit and BiCMOS process to be verified. This paper first introduces the background of the trends and significance of the reference voltage source, and then briefly introduced the structure and working principle of the voltage reference circuit. Then introduces the layout design and verification tools to verify the design of the territory. This design uses a 40V 0.5u BiCMOS process database design and draw the layout.The simulation results show that the design of voltage reference temperature of -40 °C ~ ~ 85 °C, the output voltage of 2.5V and 1.25V. Finally, the Diva verification tool on the territory of the DRC and LVS verification, and validated, show that the territory of the design meet the requirements. I

基准电压源的设计与选用

基准电压源的设计与选用 【来源:PCB信息网】【编辑:admin】【时间: 2009-5-31 9:25:55】【点击: 88】 基准电压是许多控制或应用电路所必需的,而且电路的控制精度或性能指标在很大程度上取决于基准电压的好坏。对基准电压的基本要求是:在电源电压和环境温 度变化时其电压值应保持恒定不变。 通常我们选用稳压二极管作为基准电压源,这是最简单、也是最传统的方法,按照所需电压值选一个对应型号的稳压管当然可以,但选得是否合适、是否最佳, 却大有讲究。 最基本的电压基准源电路如图1(a)、稳压管的击穿特性如图1(b)所示。由图1(b)可见,不同稳压值的击穿特性并不相同,4V以下稳压管的击穿特性非常“软”(动态电阻可高达100Ω以上),其端电压随通过电流的不同、变化很大;而6V以上的特性就非常“硬”、尤以8V左右的特性最硬(动态电阻约4~15Ω),击穿电压越高动态电阻也越大,例如30V稳压管的动态电阻约为50~100Ω。 环境温度变化时稳压管的击穿特性还会产生漂移。6V以下的稳压管具有负温度系数、温度升高时稳压值减小。击穿电压越低则负温度系数越大,例如3V稳压管的温度系数约为-1.5mV/℃;6V以上为正温度系数、温度升高时稳压值增大,击穿电压越高的温度系数越大,例如30V稳压管的温度系数约为33mV/℃;而6V左右稳压管的温度系数最小、且在正负之间变化。因而在允许情况下应尽可能选用击穿特性较硬、温度系数最小的6V稳压管。这类稳压管的另一个缺点是同一型号管子其击穿电压的离散性很大,例如2CW1为7~8.5V、2CW5 为11.5~14V,要想挑出合适电压值的管子是非常困难的。但如果对稳压值要求不高、电路又比较简单的场合,选 用普通稳压管还是合适的。 如需要很低的基准电压,要求不高、而又不希望增加成本时,也可利用二极管的正向特性做为约0.7V的稳压管使用。笔者曾用图示仪对大量二极管的正向特性做过观察,发现稳压管的正向特性相对其它二极管而言最硬,整流管次之、开关管最差,因此可用稳压管正向串联的办法组成0.7V、1.4V、2.1V等的低压基准源,还可以通过改变通过电流的办法微调其端电压值。其温度系数约为-2mV/℃左右。 另一类常用的电压基准是采用半导体集成工艺生产的“基准二极管”和“精密电压基准”。“基准二极管”是一个双端单片式器件,其电特性和使用方法等同于稳压二极管,由于设计时已经考虑了动态电阻和温度系数问题,因而其性能(尤其是低电压器件)要比普通稳压管优越得多。例如LM103基准二极管,击穿电压分档:1.8、2.0、2.2、2.4、2.7、3.0、3.3、3.6、3.9、4.3、4.7、5.1、5.6V;动态电阻典型值:15Ω/0.13mA、5Ω/3mA、比稳压二极管低约10倍,因而可在比较小的电流(100 uA-1mA)下得到较

相关文档
最新文档