常用地震解释数据格式简介

常用地震解释数据格式简介
常用地震解释数据格式简介

主题:常用地震解释数据格式简介

问题的提出:目前,地震解释方面有多种软件产品,其地震解释数据的记录格式有所不同。因此,在数据交换方面,往往会给用户带来诸多不便。本

文简要介绍市场主导的Landmark和Geoframe系统的地震解释数据

记录格式。

解答:

https://www.360docs.net/doc/e78774142.html,ndmark系统地震解释数据记录格式

?层位格式文件:<地震项目>目录下的*.fmt文件,如hz3dtr.fmt*(三维层位解释数据格式文件)。

?层位解释数据文件(DEMO数据未按格式文件域排列):

seismic horizon data model for landmark:

LINE TRACE Z1 FLTFLG

160. 533. 3376.

160. 541. 3380.

160. 544. 3388.

160. 545. 3388.

160. 546. 3388.

160. 547. 3392.

160. 548. 3392.

160. 549. 3396.

………………

hz3dtr.fmt*

LINE 1 20

TRACE 22 30

Z1 35 50

FLTFLG 80 80

?断层格式文件:<地震项目>目录下的*.fault_fmt*文件,trsp. fault_fmt*为缺省的断层解释格式文件。

?断层解释数据文件(DEMO数据未按格式文件域排列):

seismic fault data model for landmark(pay attention to ptype):

FAULT_NAME FAULT_LINEID FAULT_TRACE FAULT_Z FAULT_PTYPE FAULT_COLOR FAULT_TYPE

f-2_new 166.000 390.000 2850.000 2 6 1

f-2_new 173.000 390.000 2912.000 2 6 1 …… …… …… …… …… …… …… geoframe.fault_fmt (Geoframe 断层文件输入到Landmark 的自定义格式文件): FAULT_NAME 1 52

FAULT_PTYPE 93 94

FAULT_LINEID 53 62

FAULT_TRACE 73 82

FAULT_Z 83 92

FAULT_COLOR 103 105

FAULT_TYPE 112 114

2.Geoframe 系统地震解释数据记录格式

Geoframe 系统可通过列表方式定义地震解释数据(层位、断层)输出格式,进行数据输出。

层位解释数据文件(DEMO 数据未按格式文件域排列):

seismic horizon data model for geoframe:

PROFILE T0_new TYPE 1 5 landmark_horizon ft ms

SNAPPING PARAMETERS 1 30 1

line trace z

121 400.00 3116.00

121 420.00 3137.32

121 431.00 3069.07

121 438.00 3098.00

121 440.00 3100.46

121 443.00 3110.69

121 445.00 3116.00

121 465.00 3189.83

121 466.00 3191.98

121 470.00 3190.77

………………

断层解释数据文件(DEMO数据未按格式文件域排列):

seismic fault data model for geoframe:

fault_name segment_id cdp line trace z

f-0_new 43 459 211 410 3780.00

f-0_new 43 438 211 410 3602.00

f-0_new 43 433 211 410 3534.00

f-0_new 43 425 211 410 3398.00

f-0_new 43 414 211 410 3238.00

f-0_new 44 250 384 583 2722.00

f-0_new 44 250 378 577 2826.00

f-0_new 44 250 370 569 2948.00

f-0_new 44 250 358 557 3057.00

f-0_new 45 230 371 570 2609.00

f-0_new 45 241 371 570 2797.00 ………………………………

EOD

PROFILE f-1_new TYPE2 4 landmark_fault.i ft ms f-1_new 48 157 175 374 3128.00

f-1_new 48 157 180 379 3163.00

f-1_new 48 157 187 386 3218.00

f-1_new 48 157 194 393 3258.00

f-1_new 48 157 202 401 3297.00

地震资料解释

地震资料解释期末复习(王松版) 1地震资料解释——以地质理论和规律为指导,运用地震波传播理论和地震勘探方法原理,综合地质、测井、钻井和其它物探资料,对地震数据进行深入研究、综合分析的过程。 2地震子波(wavelet):地震勘探过程中,爆炸产生的尖脉冲传播到一定距离时波形逐渐稳定。 3褶积模型的应用: 已知r(t)和w(t),求s(t):正演问题 已知w(t) 和s(t) ,求r(t) :反演问题 已知s(t) 和r(t),求w(t):子波处理 4同相轴:指地震时间剖面上相同相位的连接线 5极性判断 6有效波的识别标志 1)强振幅: 叠后资料往往经提高信噪处理,反射波能量大于干扰波能量 2)波形相似性: 子波相同、同一界面反射波传播路径相近,传播过程影响因素相近,相邻地震道上的波形特征(主周期、相位数、振幅包络形状等)是相似的。 3)同相性: 同一个反射波的相同相位,在相邻地震道上的到达时间也是相近的,每道记录下来的振动图是相似的,形成一条平滑的、有一定长度的同相轴,也称相干性。 4)时差变化规律: 在共炮点道集上,直达波、折射波是直线,反射波、绕射波、多次波等为曲线。在动校正后的剖面上,原来直线的同相轴被校正成曲线,一次反射波成为直线,多次波、绕射波为曲线。 1、2用于识别波的出现; 3、4用于识别波的类型、特征及地层界面特征的判断。 7水平叠加剖面的特点 (1)在测线上同一点,根据钻井资料得到的地质剖面上的地层分界面,与时间剖面上的反射波同相轴在数量上、出现位置上,常常不是一一对应的。 (2)时间剖面的纵坐标是双程旅行时t0 ,而地质剖面或测井资料是以铅垂深度表示的,两者需经时深转换,其媒介就是地震波的传播速度,它通常随深度或空间而变化。 (3)反射波振幅、同相轴及波形本身包含了地下地层的构造和岩性信息,如振幅的强弱与地层结构、介质参数密切相关。但是反射波同相轴是与地下的分界面相对应,同相轴与界面两侧的地层、岩性有关。必须经过一些特殊处理(如声阻抗反演技术等)才能把反射波所包含的“界面”的信息转换成为与“层”有关的信息后,才能与地质和钻井资料进行直接地对比。 (4)地震剖面上的反射波是由多个地层分界面上振幅有大有小、极性有正有负、

地震segy格式介绍

地震segy格式介绍 地震SEG-Y格式 SEGY格式是地震勘探中最常用的数据格式,所以了解SEGY格式、学会读取SEGY格式数据是非常必要的。现将SEGY格式说明如下。 1、 SEGY格式的一般情况 每个数据占4个字节(既每个数据由32位2进制数字组成); 每个数据的4个字节的摆放顺序是:低位在前,高位在后。 如有一个十进制数据一千五百二十一,在SEGY格式中表示为:1251。当然,SEGY格式是二进制的,这里用十进制为例,仅仅为了说明而已。所以在读取SEGY格式的步骤有两个,Step1:读取一个32位的数据;Step2:互换该数据的第一个字节和第四个字节,互换该数据的第二个字节和第三个字节。这时得到的数据才是确切的数据。 2、 SEG-Y 格式道头说明 字(32位) 字节号说明 1 1-4* 一条测线中的道顺序号。如果一条测线有若干卷带,顺序号连续递增。 2 5-8 在本卷磁带中的道顺序号。每卷带的道顺序号从1开始。 3 9-12* 原始的野外记录号。 4 13-16* 在原始野外记录中的道号。 5 17-20 震源点号(在同一个地面点有多于一个记录时使用)。 6 21-24 CMP号。 7 25-28 在CMP道集中的道号(在每个CMP道集中道号从1开始)。 8-1 29-30* 道识别码: 1=地震数据;4=时断;7=记时; 2=死道;5=井口时间;8=水断; 3=DUMMY;6=扫描道;9…N=选择使用(N=32767) 8-2 31-32 产生这一道的垂直叠加道数(1是一道;2是两道相加;…)。 9-1 33-34 产生这一道的水平叠加道数(1是一道;2是两道叠加;…)。 9-2 35-36 数据类型:1=生产;2=试验。 10 37-40 炮检距(如果是相反向激发为负值)。 11 41-44 接收点高程。高于海平而的高程为正,低于海平面为负。 12 45-48 炮点的地面高程。 13 49-52 炮点低于地面的深度(正数)(井深)。 14 53-56 接收点的基准面高程。 15 57-60 炮点的基准面高程。 16 61-64 炮点的水深。 17 65-68 接收点的水深。 18-1 69-70 对41-68字节中的所有高程和深度应用了此因子给出真值。

地震解释技术

随着锦州油田油气勘探开发的不断深入,先进的三维地震解释技术及相关的属性分析技术的使用凸显重要。利用最新采集处理的三维地震资料,采油厂加大了相关地震配套软件的使用,2011年锦州采油厂计划引进SeisWare地震解释系统及landmark地震解释工作站,使得利用各种地震属性研究储层的技术得到了加强。利用高精度三维地震叠前时间偏移数据体,可以在精细地层小层对比、整体解剖精细评价的基础上针对目标层段内的砂泥岩薄互层砂组进行多种地震属性的处理,引进landmark解释工作站的多体多属性地层追踪及快速高效的储层描述方法,能从整体上描述储层的空间展布及小断块内储层的分布特征, 计算机技术的飞速发展及相应的层位自动追踪技术、三维可视化技术等解释手段的发展极大地提高了解释工作的效率及准确度,同时最大限度地发挥了三维数据体的优势。利用最新采集处理的三维地震资料,经过地震资料品质分析后,优选具有较高的信噪比,偏移归位合理,目的层波组特征明显的资料,在合成记录标定的基础上,搭建格架剖面并进行人工解释,然后采用人机联合波形对比层位自动追踪技术进行全区层位解释,采用相干、倾角扫描以及层面光滑度分析技术进行断层平面组合分析,能精细落实研究区的构造特征和断层展布特征。

LandMark 一体化系统通过强有力的可视化技术提供给用户一个真三维的解释平台,可对海量的三维地震数据进行快速准确地构造解释,能快速搜索地质目标,精确雕刻;并提供了一个多学科协同和决策环境,可以实现构造解释、储层预测、叠前AVO分析、可视化处理以及井轨迹设计和钻井实时监控。其三维可视化手段可应用于地震资料处理、构造解释、全区目标搜索、精细目标解释、储层预测等三维连片解释的所有阶段。 LandMark 一体化系统特点: 储层自动追踪ezTracker 基于波形的层位自动追踪,可同时拾取多个种子点,可以保存种子点信息,灵活定义追踪的波形时窗,对追踪结果可进行多种灵活编辑,如遗传删除、门槛值调整和多边形删除 点集自动追踪Autopick 可根据种子点值的大小,或人工定义数据体值的范围,快速追踪地质体。也可利用多种属性(如在波阻抗体和相位体上)共同约束追踪地质体三维形态,如河道、扇体等,直接形成地质体顶底t0面。点集可自由转换为层位。 三维体雕刻Geobody 可用三维体追踪点集,层位,断面作为约束条件雕刻三维地质体,利用透明度和颜色来彰显地质异常体,突出空间展布。 异常体快速搜索GeoAnomaly 依据多数据体振幅值和数据连通性,快速搜索满足定义条件的异常体。 SeisWare软件的地震地质解释功能灵活方便,适于在勘探/开发阶段进行综合地震解释、随钻跟踪分析、油气层识别、储量计算以及新区预探、老区扩边、部署调整等研究工作。 其特点包括: 多工区,不同类型地震资料的连片解释; 断层追踪识别功能 可以直观方便的显示地震剖面上断层的平面要素,实时地观察断层面的空间走向及展布趋势。 欢西油田是一个地质条件和油藏来信十分复杂的断块油田,断距从十几米至几百米不等的不同级次断层纵横交错,断块分隔凌乱,油层埋藏差异大,储层沉积特征不一,发育不稳定,诸多因素都给地质研究带来困难。 面对复杂断块,Seisware地震解释系统的技术优势是,可以直观方便地显示地震剖面上断层的平面要素,实时地观察断层面空间走向及展布趋势,并使三维数据断层解释过程自动化。地震解释人员可以能够在较短时间内进行高精度的断层解释,即使在构造情况复杂地区或资料品质较差地区也能实现,其直观的编辑功

地震勘探在海洋石油勘探中的基本原理

地震勘探在海洋石油勘探中的基本原理

————————————————————————————————作者: ————————————————————————————————日期:

本科生课外研学任务书及成绩评定表 题目__地震勘探在海洋石油勘探中的基本原理学生姓名____ 黄邦毅________________ 指导教师____ 严家斌____________ 学院____ 地信院________________ 专业班级___地科0901_______________

地震勘探在海洋石油勘探中的基本原理 一、引言 国内外的勘探实践表明,没有物探技术的进步,就没有更多圈闭的发现,就没有钻探成功率的提高,也就更不会有油田和储产量的快速增长。宏观看,物探的作用在勘探阶段是客观的目标评价,在开发阶段是精细的油藏描述。因此,油气勘探开发离不开地震技术和地震技术的进步与发展。如果说勘探技术是石油工业的第一生产力,那么物探技术就是获得油气储量的第一直接生产力。 纵观近些年的勘探技术的具体运用,最常见的莫过于地震勘探,所谓地震勘探就是通过人工方法激发地震波,研究地震波在地层中传播的情形,以查明地下的地质构造,为寻找油气田或其它勘探目的服务的一种物探方法! 21世纪是海洋的世纪,海洋蕴藏着很多宝贵的资源,随着生产技术的日趋进步,世界各国(包括中国在内)目前都在积极寻求开发海洋资源,在海洋的勘探开发中离不开物探,而且运用最广泛也最有效的是地震勘探。 二、海洋地震勘探 在茫茫大海里寻找石油最有效的技术方法是地球物理方法,其中主要是地震勘探方法。近几十年来,随着电子计算机的广泛应用,海洋地震勘探的数据采集和装备得到了极大的改进,数据处理技术和解释方法也得到迅速的发展。在油气勘探中,利用地震资料不仅能确定地下的构造形态、断裂分布,而且能了解地层岩性、储层厚度、储层参数甚至能直接指示地下油气的存在。在油气开发中,地震资料同测井、岩芯资料以及其它地下地质资料相结合能对油藏进行描述和监测。地震技术远远超出了石油勘探领域,已向石油开发和生产领域渗透。 用于寻找海上石油的地震反射法,和陆地的地震反射法相比,在方法基本原理、资料处理和解释方法等方面基本上是一样的。其中, 测量原理 在这类方法中,地震波在介质中传播的物理模型如图1所示。从震源O激发出的弹性波投射到反射界面上产生反射波,其条件是:入射角α等于反射角β。能

地震资料解释课程教学大纲

地震资料解释课程教学大纲 课程代码:74190110 课程中文名称:地震资料解释 课程英文名称:Seismic Interpretation 学分:2.0 周学时:1.5-1.0 面向对象: 预修要求:地层学、构造地质学、海洋沉积学、地球海洋物理学 一、课程介绍 (一)中文简介 《地震资料解释》是海洋科学专业的一门专业必修课,其总目标是结合地震资料解释实习课,使学生能够理解地震资料解释的基本原理和概念、掌握复杂地质条件下的层序地层、构造和地震相分析等地震资料解释的基本方法。 (二)英文简介 “Seismic Interpretation” is a compulsory course for the students majored in Marine Science. In combination with associated practice course, the students who attend this course would: (1) understand the fundamentals and basic concepts in interpreting the seismic data; (2) master basic skills and methodology to analyze the sequence stratigraphy, structure and seismic facies in the subsurface with complex geological conditions. 二、教学目标 (一)学习目标 通过本课程系统学习,要求学生全面掌握地震地质解释的地球物理基础和地震地质解释方法;学会应用地震资料进行地质解释的技能;了解地震资料地质解释的现状及发展方向。 (二)可测量结果 (1)掌握沉积层序的概念、沉积层序的边界类型、层序划分的原则和方法,能在地震剖面

地震处理数据文件格式

地震处理数据文件格式 1. SEG-Y 格式(标准) (1)卷头: 3600字节 (a)(a) ASCII 区域: 3200字节(40条记录x 80 字节/每条记录)。 (b)(b) 二进制数区域: 400字节(3201~3600)。 3213~3214 字节—每个记录的数据道数(每炮道数或总道数)。 3217~3218 字节—采样间隔(μs)。 3221~3222 字节—样点数/每道(道长)。 3225~3226 字节—数据样值格式码1-浮点; 3255~3256 字节—计量系统:1-米,2-英尺。 3261~3262*字节—文件中的道数(总道数)。 3269~3270*字节—数据域(性质):0-时域,1-振幅,2-相位谱 “ * “ 号字为非标准定义。 (2)道记录块: (a)(a) 道头字区: 含: 60个字/4字节整或120个字/2字节整,共240个字节,按二进制格式存放。·SEG—Y格式道头说明: 字号(4字节) 字号(2字节) 字节号内容说明 1 1— 2 1—4 一条测线中的道顺序号,如果一条测线有若干卷磁带,顺序号连续递增。 2 3—4 5—8 在本卷磁带中的道顺序号。每卷磁带的道顺序号从l开始。 3 5—6 9—12 * 原始的野外记录号(炮号)。 4 7—8 13—16 在原始野外记录中的道号。 5 9—10 17—20 测线内炮点桩号(在同一个地面点有多于一个记录时使用)。 6 11—12 21—24 CMP号(或CDP号)。(弯线=共反射面元号) 7 13—14 25—28 在CMP道集中的道号(在每个CMP道集中道号从1开始)。 8—1 15 29—30* 道识别码: l=地震数据;4=爆炸信号;7=计时信号; 2=死道;5=井口道;8=水断信号; 3=无效道(空道);6=扫描道;9…N=选择使用(N=32767) 8—2 16 31—32 构成该道的垂直叠加道数(1是一道;2是两道相加;…) 9—l 17 33—34 构成该道的水平叠加道数(1是一道; 2是两道叠加;…) 9—2 18 35—36 数据类型:1=生产;2=试验 10 19—20 37—40 从炮点到接收点的距离(如果排列与激发前进方向相反取负值) (分米)。 11 21—22 41—44 接收点的地面高程。高于海平面的高程为正,低于海平面为负(cm)。 12 23—24 45—48 炮点的地面高程(cm)。 13 25—26 49—52 炮井深度(正数,cm)。 14 27—28 53—56 接收点基准面高程(cm)。 15 29—30 57—60 炮点基准面高程(cm)。 16 31—32 61—64 炮点的水深(cm)。 17 33—34 65—68 接收点的水深(cm)。 l8—l 35 69—70 对41一68字节中的所有高程和深度应用此因子给出真值。比例因子=l, 土10,土100,土1000或者土10000。如果为正,乘以因子;如果为负, 则除以因子。(此约定中= -100) 18—2 36 71—72 对73—88字节中的所有坐标应用此因子给出真值。比例因子=1,土10, 土[00,土1000或者土10000。如果为正,乘以因子;如果为负,则除

三维地震勘探技术

三维地震勘探技术及其应用 [摘要] 本文应用三维地震勘探技术对某矿南三采区进行探测,探测区内解释断层71条,其中可靠断层61条,较可靠断层10条,31个无煤带。为煤矿安全生产提供了科学依据,节约了生产成本的投入。 [关键词] 三维地震采区 [abstract] this paper introduces the application of three dimensional seismic exploration method on the south third mining area of a certain coal mine. 71 faults were showed in this exploration area, in which there are 61 reliable faults, 10 relatively reliable faults and 31 areas without any coal. those information provides scientific foundation for the production safty of the coal mine and saves the cost. [key words] three dimensional seismic mining area 0.引言 随着煤炭地震勘探技术的提高,尤其是九十年代以来三维地震勘探在煤炭系统的应用与推广,三维地震勘探技术在煤矿采区进行小构造勘探成为现实,给煤矿建设和生产带来了巨大的效益。 近年来,随着我国煤炭资源勘查理论和技术的不断发展,已形成了中国煤炭地质综合勘查理论与技术新体系,其中三维地震勘探技术是五大关键技术之一。[1]

地震勘探资料处理

本科生实验报告 实验课程基于 Vista 系统的地震资料处理学院名称地球物理学院 专业名称勘查技术与工程(石油物探)学生姓名 学生学号 指导教师唐湘蓉 实验地点5417 实验成绩 2015年3月- 2015年5月

基于 Vista 系统的地震资料处理 一、实验目的及要求 1)认知熟悉地震资料处理软件系统--vista软件的基本功能,了解其并熟练掌握vista软件运行的基本操作; 2)了解并掌握地震数据处理的基本流程,掌握地震数据处理的流程和基本方法,选择合适的处理参数以提高地震数据处理的精度; 3)对比地震资料处理与解释的理论与实际资料处理的结果,深入理解理论,并在理论指导下提高处理解释的水平、提高资料处理的质量; 4)提高综合分析问题的能力与编写实验报告或生产报告的能力。 二、实验内容 总流程 图1 总流程图 1)加载数据 打开Vista软件后选择加入2D的SEG-Y格式的原始地震数据,本实验

所用数据为给定的SHOT-20。加载后的原始地震数据如图2: 图2 原始地震数据显示 2)道均衡 各个道由于炮检距的不同,导致的反射波的振幅的变化,因为在共反射点叠加中,要求每一个叠加道的振幅都应该相等,每一道对叠加所做的贡献是等价的,无特殊情况,一般就以记录图中间的振幅为基准,使近激发点的地震道振幅减少,增加远离激发点的地震道记录的振幅。道均衡流程模块如图3,道均衡结果如图4: 图3 道均衡流程模块

3)建立观测系统 图5 观测系统显示4)初至拾取 初至拾取结果显示如图6:

图6 初至拾取结果显示 5)初至切除 地震记录上的初至波包括直达波和浅层折射波,它们能量强且有一定延续时间,对紧接而来的浅层反射波有干涉和破坏作用。另外,动校正后会引起波形畸变,浅层尤其厉害。对这些强能量初至波和动校正畸变引起的处理办法是“切除”,即将这些波的采样值全部变为零值(充零)。初至切除流程模块如图7,初至切 除结果如图8: 图7 初至切除流程模块

地震数据处理

地震数据整体流程 不同软件的地震数据处理方式不同,但是所有软件的处理流程基本是固定不变的,最多也是在处理过程中处理顺序的不同。整体流程如下: 1 数据输入(又称为数据IO) 数据输入是将野外磁带数据转换成处理系统格式,加载到磁盘上,主要指解编或格式转换。 解编:将多路编排方式记录的数据(时序)变为道序记录方式,并对数据进行增益恢复等处理的过程。如果野外采集数据是道序数据,则只需进行格式转换,即转成处理系统可接受的格式。 注:早期的时序数据格式为记录时先记录第一道第一个采样点、第二道第一个采样点、……、第一道第二个采样点、第二道第二个采样点、……直至结束。现在的道序记录格式为记录时直接记录第一道所有数据、第二道所有数据、……直至结束,只是在每一道数据前加上道头

数据。将时序数据变为道序数据只需要对矩阵进行转置即可。 2 置道头 2.1 观测系统定义 目的为模拟野外,定义一个相对坐标系,将野外的激发点、接收点的实际位置放到这个相对的坐标系中。即将SPS文件转换为GE-Lib文件,包括1)物理点间距2)总共有多少个物理点3)炮点位置4)每炮第一道位置5)排列图形。 2.2 置道头 观测系统定义完成后,处理软件中置道头模块,可以根据定义的观测系统,计算出各个需要的道头字的值并放入地震数据的道头中。当道头置入了内容后,我们任取一道都可以从道头中了解到这一道属于哪一炮、哪一道?CMP号是多少?炮间距是多少?炮点静校正量、检波点静校正量是多少?等等。 后续处理的各个模块都是从道头中获取信息,进行相应的处理,如抽CMP道集,只要将数据道头中CMP号相同的道排在一起就可以了。因此道头如果有错误,后续工作也是错误的。 GOEAST软件有128个道头,1个道头占4个字节,关键的为2(炮号)、4(CMP号)、17(道号)、18(物理点号)、19(线号)、20(炮检距)等。 2.3 观测系统检查 利用置完道头的数据,绘制炮、检波点位置图、线性动校正图。 3 静校正(野外静校正) 静校正为利用测得的表层参数或利用地震数据计算静校正量,对地震道进行时间校正,以消除地形、风化层等表层因素变化时对地震波旅行时的影响。 静校正是实现共中心点叠加的一项最主要的基础工作。直接影响叠加效果,决定叠加剖面的信噪比和垂向分辨率,同时影响叠加速度分析的质量。 静校正方法: 1)高程静校正 2)微测井静校正-利用微测井得到的表层厚度、速度信息,计算静校正量 3)初至折射波法 4)微测井(模型法)低频+初至折射波法高频 4 叠前噪音压制 干扰波严重影响叠加剖面效果。在叠前对各种干扰进行去除,为后续资料处理打好基础。 常见干扰有:面波、折射波、直达波、多次波、50Hz工业电干扰及高能随机干扰等多种情况。不同干扰波有不同特点和产生原因,根据干扰波和一次反射波性质(如频率、相位、视速度等)上的不同,把干扰和有效波分离,从而达到干扰波的去除,提高地震资料叠加效

08262026-地震勘探数据处理与解释

吉林大学实验教学大纲 教学单位名称:吉林大学地球探测科学与技术学院 课程名称:地震勘探数据处理与解释 课程代码:08262026 课程类别:专业课 课程性质:必修课 学时/学分:32/2(其中实验8学时) 面向专业:勘查技术与工程 一.实验课程的教学任务、要求和教学目的 《地震数据处理与解释》课程是应用地球物理系列课程中的一个重要方向,是地球物理勘探中的重要方法之一,与地震勘探原理一起构成了地震勘探研究方向的一个完整体系。是勘查技术与方法专业中应用地球物理方向本科生的一门重要选修课。 本实验课是与理论课紧密联系在一起的。通过实验课的教学,使学生加深对理论理解和将理论知识应用于实践的能力,熟悉基本的数据处理流程,并进行实际的地震资料处理。本实验课实际上是地震勘探数据处理与解释课程的重要组成部分。 二.学生应掌握的实验技术及基本技能 1、掌握常用地震数据处理系统的基本操作方法 2、了解常用地震记录的数据格式及剖面显示方式; 3、掌握动、静校正及水平叠加处理的方法; 4、掌握地震信号的频谱分析和一维、二维滤波; 5、掌握预测反褶积处理技术; 6、了解速度分析的方法和步骤; 7、了解地震波场偏移处理的目的和方法; 8、掌握合成地震记录的制作和分析方法; 9、掌握波动方程地震记录的正演模拟; 10、能编写简单的地震数据处理程序。 三.实验项目内容、学时分配和每组人数

四.实验教材或指导书或主要参考资料 教材采用《应用地球物理教程—地震勘探》。另外可参考以下文献: 1.《地震资料分析—地震资料处理、反演和解释》,渥.伊尔马滋 2.CWP/SU:Seismic Un*x用户手册 五.考核要求、考核方式及成绩评定标准 实验成绩可通过写实验报告,或总结性考核而定,占学生学期总成绩的20%~30%。 六.制定人、审核人、日期 制定人:王德利 审核人:潘保芝 审核日期:2009年9

地震资料格式说明

§3 资料处理流程说明: 资料处理的基本流程如下图所示: 解编 预处理(建立工区,切除,振幅处理等) 一次静校正 一、二维数字滤波 抽道集 高精度速度分析 剩余静校正高精度动校正 水平迭加 滤波、反滤波 (倾斜相干加强) 迭后偏移 一维数字滤波 振幅均衡、输出 在资料的处理过程中,应根据资料的信噪比和分辨率情况选择模块,组合流程,以达到事半功倍的效果。在处理过程中,应首先根据野外电子观测班报和测量电子班报建立工区基本参数文件(由建立工区模块完成),若无测量结果,可根据模块提示完成建立工区基本参数文件的工作。本系统适合于有或无测量资料的情况;同时也适合于变观资料处理。文件格式参见相关模块说明。 §4 处理资料文件格式说明: 4.1 SEG-Y 记录格式(标准) (1)卷头: 3600字节

(a)ASCII 区域: 3200字节(40条记录 x 80 字节/每条记录)。 (b)二进制数区域: 400字节(3201~3600)。 3213~3214 字节—每个记录的数据道数(每炮道数或总道数)。 3217~3218 字节—采样间隔(μs)。 3221~3222 字节—样点数/每道(道长)。 3225~3226 字节—数据样值格式码1-浮点; 3255~3256 字节—计量系统:1-米, 2-英尺。 3261~3262*字节—文件中的道数(总道数)。 3269~3270*字节—数据域(性质):0-时域,1-振幅,2-相位谱“ * “ 号字为非标准定义。 (2)道记录块: (a)道头字区: 含: 60个字/4字节整或120个字/2字节整, 共240个字节,按二进制格式存放。 ·SEG—Y格式道头说明: 字号(4字节) 字号(2字节) 字节号内容说明 1 1— 2 1—4 一条测线中的道顺序号,如果一条测线有若干卷 磁带,顺序号连续递增。 2 3—4 5—8 在本卷磁带中的道顺序号。每卷磁带的道顺序号 从l开始。 3 5—6 9—12 * 原始的野外记录号(炮号)。 4 7—8 13—16 在原始野外记录中的道号。 5 9—10 17—20 测线内炮点桩号(在同一个地面点有多于一个 记录时使用)。 6 11—12 21—24 CMP号(或CDP号)。(弯线=共反射面元号) 7 13—14 25—28 在CMP道集中的道号(在每个CMP道集中道号从 1开始)。 8—1 15 29—30* 道识别码: l=地震数据; 4=爆炸信号; 7=计时信号; 2=死道; 5=井口道;8=水断信号; 3=无效道(空道);6=扫描道;9…N=选择使用 (N=32767) 8—2 16 31—32 构成该道的垂直叠加道数(1是一道;2是两道相 加;…) 9—l 17 33—34 构成该道的水平叠加道数(1是一道; 2是两道叠 加;…) 9—2 18 35—36 数据类型:1=生产; 2=试验 10 19—20 37—40 从炮点到接收点的距离(如果排列与激发前进方 向相反取负值) (分米)。

地震勘探原理的基本问题

地震勘探:通过人工方法激发地震波,研究地震波在地层中传播的情况,以查明地下的地质构造,力寻找油气田或其他勘探目的服务的一种物探方法. 水平叠加:将不同接收点收到的来自地下同一反射点的不同激发点的信号,经动校正后叠加起来,这种方法可以提高信噪比,改善地震记录的质量,特别是压制一种规则干扰波效果最好 波形曲线:选定一个时刻t1,我们用纵坐标表示各质点离开平衡位置的距离,就得到一条曲线,这条曲线就叫做波在t1时刻沿x方向的波形曲线. 动校正:在水平界面情况下,从观测到的波的旅行时中减去正常时差Δt1得到x/2处的t0时间,这一过程叫动校正或正常时差校正. 多次覆盖:对被追踪的界面进行多次观测. 剖面闭合:是检查对比质量,连接层位,保证解工作正确进行的有效办法,他包括测线交点闭合,测线网的闭合,时间闭合等. 几何地震学:地震波的运动学是研究地震波,波前的空间位置与传播时间的关系,他与几何光学相似,也是引用波前,射线等几何图形来描述波的运动过程和规律,因此又叫几何地震学. 水平分辨率:指沿水平方向能分辨多大的地质体,其值为根号下0.5λh. 时距曲线:从地震源出发,传播主观测点的时间t与观测中点相对于激发点的距离x之间的关系 剩余时差:把某个波按水平界面一次反射波作动校正后的反射波时间与共中心点处的时间tom之差. 绕射波:地震波在传播过程中,如遇到一些岩性的突变点,这些突变点就会成为新震源,再次发出球面波,想四周传播,这就叫绕射波. 三维地震:就是在一个观测面上进行观测,对所得资料进行三维偏移叠加处理,以获得地下地质体构造在三维空间的特征. 水平切片:就是用一个水平面去切三维数据体得出某一时刻tk各道的信息,更便于了解地下构造形态个查明某些特殊地质现象. 同相轴:一串套合很好的波峰或波谷. 相位:一个完整波形的第i个波峰或波谷. 纵波:传播方向与质点振动方向一致的波. 转换波:当一入射波入射到反射界面时,会产生与其类型相同的反射波或透射波,也会产生类型不同的,与其类型不同的称为转换波. 反射定律:入射波与反射波分居法线两侧,反射角等于入射角,条件为:上下界面波阻抗存在差异,入射波与反射波类型相同. 地震子波:震源产生的信号传播一段时间后,波形趋于稳定,我们称这时的地震波为地震子波。 爆炸时产生的尖脉冲,在爆炸点附近的介质中以冲击波的形式传播,当传播到一的距离后,波形逐渐稳定,我们称这时的地震波为地震子波。 正常时差的定义第一种定义:界面水平情况下,对界面上某点以炮检距x进行观测得到的反射波旅行时同以零炮检距(自激自收)进行观测得到的反射波旅行时之差,这纯粹是因为炮检距不为零引起的时差. 第二种定义:在水平界面情况下,各观测点相对于爆炸点纯粹是由于炮检距不同而引起的反射波旅行时间差. 1.简述地震勘探原理 地震勘探根据岩石的弹性差别进行工作的,波遇到障碍物会发生反射和透射,折射.通过测反射波和透射波的性质,可以确定障碍物的距离.地震勘探是人工激发地震波.通过在地面布置测线,接收反射波,然后进行一些处理,从而来反映地下构造情况,为寻找油气和其他勘探目的的服务,生产工作包括三个环节:1野外数据采集2室内数据处理3地震资料解释,与其他方法

地震科学数据数据交换格式

地震科学数据共享工程技术标准 EDS/Tx—2006 地震科学数据数据交换格式 Earthquake-related scientific data - formats for data exchange (征求意见稿) (本稿完成日期:2006年11月20日) 中国地震局发布

EDS/T2—2005 I

EDS/T2—2005 II 目次 前言............................................................................ III 1 范围 (4) 2 术语和定义 (4) 3 概述 (5) 4 地震数据交换基本格式 (5) 5 地震数据交换辅助格式 (15)

EDS/T2—2005 前言 本标准是《地震科学数据》系列标准的第5 项标准,该系列标准的预计结构为: ——地震科学数据元数据编写指南; ——地震科学数据数据模式编写指南; ——地震科学数据数据库建库指南; ——地震科学数据数据元目录 ——地震科学数据数据交换格式 ——地震科学数据数据分类与编码 ——…. 本标准起草单位:中国地震台网中心、中国地震局地球物理研究所。 本标准主要起草人:赵仲和周克昌黄志斌杨辉顾左文吴敏赵宇彤代光辉冯义钧纪寿文田丰 III

EDS/T2—2005 地震科学数据数据交换格式 1 范围 本标准规定了在地震科学数据共享项目框架内的数据交换格式。 本标准适用于地震科学数据共享中心、分中心(节点)向用户提供数据服务(如数据下载)采用的数据格式。地震科学数据共享中心和地震科学数据共享分中心(节点)之间的相互数据交换,地震科学数据共享中心、分中心与其他科学数据共享中心的数据交换也可采用本标准中规定的格式。 2 术语和定义 本标准采用下列术语和定义 2.1 数据元 data element 通过定义、标识、表示、允许值等一系列属性描述的一个数据单元。 2.2 聚合数据元 aggregate data element 由两个或两个以上的具有相互关联的数据元组成的数据单元,用来表达特定语境中的一个清晰的业务含义。 2.3 数据类型 data type 值域说明,允许对该值域内的值进行操作。如:string、decimal、integer、boolean、date和binary。 2.4 数据交换格式 data interchange format 一个预定义和结构化的、在功能上相互关联的聚合数据元或数据元的集合,它涵盖在科学数据共享活动中对某类交换数据的共享要求,旨在双边或多边的数据交换中确保各方对所交换数据的无歧义理解和自动处理。 2.5 XML模式 XML Schema 基于W3C XML模式语言的文档类型定义。它可随附于一个文件,用以描述该文件的基本构成规则,如哪些元素会出现及这些元素之间的结构关系等;它还定义了哪些标记可以在文件中出现、哪些标记可以包含其他标记、标记的号码和顺序、标记的属性,需要时还给出这些属性具有的值。 2.6 纯文本文件 text-only file 一种使用ASCII(美国国家标准信息交换代码)格式的文档文件,其中包含各种有关的字符、空格符、标点符号、回车符,有时还包括制表符和文件结束符等,但不包含格式化信息。 2.7 位图 bitmap 位映像 4

地震资料解释报告材料

地震资料解释报告 序言 勘查技术与工程卓越班的实践性很强,加强实践教学可以提高学生的动手能力和处理实际问题、分析解决实际问题的能力、使之能更好的适应毕业后实际工作,是一个非常重要的教学环节,也是进一步提高教学质量的重要途径之一。 我们的地震资料解释实践共分两步完成,第一是在学校手工地震资料构造解释课程设计,第二是在东营对news软件的学习。此次实习是在完成了《地震勘探原理》和《地震资料解释》的基础上完成的实习,通过此次实习的机会我们得以理论联系实际并用实践以检验所学理论,各项安排有条不紊的展开。 在每一步的实习过程中都有老师的带领,手工地震资料构造解释课程设计由杨国权老师负责,news软件的学习由张繁昌老师负责。实习过程中注意理论和实际的结合,在老师的带领及同学的相互帮助下,我们顺利的完成了实践所要求的所有内容。

目录 一、实习目的及意义 (4) 二、实习内容 (4) 三、地震资料构造解释 (5) 四、News学习 (7) 五、结论与建议 (26)

一、实习目的及意义 通过课程的学习,对解释软件系统、数据的地质地球物理解释过程等有基本的认识和掌握,通过实习熟悉了勘探方法的整个工作原理和处理解释流程以及实习报告编写等过程。 了解到了反射波的追踪对比、地震资料的地质解释、构造图的绘制、以及研究成果的提交等过程。培养实际技能及对分析和解决实习问题的能力;掌握仪器的工作原理,并学会操作和使用;掌握各方法的基本数据分析和处理技能。 对本专业所从事工作的性质、手段、方法以及新技术、新方法有一个全面的了解,培养学生的实际操作和计算技能以及综合分析问题的独立工作能力,巩固已学过的专业知识,为下一步进入专业课程和毕业论文阶段以及今后走上本专业的工作岗位打下基础。 二、实习内容 地震自资料的构造解释内容主要有工区的地质情况总结、地震资料解释流程、对地震构造解释的分析、体会和建议等。News 的实习内容主要在理论学习好的基础上,学会利用软件完成地震资料解释的整个过程,并得出理论成果。 三、地震资料的构造解释 构造解释是以水平叠加时间剖面为主要资料,利用由地震资料提供的反射波旅行时间、速度等信息,查明地下地层的构造形态、埋藏深度、解除关系等,通过构造解释成果,即使提供钻井井位。 构造解释的三大环节:

解释及分析地震数据体一般步骤

解释及分析地震数据体一般步骤: 1、合成人工记录和层位标定 2、追层位,注意闭合 3、解释断层 3、平面成图 在解释过程中可能用到的五种技术方法: 1.层位标定技术 2.三维体构造精细解释技术 3.相干数据体分析技术 4.低序级断层识别技术 5.断点组合技术 其中各项技术的具体用法自己去查资料 若遇到潜山和特殊岩性体时,在成图前增加1项,速度场分析即第6项技术变速成图技术;若有储层描述部分,还需增加反演处理。 1、反演工区建立 2、地震子波提取 3、井地标定 4、初始模型建立 5、反演参数选取 6、反演处理 7、砂体追踪描述 8、成图 在三维地震构造解释的基础上,对有井斜资料的井,分层段进行了井深校正,将测井井深校正为垂直井深。通过钻井资料的校正,利用校正数据表的数据,对断层的断点位置和断距进行归一化处理,对三维地震所做的构造图与钻井数据相矛盾的地方进行反复推敲,分析油藏油水关系,对一些四、五级断层进行组合、修正,反复修改构造,最后编制研究区构造图。静校正statics:地震勘探解释的理论都假定激发点与接收点是在一个水平面上,并且地层速度是均匀的。但实际上地面常常不平坦,各个激发点深度也可能不同,低速带中的波速与地层中的波速又相差悬殊,所以必将影响实测的时距曲线形状。为了消除这些影响,对原始地震数据要进行地形校正、激发深度校正、低速带校正等,这些校正对同一观测点的不同地震界面都是不变的,因此统称静校正。广义的静校正还包括相位校正及对仪器因素影响的校正。随着数字处理技术的发展,已有多种自动静校正的方法和程序。 [深度剖面]depth record section;据磁带地震记录的时间剖面或普通光点记录,用一般方法所作出的地震剖面只是表示界面的法线深度,而不是真正的铅垂深度。经过偏移校正和深度校正之后,得到界面的铅垂深度剖面才叫做深度剖面,它是地质解释的重要资料。用数字电子计算机处理磁带地震记录,能自动得出深度剖面 [同相轴]lineups;地震记录上各道振动相位相同的极值(俗称波峰成波谷)的连线称为同相轴。在解释地震勘探资料时,常常根据地震记录上有规律地出现的形状相似的振动画出不同的同相轴,它们表示不同层次的地震波。 [速度界面]velocity interface;是指对地震波传播速度不同的、相邻的两层介质的公共接触面。信噪比signal-to-noise ratio:信噪比有多种定义。通常将地震仪器的输出端上,有效信号的功率与噪声(干扰)的功率之比称为信噪比。信噪比既与输入信号本身有关,更决定于仪器的特性,它也被用来衡量资料处理的效果。因此,提高信噪比是提高地震工作质量的关键问题之一。信噪比愈大愈好,可以通过改进仪器性能或选择工作方法提高信噪比。 子波wavelet:从震源发出的原始地震脉冲在介质中传播时,由于介质对地震脉冲有滤波作用,并且地层界面使波产生反射和折射,因此,自距震源一定距离起,脉冲波形便发生变化而与原始波形不同,但在一定传播范围内其形状甚本保持不变,这时的地震脉冲便称为子波。子波的形状决定于震源和介质的滤波性质,其频率随传播距离的增大而有所降低,振幅也逐渐减小。不同的界面各自的子波不同,每一道的地震记录可以认为是由一系列的子波构成的。子波不仅用于制作理论地震记录,而且在断层对比和反褶积处理等方面都需要它。 [有效速度] effective velocity; 把覆盖层看作均匀介质而从实际观测所得的反射波或从折射波时距曲线求得的波速,统称为有效速度。由于在层状地层中存在层理,介质并不真正是均匀的,再加上界面的弯曲,使有效速度不同于平均速度,往往是比平均速度大的一种近似速度,但在各层速度的差别不很大和界面弯曲不大时,两者的差别很小。 [有效波]effective wave; 指能用来解决某些地质问题的人工激发的地震波。有效波是个相对的

地震资料综合解释资料

名词解释: 1.褶积模型:地震记录的褶积模型是当今地震勘探中三大环节的主要理论基础之一,其应用十分广泛,主要表现在三大方面:正演、反演和子波处理。层状介质的一次反射波通常用线性褶积模型表示,即:式中:w(t)为系统子波;r(t)为反射系数函数,符号“*”表示褶积运算。 2.分辨率:分辨能力是指区分两个靠近物体的能力。度量分辨能力强弱的两种表示:一是距离表示,分辨的垂向距离或横向范围越小,则分辨能力越强;二是时间表示,在地震时间剖面上,相邻地层时间间隔dt 越小,则分辨能力越强。时间间隔dt 的倒数为分辨率。垂向分辨率是指沿地层垂直方向所能分辨的最薄地层厚度。横向分辨率是指横向上所能分辨的最小地质体宽度。 3.薄层解释原理:Dt

地震科学数据共享—数据发布-国家地震科学数据共享中心

地震科学数据数据发布规范 (征求意见稿) 目录 一、地震科学数据数据发布规范 二、地震科学数据一级数据发布规范 三、地震科学数据二级数据发布规范 四、地震科学数据三级数据发布规范 五、地震科学数据四级数据发布规范 六、地震科学数据用户分级与分类方案

地震科学数据数据发布规范 1 总则 适用范围 1.1.1为了规范地震科学数据发布活动,更好地提供地震科学数据服务,制定本规范。 1.1.2在中华人民共和国境内从事地震科学数据发布活动的单位和个人,应当遵守本规范。 发布原则 1.2.1有利于地震科学数据使用效益最大有效发挥的原则; 1.2.2尊重国际约定,保护国家利益的原则 1.2.3促进部门和行业间数据交换和共享的原则 地震科学数据生产者、管理者和使用者共同承担为社会共享的责任和义务 1.2.4与国家级数据共享发布策略一致的原则 各级科学数据共享发布单位必须在数据分级、用户分级的方法上和国家级的共享发布策略基本保持一致。 2 规范性引用文件 下列文件或标准所包含的条文,通过在本规程中引用而构成本规程的条文。本规程颁布时,所示版本均为有效。所有标准都会被修订,使用本规程的各方应探讨使用下列标准最新版本的可能性。 DB/T11.1-2006 地震数据分类与代码第1部分:基本类别 DB/T11.2-2006 地震数据分类与代码第2部分:观测数据 《地震科学数据共享管理办法》 《地震科技数据分级分类方案》 《地震科学数据共享服务规定》 《地震科学数据汇交管理规定》

《地震科学数据用户分级与分类方案》 3 术语和定义 下列术语和定义适用于本规范。 网站 根据一定的规则,使用HTML等语言制作的用于展示特定內容的相关网页的集合。 元数据metadata 关于数据的数据,是用于定义和描述其他数据的数据。 基础数据basic data 与地震观测数据获取相关的数据,包括观测环境、观测场地、观测设施、观测仪器、观测网络等方面的数据。 原始数据raw data 由观测仪器直接产出的数据。 加工数据processed data 对原始数据作必要的转换、规范化处理和质量检查订正后产出的数据。 数据发布data release 通过网站、报刊、广播、电视和电话等各种新闻媒体和通信工具对社会公众宣布有关方面信息的服务活动。

相关文档
最新文档