专题1.5 以向量与解析几何、三角形等相结合为背景的选择题(原卷版)

专题1.5 以向量与解析几何、三角形等相结合为背景的选择题(原卷版)
专题1.5 以向量与解析几何、三角形等相结合为背景的选择题(原卷版)

专题一 压轴选择题

第五关 以向量与解析几何、三角形等相结合为背景的选择题

【名师综述】

近年来以平面向量知识为背景,与三角函数、数列、三角形、解析几何知识相结合的题目屡见不鲜,题目对基础知识和技能的考查一般由浅入深,入手并不难,但要圆满解决,则需要严密的逻辑推理. 平面向量融数、形于一体,具有几何与代数的“双重身份”,从而它成为了中学数学知识交汇和联系其他知识点的桥梁.平面向量的运用可以拓宽解题思路和解题方法.

类型一 平面向量与解三角形的结合

典例1 .(多选题)(2019·山东莱州一中高三月考)在Rt △ABC 中,CD 是斜边AB 上的高,如图,则下列等式成立的是( )

A .2A C C A

B A ?= B .2

C B BC B A ?= C .2

B A CD A

C ?=

D .()()22

AB B AC BA B C CD A ??=? 典例2. 在ABC △中,角A ,B ,C 所对的边分别为a ,b ,c 满足222b c a bc +-=,0AB BC ?>,32a =

,则b c +的取值范围是( )

A .31 , 2?? ???

B .33 , 2?? ? ???

C .13 , 22?? ???

D .13( , ]22 【名师指点】由余弦定理可得角A 的大小,平面向量数量积向量式是实现向量和三角形边、角转化的桥梁,而正弦定理又是进行三角形边角转化的工具.最值将b c +的取值范围问题转化为三角函数的值域问题处理.

【举一反三】【河南省南阳市2019届高三上学期期中考试】已知△ABC 的外接圆半径为2,D 为该圆上一点,且

,则△ABC 的面积的最大值为( ) A .4 B .3 C .4 D .3

类型二 向量与三角形”四心”的结合

典例3 (多选题)已知

是三角形所在平面内一定点,动点满足OP OA λ

=+

(sin sin AB AC AB B AC C +)()(0λ≥,则点轨迹一定不通过三角形

的( ) A .内心 B .外心 C .垂心 D .重心

【举一反三】【江西省赣州市十四县(市)2019届高三上学期期中联考】在

中, ,是

的内心,若,其中,动点的轨迹所覆盖的面积为( )

A .

B .

C .

D . 类型三 向量与三角函数的结合

典例4. (多选题)(2019·山东高三期中)已知向量(sin ,3)m x =-,()

2cos ,cos x x n =,函数()32

f x m n =?+,下列命题,说法正确的选项是( ) A .()y f x =的最小正周期为π

B .()y f x =的图象关于点,06π?? ???对称

C .()y f x =的图象关于直线12x π

=对称

D .()y f x =的单调增区间为52,2()1212k k k ππππ??

-+∈???

?Z 【名师指点】三角函数的图象和性质是中学数学中的重要内容和工具,也高考和各级各类考试的重要内容和考点.本题以向量的坐标形式为背景考查的是三角函数的图象和性质及三角变换的有关知识和运用. 【举一反三】已知函数()3)cos()sin()cos()2

f x x x x x πππ=--++-图像上的一个最低点为A ,离A 最近的两个最高点分别为B 与C ,则=AB AC ?( )

A .2

99π+ B .2

99π- C .2

44π+ D .2

44π-

类型四 向量在解析几何中的应用

典例5

(2019·山东高三期末(理))已知抛物线2:4C y x =的焦点为F ,准线为l ,P 是l 上一点,Q 是PF 直线与抛物线C 的一个交点,若3PF FQ =,则QF =( )

A .3

B .83

C .4或83

D .3或4

用向量方法解立体几何题(老师用)

用向量方法求空间角和距离 在高考的立体几何试题中,求角与距离是常考查的问题,其传统的“三步曲”解法:“作图、证明、解三角形”,作辅助线多、技巧性强,是教学和学习的难点.向量进入高中教材,为立体几何增添了活力,新思想、新方法与时俱进,本专题将运用向量方法简捷地解决这些问题. 1 求空间角问题 空间的角主要有:异面直线所成的角;直线和平面所成的角;二面角. (1)求异面直线所成的角 设a 、b 分别为异面直线a 、b 的方向向量, 则两异面直线所成的角α=arccos |||||| a b a b (2)求线面角 设l 是斜线 l 的方向向量,n 是平面α的法向量, 则斜线l 与平面α所成的角α=arcsin |||||| l n l n (3)求二面角 法一、在α内a l ⊥,在β内b l ⊥,其方向如图,则二面角l αβ--的平面角α=arccos |||| a b a b

法二、设12,,n n 是二面角l αβ --的两个半平面的法向量, 其方向一个指向内侧,另一个指向外侧,则二面角l α β --的平面角α=12 12arccos |||| n n n n 2 求空间距离问题 构成空间的点、线、面之间有七种距离,这里着重介绍点面距离的求法,象异面直线间的距离、线面距离;面面距离都可化为点面距离来求. (1)求点面距离 法一、设n 是平面α的法向量,在α内取一点B, 则 A 到α的距离|| |||cos ||| AB n d AB n θ== 法二、设A O α ⊥于O,利用A O α ⊥和点O 在α内 的向量表示,可确定点O 的位置,从而求出||A O . (2)求异面直线的距离 法一、找平面β使b β?且a β ,则异面直线a 、b 的距离就转化为直线a 到平面β的距离,又转化为点A 到平面β的距离. 法二、在a 上取一点A, 在b 上取一点B, 设a 、b 分别 为异面直线a 、b 的方向向量,求n (n a ⊥ ,n b ⊥ ),则 异面直线a 、b 的距离|| |||cos ||| AB n d AB n θ== (此方法移植 于点面距离的求法).

向量与解析几何相结合专题复习

向量与解析几何相结合专题复习 平面向量与解析几何的结合通常涉及到夹角、平行、垂直、共线、轨迹等问题的处理,目标是将几何问题坐标化、符号化、数量化,从而将推理转化为运算。或者考虑向量运算的几何意义,利用其几何意义解决有关问题。 一:将向量及其运算的几何意义转化为平面图形的位置关系或数量关系 【例1.】已知△ABC 中,A 、B 两点的坐标分别为(-4,2)、(3,1),O 为坐标原点。已知||=λ·||,||=λ·||,∥ = (1,2)求顶点C 的坐标。 【解】如图:∵||=λ·||,∴λ=0 | |>CB ∵||=λ·||,∴A 、D 、B 三点共线,D 且λ=0 | |>DB ∴||CB =||DB ∴CD 是△ABC 中∠C 的角平分线。 ∴A 、D 、B 三点共线∥∴O 、C 、D 三点共线,即直线CD 过原点。 ~ 又∵直线CD 的方向向量为=(1,2),∴直线CD 的斜率为2 ∴直线CD 的方程为:y =2x (注意:至此,以将题中的向量条件全部转化为平面解析几何条件,下面用解析几何的方法解决该题) 易得:点A (-4,2)关于直线y =2x 的对称点是A ’ (4,-2), (怎样求对称点) ∵A ’ (4,-2)在直线BC 上 ∴直线BC 的方程为:3x +y -10=0 由?? ?=-+=01032y x x y 得C (2,4) 【解题回顾】本题根据向量共线的条件将题设中的||=λ·||和∥转化

为三点共线,实现了向量条件向平面位置关系的转化;而由λ=||CB =||DB ,实现了向量条件向平面图形的数量关系的转化,从而从整体上实现了由向量条件向平几及解条件的转化。 \ 【例2】.已知1OF =(-3,0),2OF =(3,0),(O 为坐标原点),动点M 满足:||1MF +||2MF =10。 (1)求动点M 的轨迹C ; (2)若点P 、O 是曲线C 上任意两点,且OP ·=0,求2 2 2 OQ OP ?的值 【解】(1)由||1MF +||2MF =10知: 动点M 到两定点F 1和F 2的距离之和为10 根据椭圆的第一定义:动点M 的轨迹为椭圆:116252 2=+y x \ (2)∵点P 、O 是1 16252 2=+y x 上任意两点 设P(ααsin 4,cos 5),Q(ββsin 4,cos 5) (注意 ∵OP ·=0 得:βαβαsin sin 16cos cos 25+=0 ① 而2 、2 2 ?都可以用α、β的三角函数表示,利用①可以解得: 2 2 2 PQ ?=40041 【例3.】在△ABC 中,A(2,3),B(4,6),C(3,-1),点D 满足:CA ·CD =CD ·CB (1)求点D 的轨迹方程; ~

第7章 向量代数与空间解析几何 习题 7- (4)

第四节 空间直线及其方程 习题 7-4 1. 求过点(1,1,2)?且与平面20x y z +?=垂直的直线方程. 解 取已知平面的法向量(1,2,1)=?n 为所求直线的方向向量, 则直线的对称式方程为 112 .121 x y z ?+?==? 2. 求过点(1,3,2)??且平行两平面35202340x y z x y z ?++=+?+=及的直 线的方程. 解 因为两平面的法向量12(3,1,5)(1,2,3)=?=?n n 与不平行, 所以两平面相交 于一直线, 此直线的方向向量为 1231 5(7,14,7)7(1,2,1),1 2 3 =×=?=?=??i j k s n n 故可取所求直线的方向向量为(1,2,1)?, 由题设, 所求的直线方程为 132 .121 x y z ++?==? 3. 用点向式方程及参数方程表示直线 10 2340 x y z x y z +++=?? ?++=?. 解 先在直线上找一点. 令1x =, 解方程组2, 36,y z y z +=????=? 得0,2y z ==?, 故(1,0,2)?是直线上一点. 再求直线的方向向量s . 交于已知直线的两平面的法向量为: 12(1,1,1),(2,1,3)==?n n , 12,,⊥⊥s n s n ∵

121 11(4,1,3),213 ∴=×==???i j k s n n 故所给直线的点向式方程为 12 ,413x y z ?+==?? 参数方程为 14,,23.x t y t z t =+?? =???=??? 4. 求过点(2,0,3)?且与直线2470, 35210x y z x y z ?+?=?? +?+=? 垂直的平面方程. 解 要求所求平面垂直于直线, 所以直线的方向向量为所求平面的法向量, 取 1212 4(16,14,11),3 5 2 ==×=?=??i j k n s n n 由点法式可得 16(2)14(0)11(3)0,x y z ??+?++= 即161411650x y z ???=为所求的平面方程. 5. 求过点(3,1,2)?且通过直线 43521 x y z ?+==的平面的方程. 解 法1 所求平面过点0(3,1,2)M ?及1(4,3,0)M ?, 设其法向量为n , 则01,M M ⊥⊥ n n s , 其中(5,2,1)=s . 取01(1,4,2)(5,2,1)(8,9,22)M M =×=?×=?n s , 则平面方程为 8(3)9(1)22(2)0,x y z ??+?++= 即8922590x y z ???=. 法2 直线L 的交面式方程为25230, 230,x y y z ??=???+=? 过L 的平面束方程为 (23)(2523)0.y z x y λ?++??= 点(3,1,2)?在平面上, 因此(143)(6523)0λ+++??=, 解得4 11 λ=, 因此平面的方程为

第八章向量代数与空间解析几何教案(同济大学版高数)

第八章 向量代数与空间解析几何 第一节 向量及其线性运算 教学目的:将学生的思维由平面引导到空间,使学生明确学习空间解析几何的意义和目的。使学生对(自由)向量有初步了解,为后继内容的学习打下基础。 教学重点:1.空间直角坐标系的概念 2.空间两点间的距离公式 3.向量的概念 4.向量的运算 教学难点:1.空间思想的建立 2.向量平行与垂直的关系 教学内容: 一、向量的概念 1.向量:既有大小,又有方向的量。在数学上用有向线段来表示向量,其长度表示向量的大小,其方向表示向量的方向。在数学上只研究与起点无关的自由向量(以后简称向量)。 2. 量的表示方法有: a 、i 、F 、OM 等等。 3. 向量相等b a =:如果两个向量大小相等,方向相同,则说(即经过平移后能完全重合的向量)。 4. 量的模:向量的大小,记为a 。 模为1的向量叫单位向量、模为零的向量叫零向量。零向量的方向是任意的。 5. 量平行b a //:两个非零向量如果它们的方向相同或相反。零向量与如何向量都平行。 6. 负向量:大小相等但方向相反的向量,记为a - 二、向量的线性运算 1.加减法c b a =+: 加法运算规律:平行四边形法则(有时也称三角形法则),其满足的运算规律有交换率和结合率见图7-4

2.c b a =- 即c b a =-+)( 3.向量与数的乘法a λ:设λ是一个数,向量a 与λ的乘积a λ规定为 0)1(>λ时,a λ与a 同向,||||a a λλ= 0)2(=λ时,0a =λ 0)3(<λ时,a λ与a 反向,||||||a a λλ= 其满足的运算规律有:结合率、分配率。设0 a 表示与非零向量a 同方向的单位向量,那么 a a a 0= 定理1:设向量a ≠0,那么,向量b 平行于a 的充分必要条件是:存在唯一的实数λ, 使b =a λ 例1:在平行四边形ABCD 中,设a =AB ,b =AD ,试用 a 和 b 表示向量MA 、MB 、MC 和MD ,这里M 是平行 四边形对角线的交点。(见图7-5) 图7-4 解:→→==+AM AC 2b a ,于是)(2 1 b a +- =→ MA 由于→ → -=MA MC , 于是)(21 b a += → MC 又由于→→==+-MD BD 2b a ,于是)(2 1 a b -=→MD 由于→→-=MD MB , 于是)(2 1 a b --=→MB 三、空间直角坐标系 1.将数轴(一维)、平面直角坐标系(二维)进一步推广建立空间直角坐标系(三维)如图7-1,其符合右手规则。即以右手握住z 轴,当右手的四个手指从正向x 轴以2 π 角度转向正向y 轴时,大拇指的指向就是z 轴的正向。

向量代数与空间解析几何期末复习题高等数学下册

第七章 空间解析几何 一、选择题 1. 在空间直角坐标系中,点(1,-2,3)在[ D ] A. 第一卦限 B. 第二卦限 C. 第三卦限 D. 第四卦限 2.方程2222=+y x 在空间解析几何中表示的图形为[ C ] A. 椭圆 B. 圆 C. 椭圆柱面 D. 圆柱面 3.直线3 1 2141: 1+= +=-z y x l 与?? ?=-++=-+-0 20 1:2z y x y x l ,的夹角是 [ C ] A. 4 π B. 3π C. 2 π D. 0 4. 在空间直角坐标系中,点(1,2,3)关于xoy 平面的对称点是[ D ] A. (-1,2,3) B. (1,-2,3) C. (-1,-2,3) D. (1,2,-3) 5.将xoz 坐标面上的抛物线x z 42=绕z 轴旋转一周,所得旋转曲面方程是[B ] A. )(42y x z += B. 2224y x z +±=

C. x z y 422=+ D. x z y 422±=+ 6.平面2x-2y+z+6=0与xoy 平面夹角的余弦是[B ] A. 13 - B. 13 C. 23 - D. 23 7. 在空间直角坐标系中,点(1,2,3)关于yoz 平面的对称点是[ A ] A. (-1,2,3) B. (1,-2,3) C. (-1,-2,3) D. (1,2,-3) 8.方程22 222x y z a b +=表示的是 [ B ] A.椭圆抛物面 B.椭圆锥面 C. 椭球面 D. 球面 9. 已知a ={0, 3, 4}, b ={2, 1, -2},则=b proj a [ C ] A. 3 B.3 1- C. -1 10.已知,a b 为不共线向量,则以下各式成立的是 D A. 222()a b a b =? B. 222()a b a b ?=? C. 22()()a b a b ?=? D. 2222()()a b a b a b ?+?= 11.直线1l 的方程为0 3130290 x y z x y z ++=?? --=?,直线2l 的方程为

利用法向量解立体几何题

利用法向量解立体几何题 一、运用法向量求空间角 向量法求空间两条异面直线a, b 所成角θ,只要在两条异面直线a, b 上各任取一个向量 ''AA BB 和,则角<','AA BB >=θ或π-θ,因为θ是锐角,所以cos θ= '''' AA BB AA BB ??, 不需 要用法向量。 1、运用法向量求直线和平面所成角 设平面α的法向量为n =(x, y, 1),则直线AB 和平面α所成的角θ的正弦值为 sin θ= cos( 2 π -θ) = |cos| = AB AB n n ?? 2、运用法向量求二面角 设二面角的两个面的法向量为12,n n ,则<12,n n >或π-<12,n n >是所求角。这时要借助图形来判断所求角为锐角还是钝角,来决定<12,n n >是所求,还是π-<12,n n >是所求角。 二、运用法向量求空间距离 1、求两条异面直线间的距离 设异面直线a 、b 的公共法向量为(,,)n x y z =,在a 、b 上任取一点A 、B ,则异面直线a 、b 的距离 d =AB ·cos ∠BAA ' = || || AB n n ? 略证:如图,EF 为a 、b 的公垂线段,a '为过F 与a 平行的直线, 在a 、b 上任取一点A 、B ,过A 作AA '// EF ,交a '于A ' , A

则?ˉ //AA n ,所以∠BAA ' =<,BA n >(或其补角) ∴异面直线a 、b 的距离d =AB ·cos ∠BAA ' = || || AB n n ? * 其中,n 的坐标可利用a 、b 上的任一向量,a b (或图中的,AE BF ),及n 的定义得 0n a n a n b n b ??⊥?=?????⊥?=??? ? ① 解方程组可得n 。 2、求点到面的距离 求A 点到平面α的距离,设平面α的法向量法为(,,1)n x y =,在α内任取一点B ,则A 点到平面α的距离为 d = || || AB n n ?,n 的坐标由n 与平面α内的两个不共线向量的垂直关系,得到方程组(类似于前面所述, 若方程组无解,则法向量与XOY 平面平行,此时可改设 (1,,0)n y =,下同)。 3、求直线到与直线平行的平面的距离 求直线a 到平面α的距离,设平面α的法向量法为(,,1)n x y =,在直线a 上任取一点A , 在平面α内任取一点B ,则直线a 到平面α的距离 d = || || AB n n ? 4、求两平行平面的距离 设两个平行设平面α、β的公共法向量法为(,,1)n x y =,在平面α、β内各任取一点A 、 B ,则平面α到平面β的距离 d = || || AB n n ? 三、证明线面、面面的平行、垂直关系 设平面外的直线a 和平面α、β,两个面α、β的法向量为12,n n ,则 1a//a n α?⊥ 1a a//n α⊥? 12////n n αβ? 12n n αβ⊥?⊥

例讲三角形中与向量有关的问题

例讲三角形中与向量有关的问题 教学目标:1、三角形重心、内心、垂心、外心的概念及简单的三角形形状判断方法 2、向量的加法、数量积等性质 3、利用向量处理三角形中与向量有关的问题 4、数形结合 教学重点:灵活应用向量性质处理三角形中与有关向量的问题 教学难点:针对性地运用向量性质来处理三角形中与向量有关的问题 教学过程: 1、课前练习 1.1已知O 是△ABC 内的一点,若222OC OB OA ==,则O 是△ABC 的〔 〕 A 、重心 B 、垂心 C 、外心 D 、内心 1.2在△ABC 中,有命题①=-;②=++;③若()()0=-?+AC AB AC AB ,则△ABC 为等腰三角形;④若0>?,则△ABC 为锐角三角形,上述命题中正确的是〔 〕 A 、①② B 、①④ C 、②③ D 、②③④ 2、知识回顾 2.1 三角形的重心、内心、垂心、外心及简单的三角形形状判断方法 2.2 向量的有关性质 2.3 上述两者间的关联 3、利用向量基本概念解与三角形有关的向量问题 例1、已知△ABC 中,有0=???+BC 21=,试判断△ABC 的形状。 练习1、已知△ABC 中,=,=,B 是△ABC 中的最大角,若0

5、运用向量等式图形化解与三角形有关的向量问题 例3、已知P 是△ABC 所在平面内的一动点,且点P 满 足 ()+∞∈?? ?++=,0,λλOA OP ,则动点P 一定过△ABC 的〔 〕 A 、重心 B 、垂心 C 、外心 D 、内心 练习2、已知O 为平面内一点,A 、B 、C 平面上不共线的三点,动点P 满足 ()+∞∈?? ? ??++=,0,21λλ,则动点P 的轨迹一定通过△ABC 的〔 〕 A 、重心 B 、垂心 C 、外心 D 、内心 例4、已知O 是△ABC 所在平面内的一点,动点P 满 足 ()+∞∈?? ?++=,0,λλ,则动点P 一定过△ABC 的〔 〕 A 、重心 B 、垂心 C 、外心 D 、内心 练习3、已知O 是△ABC 所在平面内的一点,动点P 满 足 ()+∞∈?? ?+++=,0,2λλOP ,则动点P 一定过△ABC 的〔 〕 A 、重心 B 、垂心 C 、外心 D 、内心 例5、已知点G 是的重心,过G 作直线与AB 、AC 分别相交于M 、N 两点,且 y x ?=?=,,求证:311=+y x 6、小结 处理与三角形有关的向量问题时,要允分注意数形结合的运用,关注向量等式中的实数互化,合理地将向量等式和图形进行转化是处理这类问题的关键。 7、作业 1、已知O 是△ABC 内的一点,若=++,则O 是△ABC 的〔 〕 A 、重心 B 、垂心 C 、外心 D 、内心 2、若△ABC 的外接圆的圆心为O ,半径为1,且=++,则?等于

空间解析几何与向量代数复习题答案

第八章 空间解析几何与向量代数答案 一、选择题 1. 已知A (1,0,2), B (1,2,1)是空间两点,向量 的模是(A ) A 5 B 3 C 6 D 9 2. 设a =(1,-1,3), b =(2,-1,2),求c =3a -2b 是( B ) A (-1,1,5). B (-1,-1,5). C (1,-1,5). D (-1,-1,6). 3. 设a =(1,-1,3), b =(2, 1,-2),求用标准基i , j , k 表示向量c=a-b 为(A ) A -i -2j +5k B -i -j +3k C -i -j +5k D -2i -j +5k 4. 求两平面032=--+z y x 和052=+++z y x 的夹角是( C ) A 2π B 4π C 3 π D π 5. 已知空间三点M (1,1,1)、A (2,2,1)和B (2,1,2),求∠AMB 是( C ) A 2π B 4π C 3 π D π 6. 求点)10,1,2(-M 到直线L :12213+=-=z y x 的距离是:( A ) A 138 B 118 C 158 D 1

7. 设,23,a i k b i j k =-=++r r r r r r r 求a b ?r r 是:( D ) A -i -2j +5k B -i -j +3k C -i -j +5k D 3i -3j +3k 8. 设⊿ABC 的顶点为(3,0,2),(5,3,1),(0,1,3)A B C -,求三角形的面积是:( A ) A 2 B 364 C 3 2 D 3 9. 求平行于z 轴,且过点)1,0,1(1M 和)1,1,2(2-M 的平面方程是:( D ) A 2x+3y=5=0 B x-y+1=0 C x+y+1=0 D 01=-+y x . 10、若非零向量a,b 满足关系式-=+a b a b ,则必有( C ); A -+a b =a b ; B =a b ; C 0?a b =; D ?a b =0. 11、设,a b 为非零向量,且a b ⊥, 则必有( C ) A a b a b +=+ B a b a b -=- C +=-a b a b D +=-a b a b 12、已知()()2,1,21,3,2---a =,b =,则Pr j b a =( D ); A 5 3; B 5; C 3;

三角法与向量法解平面几何题(正)

第27讲 三角法与向量法解平面几何题 相关知识 在ABC ?中,R 为外接圆半径,r 为内切圆半径,2 a b c p ++=,则 1,正弦定理: 2sin sin sin a b c R A B C ===, 2,余弦定理:2 2 2 2cos a b c bc A =+-,2 2 2 2cos b a c ac B =+-,2 2 2 2cos c a b ab C =+-. 3,射影定理:cos cos a b C c B =+,cos cos b a C c A =+,cos cos c a B b A =+. 4,面积:211sin 2sin sin sin 224a abc S ah ab C rp R A B C R = ==== = (sin sin sin )rR A B C ++ 2 221(cot cot cot )4 a A b B c C = ++. A 类例题 例1.在ΔABC 中,已知b =asinC ,c =asin (900 -B ),试判断ΔABC 的形状。 分析 条件中有边、角关系, 应利用正、余弦定理, 把条件统一转化为边或者是角的关系, 从而判定三角形的形状。 解 由条件c = asin (900 - B ) = acosB = c b c a ac b c a a 222 22222-+=-+ 2 2222c b c a =-+? 是直角A b c a ?+=?2 22 1sin sin sin =?=A A C c A a 是直角?? ?C a c C c a sin sin =?=?. Q C a b sin =?=? c b ΔABC 是等腰直角三角形。 例2.(1)在△ABC 中,已知cosA =13 5,sinB =53 ,则cosC 的值为( ) A .6516 B .6556 C .65566516或 D . 65 16- 解 ∵C = π - (A + B ),∴cosC = - cos (A + B ),又∵A ∈(0, π),∴sinA = 13 12,而sinB =53 显然sinA > sinB ,∴A > B , ∵A 为锐角, ∴B 必为锐角, ∴ cosB = 5 4 ∴cosC = - cos (A + B ) = sinAsinB - cosAcosB =65 1654135531312=?-?.选A . 说明 △ABC 中,sinA > sinB ?A > B . 根据这一充要条件可判定B 必为锐角。 (2)在Rt △ABC 中,C =90°,A =θ,外接圆半径为R ,内切圆半径为r ,

(完整版)平面向量与三角形四心问题.docx

平面向量基本定理与三角形四心 已知 O 是ABC 内的一点,BOC ,AOC , AOB 的面积分别为S A, S B, S C,求证:S A? OA S B? OB S C? OC 0 A 如图 2延长 OA 与 BC 边相交于点 D 则 O B C 图 1 BD S A BD S BOD S ABD S BOD S C DC S ACD S COD S ACD S COD S B OD DC OB BD OC BC BC A O S B OB S C OC S B S C S B S C B D C OD S BOD S COD S BOD S COD S A OA S BOA S COA S BOA S COA S B S C 图2 OD S A OA S B S C S A OA S B OB S C OC S C S B S B S C S B S C S A? OA S B? OB S C? OC 0 推论 O 是 ABC 内的一点,且 x?OA y?OB z?OC0 ,则S BOC: S COA: S AOB x : y : z

有此定理可得三角形四心向量式O 是ABC 的重心 S BOC: S COA: S O 是ABC 的内心 S BOC: S COA: S O 是ABC 的外心 S BOC: S COA: S AOB AOB AOB 1:1:1OA OB OC0 a : b : c a ?OA b ?OB c ?OC0 sin 2A :sin 2B : sin 2C sin 2A ? OA sin 2B ? OB sin 2C ?OC0 O 是ABC 的垂心 S BOC: S COA: S AOB tan A: tan B : tan C tan A ?OA tan B ? OB tan C ?OC0 C O A D B 证明:如图 O 为三角形的垂心, tan A CD , tan B CD tan A: tan B DB : AD AD DB S BOC: S COA DB : AD S BOC: S COA tan A : tan B 同理得 S COA: S AOB tan B : tan C , S BOC: S AOB tan A : tan C S BOC: S COA: S AOB tan A: tan B : tan C 奔驰定理是三角形四心向量式的完美统一

高中数学知识点总结之平面向量与空间解析几何(经典必看)

56. 你对向量的有关概念清楚吗? (1)向量——既有大小又有方向的量。 ()向量的模——有向线段的长度,2||a → ()单位向量,3100|||| a a a a →→ → → == ()零向量,4000→ → =|| ()相等的向量长度相等方向相同5???? =→→ a b 在此规定下向量可以在平面(或空间)平行移动而不改变。 (6)并线向量(平行向量)——方向相同或相反的向量。 规定零向量与任意向量平行。 b a b b a → → → → → → ≠?=∥存在唯一实数,使()0λλ (7)向量的加、减法如图: OA OB OC →+→=→ OA OB BA →-→=→ (8)平面向量基本定理(向量的分解定理) e e a → → → 12,是平面内的两个不共线向量,为该平面任一向量,则存在唯一

实数对、,使得,、叫做表示这一平面内所有向量λλλλ12112212a e e e e →→→→→ =+ 的一组基底。 (9)向量的坐标表示 i j x y →→ ,是一对互相垂直的单位向量,则有且只有一对实数,,使得 ()a x i y j x y a a x y → →→→→ =+=,称,为向量的坐标,记作:,,即为向量的坐标() 表示。 ()()设,,,a x y b x y → → ==1122 ()()()则,,,a b x y y y x y x y → →±=±=±±11121122 ()()λλλλa x y x y →==1111,, ()()若,,,A x y B x y 1122 ()则,AB x x y y → =--2121 ()()||AB x x y y A B →= -+-212212,、两点间距离公式 57. 平面向量的数量积 ()··叫做向量与的数量积(或内积)。1a b a b a b →→→→→→ =||||cos θ []θθπ为向量与的夹角,,a b → → ∈0

高等数学 向量代数与空间解析几何复习

第五章 向量代数与空间解析几何 5.1向量 既有大小又有方向的量 表示:→ -AB 或a (几何表示)向量的大小称为向量的模,记作||AB 、|a |、||a 1. 方向余弦:??? ? ??=||,||,||)cos ,cos ,(cos r r r z y x γβα r =(x ,y ,z ),| r |=2 22z y x ++ 2. 单位向量 )cos ,cos ,(cos γβα=→ a 模为1的向量。 3. 模 → →→ ?=++=a a z y x a 2 22|| 4. 向量加法(减法) ),,(212121z z y y x x b a ±±±=±→ → 5. a ·b =| a |·| b |cos θ212121z z y y x x ++= a ⊥ b ?a ·b =0(a ·b =b ·a ) 6. 叉积、外积 |a ?b | =| a || b |sin θ= z y x z y x b b b a a a k j i a // b ?a ?b =0.( a ?b= - b ?a ) ? 2 12 12 1z z y y x x == 7. 数乘:),,(kz ky kx ka a k ==→ → 例1 1||,2||==→ → b a ,→ a 与→ b 夹角为 3 π ,求||→ →+b a 。 解 2 2 ||cos ||||2||2)()(||→ →→→ → →→ →→ →→ → → → → → ++= ?+?+?= +?+=+b b a a b b b a a a b a b a b a θ 713 cos 12222 = +???+= π 例2 设2)(=??c b a ,求)()]()[(a c c b b a +?+?+。 解 根据向量的运算法则 )()]()[(a c c b b a +?+?+

用向量方法解立体几何题

用向量方法求空间角和距离 前言: 在高考的立体几何试题中,求角与距离是常考查的问题,其传统的“三步曲”解法:“作图、证明、解三角形”,作辅助线多、技巧性强,是教学和学习的难点.向量进入高中教材,为立体几何增添了活力,新思想、新方法与时俱进,本专题将运用向量方法简捷地解决这些问题. 1.求空间角问题 空间的角主要有:异面直线所成的角;直线和平面所成的角;(平面和平面所成的角)二面角. (1)求异面直线所成的角 设a 、b 分别为异面直线a 、b 的方向向量, 则两异面直线所成的角α=arccos |||||| a b a b (2)求线面角 设l 是斜线l 的方向向量,n 是平面α的法向量, 则斜线l 与平面α所成的角α=arcsin |||||| l n l n (3)求二面角 a l ⊥,在β内 b l ⊥,其方向如图,则二 方法一:在α内 平面角α=arccos |||| a b a b 面角l αβ--的 方法二:设12,,n n 是二面角l αβ--的两个半平面的法向量,其方向一个指向内侧,另一个指向外侧,则二面角l αβ--的平面角 α=12 12arccos |||| n n n n

2.求空间距离问题 构成空间的点、线、面之间有七种距离,这里着重介绍点面距离的求法,像异面直线间的 距离、线面距离、面面距离都可化为点面距离来求. (1)求点面距离 方法一:设n 是平面α的法向量,在α内取一点B, 则 A 到 α的距离|| |||cos ||| AB n d AB n θ== 方法二:设AO α⊥于O,利用AO α⊥和点O 在α内 的向量表示,可确定点O 的位置,从而求出||AO . (2)求异面直线的距离 方法一:找平面β使b β?且a β,则异面直线a 、b 的距离就转化为直线a 到平面β的距离,又转化为点A 到平面β的距离. 方法二:在a 上取一点A, 在b 上取一点B, 设a 、b 分别为异面直 线a 、b 的方向向量,求n (n a ⊥, n b ⊥),则异面直线a 、b 的距离 || |||cos ||| AB n d AB n θ== (此方法移植于点面距离的求法). 例1.如图,在棱长为2的正方体1111ABCD A B C D -中,E 、F 分别是 棱1111,A D A B 的中点. (Ⅰ)求异面直线1DE FC 与所成的角; (II )求1BC 和面EFBD 所成的角; (III )求1B 到面EFBD 的距离 记异面直线1DE FC 与所成的角为α, 解:(Ⅰ) 则α 等于向量 1 DE FC 与的夹角或其补角, 1 1 ||||111111cos || ()() ||||||DE FC DE FC DD D E FB B C DE FC α∴=++=

平面向量中的三角形四心问题教师版

平面向量中的三角形四心问题 向量是高中数学中引入的重要概念,是解决几何问题的重要 工具。本文就平面向量与三角形四心的联系做一个归纳总结。在给出结论及证明结论的过程中,可以体现数学的对称性与推论的相互关系。 一、重心(barycenter) 三角形重心是三角形三边中线的交点。重心到顶点的距离与 重心到对边中点的距离之比为2:1。 结论1: 是三角形的重心 所在平面内一点,则为若G GC GB GA ABC G ?=++?0 的重心 为故上 在中线同理可得上 在中线这表明,,则中点为证明:设ABC G CF BE G AD G GD GA GC GB GA GC GB GA GC GB GD D BC ?=-∴+=-?=+++=,, 202 结论2: 的重心 是证明:的重心 是所在平面内一点,则为若ABC G GC GB GA PC PG PB PG PA PG PC PB PA PG ABC G PC PB PA PG ABC ??=++?=-+-+-?++=??++=?0 0)()()()(3 1)(3 1P

二、垂心(orthocenter) 三角形的三条高线的交点叫做三角形的垂心。 结论3: 的垂心是所在平面内一点,则为若ABC H HA HC HC HB HB HA ABC ???=?=??H 为三角形垂心 故同理,有证明:H AB HC CB HA AC HB AC HB HC HA HB HC HB HB HA ⊥⊥⊥?=??=-???=?,00 )( 结论4: 可知命题成立由结论同理可证得,得,证明:由的垂心 是所在平面内一点,则为若3)()(H 222222222 22222HA HC HC HB HB HA HA HC HC HB HA HC HB HC HB HA CA HB BC HA ABC H AB HC AC HB BC HA ABC ?=?=??=??-+=-++=+??+=+=+?三、外心(circumcenter) 三角形三条边的垂直平分线(中垂线)的相交点。用这个点做圆心可以画三角形的外接圆。 结论5: 命题成立 证明:由外心定义可知的外心是所在平面内一点,则 是若ABC O OC OB OA ABC O ??==?

向量代数与空间解析几何相关概念和例题

空间解析几何与向量代数 向量及其运算 目的:理解向量的概念及其表示;掌握向量的运算,了解两个向量垂直、平行的条件;掌握空间直角坐标系的概念,能利用坐标作向量的线性运算; 重点与难点 重点:向量的概念及向量的运算。难点:运算法则的掌握 过程: 一、向量 既有大小又有方向的量称作向量 通常用一条有向线段来表示向量.有向线段的长度表示向量的大小,有向线段的方向表示向量的方向. 向量的表示方法有两种:→a、 →AB 向量的模:向量的大小叫做向量的模.向量→a、→AB的模分别记为| |→a、| |→AB. 单位向量:模等于1的向量叫做单位向量. 零向量:模等于0的向量叫做零向量,记作→0.规定:→0方向可以看作是任意的. 相等向量:方向相同大小相等的向量称为相等向量 平行向量(亦称共线向量):两个非零向量如果它们的方向相同或相反,就称这两个向量平行.记作a // b.规定:零向量与任何向量都平行. 二、向量运算 向量的加法 向量的加法:设有两个向量a与b,平移向量使b的起点与a的终点重合,此时从a 的起点到b的终点的向量c称为向量a与b的和,记作a+b,即c=a+b . 当向量a与b不平行时,平移向量使a与b的起点重合,以a、b为邻边作一平行四边形,从公共起点到对角的向量等于向量a与b的和a+b. 向量的减法: 设有两个向量a与b,平移向量使b的起点与a的起点重合,此时连接两向量终点且指向被减数的向量就是差向量。 →→→→→ A O OB OB O A AB- = + =, 2、向量与数的乘法 向量与数的乘法的定义: 向量a与实数λ的乘积记作λa,规定λa是一个向量,它的模|λa|=|λ||a|,它的方向当λ>0时与a相同,当λ<0时与a相反. (1)结合律λ(μa)=μ(λa)=(λμ)a; (2)分配律(λ+μ)a=λa+μa; λ(a+b)=λa+λb. 例1在平行四边形ABCD中,设 ?→ ? AB=a, ?→ ? AD=b.

(完整版)§7空间解析几何与向量代数习题与答案

第七章 空间解析几何与向量代数 A 一、 1、 平行于向量)6,7,6(-=a 的单位向量为______________. 2、 设已知两点)2,0,3()1,2,4(21M M 和,计算向量21M M 的模,方向余弦和方向角. 3、 设k j i p k j i n k j i m 45,742,853-+=--=++=,求向量p n m a -+=34在x 轴 上的投影,及在y 轴上的分向量. 二、 1、设k j i b k j i a -+=--=2,23,求(1)b a b a b a b a 23)2)(2(??-??及; 及(3)a 、b 的夹角的余弦. 2、知)3,1,3(),1,3,3(),2,1,1(321M M M -,求与3221,M M M M 同时垂直的单位向量.

3、设)4,1,2(),2,5,3(=-=b a ,问μλ与满足_________时,轴z b a ⊥+μλ. 三、 1、以点(1,3,-2)为球心,且通过坐标原点的球面方程为__________________. 2、方程02422 2 2 =++-++z y x z y x 表示______________曲面. 3、1)将xOy 坐标面上的x y 22 =绕x 轴旋转一周,生成的曲面方程为 __ _____________,曲面名称为___________________. 2)将xOy 坐标面上的x y x 22 2 =+绕x 轴旋转一周,生成的曲面方程 _____________,曲面名称为___________________. 3)将xOy 坐标面上的36942 2 =-y x 绕x 轴及y 轴旋转一周,生成的曲面方 程为_____________,曲面名称为_____________________. 4)在平面解析几何中2x y =表示____________图形。在空间解析几何中 2x y =表示______________图形. 5)画出下列方程所表示的曲面 (1))(42 22y x z += (2))(42 2 y x z += 四、

和三角形有关的向量问题

与三角形有关的向量问题 三角形有关的问题可以很好体现向量的核心问题如和差、数乘、数量积。在与三角形的重心、垂心、外心、内心等问题的联系上特别值得重视。 一、 三角形基本问题 例1. 如图?ABC 中,= c ,= a ,= b , 则下列推导不正确的是…(D ) A .若a ?b < 0,则△ABC 为钝角三角形。 B .若a ?b = 0,则△AB C 为直角三角形。 C .若a ?b = b ?c ,则△ABC 为等腰三角形。 D .若c ?(a + b + c ) = 0,则△ABC 为正三角形。 解:A .a ?b = |a ||b |θcos < 0,则θcos < 0,θ为钝角 B .显然成立 C .由题设:|a |cos C = |c |cos A ,即a 、c 在b 上的投影相等 D .∵a + b + c = 0, ∴上式必为0,∴不能说明△ABC 为正三角形 例2. 如图:已知MN 是△ABC 的中位线, 求证:MN =2 1BC , 且MN ∥BC 证:∵MN 是△ABC 的中位线, ∴21=, 21= ∴2 1)(212121=-=-=-= ∴MN =2 1BC , 且MN ∥BC 例 3. 已知:平面上三点O 、A 、B 不共线,求证:平面上任一点C 与A 、B 共线的充要条件是存在实数λ和μ,使=λ+ μ,且λ+ μ = 1。 证:必要性:设A ,B ,C 三点共线,则可设AC = t AB (t ∈R) 则OC =OA +AC =OA + t AB =OA + t (OB -OA ) = (1-t )OA + t OB 令1-t =λ,t = μ,则有:=λ+ μ,且λ+ μ = 1 充分性:=-=λ+ μ-= (λ-1)+ μ = -μ+ μ= μ(-) = μ ∴三点A 、B 、C 共线 例4.(04浙江) 已知平面上三点C B A ,, 3= 4= 5=,则 AB CA CA BC BC AB ?+?+?的值等于 一般地对于?ABC 的结论是 A B C N M

平面向量及解析几何

六、平面向量 考试要求:1、理解向量的概念,掌握向量的几何表示,了解共线向量的概念。2、掌握向量的加法和减法。3、掌握实数与向量的积,理解两个向量共线的充要条件。4、了解平面向量的基本定理,理解平面向量的坐标的概念,掌握平面向量的坐标运算。5、掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直问题,掌握向量垂直的条件。6、掌握平面两点间的距离公式,以及线段的定比分点和中点坐标公式,并且能熟练运用,掌握平移公式。 1、已知向量与不共线,且0||||≠=,则下列结论中正确的是 A .向量-+与垂直 B .向量-与垂直 C .向量b a +与a 垂直 D .向量b a b a -+与共线 2.已知在△ABC 中,?=?=?,则O 为△ABC 的 A .内心 B .外心 C .重心 D .垂心 3.在△ABC 中设a AB =,b AC =,点D 在线段BC 上,且3BD DC = ,则AD 用b a ,表 示为 。 4、已知21,e e 是两个不共线的向量,而→→→ →→ → +=-+=2121232)2 51(e e b e k e k a 与是两个共线 向量,则实数k = . 5、设→ i 、→ j 是平面直角坐标系内分别与x 轴、y 轴方向相同的两个单位向量,且 →→+=j i 24,→ →+=j i 43,则△OAB 的面积等于 : A .15 B .10 C .7.5 D .5 6、已知向量OB OA OC OB OA +==--=),3,2(),1,3(,则向量OC 的坐标是 , 将向量按逆时针方向旋转90°得到向量,则向量的坐标是 . 7、已知)3,2(),1,(==k ,则下列k 值中能使△ABC 是直角三角形的值是 A . 2 3 B .21- C .-5 D .31- 8、在锐角三角形ABC 中,已知ABC ?==,1||,4||的面积为3,则=∠BAC ,?的值为 . 9、已知四点A ( – 2,1)、B (1,2)、C ( – 1,0)、D (2,1),则向量与的位置关系是 A. 平行 B. 垂直 C. 相交但不垂直 D. 无法判断 10、已知向量OB OA CA OC OB 与则),sin 2,cos 2(),2,2(),0,2(αα===夹角的范围

相关文档
最新文档