开关电源的PCB设计规范

开关电源的PCB设计规范
开关电源的PCB设计规范

开关电源的PCB设计规范

摘自《伟纳电子》

在任何开关电源设计中,PCB板的物理设计都是最后一个环节,如果设计方法不当,PCB可能会辐射过多的电磁干扰,造成电源工作不稳定,以下针对各个步骤中所需注意的事项进行分析:

一、从原理图到PCB的设计流程建立元件参数->输入原理网表->设计参数设置->手工布局->手工布线->验证设计->复查->CAM输出。

二、参数设置相邻导线间距必须能满足电气安全要求,而且为了便于操作和生产,间距也应尽量宽些。最小间距至少要能适合承受的电压,在布线密度较低时,信号线的间距可适当地加大,对高、低电平悬殊的信号线应尽可能地短且要加大间距,一般情况下将走线间距设为8mil。

焊盘内孔边缘到印制板边的距离要大于1mm,这样可以避免加工时导致焊盘缺损。当与焊盘连接的走线较细时,要将焊盘与走线之间的连接设计成水滴状,这样的好处是焊盘不容易起皮,而是走线与焊盘不易断开。

三、元器件布局实践证明,即使电路原理图设计正确,印制电路板设计不当,也会对电子设备的可靠性产生不利影响。例如,如果印制板两条细平行线靠得很近,则会形成信号波形的延迟,在传输线的终端形成反射噪声;由于电源、地线的考虑不周到而引起的干扰,会使产品的性能下降,因此,在设计印制电路板的时候,应注意采用正确的方法。每一个开关电源都有四个电流回路:

(1). 电源开关交流回路

(2). 输出整流交流回路

(3). 输入信号源电流回路

(4). 输出负载电流回路输入回路通过一个近似直流的电流对输入电容充电,滤波电容主要起到一个宽带储能作用;类似地,输出滤波电容也用来储存来自输出整流器的高频能量,同时消除输出负载回路的直流能量。所以,输入和输出滤波电容的接线端子十分重要,输入及输出电流回路应分别只从滤波电容的接线端连接到电源;如果在输入/输出回路和电源开关/整流回路之间的连接无法与电容的接线端直接相连,交流能量将由输入或输出滤波电容并辐射到环境中去。电源开关交流回路和整流器的交流回路包含高幅梯形电流,这些电流中谐波成分很高,其频率远大于开关基频,峰值幅度可高达持续输入/输出直流电流幅度的5倍,过渡时间通常约为50ns。这两个回路最容易产生电磁干扰,因此必须在电源中其它印制线布线之前先布好这些交流回路,每个回路的三种主要的元件滤波电容、电源开关或整流器、电感或变压器应彼此相邻地进行放置,调整元件位置使它们之间的电流路径尽可能短。建立开关电源布局的最好方法与其电气设计相似,最佳设计流程如下:

·放置变压器

·设计电源开关电流回路

·设计输出整流器电流回路

·连接到交流电源电路的控制电路

·设计输入电流源回路和输入滤波器设计输出负载回路和输出滤波器根据电路的功能单元,对电路的全部元器件进行布局时,要符合以下原则:

(1) 首先要考虑PCB尺寸大小。PCB尺寸过大时,印制线条长,阻抗增加,抗噪声能力下降,成本也增加;过小则散热不好,且邻近线条易受干扰。电路板的最佳形状矩形,长宽比为3:2或4:3,位于电路板边缘的元器件,离电

路板边缘一般不小于2mm。

(2) 放置器件时要考虑以后的焊接,不要太密集.

(3) 以每个功能电路的核心元件为中心,围绕它来进行布局。元器件应均匀、整齐、紧凑地排列在PCB上,尽量减少和缩短各元器件之间的引线和连接, 去耦电容尽量靠近器件的VCC。

(4) 在高频下工作的电路,要考虑元器件之间的分布参数。一般电路应尽可能使元器件平行排列。这样,不但美观,而且装焊容易,易于批量生产。

(5) 按照电路的流程安排各个功能电路单元的位置,使布局便于信号流通,并使信号尽可能保持一致的方向。

(6) 布局的首要原则是保证布线的布通率,移动器件时注意飞线的连接,把有连线关系的器件放在一起。

(7) 尽可能地减小环路面积,以抑制开关电源的辐射干扰。

四、布线开关电源中包含有高频信号,PCB上任何印制线都可以起到天线的作用,印制线的长度和宽度会影响其阻抗和感抗,从而影响频率响应。即使是通过直流信号的印制线也会从邻近的印制线耦合到射频信号并造成电路问题(甚至再次辐射出干扰信号)。因此应将所有通过交流电流的印制线设计得尽可能短而宽,这意味着必须将所有连接到印制线和连接到其他电源线的元器件放置得很近。印制线的长度与其表现出的电感量和阻抗成正比,而宽度则与印制线的电感量和阻抗成反比。长度反映出印制线响应的波长,长度越长,印制线能发送和接收电磁波的频率越低,它就能辐射出更多的射频能量。根据印制线路板电流的大小,尽量加租电源线宽度,减少环路电阻。同时、使电源线、地线的走向和电流的方向一致,这样有助于增强抗噪声能力。接地是开关电源四个电流回路的底层支路,作为电路的公共参考点起着很重要的作用,它是控制干扰的重要方法。因此,在布局中应仔细考虑接地线的放置,将各种接地混合会造成电源工作不稳定。在地线设计中应注意以下几点:

1. 正确选择单点接地通常,滤波电容公共端应该是其它的接地点耦合到大电流的交流地的唯一连接点,同一级电路的接地点应尽量靠近,并且本级电路的电源滤波电容也应接在该级接地点上,主要是考虑电路各部分回流到地的电流是变化的,因实际流过的线路的阻抗会导致电路各部分地电位的变化而引入干扰。在本开关电源中,它的布线和器件间的电感影响较小,而接地电路形成的环流对干扰影响较大,因而采用一点接地,即将电源开关电流回路(中的几个器件的地线都连到接地脚上,输出整流器电流回路的几个器件的地线也同样接到相应的滤波电容的接地脚上,这样电源工作较稳定,不易自激。做不到单点时,在共地处接两个二极管或一小电阻,其实接在比较集中的一块铜箔处就可以。

2. 尽量加粗接地线若接地线很细,接地电位则随电流的变化而变化,致使电子设备的定时信号电平不稳,抗噪声性能变坏,因此要确保每一个大电流的接地端子采用尽量短而宽的印制线,尽量加宽电源、地线宽度,最好是地线比电源线宽,它们的关系是:地线>电源线>信号线,如有可能,接地线的宽度应大于3mm,也可用大面积铜层作地线用,在印制板上把没被用上的地方都与地相连接作为地线用。进行全局布线的时候,还须遵循以下原则:

(1).布线方向:从焊接面看,元件的排列方位尽可能保持与原理图相一致,布线方向最好与电路图走线方向相一致,因生产过程中通常需要在焊接面进行各种参数的检测,故这样做便于生产中的检查,调试及检修(注:指在满足电路性能及整机安装与面板布局要求的前提下)。

(2).设计布线图时走线尽量少拐弯,印刷弧上的线宽不要突变,导线拐角应≥90度,力求线条简单明了。

(3).印刷电路中不允许有交叉电路,对于可能交叉的线条,可以用“钻”、“绕”两种办法解决。即让某引线从别的电阻、电容、三极管脚下的空隙处“钻”过去,或从可能交叉的某条引线的一端“绕”过去,在特殊情况下如何电路很复杂,为简化设计也允许用导线跨接,解决交叉电路问题。因采用单面板,直插元件位于top面,表贴器件位于bottom 面,所以在布局的时候直插器件可与表贴器件交叠,但要避免焊盘重叠。

3.输入地与输出地本开关电源中为低压的DC-DC,欲将输出电压反馈回变压器的初级,两边的电路应有共同的参考地,所以在对两边的地线分别铺铜之后,还要连接在一起,形成共同的地。

五、检查布线设计完成后,需认真检查布线设计是否符合设计者所制定的规则,同时也需确认所制定的规则是否符合印制板生产工艺的需求,一般检查线与线、线与元件焊盘、线与贯通孔、元件焊盘与贯通孔、贯通孔与贯通孔之间的距离是否合理,是否满足生产要求。电源线和地线的宽度是否合适,在PCB中是否还有能让地线加宽的地方。注意:有些错误可以忽略,例如有些接插件的Outline的一部分放在了板框外,检查间距时会出错;另外每次修改过走线和过孔之后,都要重新覆铜一次。

六、复查根据“PCB检查表”,内容包括设计规则,层定义、线宽、间距、焊盘、过孔设置,还要重点复查器件布局的合理性,电源、地线网络的走线,高速时钟网络的走线与屏蔽,去耦电容的摆放和连接等。

七、设计输出输出光绘文件的注意事项:

a. 需要输出的层有布线层(底层)、丝印层(包括顶层丝印、底层丝印)、阻焊层(底层阻焊)、钻孔层(底层),另外还要生成钻孔文件(NC Drill)

b. 设置丝印层的Layer时,不要选择Part Type,选择顶层(底层)和丝印层的Outline、Text、Line

c. 在设置每层的Layer时,将Board Outline选上,设置丝印层的Layer时,不要选择Part Type,选择顶层(底层)和丝印层的Outline、Text、Line。

d. 生成钻孔文件时,使用PowerPCB的缺省设置,不要作任何改。

开关电源类PCB电路板设计规范大全(一)

开关电源类PCB电路板设计规范大全(一)来源:华强PCB 在任何开关电源设计中,PCB板的物理设计都是最后一个环节,如果设计方法不当,PCB可能会辐射过多的电磁干扰,造成电源工作不稳定,以下针对各个步骤中所需注意的事项进行分析: 一、从原理图到PCB的设计流程建立元件参数->输入原理网表->设计参数设置->手工布局->手工布线->验证设计->复查->CAM输出. 二、参数设置相邻导线间距必须能满足电气安全要求,而且为了便于操作和生产,间距也应尽量宽些.最小间距至少要能适合承受的电压,在布线密度较低时,信号线的间距可适当地加大,对高、低电平悬殊的信号线应尽可能地短且加大间距,一般情况下将走线间距设为8mil. 焊盘内孔边缘到印制板边的距离要大于1mm,这样可以避免加工时导致焊盘缺损.当与焊盘连接的走线较细时,要将焊盘与走线之间的连接设计成水滴状,这样的好处是焊盘不容易起皮,而是走线与焊盘不易断开. 三、元器件布局实践证明,即使电路原理图设计正确,印制电路板设计不当,也会对电子设备的可靠性产生不利影响.例如,如果印制板两条细平行线靠得很近,则会形成信号波形的延迟,在传输线的终端形成反射噪声;由于电源、地线的考虑不周到而引起的干扰,会使产品的性能下降,因此,在设计印制电路板的时候,应注意采用正确的方法.每一个开关电源都有四个电流回路: (1). 电源开关交流回路

(2).输出整流交流回路 (3). 输入信号源电流回路 (4). 输出负载电流回路输入回路通过一个近似直流的电流对输入电容充电,滤波电容主要起到一个宽带储能作用;类似地,输出滤波电容也用来储存来自输出整流器的高频能量,同时消除输出负载回路的直流能量.所以,输入和输出滤波电容的接线端十分重要,输入及输出电流回路应分别只从滤波电容的接线端连接到电源;如果在输入/输出回路和电源开关/整流回路之间的连接无法与电容的接线端直接相连,交流能量将由输入或输出滤波电容并辐射到环境中去.电源开关交流回路和整流器的交流回路包含高幅梯形电流,这些电流中谐波成分很高,其频率远大于开关基频,峰值幅度可高达持续输入/输出直流电流幅度的5倍,过渡时间通常约为50ns.这两个回路最容易产生电磁干扰,因此必须在电源中其它印制线布线之前先布好这些交流回路,每个回路的三种主要的元件滤波电容、电源开关或整流器、电感或变压器应彼此相邻地进行放置,调整元件位置使它们之间的电流路径尽可能短.建立开关电源布局的最好方法与其电气设计相似,最佳设计流程如下: ·放置变压器 ·设计电源开关电流回路 ·设计输出整流器电流回路

开关电源PCB设计流程及布线技巧

开关电源PCB设计流程及布线技巧在任何开关电源设计中,PCB板的物理设计都是最后一个环节,如果设计方法不当,PCB可能会辐射过多的电磁干扰,造成电源工作不稳定,以下针对各个步骤中所需注意的事项进行分析: 一、从原理图到PCB的设计流程 建立元件参数-》输入原理网表-》设计参数设置-》手工布局-》手工布线-》验证设计-》复查-》cam输出。 二、参数设置 相邻导线间距必须能满足电气安全要求,而且为了便于操作和生产,间距也应尽量宽些。最小间距至少要能适合承受的电压,在布线密度较低时,信号线的间距可适当地加大,对高、低电平悬殊的信号线应尽可能地短且加大间距,一般情况下将走线间距设为8mil。焊盘内孔边缘到印制板边的距离要大于1mm,这样可以避免加工时导致焊盘缺损。当与焊盘连接的走线较细时,要将焊盘与走线之间的连接设计成水滴状,这样的好处是焊盘不容易起皮,而是走线与焊盘不易断开。 如图:

三、元器件布局 实践证明,即使电路原理图设计正确,印制电路板设计不当,也会对电子设备的可靠性产生不利影响。例如,如果印制板两条细平行线靠得很近,则会形成信号波形的延迟,在传输线的终端形成反射噪声;由于电源、地线的考虑不周到而引起的干扰,会使产品的性能下降,因此,在设计印制电路板的时候,应注意采用正确的方法。每一个开关电源都有四个电流回路: (1)电源开关交流回路 (2)输出整流交流回路 (3)输入信号源电流回路 (4)输出负载电流回路输入回路 通过一个近似直流的电流对输入电容充电,滤波电容主要起到一个宽带储能作用;类似地,输出滤波电容也用来储存来自输出整流器的高频能量,同时消除输出负载回路的直流能量。所以,输入和输出滤波电容的接线端十分重要,输入及输出电流回路应分别只从滤波电容的接线端连接到电源;如果在输入/输出回

开关电源的EMC及安全规范设计

开关电源的EMC及安全规范设计 开关电源不需要沉重的电源变压器,具有体积小、重量轻、效率高的优点,且市场上已有成品开关电源集成控制模块,使电源设计、调试简化许多,所以,在大多数的电子设备(如计算机、电视机及各种控制系统)中得到了广泛的应用。然而,开关电源自身产生的各种噪声却形成了一个很强的电磁干扰源。这些干扰随着开关频率的提高、输出功率的增大而明显地增强,对电子设备的正常运行构成了潜在的威胁。因此,只有提高开关电源的电磁兼容性,才能使开关电源在那些对电源噪声指标有严格要求的场合下被采用。 开关电源产生噪声的原因 开关电源的种类很多,按变换器的电路结构可分为串并联式和直流变换式两种;按激励方式可分为自激和它激两种;按开关管的组合可分为桥式、半桥式、推挽式等。但无论何种类型的开关电源都是利用半导体器件的开和关工作的,并以开和关的时间比来控制输出电压的高低。由于它通常在20kHz以上的开关频率下工作,所以电源线路内的dv/dt、di/dt 很大,产生很大的浪涌电压、浪涌电流和其它各种噪声。它们通过电源线以共模或差模方式向外传导,同时还向周围空间辐射噪声。图1给出了一种典型的开关电源电路的简图,下面以此为例分析其产生噪声的主要原因。 一次整流回路的噪声 在一次整流回路中,整流二极管D1~D4只有在脉动电压超过C1的充电电压的瞬间,电流才从电源输入侧流入。所以,一次整流回路产生高次畸变波,形成噪声。 开关回路的噪声 一是电磁辐射。电源在工作时,开关管T处于高频率通断状态,在由脉冲变压器初级线圈L、开关管T和滤波器C构成的高频电流环路中,可能会产生较大的空间辐射噪声。如果C的滤波不足,则高频电流还会以差模方式传导到交流电源中去。二是感性负载引起的浪涌电压。在开关回路中开关管T的负载是脉冲变压器的初级线圈L,是感性负载,所以开关管在通断时,在脉冲变压器的初级线圈的两端会出现较高的浪涌电压,很可能造成与此

反激式开关电源PCB设计要点

反激式开关电源PCB设计要点 反激电源整体原理图如图1所示。 图1开关电源从市电火线L和零线N进来后,有一个电流较大的保险管,如图1所示。这是因为板子上有其他市电交流负载,如交流电机等,当负载电流过大时,保护电路。该保险管电流参数需要根据实际负载功率计算选择。保险管后有一个压敏电阻(如图2所示),用于抑制浪涌和瞬时尖峰电压,当其两端电压高于其阈值时,压敏电阻值迅速下降,从而流过大电流,保护后级电路。在压敏电阻后又有一个电流较小的保险管(如图2所示),这才是真正针对板子开关电源的过流保护,防止电源电流过大,保护电路。保险管后的NTC电阻(如图2所示),用于抑制开机时的浪涌电流,因为刚开机时,NTC温度较低,电阻值很大,抑制电流过大;当在电流作用下,NTC电阻温度升高,电阻值下降到很小,不影响正常工作电流。安规X电容(如图2所示)用于滤除市电的差模干扰,其后的3个电阻主要用于给X电容放电,以符合安规要求,防止在切断市电输入时,人手触摸到金属

端子有触电感。使用多个电阻的原因是分散承受电压和功率。共模电感(如图2所示)用于滤除共模干扰电流。 图2输入电容EC1在行业上有个3uF/W的通用原则,但需要注意的是该功率是输入功率而非输出功率,假设输出功率12W,效率为80%,则输入功率为15W,则输入电容至少为45uF,如图8所示。由于反激电源演变自Buck-Boost,其输入回路和输出回路均是电流不连续路径,因此均要控制回路面积越小越好。输入电容EC1要靠近电源芯片,如图3所示。同理,输出整流二极管和输出电容也应该靠近变压器。

图3RCD钳位电路用于吸收开关管关断时的Vds高压,防止损坏MOS 管(电源芯片)。Layout时需将电容靠近变压器,电阻次之,如图4所示。

开关电源类产品设计的安全规范(标准版)

开关电源类产品设计的安全规 范(标准版) Safety management is an important part of enterprise production management. The object is the state management and control of all people, objects and environments in production. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0679

开关电源类产品设计的安全规范(标准版) 1.范围 1.1本规范规定了0公司户内使用、额定电压≤600V的开关电源类产品的设计安全要求,它包括参考标准资料、标志说明、一般要求和试验一般条件、电气技术参数规格、材料和结构、电气试验、机械试验、环境可靠性试验、包装、存放、出货和附录项内容。 1.2它主要以信息技术设备,包括电气事务设备及与之相关设备的安全标准为基础编写。 2.主要参考资料 2.1IEC60950-1999:信息技术设备的安全。 2.2IEC61000-4(所有系列):电磁兼容--试验和测量技术。 2.3IEC61000-3-2-1998:电磁兼容第3部分:限值第2章低压

电气及电子设备发出的谐波电流限值(设备每相输入电流≤16A)。 2.4IEC61000-3-3-1998:电磁兼容第3部分:限值第3章标称电流≦16A的低压电气及电子设备的供电系统中电压波动和变化的 限值。 2.5IEC60384-14-1993:电子设备用固定电容器第14部分:分规范拟制电源电磁干扰用固定电容器。 2.6CISPR22-1998:信息技术设备的无线电干扰特性的限值和测量方法。 2.7CISPR24-1997:信息技术设备的无线电抗干扰特性的限值和测量方法。 2.8IEC60695-10-2:1995:着火危险试验第10部分:减少着火对电子技术产品而引起的不正常发热效应的指南和试验方法第2部分:用球压试验测试非金属材料构成产品的耐热方法。 2.9IEC61140-1997:防电击保护设备和安装的一般要求。 2.10IEC60227-1997:额定电压450V/750V及以下PVC绝缘电缆。 3.标记和说明

开关电源类产品设计的安全规范

仅供参考[整理] 安全管理文书 开关电源类产品设计的安全规范 日期:__________________ 单位:__________________ 第1 页共14 页

开关电源类产品设计的安全规范 1.范围 1.1本规范规定了0公司户内使用、额定电压≤600V的开关电源类产品的设计安全要求,它包括参考标准资料、标志说明、一般要求和试验一般条件、电气技术参数规格、材料和结构、电气试验、机械试验、环境可靠性试验、包装、存放、出货和附录项内容。 1.2它主要以信息技术设备,包括电气事务设备及与之相关设备的安全标准为基础编写。 2.主要参考资料 2.1IEC60950-1999:信息技术设备的安全。 2.2IEC61000-4(所有系列):电磁兼容--试验和测量技术。 2.3IEC61000-3-2-1998:电磁兼容第3部分:限值第2章低压电气及电子设备发出的谐波 电流限值(设备每相输入电流≤16A)。 2.4IEC61000-3-3-1998:电磁兼容第3部分:限值第3章标称电流≦16A的低压电气及电子设备的供电系统中电压波动和变化的限值。 2.5IEC60384-14-1993:电子设备用固定电容器第14部分:分规范拟制电源电磁干扰用固定电容器。 2.6CISPR22-1998:信息技术设备的无线电干扰特性的限值和测量方法。 2.7CISPR24-1997:信息技术设备的无线电抗干扰特性的限值和测量方法。 2.8IEC60695-10-2:1995:着火危险试验第10部分:减少着火对电子技术产品而引起的不正常发热效应的指南和试验方法第2部分: 第 2 页共 14 页

开关电源课程设计

太原理工大学课程设计任务书 指导教师签名:日期:

前言 随着电力电子技术的发展,开关电源的应用越来越广泛。反激式开关电源以其设计简单,体积小巧等优势,广泛应用于小功率场合。开关电源以其小型、轻量和高效率的特点,被广泛地应用于各种电气设备和系统中,其性能的优劣直接关系到整个系统功能的实现。开关稳压电源有多种类型,其中单端反激式开关电源由于具有线路简单,所需要的元器件少,能够提供多路隔离输出等优点而广泛应用于小功率电源领域。 本论文根据输入电压经EMI滤波设计整流桥,再与直流变压器开关管构成反激电路。通过输出反馈经UC3842控制占空比,从而使输出电压稳定。反激电路中开关管开通原边线圈储存能量,副边不导通。原边关断时,线圈储存的能量通过互感向负载提供能量。输出电压反馈由TL431和光耦构成,当输出稳定时,有一个稳定的电流;当输出电压增大时,TL431分流增加,发光二极管亮度改变,使三级管电流改变,致使开关管控制导通占空比改变,从而使输出电压减小。另外,芯片UC3842引脚接一电流反馈,通过控制分压值实现截流保护,防止输出过电流。 设计中,直流变压器的设计是重点,需要计算其原边电感,原副边匝数,铁芯的选择,根据这些参数构造电路图,计算各电容电阻值及二极管承受的反压,选择合适的型号。 论文先介绍了开关电源及反激式开关电源,然后介绍器件选型,再分部分介绍主电路、控制电路和保护电路,最后附表为选择时参数参考表和总电路图。

目录 前言 第一章开关电源概述 (1) 1.1开关电源综述 (1) 1.2反激式开关电源介绍 (2) 第二章总体方案的确定 (2) 2.1总体设计思路及框图 (2) 2.2仿真原理图 (3) 第三章具体电路设计 (5) 3.1EMI滤波电路 (5) 3.2整流滤波电路设计 (6) 3.3高频变压器的设计 (7) 3.4控制反馈电路的设计 (15) 3.5保护电路的设计 (17) 3.6输出侧滤波电路设计 (18) 第四章电路仿真与结果 (19) 4.1 EMI滤波电路 (19) 4.2整流电路 (21) 4.3反激型电路 (22) 4.4反馈电路 (23) 4.5总电路 (24) 心得体会 (25) 参考文献 (26)

开关电源的系统设计深度解读

开关电源的系统设计深度解读 开关电源的系统设计深度解读 时间:2013-03-05 214次阅读【网友评论0条我要评论】收藏 首先从开关电源的设计及生产工艺开始描述吧,先说说印制板的设计。开关电源工作在高频率,高脉冲状态,属于模拟电路中的一个比较特殊种类。布板时须遵循高频电路布线原则。 1、布局:脉冲电压连线尽可能短,其中输入开关管到变压器连线,输出变压器到整流管连接线。脉冲电流环路尽可能小如输入滤波电容正到变压器到开关管返回电容负。输出部分变压器出端到整流管到输出电感到输出电容返回变压器电路中X电容要尽量接近开关电源输入端,输入线应避免与其他电路平行,应避开。 Y电容应放置在机壳接地端子或FG连接端。共摸电感应与变压器保持一定距离,以避免磁偶合。如不好处理可在共摸电感与变压器间加一屏蔽,以上几项对开关电源的EMC性能影响较大。 输出电容一般可采用两只一只靠近整流管另一只应靠近输出端子,可影响电源输出纹波指标,两只小容量电容并联效果应优于用一只大容量电容。发热器件要和电解电容保持一定距离,以延长整机寿命,电解电容是开关电源寿命的瓶劲,如变压器、功率管、大功率电阻要和电解保持距离,电解之间也须留出散热空间,条件允许可将其放置在进风口。 控制部分要注意:高阻抗弱信号电路连线要尽量短如取样反馈环路,在处理时要尽量避免其受干扰、电流取样信号电路,特别是电流控制型电路,处理不好易出现一些想不到的意外,其中有一些技巧,现以3843电路举例见图(1)图一效果要好于图二,图二在满载时用示波器观测电流波形上明显叠加尖刺,由于干扰限流点比设计值偏低,图一则没有这种现象、还有开关管驱动信号电路,开关管驱动电阻要靠近开关管,可提高开关管工作可靠性,这和功率MOSFET高直流阻抗电压驱动特性有关。

开关电源的PCB布局走线

首先从开关电源的设计及生产工艺开始描述吧,先说说印制板的设计。开关电源工作在高频率,高脉冲状态,属于模拟电路中的一个比较特殊种类。布板时须遵循高频电路布线原则。 1、布局:脉冲电压连线尽可能短,其中输入开关管到变压器连线,输出变压器到整流管连接线。脉冲电流环路尽可能小如输入滤波电容正到变压器到开关管返回电容负。输出部分变压器出端到整流管到输出电感到输出电容返回变 压器电路中X电容要尽量接近开关电源输入端,输入线应避 免与其他电路平行,应避开。 Y电容应放置在机壳接地端子或FG连接端。共摸电感应与变压器保持一定距离,以避免 磁偶合。如不好处理可在共摸电感与变压器间加一屏蔽,以上几项对开关电源的EMC性能影响较大。 输出电容一般可采用两只一只靠近整流管另一只应 靠近输出端子,可影响电源输出纹波指标,两只小容量电容 并联效果应优于用一只大容量电容。发热器件要和电解电容保持一定距离,以延长整机寿命,电解电容是开关电源寿命的瓶劲,如变压器、功率管、大功率电阻要和电解保持距离,电解之间也须留出散热空间,条件允许可将其放置在进风口控制部分要注意:高阻抗弱信号电路连线要尽量短 如取样反馈环路,在处理时要尽量避免其受干扰、电流取样

信号电路,特别是电流控制型电路,处理不好易出现一些想不到的意外,其中有一些技巧 现以3843电路举例见图(1)图一效果要好于图二,图二在满载时用示波器观测电流波形上明显叠加尖刺,由于干扰限流点比设计值偏低,图一则没有这种现象、还有开关管驱动信号电路,开关管驱动电阻要靠近开关管,可提高开关管工作可靠性,这和功率 MOSFET高直流阻抗电压驱动特性有关。 下面谈一谈印制板布线的一些原则。 线间距:随着印制线路板制造工艺的不断完善和提高,一般加工厂制造出线间距等于甚至小于0.1mm已经不存在什么问题,完全能够满足大多数应用场合。考虑到开关电源所采用的元器件及生产工艺,一般双面板最小线间距设

开关电源类产品设计的安全规范(新版)

( 安全管理 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 开关电源类产品设计的安全规 范(新版) Safety management is an important part of production management. Safety and production are in the implementation process

开关电源类产品设计的安全规范(新版) 1.范围 1.1本规范规定了0公司户内使用、额定电压≤600V的开关电源类产品的设计安全要求,它包括参考标准资料、标志说明、一般要求和试验一般条件、电气技术参数规格、材料和结构、电气试验、机械试验、环境可靠性试验、包装、存放、出货和附录项内容。 1.2它主要以信息技术设备,包括电气事务设备及与之相关设备的安全标准为基础编写。 2.主要参考资料 2.1IEC60950-1999:信息技术设备的安全。 2.2IEC61000-4(所有系列):电磁兼容--试验和测量技术。 2.3IEC61000-3-2-1998:电磁兼容第3部分:限值第2章低压电气及电子设备发出的谐波电流限值(设备每相输入电流≤16A)。 2.4IEC61000-3-3-1998:电磁兼容第3部分:限值第3章标称

电流≦16A的低压电气及电子设备的供电系统中电压波动和变化的限值。 2.5IEC60384-14-1993:电子设备用固定电容器第14部分:分规范拟制电源电磁干扰用固定电容器。 2.6CISPR22-1998:信息技术设备的无线电干扰特性的限值和测量方法。 2.7CISPR24-1997:信息技术设备的无线电抗干扰特性的限值和测量方法。 2.8IEC60695-10-2:1995:着火危险试验第10部分:减少着火对电子技术产品而引起的不正常发热效应的指南和试验方法第2部分:用球压试验测试非金属材料构成产品的耐热方法。 2.9IEC61140-1997:防电击保护设备和安装的一般要求。 2.10IEC60227-1997:额定电压450V/750V及以下PVC绝缘电缆。 3.标记和说明 3.1电源额定值: 成品要清晰地标有电源额定值,它包括下列项:

开关电源的PCB布线要求

开关电源的PCB布线设计 开关电源PCB排版是开发电源产品中的一个重要过程。许多情况下,一个在纸上设计得非常完美的电源可能在初次调试时无法正常工作,原因是该电源的PCB排版存在着许多问题. 0、引言 为了适应电子产品飞快的更新换代节奏,产品设计工程师更倾向于选择在市场上很容易采购到的AC/DC适配器,并把多组直流电源直接安装在系统的线路板上。由于开关电源产生的电磁干扰会影响到其电子产品的正常工作,正确的电源PCB排版就变得非常重要。开关电源PCB排版与数字电路PCB排版完全不一样。在数字电路排版中,许多数字芯片可以通过PCB软件来自动排列,且芯片之间的连接线可以通过PCB软件来自动连接。用自动排版方式排出的开关电源肯定无法正常工作。所以,没计人员需要对开关电源PCB排版基本规则和开关电源工作原理有一定的了解。 1、开关电源PCB排版基本要点 1.1 电容高频滤波特性 图1是电容器基本结构和高频等效模型。 电容的基本公式是 式(1)显示,减小电容器极板之间的距离(d)和增加极板的截面积(A)将增加电容器的电容量。 电容通常存在等效串联电阻(ESR)和等效串联电感(ESL)二个寄生参数。图2是电容器在不同工作频率下的阻抗(Zc)。

一个电容器的谐振频率(fo)可以从它自身电容量(C)和等效串联电感量(LESL)得到,即 当一个电容器工作频率在fo以下时,其阻抗随频率的上升而减小,即 当电容器工作频率在fo以上时,其阻抗会随频率的上升而增加,即 当电容器工作频率接近fo时,电容阻抗就等于它的等效串联电阻(RESR)。 电解电容器一般都有很大的电容量和很大的等效串联电感。由于它的谐振频率很低,所以只能使用在低频滤波上。钽电容器一般都有较大电容量和较小等效串联电感,因而它的谐振频率会高于电解电容器,并能使用在中高频滤波上。瓷片电容器电容量和等效串联电感一般都很小,因而它的谐振频率远高于电解电容器和钽电容器,所以能使用在高频滤波和旁路电路上。由于小电容量瓷片电容器的谐振频率会比大电容量瓷片电容器的谐振频率要高,因此,在选择旁路电容时不能光选用电容值过高的瓷片电容器。为了改善电容的高频特性,多个不同特性的电容器可以并联起来使用。图3是多个不同特性的电容器并联后阻抗改善的效果。

开关电源EMI设计-电源PCB设计要点

开关电源EMI设计-电源PCB设计要点 摘要:由于开关电源的开关特性,容易使得开关电源产生极大的电磁兼容方面的干扰,作为一个电磁兼容工程师,或则一个PCB layout 工程师必须了解电磁兼容问题的原因已经解决措施,特别是layout 工程师,需要了解如何避免脏点的扩大,本文主要介绍了电源PCB 设计的要点。 1,几个基本原理:任何导线都是有阻抗的;电流总是自动选择阻抗最小的路径;辐射强度和电流、频率、回路面积有关;共模干扰和大dv/dt 信号对地互容有关;降低EMI 和增强抗干扰能力的原理是相似的。 2,布局要按电源、模拟、高速数字及各功能块进行分区。 3,尽量减小大di/dt 回路面积,减小大dv/dt 信号线长度(或面积,宽度也不宜太宽,走线面积增大使分布电容增大,一般的做法是:走线的宽度尽量大,但要去掉多余的部分),并尽量走直线,降低其隐含包围区域,以减小辐射。 4,感性串扰主要由大di/dt 环路(环形天线),感应强度和互感成正比,所以减小和这些信号的互感(主要途径是减小环路面积、增大距离)比较关键;容性串扰主要由大dv/dt 信号产生,感应强度和互容成正比,所有减小和这些信号的互容(主要途径是减小耦合有效面积、增大距离,互容随距离的增大降低较快)比较关键。 5,尽量利用环路对消的原则来布线,进一步降低大di/dt 回路的面积,如图1 所示(类似双绞线利用环路对消原理提高抗干扰能力,增大传输距离):

图1 ,环路对消(boost 电路的续流环) 6,降低环路面积不仅降低了辐射,同时还降低了环路电感,使电路性能更佳。 7,降低环路面积要求我们精确设计各走线的回流路径。 8,当多个PCB 通过接插件进行连接时,也需要考虑使环路面积达到最小,尤其是大di/dt 信号、高频信号或敏感信号。最好一个信号线对应一条地线,两条线尽量靠近,必要时可以用双绞线进行连接(双绞线每一圈的长度对应于噪声半波长的整数倍)。如果大家打开电脑机箱,就可以看到主板到前面板USB 接口就是用双绞线进行连接,可见双绞线连接对于抗干扰和降低辐射的重要性。 9,对于数据排线,尽量在排线中多安排一些地线,并使这些地线均匀分布在排线中,这样可以有效降低环路面积。 10,有些板间连接线虽然是低频信号,但由于这些低频信号中含有大量的高频噪声(通过传导和辐射),如果没有处理好,也很容易将这些噪声辐射出去。 11,布线时首先考虑大电流走线和容易产生辐射的走线。 12,开关电源通常有4 个电流环:输入、输出、开关、续流,(如图2 )。其中输入、输出两个电流环几乎为直流,几乎不产生emi ,但容易受干扰;开关、续流两个电流环有较大的di/dt ,需要注意。如果输入、输出两个电容用多

开关电源PCB设计实例

开关电源PCB设计实例 标签:开关电源PCB 印制电路板的制作 所有开关电源设计的最后一步就是印制电路板(PCB)的线路设计。如果这部分设计不当,PCB也会使电源工作不稳定,发射出过量的电磁干扰(EMI)。设计者的作用就是在理解电路工作过程的基础上,保证PCB设计合理。 开关电源中,有些信号包含丰富的高频分量,因而任何一条PCB引线都可能成为天线。引线的长和宽影响它的电阻和电感量,进而关系到它们的频率响应。即使是传送直流信号的引线,也会从邻近的引线上引入RF(射频)信号,使电路发生故障,或者把这干扰信号再次辐射出去。所有传送交流信号的引线要尽可能短且宽。这意味着任何与多条功率线相连的功率器件要尽可能紧挨在一起,以减短连线长度。引线的长度直接与它的电感量和电阻量成比例,它的宽度则与电感量和电阻量成反比。引线长度就决定了其响应信号的波长,引线越长,它能接收和传送的干扰信号频率就越低,它所接收到的RF(射频)能量也越大。 主要电流环路 每一个开关电源内部都有四个电流环路,每个环路要与其他环路分开。由于它们对PCB布局的重要性,下面把它们列出来: 1.功率开关管交流电流环路。 2.输出整流器交流电流环路。 3.输入电源电流环路。 4.输出负载电流环路。

图59a、b、c画出了三种主要开关电源拓扑的环路。 通常输入电源和负载电流环路并没有什么问题。这两个环路上主要是在直流电流上叠加了一些小的交流电流分量。它们一般有专门的滤波器来阻止交流噪声进入周围的电路。输入和输出电流环路连接的位置只能是相应的输入输出电容的接线端。输入环路通过近似直流的电流对输入电容充电,但它无法提供开关电源所需的脉冲电流。输入电容主要是起到高频能量存储器的作用。类似地,输出滤波电容存储来自输出整流器的高频能量,使输出负载环能以直流方式汲取能量。因此,输入和输出滤波电容接线端的放置很重要。如果输入或输出环与功率开关或整流环的连接没有直接接到电容的两端,交流能量就会从输入或输出滤波电容上流进流出,并通过输入和输出电流环“逃逸”到外面环境中。 功率开关和整流器的交流电流环路包含非常高的PWM开关电源典型的梯形电流波形。这些波形含有延展到远高于基本开关频率的谐波。这些交流电流的峰值有可能是连续输入或输出直流电流的2~5倍。典型的转换时间大约是50ns,因而这两个环路最有可能产生电磁干扰(EMI)。 在电源PCB制作中,这些交流电流环路的布线要在其他引线之前布好。每个环路由三个主要器件组成:滤波电容、功率开关管或整流器、电感或变压器。它们的放置要尽可能靠近。这些器件的方向也要确定好,以使它们之间的电流通路尽可能短。图60就

开关电源PCB设计要点及实例分析

开关电源PCB设计要点及实例分析 开关电源PCB设计要点及实例分析 开关电源PCB设计要点及实例分析 为了适应电子产品飞快的更新换代节奏,产品设计工程师更倾向于选择在市场上很容易采购到的AC/DC适配器,并把多组直流电源直接安装在系统的线路板上。由于开关电源产生的电磁干扰会影响到其电子产品的正常工作,正确的电源PCB设计就变得非常重要。开关电源PCB设计与数字电路PCB设计完全不一样。在数字电路排版中,许多数字芯片可以通过PCB软件来自动排列,且芯片之间的连接线可以通过PCB软件来自动连接。用自动排版方式排出的开关电源肯定无法正常工作。所以,设计人员需要对开关电源PCB设计基本规则和开关电源工作原理有一定的了解。 1 开关电源PCB设计基本要点 1.1 电容高频滤波特性 图1是电容器基本结构和高频等效模型。 图1 电容器结构和寄生等效串联电阻和电感 电容的基本公式是 C=Εrε0 (1)

式(1)显示,减小电容器极板之间的距离(D)和增加极板的截面积(A)将增加电容器的电容量。 电容通常存在等效串联电阻(ESR)和等效串联电感(ESL)二个寄生参数。图2是电容器在不同工作频率下的阻抗(ZC)。 图2 电容阻抗(ZC)曲线 一个电容器的谐振频率(F0)可以从它自身电容量(C)和等效串联电感量(LESL)得到,即 F0= (2) 当一个电容器工作频率在F0以下时,其阻抗随频率的上升而减小,即 ZC= (3) 当电容器工作频率在F0以上时,其阻抗会随频率的上升而增加,即 ZC=J2πfLESL(4) 当电容器工作频率接近F0时,电容阻抗就等于它的等效串联电阻(RESR)。 电解电容器一般都有很大的电容量和很大的等效串联电感。由于它的谐振频率很低,所以只能使用在低频滤波上。钽电容器一般都有较大电容量和较小等效串联电感,

开关电源PCB设计要点及实例分析

开关电源PCB设计要点及实例分析

开关电源PCB设计要点及实例分析 全站搜索搜索 开关电源PCB设计要点及实例分析 开关电源PCB设计要点及实例分析 为了适应电子产品飞快的更新换代节奏,产品设计工程师更倾向于选择在市场上很容易采购到的AC/DC适配器,并把多组直流电源直接安装在系统的线路板上。由于开关电源产生的电磁干扰会影响到其电子产品的正常工作,正确的电源PCB设计就变得非常重要。开关电源PCB设计与数字电路PCB设计完全不一样。在数字电路排版中,许多数字芯片可以通过PCB软件来自动排列,且芯片之间的连接线可以通过PCB软件来自动连接。用自动排版方式排出的开关电源肯定无法正常工作。所以,设计人员需要对开关电源PCB设计基本规则和开关电源工作原理有一定的了解。 1 开关电源PCB设计基本要点 1.1 电容高频滤波特性 图1是电容器基本结构和高频等效模型。 图1 电容器结构和寄生等效串联电阻和电感 电容的基本公式是 C=Εrε0 (1)

式(1)显示,减小电容器极板之间的距离(D)和增加极板的截面积(A)将增加 电容器的电容量。 电容通常存在等效串联电阻(ESR)和等效串联电感(ESL)二个寄生参数。图2是电容器在不同工作频率下的阻抗(ZC)。 图2 电容阻抗(ZC)曲线 一个电容器的谐振频率(F0)可以从它自身电容量(C)和等效串联电感量(LESL)得到,即 F0= (2) 当一个电容器工作频率在F0以下时,其阻抗随频率的上升而减小,即 ZC= (3) 当电容器工作频率在F0以上时,其阻抗会随频率的上升而增加,即 ZC=J2πfLESL(4) 当电容器工作频率接近F0时,电容阻抗就等于它的等效串联电阻(RESR)。 电解电容器一般都有很大的电容量和很大的等效串联电感。由于它的谐振频率很

开关电源设计要求

开关电源设计要求 开关电源设计要求.infoad { FLOAT: left; MARGIN:3px; }电源标准 1. 输入电压范围:110V±15%与220V±15%的适应。(最好是自动切换),短时间电压变化报警后,电压恢复后可恢复正常工作。 2. 输出电流:0-5.5A可调。 电流纹波:纹波峰—峰值要小于50mV 电流冲击:随机过程脉冲尽量无(对外界干扰不受影响) 开机电流缓冲:缓冲时间10S 正常工作后电流要相当稳定:即随外界环境变化后电流要稳定工作,在两个极端温度(15℃,40℃)中电源电流稳定。 3. 电源耐压:电源要耐1500V电压而不漏电。 4. 调制: (1)模拟调制:调治频率10KHZ,满偏电压:4.5V(4.5V 时对应输出设定的最大电流,此设定值是可变的)。 (2)TTL调制:调制频率10KHZ,TTL调制电压范围:2.5V 以下没电流,以上有电流,2.5V以上有满偏电流。 5. 过流保护:电流超过设定电流后保护。

过温保护:温度超出设定的32℃保护,温度恢复正常,工作正常。 输入电压超出范围保护:超出110V±10%与220V±10%后电源报警,5S内电压恢复正常后正常工作。 6. 开启电流电压0.6V:模拟调制中0.6V以下无电流,0.6V—4.5V有电流。 7.另外有两路制冷输出:12V ,制冷方式为TEC,设定工作温度为23度,高于23.5度时制冷电路开始制冷工作,低于22.5度时TEC开始制热。采用温度传感器进行两路温度控制。 TEC制冷方式是由电压控制TEC最大制冷电流可调,电流可调范围是0-3A 制冷电路采用恒流电路。 8.使用环境工作温度(-10~40)℃ ,相对湿度:≤90% 冷却形式强制风冷

开关电源PCB Layout设计原则

开关电源PCB Layout设计原则 中心议题: 开关电源印制板布线原则 开关电源印制板铜皮走线的一些事项 开关电源印制板大电流走线的处理 反激电源反射电压的一个确定因素 解决方案: 铝基板在开关电源中的应用 多层印制板在开关电源电路中的应用 一、引言 开关电源是一种电压转换电路,主要的工作内容是升压和降压,广泛应用于现代电子产品。因为开关三极管总是工作在“开” 和“关” 的状态,所以叫开关电源。开关电源实质就是一个振荡电路,这种转换电能的方式,不仅应用在电源电路,在其它的电路应用也很普遍,如液晶显示器的背光电路、日光灯等。开关电源与变压器相比具有效率高、稳性好、体积小等优点,缺点是功率相对较小,而且会对电路产生高频干扰,变压器反馈式振荡电路,能产生有规律的脉冲电流或电压的电路叫振荡电路,变压器反馈式振荡电路就是能满足这种条件的电路。 开关电源分为,隔离与非隔离两种形式,在这里主要谈一谈隔离式开关电源的拓扑形式,在下文中,非特别说明,均指隔离电源。隔离电源按照结构形式不同,可分为两大类:正激式和反激式。反激式指在变压器原边导通时副边截止,变压器储能。原边截止时,副边导通,能量释放到负载的工作状态,一般常规反激式电源单管多,双管的不常见。正激式指在变压器原边导通同时副边感应出对应电压输出到负载,能量通过变压器直接传递。按规格又可分为常规正激,包括单管正激,双管正激。半桥、桥式电路都属于正激电路。

正激和反激电路各有其特点,在设计电路的过程中为达到最优性价比,可以灵活运用。一般在小功率场合可选用反激式。稍微大一些可采用单管正激电路,中等功率可采用双管正激电路或半桥电路,低电压时采用推挽电路,与半桥工作状态相同。大功率输出,一般采用桥式电路,低压也可采用推挽电路。 反激式电源因其结构简单,省掉了一个和变压器体积大小差不多的电感,而在中小功率电源中得到广泛的应用。在有些介绍中讲到反激式电源功率只能做到几十瓦,输出功率超过100瓦就没有优势,实现起来有难度。本人认为一般情况下是这样的,但也不能一概而论,PI公司的TOP芯片就可做到300瓦,有文章介绍反激电源可做到上千瓦,但没见过实物。输出功率大小与输出电压高低有关。 反激电源变压器漏感是一个非常关键的参数,由于反激电源需要变压器储存能量,要使变压器铁芯得到充分利用,一般都要在磁路中开气隙,其目的是改变铁芯磁滞回线的斜率,使变压器能够承受大的脉冲电流冲击,而不至于铁芯进入饱和非线形状态,磁路中气隙处于高磁阻状态,在磁路中产生漏磁远大于完全闭合磁路。 脉冲电压连线尽可能短,其中输入开关管到变压器连线,输出变压器到整流管连接线。脉冲电流环路尽可能小如输入滤波电容正到变压器到开关管返回电容负。输出部分变压器出端到整流管到输出电感到输出电容返回变压器电路中X电容要尽量接近开关电源输入端,输入线应避免与其他电路平行,应避开。Y电容应放置在机壳接地端子或FG连接端。共摸电感应与变压器保持一定距离,以避免磁偶合。 输出电容一般可采用两只一只靠近整流管另一只应靠近输出端子,可影响电源输出纹波指标,两只小容量电容并联效果应优于用一只大容量电容。发热器件要和电解电容保持一定距离,以延长整机寿命,电解电容是开关电源寿命的瓶劲,如变压器、功率管、大功率电阻要和电解保持距离,电解之间也须留出散热空间,条件允许可将其放置在进风口。 二、印制板布线的一些原则

开关电源设计的一般注意事项

1、布局:脉冲电压连线尽可能短,其中输入开关管到变压器连线,输出变压器到整流管连接线.脉冲电流环路尽可能小如输入滤波电容正到变压器到开关管返回电容负.输出部分变压器出端到整流管到输出电感到输出电容返回变压器. 2、电路中X电容要尽量接近开关电源输入端,输入线应避免与其他电路平行,应避开.Y电容应放置在机壳接地端子或FG连接端.共摸电感应与变压器保持一定距离,以避免磁偶合.如不好处理可在共摸电感与变压器间加一屏蔽,以上几项对开关电源地EMC性能影响较大. 输出电容一般可采用两只一只靠近整流管另一只应靠近输出端子,可影响电源输出纹波指标,两只小容量电容并联效果应优于用一只大容量电容. 发热器件要和电解电容保持一定距离,以延长整机寿命,电解电容是开关电源寿命地瓶劲,如变压器、功率管、大功率电阻要和电解保持距离,电解之间也须留出散热空间,条件允许可将其放置在进风口. 控制部分要注意:高阻抗弱信号电路连线要尽量短如取样反馈环路,在处理时要尽量避免其受干扰、电流取样信号电路,特别是电流控制型电路,处理不好易出现一些想不到地意外,其中有一些技巧,现以3843电路举例见图(1)图一效果要好于图二,图二在满载时用示波器观测电流波形上明显叠加尖刺,由于干扰限流点比设计值偏低,图一则没有这种现象、还有开关管驱动信号电路,开关管驱动电阻要靠近开关管,可提高开关管工作可靠性,这和功率MOSFET高直流阻抗电压驱动特性有关. 3、线间距:随着印制线路板制造工艺地不断完善和提高,一般加工厂制造出线间距等于甚至小于0.1mm已经不存在什么问题,完全能够满足大多数应用场合.考虑到开关电源所采用地元器件及生产工艺,一般双面板最小线间距设为0.3mm,单面板最小线间距设为0.5mm,焊盘与焊盘、焊盘与过孔或过孔与过孔,最小间距设为0.5mm,可避免在焊接操作过程中出现“桥接”现象.,这样大多数制板厂都能够很轻松满足生产要求,并可以把成品率控制得非常高,亦可实现合理地布线密度及有一个较经济地成本. 最小线间距只适合信号控制电路和电压低于63V地低压电路,当线间电压大于该值时一般可按照500V/1mm经验值取线间距. 鉴于有一些相关标准对线间距有较明确地规定,则要严格按照标准执行,如交流入口端至熔断器端连线.某些电源对体积要求很高,如模块电源. 一般变压器输入侧线间距为1mm实践证明是可行地.对交流输入,(隔离)直流输出地电源产品,比较严格地规定为安全间距要大于等于6mm,当然这由相关地标准及执行方法确定.一般安全间距可由反馈光耦两侧距离作为参考,原则大于等于这个距离.也可在光耦下面印制板上开槽,使爬电距离加大以满足绝缘要求.一般开关电源交流输入侧走线或板上元件距非绝缘地外壳、散热器间距要大于5mm,输出侧走线或器件距外壳或散热器间距要大于2mm,或严格按照安全规范执行. 常用方法:上文提到地线路板开槽地方法适用于一些间距不够地场合,顺便提一下,该法也常用来作为保护放电间隙,常见于电视机显象管尾板和电源交流输入处.该法在模块电源中得到了广泛地应用,在灌封地条件下可获得很好地效果. 方法二:垫绝缘纸,可采用青壳纸、聚脂膜、聚四氟乙烯定向膜等绝缘材料.一般通用电源用青壳纸或聚脂膜垫在线路板于金属机壳间,这种材料有机械强度高,有有一定抗潮湿地能力.聚四氟乙烯定向膜由于具有耐高温地特性在模块电源中得到广泛地应用.在元件和周围导体间也可垫绝缘薄膜来提高绝缘抗电性能. 注意:某些器件绝缘被覆套不能用来作为绝缘介质而减小安全间距,如电解电容地外皮,在高温条件下,该外皮有可能受热收缩.大电解防爆槽前端要留出空间,以确保电解电容在非常情况时能无阻碍地泻压. 4、走线电流密度:现在多数电子线路采用绝缘板缚铜构成.常用线路板铜皮厚度为35μm,走线可按照1A/mm经验值取电流密度值,具体计算可参见教科书.为保证走线机械强度原则线宽应大于或等于0.3mm(其他非电源线路板可能最小线宽会小一些).铜皮厚度为70μm 线路

开关电源类产品设计的安全规范

开关电源类产品设计的安全规范 1.范围 1.1本规范规定了 0公司户内使用、额定电压< 600V勺开关电源类产品的设计安全要求,它包括参考标准资料、 标志说明、一般要求和试验一般条件、电气技术参数规格、材料和结构、电气试验、机械试验、环境可靠性试验、包装、存放、出货和附录项内容。 1.2它主要以信息技术设备,包括电气事务设备及与之相关设备的安全标准为基础编写。 2.主要参考资料 2.1IEC60950-1999 :信息技术设备的安全 2.2IEC61000-4 (所有系列):电磁兼容--试验和测量技术。 2.3IEC61000-3-2-1998 :电磁兼容第 3部分:限值第 2章低压电气及电子设备发岀的谐波电流限值(设备每相输入电流< 16A。 2.4IEC61000-3-3-1998 :电磁兼容第3部分:限值第3章标称电流三16A的低压电气及电子设备的供电系统中电压波动和变化的限值。 2.5IEC60384-14-1993 :电子设备用固定电容器第14部分:分规范拟制电源电磁干扰用固定电容器。

2.6CISPR22-1998:信息技术设备的无线电干扰特性的限值和测量方法。 2.7CISPR24-1997:信息技术设备的无线电抗干扰特性的限值和测量方法。 2.8IEC60695-10-2 : 1995 :着火危险试验第 10部分:减少着火对电子技术产品而引起的不正常发热效应的指南和试验方法第 2 部分:用球压试验测试非金属材料构成产品的耐热方法。 2.9IEC61140-1997 :防电击保护设备和安装的一般要求。 2.10IEC60227-1997 :额定电压 450V/750V及以下 PVC绝缘电缆 3.标记和说明 3.1电源额定值: 成品要清晰地标有电源额定值,它包括下列项: 额定电压或额定电压范围( V); 电源性质符号:AC (?八 DC () 额定频率或额定频率范围(Hz); 额定电流(mA或A); Ta值(如果是25 C,可不标);

相关文档
最新文档