开题报告-开关电源的PCB设计

开题报告-开关电源的PCB设计
开题报告-开关电源的PCB设计

开题报告

电气工程及自动化

开关电源的PCB设计

一、综述本课题国内外研究动态,说明选题的依据和意义

1.1本课题选题的依据和意义:

随着计算机、电子技术的高速发展,电子技术的应用领域越来越广泛,电子设备的种类也越来越多,电子设备与人们的工作、生活的关系日益密切。任何电子设备都离不开可靠的电源,它们对电源的要求也越来越高。电子设备的小型化和低成本化,使电源以轻、薄、小和高效率为发展方向[1]。传统的晶体管串联调整稳压电源是连续控制的线性稳压电源。这种传统稳压电源技术比较成熟,并且已有大量集成化的线性稳压电源模块,具有稳定性能好、输出纹波电压小、使用可靠等优点。但通常都需要体积大且笨重的工频变压器与体积和重量都很大的滤波器。由于调整管工作在线性放大状态,为了保证输出电压稳定,其集电极与发射机之间必须承受较大的电压差,导致调整管功耗较大,电源效率很低,一般只有45%左右。另外,由于调整管上消耗较大的功率,所以需要采用大功率调整管并装有体积很大的散热器,很难满足现代电子设备的发展要求[2]。

在近半个多世纪的发展过程中,开关电源因具有体积小、重量轻、效率高、发热量低、性能稳定等优点逐渐取代传统技术制造的连续工作电源,并在电子整机与设备中得到广泛的应用[3]。

在电力电子线路方面,高频化已成为发展的重要趋势。开关电源的高频化是电源技术发展的创新技术,高频化带来的效益是使开关电源装置空前地小型化,并且是开关电源计入更广泛的领域,特别在高新技术领域的应用,推动了高新技术产品的小型化、轻便化[4]。另外,开关频率的提高也是的电源的电磁干扰问题变得突出起来。为了解决这一问题,20世纪80年代,出现了采用准谐振技术的零电压开关电路和零电流开关电路,这种技术被称为软开关技术。虽然近年来使用软开关的高频开关直流电源己经得到广泛的应用,但是大部分都是在中小功率的场合。而在大功率场合(像大型机车、通讯基站等)普遍采用的都是硬开关[5]。提高在大功率场合中的软开关的应用是非常必需的。

开关电源技术的成熟, 实现高效率用电和高品质用电相结合。这几年,随着科学技术的发展和社会发展要求,开关电源技术吸引了国内外一大批科技人员对其进行开发研究。开关电源代替线性电源和相控电源是大势所趋, 因此, 同样具有几十亿产值需求的电力操作电源系统的国内市场正在启动, 并将很发展起来[6]。还有其它许多以开关电源技术为核心的专用电源、工业电源正在等待着人们去开发。

1.2开关电源的国内外研究动态:

1.2.1开关电源发展史

国内的研究动态:21世纪我国通信、信息、家电和国防等领域的电源普遍采用高频开关电源,相控电源将逐渐被淘汰。国内开关电源技术的发展,基本上起源于20世纪70年代末和80年代初。当时引进的开关电源技术在高等院校和一些科研院所停留在试验开发和教学阶段[7]。20世纪80年代中期开关电源产品开始推广和应用。

20世纪80年代开关电源的特点是采用20KHz,脉宽调制(PWM)技术,效率可达65%—70%。

经过20多年的不断发展,开关电源技术有了重大的进步和突破。新型功率器件的开发促进了开关电源你的高频化,功率MUSFEET和IGBT可使中小型开关电源工作频率达到400kHz,(AC/DC)或1MHz(DC/DC);软开关技术使高频开关电源的实现有了可能,它不仅可以减少电源的体积和重量,而且提高了电源的功率,国产6kW通讯开关电源,采用软开关技术,效率可达到93%[8]。

1.2.2开关电源发展方向

新型半导体器件的发展是开关电源技术进步的龙头,电力电子技术的进步必须依靠不断推出新型电力电子器件。功率场效应管(MOS-FET)由于采用单极性多子导电,是开关时间显著地减小,又因其很容易达到1MHz的开关工作频率而受到世人瞩目。对于肖特基二极管的开发,最近利用trench结构,有望出现压降更小的肖特基二极管,它被称作TMBS沟槽MOS势垒肖特基二极管,有可能在极低电源电压应用中与同步整流的MOS-FET竞争[9]。作为半导体器件材料的硅应用在半导体器件中已有50余年,硅性能潜力的进一步挖掘时很难的,目前正在研究高性能的碳化硅半导体器件,一旦成功,对于电源技术的影响将是革命性的[10]。此外,平面变压器、压电变压器及新型电容等原件的发展,也将对电源技术的发展起到重要作用。

另外,集成化是开关电源的一个重要发展方向。通过控制电路的集成、驱动电路的集成以及保护电路的集成,最后达到整机的集成化生产。集成化和模块化减少了外部连线和焊接,提高了设备性能的可靠性,缩小了电源的体积,减轻了重量。目前,DC/DC 开关电源的功率可达到3120/W in 。电路集成的进一步发展方向是系统集成,如现在的逆变器是将200-300个零件装配在一起成为一个系统。这种做法要花很多时间和人力,成本高,难于做得体积很小[11]。美国VI-COR 公司生产的第一代电源模块受生产技术、功率、磁元件体积以及封装技术的限制,功率密度始终未能超过380/W in 。近年来推出的第二代电源模块,内部结构改变为模块式,达到高度集成化

和全面电脑化,功率密度已经达到3120/W in [12]。

功率因数的校正是开关电源研究的另外一个方向。功率因数校正的概念起源于20世纪80年代,但被重视和推广则是在80年代末期和90年代[13]。欧洲和日本相继对开关电源装备的输入谐波要求制定了标准。目前有两个标准,即IEC555-2和IEC10000-3-2。这使得研究PFC 技术已经成为电源界的热点[14]。通常有两大类PFC 技术:一类是无源PFC 技术,另外一类是有源PFC 技术。前者采用无源元件来改善输入功率因数,减小电源谐波,以满足标准要求。后者则采用一个变压器串入整流滤波与DC/DC 变换器之间,通过特殊的控制,第一强迫输入电流跟随输入电压,从而实现单位功率因数,第二反馈输出电压便随之稳定,从而使DC/DC 变换器的输入实现隐喻[15]。

随着开关电源性能的不断提高,对于开关电源的要求也愈来愈高。一个开关电源的品质除了电性能指标外,还有许多其他指标,如环境温度、外形尺寸、EMI 要求、抗振动要求、可靠性指标、集成度和美观性等[16]。总之,高效率、小型化、集成化、智能化以及高可靠性事大势所趋,也是今后的主要研究方向。

二、研究的基本内容,拟解决的主要问题:

2.1研究的基本内容:

开关电源通常都包含四个电流回路:电源开关交流回路、输入信号源电流回路、输出整流交流回路和输出负载电流回路。这些交流回路电流中谐波成分很高,其频率远大于开关频率,峰值幅度很高。这三个回路最容易产生电磁干扰,因此必须在电源中其它印制线布线之前先布好这些交流回路。

因此,研究的内容如下:

(1)开关电源的总体结构框图

(2)开关电源的典型结构的选择

(3)功率模块及功率集成电路的选择

(4)确定开关电源的主电路图

(5)设计开关电源的控制电路

(6)整体元器件的选择和计算

(7)绘制电路图,制作PCB板

2.2解决的主要问题:

(1) 确定开关电源主电路结构

(2) 功率模块及功率集成电路的选择

(3) 各个回路电流中的电子器件的选用

(4) PCB板制作过程中元器件的排线放置

三、研究步骤、方法及措施:

步骤及方法:

(1)了解国内外开关电源的发展方向和研究动态。

(2)熟悉开关电源的工作原理及设计流程。

(3)结合所设计电路图选择合理的元器件。

(4)利用Altium Designer Summer制图软件画出电路图,并制作PCB板。

(5)完成开关电源的设计。

措施:

图书馆查找相关的书籍、期刊、杂志等,通过上网寻找相关的一些资料,查看当代对该技术的研究成果和最新的动态。然后通过对这些资料的学习和研究进一步的熟悉和理解设计所需的相关知识。在设计过程中及时与指导老师探讨,对不了解的问题及时向老师请教。

四、参考文献

[1] 侯振义.直流开关电源技术及应用[M].北京:电子工业出版社,2006.

[2] 李金伴,李捷辉.开关电源技术[M].北京:化学工业出版社,2006.

[3] 周志敏,周纪海,纪爱华.现代开关电源控制电路设计及应用[M].北京:人民邮电出

报社,2005.5

[4] 刘胜利.现代高频开关电源使用技术[M].北京:电子工业出版社,2001.

[5] 张占松.开关电源的原理及设计[M].北京:电子工业出版社,2001.1

[6] 王水平,王保保,贾静.单片开关电源[M].北京:人民邮电出版社,2008.4

[7] 王兆安,黄俊.电力电子技术[M].北京:机械工业出版社,2009.6

[8] 杨旭,裴云庆,王兆安.开关电源技术[M].北京:机械工业出版社,2004.1

[9] 杨帮文.实用电源电路集锦[M].北京:电子工业出版社,1998.1

[10] 宋鑫欣.小功率单片开关电源的理论与实验研究[D].北京:北京工业大学硕士论

文,2004

[11] 周琛.开关电源PCB排版基本要点[J]. 电源技术应用.2005,8(9):17~18

[12] Moussaoui, Z.;Batarseh, I.;Lee, H.;Kennedy, C. An overview of the control

scheme for distributed power systems Southcon/96[J].Conference Record,25-27 June 1996 :66~67.

[13] 王晓秋,孙孝端.提高开关功率因素的方法[J].现代电力,1994,(02):75~77.

[14] Ferdinand C.Geerlings. SMPS Power Inductor Design and Transformer

Design,Part2[J].PowerconversionInternational.January/February.1980:88~8 9

[15] 许化民,陈乾宏,严仰光.多路输出DC/DC变换器的并联均流[J].电力电子技术,

2000,(03):47~50.

[16] 李建婷,丁志亮,熊蕊.开关电源EMI 的抑制策略[J].通信电源技术,2006:23~36.

高效率开关电源设计实例.pdf

高效率开关电源设计实例--10W同步整流B u c k变换器 以下设计实例中,包含了各种技巧来提高开关电源的总体效率。有源钳位和元损吸收电路的设计主 要依靠经验来完成的,所以不在这里介绍。 采用新技术时必须小心,因为很多是有专利的,可能需要直接付专利费给专利持有人,或在购买每 一片控制IC芯片时,支付附加费用。在将这些电源引入生产前,请注意这个问题。 10W同步整流Buck变换器 应用 此设计实例是PWM设计实例1的再设计,它包括了如何设计同步整流器(板载的10W降压Buck 变换器)。 在设计同步整流开关电源时,必须仔细选择控制IC。为了效率最高和体积最小,一般同步控制器在 系统性能上各有千秋,使得控制器只是在供应商提到的应用场合中性能较好。很多运行性能的微妙 之处不能确定,除非认真读过数据手册。例如,每当作者试图设计一个同步整流变换器,并试图使 用现成买来的IC芯片时,3/4设计会被丢弃。这是因为买来的芯片功能或工作模式往往无法改变。 更不用说,当发现现成方案不能满足需求时,是令人沮丧的(见图20的电路图)。 设计指标 输入电压范围: DC+10~+14V 输出电压: DC+5.0V 额定输出电流: 2.0A 过电流限制: 3.0A 输出纹波电压: +30mV(峰峰值) 输出调整:±1% 最大工作温度: +40℃ “黑箱”预估值 输出功率: +5.0V*2A=10.0W(最大) 输入功率: Pout/估计效率=10.0W/0.90=11.1W 功率开关损耗 (11.1W-10W) * 0.5=0.5W 续流二极管损耗: (1l.lW-10W)*0.5=0.5W 输入平均电流 低输入电压时 11.1W/10V=1.1lA 高输入电压时: 11.1W/14V=0.8A 估计峰值电流: 1.4Iout(rated)=1.4×2.0A=2.8A 设计工作频率为300kHz。

东元 海利普开关电源电路分析

两例变频器开关电源电路实例 ——兼论电容C23在电路中的重要作用 先看以下电路实例: 图1 东元7200PA 37kW变频器开关电源电路 CN4 图2 海利普HLPP001543B型15kW变频器开关电源电路

图1、图2电路结构和原理基本上是相同的,下面以图1电路例简述其工作原理。 开关电源的供电取自直流回路的530V直流电压,由端子CN19引入到电源/驱动板。 电路原理简述:由R26~R33电源启动电路提供Q2上电时的起始基极偏压,由Q2的基极电流Ib的产生,导致了流经TC2主绕组Ic的产生,继而正反馈电压绕组也产生感应电压,经R32、D8加到Q2基极;强烈的正反馈过程,使Q2很快由放大区进入饱合区;正反馈电压绕组的感应电压由此降低,Q2由饱合区退出进入放大区,Ic开始减小;正反馈绕组的感应电压反向,由于强烈的正反馈作用,Q2又由放大状态进入截止区。以上电路为振荡电路。D2、R3将Q2截止期间正反馈电压绕组产生的负压,送入Q1基极,迫使其截止,停止对Q2的Ib的分流,R26-R33支路再次从电源提供Q1的起振电流,使电路进入下一个振荡循环过程。 5V输出电压作为负反馈信号(输出电压采样信号)经稳压电路,来控制Q2的导通程度,实施稳压控制。稳压电路由U1基准电压源、PC1光电耦合器、Q1分流管等组成。5V输出电压的高低变化,转化为PC1输入侧发光二极管的电流变化,进而使PC1输出测光电三极管的导通内阻变化,经D1、R6、PC1调整了Q2的偏置电流。以此调整输出电压使之稳定。 这是我的第二本有关变频器维修的书中,对图1电路原理的简述,由于疏漏了对电容C23作用的讲解,给读者带来了一些疑问:1)N2绕组负电压是如何加到Q2基极的?2)电路中C23的作用是什么?3)C23的充、放电回路是怎样走的?这3问题涉及到电路原理的关键部分,无它,开关电管Q2即无法完成由饱和导通→进入放大区→快速截止→重新导通的工作状态转换,三个问题其实又只是一个问题,即图1的C23(或图2中的C38)究竟对电路的工作状态转换起到怎样的重要作用?先不要忙,将这个问题暂且按下不表,先说几句题外话。 在由3844(42/43/34)PWM脉冲芯片为核心构成的开关电源电路,大行其道的今天,像图1、图2这样由两只双极型晶体管构成的开关电源电路(对比于集成器件,或称之为分立元件构成的开关电源),仍占有一席之地,在数个变频器厂家的产品中,得到应用。难道是厂家技术人员有怀旧情结吗?还是为了降低生产成本?其实都不是!采用分立元件做开关电源,设计人员肯定有更全面和深入的考虑。 而我的维修经验而论,我比较倾向和首肯于由分立元件构成的开关电源,理由是其工作可靠性高,故障率低,使用和维修都比较让人放心。电路的质量,并不取决于采用集成器件或分立元件,也不取决于电路采用元器件的数量多少,这些都是形式而非本质。相对于分立元件组成的电路,集电器件是否就具有技术上的先进性和工作上的可靠性?则真的是一个问号,不可一概而论。比较二者电路的设计难度,分立元件的电路,恐怕难度要更高一些。 与分立元件的电源相比,用3844做成的电源电路,更像一个“傻瓜型”电路,有固定的电路模式,与成型外围作成一个电路单元,可以应急取代任意开关电源电路,达到修复目的(有的技术人员已经这样做了)。 电路的元件数量愈少,电路结构越是精简,电路的故障率就越低,这是一个被实践验证的法则。实际维修中,采用图1电路形式的开关电源,故障率和可靠性,要优于用集成器件做成的开关电源。个别电源,停电时还好好儿的,一上电,开关管就炸掉了,说明即使“傻瓜型”电路,在设计上也不可掉以轻心,关

开关电源PCB设计流程及布线技巧

开关电源PCB设计流程及布线技巧在任何开关电源设计中,PCB板的物理设计都是最后一个环节,如果设计方法不当,PCB可能会辐射过多的电磁干扰,造成电源工作不稳定,以下针对各个步骤中所需注意的事项进行分析: 一、从原理图到PCB的设计流程 建立元件参数-》输入原理网表-》设计参数设置-》手工布局-》手工布线-》验证设计-》复查-》cam输出。 二、参数设置 相邻导线间距必须能满足电气安全要求,而且为了便于操作和生产,间距也应尽量宽些。最小间距至少要能适合承受的电压,在布线密度较低时,信号线的间距可适当地加大,对高、低电平悬殊的信号线应尽可能地短且加大间距,一般情况下将走线间距设为8mil。焊盘内孔边缘到印制板边的距离要大于1mm,这样可以避免加工时导致焊盘缺损。当与焊盘连接的走线较细时,要将焊盘与走线之间的连接设计成水滴状,这样的好处是焊盘不容易起皮,而是走线与焊盘不易断开。 如图:

三、元器件布局 实践证明,即使电路原理图设计正确,印制电路板设计不当,也会对电子设备的可靠性产生不利影响。例如,如果印制板两条细平行线靠得很近,则会形成信号波形的延迟,在传输线的终端形成反射噪声;由于电源、地线的考虑不周到而引起的干扰,会使产品的性能下降,因此,在设计印制电路板的时候,应注意采用正确的方法。每一个开关电源都有四个电流回路: (1)电源开关交流回路 (2)输出整流交流回路 (3)输入信号源电流回路 (4)输出负载电流回路输入回路 通过一个近似直流的电流对输入电容充电,滤波电容主要起到一个宽带储能作用;类似地,输出滤波电容也用来储存来自输出整流器的高频能量,同时消除输出负载回路的直流能量。所以,输入和输出滤波电容的接线端十分重要,输入及输出电流回路应分别只从滤波电容的接线端连接到电源;如果在输入/输出回

高压开关电源的设计与研究

高压开关电源的设计与研究 赵延波 (龙矿集团热电有限公司,山东龙口265700) 摘要该文分析了高压开关电源的特点和电路原理,设计了一种新型高压开关电源,尤其是对重要的设计要点进行了深入描述,并给出了设计方案。实验结果表明该电源结构简单,效率和可靠性高。 关键词高压开关电源 中图分类号TM91文献标识码A 高压充电电源广泛应用于等离子体物理、高功率激光、大功率微波、粒子速武器等等精密电子系统领域。要求电源系统具有重量轻、响应速度快、稳定性好、可靠性高等特点。传统充电电源采用的工频高压电源和LC谐振充电方式,虽然电路简单,但其体积和重量大,低频工作状态以及纹波、稳定性均不能令人满意。为了满足精密电子系统的要求,设计制作了一种新型高压开关电源。 1高压开关电源的特点 与通常的低压开关电源比较,高压开关电源有如下特点: (1)无输出电感。一般输出电感的选择应保证在规定的最小负载下其电流也连续,在几千伏高压以上输出情况下,输出电感的体积和价格都是很难承受的,并且在工作中电感两端会承受与输出电压相等的电压,会导致点晕和飞弧,所以在较高的电压运用中通常不考虑输出电感。 (2)变压器副边存在较大的分布电容。变压器副边匝数多,绕组之间存在较大的分布电容,影响开关电源的工作状态。要么采用分布电容的电路形式,要么尽量减小分布电容。 (3)负载变化范围宽。在雷达等设备的应用中,由于工作状态多,要求高压电源有很宽的负载变化范围,即要选择适用宽范围运行的电路形式。 从上述特点来看,高压开关电源的软开关电路应采用以无输出电感的电路拓扑,对于极高电压大功率应用建议采用全桥的方式。 2电路原理 系统原理框架图如图1所示。 如图1所示。高压电源的输入信号来自220V的 *收稿日期:2012-04-16 作者简介:赵延波(1976-),男,大专,毕业于华北电力大学城市供用电专业,现任职于龙矿集团热电有限公司,助理工程师 。 图1系统原理图 交流市电,经整流滤波后与P W M脉冲调制器的输出信号一起驱动高频变压器,通过高频变压器得到的高压电源再经整流滤波后,输出直流高压。输出反馈信号经光电隔离后反馈给脉冲调制器,通过与脉冲调制器中误差放大器的基准电压比较,控制脉冲调制器的输出占空比,以调节输出电压。 3电路设计 电路拓扑结构和主要工作波形如图2、图3 。 图2电路拓扑结构图 与普通移相全桥电路相比,增加了一个谐振电感和4个二极管。变压器原副边电流是不连续的,在电流截止期间ZVS开通是通过二极管D5、D6、D7、D8分别给L1、C1、C3和L2、C2、C4提供了充放回路来实现的;在主功率传输期间工作状态和普通移相全桥电路一样。修改电路结果简单,在目前运用较广泛的移相全桥变化电路稍加改进就可以实现;所有开关管均为零电压开通和零电压关断;二极管D5、D6、D7、D8还对变压器原边电压起钳位作用,减小电感L1、L2和变压器副边绕组分布电容产生的震荡;与负载无关,电感L1、L2上的电流一直保持半个周期,(下转第170页) 86 12012年第3期

典型半导体案例失效分析

典型半导体案例失效分析 Author:朱秋高 光宝电子(东莞)有限公司 E-mial: Collins.zhu@https://www.360docs.net/doc/9717627019.html, 摘要: 开关电源与地之间走线的电感对主开关Mosfet 驱动影响和失效案例 关键词: PWM 驱动信号的布线要点: 在开关转换期间,某些走线 (PCB上的敷铜线路) 电流会瞬间停止,而另外一些走线电流同时瞬间导通(均在开关转换时间100ns 之内发生). 这些走线被认为是开关调整器PCB布线的”关键走线”. 每个开关转换瞬时,这些走线中都产生很高的Di/dt .如图1-1所示,整个线路混杂着细小但不低的电压尖峰.由经验可知,不难理解这是方程V=L*Di/dt 在走线中起作用,L是PCB走线的寄生电感.根据经验,每英寸走线的寄生电感约为20nH 图1-1 确定三种拓扑中的关键走线 噪声尖峰一旦产生,不仅传递到输入/输出(影响电源性能),而且渗透到IC控制单元,使控制功能失稳失常,甚至使控制的限流功能失效,导致灾难性后果. 199

引言: 设计开关调整器PCB时,需知最终产品的好坏完全取决于它的布线,当然,有些开关IC可能会比其他开关IC对干扰更敏感.有时,从不同供应商购得的 “ 同类” 产品也可能有完全不同的噪声敏感度,.此外,某些开关IC结构本身也会比其他IC对噪声更敏感(如电流模式控制芯片比电压模式控制芯片”布线敏感度”高很多). 事实上,用户必须面对这样的现实: 半导体器件生产商不会提供其产品噪声敏感度的资料. 而作为设计人员,往往对布线不够重视,结果将似乎可稳定工作的IC弄得波形震荡,易受干扰,以致误动作,甚至导致灾难性的后果(开关烧掉). 另外,这些问题在调试后期往往很难纠正或补救,因此开始阶段就正确布线非常重要. 试验方法: 1. MOSFET 的驱动信号通常由IC内的驱动级产生,故MOSFET的源极应接至IC接地端.但MOSFET的实际表现并不由施加在栅极与参考间的电压所决定, 而是取决于栅极与源极间的电压,即完全取决于实际的V GS. 实例1,如果源极与地之间的走线有点长的话,在开关转换瞬间它上面会出现很大的电感反冲, 不严重的话只是降低开关转换的速度,严重时会使MOSFET错误地开通或关断,导致管子毁坏. 图1-2 是在关断瞬间可能发生的相当安全的情形.栅极控制MOSFET关断,但源极的PCB走线阻抗刚才也流过了电流,并产生小电压源(尖峰) 以阻止电流减小,电流持续流动直到能量消耗光.这使V GS波形发生改变从而使开关转换速度降低.然而,这种降低转换速度的方法并不值得推荐,根据我所知其结果不可预知,因为它本质上是基于寄生参数的. 图 1-2 关断时源极寄生电感的影响 2. 实例2, 图1-3 是一款使用在网络产品上的电源布线图,我们不难发现驱动信号到MOSFET的栅极之间的走线过长,(约为63mm) .且高频电感离驱动信号非常近,而导致在系统使用时,不时发生MOSFET 烧毁和PCB板大面积烧黑的现象, 200

高压开关电源概念及分类

高压开关电源概念及分类 一、概念 高压开关电源是利用现代电力电子技术,控制高压开关管开通和关断的时间比率,维持不乱输出电压的一种电源,高压开关电源一般由脉冲宽度调制(PWM)控制IC和MOSFET构成。高压开关电源和线性电源比拟,二者的本钱都跟着输出功率的增加而增长,但二者增长速率各异。线性电源本钱在某一输出功率点上,反而高于高压开关电源,这一点称为本钱反转点。跟着电力电子技术的发展和立异,使得高压开关电源技术也在不断地立异,这一本钱反转点日益向低输出电力端移动,这为高压开关电源提供了广阔的发展空间。 高压开关电源高频化是其发展的方向,高频化使高压开关电源小型化,并使高压开关电源进入更广泛的应用领域,特别是在高新技术领域的应用,推动了高新技术产品的小型化、轻便化。另外高压开关电源的发展与应用在节约能源、节约资源及保护环境方面都具有重要的意义。高压开关电源中应用的电力电子器件主要为二极管、IGBT和MOSFET。SCR在高压开关电源输入整流电路及软启动电路中有少量应用,GTR驱动难题,高压开关频率低,逐渐被IGBT和MOSFET 取代。 二、3个前提 1、高压开关:电力电子器件工作在高压开关状态而不是线性状态 2、高频:电力电子器件工作在高频而不是接近工频的低频 3、直流:高压开关电源输出的是直流而不是交流 三、高压开关电源的分类: 人们在高压开关电源技术领域是边开发相关电力电子器件,边开发高压开关变频技术,两者相互促进推动着高压开关电源每年以超过两位数字的增长率向着轻、小、薄、低噪声、高可靠、抗干扰的方向发展。高压开关电源可分为AC/DC 和DC/DC两大类,DC/DC变换器现已实现模块化,且设计技术及出产工艺在海内外均已成熟和尺度化,并已得到用户的认可,但AC/DC的模块化,因其自身的特性使得在模块化的进程中,碰到较为复杂的技术和工艺制造题目。以下分别对两类高压开关电源的结构和特性作以阐述。 四、接地 高压开关电源比线性电源会产生更多的干扰,对共模干扰敏感的用电设备,应采取接地和屏蔽措施,按ICE1000、EN61000、FCC等EMC限制,高压开关电源均采取EMC电磁兼容措施,因此高压开关电源一般应带有EMC电磁兼容滤波器。如利德华福技术的HA系列高压开关电源,将其FG端子接大地或接用户机壳,方能知足上述电磁兼容的要求。 五、保护电路 高压开关电源在设计中必需具有过流、过热、短路等保护功能,故在设计时应首选保护功能齐备的高压开关电源模块,并且其保护电路的技术参数应与用电设备的工作特性相匹配,以避免损坏用电设备或高压开关电源。

高频开关电源模块说明书

AC-DC4810/05系列高频开关电源模块 技术手册

目录 第一章概述。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。2 第二章产品性能命名方法。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。3 第三章主要特点。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。3 第四章操作规程及一般维护。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。3 第五章注意事项。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。4 第六章主要技术参数。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。4

AC-DC4810/05高频开关电源使用说明 一、概述 小型通讯设备广泛采用通讯标准48V/24V 电压等级,一般电流较小,但供电设备 亦要求管理功能完备,方便使用,具有后备供电功能。 AC-DC4810/05系列一体化电源模块及电源柜即是针对此产品设计而成,其中一体化电源内部设有如下部分,交流/直流整流器电源,充电管理电路,放电保护电路,3-5个分路负载管理单元,电池接口,总输出接口,分路负载接口,系统原理图如下: -OUT 5A -OUT1 3A -OUT2 2A -OUT3 1A -OUT4 1A 系统工作原理如下:当有市电工作时,整流器电源利用市电交流220V ,变换成直 流电源输出,一方面向负载提供供电电流,另一方面由充电管理单元向电池提供充电,电池容量可选12AH ,24AH ,38AH ,50AH ,其中充电管理单元设有降压限流充电管理电路,恒压浮充管理电路,保证电池能够快速可靠地完成充电功能。 当市电停电后,系统会由电池通过放电保护单元不间断的向负载连续提供供电,供电时间由选取电池容量及设备此时工作电流决定。 负载用电池容量 12AH 24AH 38AH 设备用电:3A 3小时 6小时 10小时 设备用电:5A 2.4小时 3.6小时 6小时 在电池放电时间较长时,电池继续放电可能导致过放电,故电源内设有电池过放 电保护电路,当发生过放电时,切断电池与输出之间的连线通路,不再向外输出,等待市电来电。 电源直流输出一般采用通讯负电源标示方法,即GND ,-OUT 。并且为方便用户使用,设有一个主输出,4个分路输出。各输出分路并设有负载分配管理单元,当负载大于额定电流2倍以上时,负载分配管理单元会停止向此负载输出其他分路功能正常工作,当负载恢复到正常额定值内时,该分路会继续提供输出。 市电 整流器电源 供电 充电管理单元 电池 放电保护单元 分路负载管理单元 分路负载管理单元 分路负载管理单元 分路负载管理单元

经典LED驱动电源参考设计大集锦(内含设计原理图、实际案例分析)

经典LED驱动电源参考设计大集锦(内含设计原理图、实际案例分析) PI公司的众多LED驱动电源解决方案中,高效率、低功耗,外围简单、可调光、高稳定性是最大的特点,涉及工业、商业、家用等应用领域。不管是应客户需求设计,还是按相关标准设计,还是基于对行业发展趋势把握所做的前瞻性设计,都同样的出色,其方案、设计、想法具有行业指引性。 其众多的驱动电源参考设计中蕴含很多电源基本理论,就算不用其公司的IC也可以作为设计参考,对工程师有超强的指导意义。 1.开关电源设计软件- PI Expert? 操作/设计指南 PI Expert可提供构建和测试工作原型所需的所有必要信息。这些信息包括完整的交互式电路原理图、物料清单(BOM)、电路板布局建议以及详细的电气参数表。PI Expert还可提供完整的变压器设计,包括磁芯尺寸、线圈圈数、适当的线材规格以及每个绕组所用的并绕线数。此外,还可生成详细的绕组机械装配说明。该程序可以将设计时间从数天缩短至几分钟。 2.采用LYTSwitch的带功率因数校正(PFC)的23 W T8电源设计 适用于430 mA V (50 V) T8灯管的隔离式、低输入电压、超薄驱动器设计(DER-338)现已推出。这款新设计采用了PI新推出的LYTSwitch? LED驱动器系列器件LYT4215E。 3.一款高功率因数、可控硅调光的非隔离LED驱动器 PI推出了一份新的设计报告((DER-364),介绍的是一款使用广受好评的LYTSwitch IC设计的高功率因数、可控硅调光的非隔离LED驱动器。其效率额定值高达85%以上,具有无闪烁调光和单向快速启动(<200 ms)的特性。 4.针对T10灯管的最新24 W LED驱动器设计 PI的一款效率达92%的24 W T10灯LED驱动器设计(DER-356)。该设计可极大简化离线式、带功率因数校正的LED电源的生产。 5.适用于可控硅调光A19灯的全新10 W PFC LED驱动器设计 PI发布的关于针对可调光A19灯的全新10 W驱动器设计(DER-328) 6.元件数最少的T8灯管LED驱动器设计–高效率、低THD PI现已推出DER-345–一款针对T8 LED灯的低输入电压、非隔离、高效率、高功率因数LED驱动器设计。 7.适用于A19替换灯的14.5 W可控硅调光的非隔离LED驱动器 Power Integrations的LED设计(DER-341) –适用于A19 LED灯的非隔离式、高效率、高功率因数(PF) LED驱动器。这款新的LED驱动器采用LinkSwitch-PH系列IC中的LNK407EG器件设计而成。

高效率开关电源设计实例

高效率开关电源设计实 例 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

高效率开关电源设计实例--10W同步整流B u c k变换器 以下设计实例中,包含了各种技巧来提高开关电源的总体效率。有源钳位和元损吸收电路的设计主要依靠经验来完成的,所以不在这里介绍。 采用新技术时必须小心,因为很多是有专利的,可能需要直接付专利费给专利持有人,或在购买每一片控制IC芯片时,支付附加费用。在将这些电源引入生产前,请注意这个问题。 10W同步整流Buck变换器 应用 此设计实例是PWM设计实例1的再设计,它包括了如何设计同步整流器()。 在设计同步整流开关电源时,必须仔细选择控制IC。为了效率最高和体积最小,一般同步控制器在系统性能上各有千秋,使得控制器只是在供应商提到的应用场合中性能较好。很多运行性能的微妙之处不能确定,除非认真读过数据手册。例如,每当作者试图设计一个同步整流变换器,并试图使用现成买来的IC芯片时,3/4设计会被丢弃。这是因为买来的芯片功能或工作模式往往无法改变。更不用说,当发现现成方案不能满足需求时,是令人沮丧的(见图20的电路图)。 设计指标 输入电压范围: DC+10~+14V 输出电压: DC+ 额定输出电流: 过电流限制: 输出纹波电压: +30mV(峰峰值) 输出调整:±1% 最大工作温度: +40℃ “黑箱”预估值 输出功率: +*2A=(最大) 输入功率: Pout/估计效率=/= 功率开关损耗* 0.5= 续流二极管损耗:*= 输入平均电流 低输入电压时/10V= 高输入电压时:/14V=0.8A 估计峰值电流: 1.4Iout(rated)=1.4×2.0A=2.8A 设计工作频率为300kHz。

200kV高压开关电源研制_周长庚

第23卷第3期强激光与粒子束Vol.23,No.3 2011年3月H IGH POWE R LASE R AND PARTICLE BEAMS M ar.,2011  文章编号: 1001-4322(2011)03-0761-04 200kV高压开关电源研制* 周长庚, 李 彦, 娄本超, 伍春雷, 胡永宏 (中国工程物理研究院核物理与化学研究所,四川绵阳621900) 摘 要: 采用软开关电源技术和叠层式倍压器方法,研制成一台200kV高压发生器,介绍了其工作原理 和结构。高压开关电源主要由功率变换器、中频升压变压器和高压倍压器组成。其主要技术指标为:高压200 kV,输出电流10mA,工作频率20kH z,电压稳定度1%,纹波系数2%,连续工作时间为8h。测试结果表明, 该高压开关电源的性能指标达了设计要求。 关键词: 功率变换; 倍压; 高压; 中频; 连续工作时间 中图分类号: T L503.5 文献标志码: A doi:10.3788/HP LP B20112303.0761 200kV以上的高压电源是氘离子加速器的关键设备之一。与线形高压电源相比,高压开关电源(也称高压发生器)[1-3],采用中频逆变技术,具有体积小、重量轻、稳定度高等特点。但目前国内许多科研单位研制生产的高压开关电源主要应用于医疗设备、高压材料和设备的绝缘性能检测等领域,工作连续时间一般不超过1 h,由于工作频率只有7kH z左右,整体体积偏大,满负载运行时噪音较大[4-6],不适合在专用氘离子加速器方面的应用和发展。为此,我们采用软开关电源技术和叠层式倍压器方法,研制成一台200kV高压发生器,采用空气绝缘,其高压部分不必放置在绝缘油内,维修方便。 1 高压开关电源的原理和结构 如图1所示,高压开关电源主要由功率变换器、中频升压变压器和高压倍压器组成。高压开关电源工作过程为:AC/DC电路把交流220V电压转换成直流电压,功率变换器中的桥式开关电路将直流电压变换成幅值约为220V的中频脉冲电压信号,中频变压器把脉冲电压转换成正弦波,并将正弦波峰值升至9kV,经过中频高压整流、中频滤波和12级倍压,形成大于200kV直流高压,当加满负载时,保证输出电压为200kV。 Fig.1 Principle block diagram of200kV high voltage switch pow er supply 图1 200kV高压开关电源原理方框图 2 功率变换器 功率变换器是高压开关电源关键部件。如图2所示,功率变换器是由整流器、滤波器、过流保护电路、全桥开关、取样电路、电源控制器和驱动器等组成。其工作原理是:交流220V电压经整流、滤波后形成+220V和-220V的直流电压,通过过流保护电路加到全桥开关。电源控制器产生的脉冲调制信号通过驱动器控制全桥开关的导通和截止,从而输出幅度约为220V的中频脉冲功率信号。图3为全桥开关电路原理图。电源控制器采用UC3875开关电源移相PWM控制集成电路。对IGBT开关管S1~S4组成的全桥开关电路进行移相控制,S1,S3为超前臂,S2,S4为滞后臂。借助开关管的输出电容C1~C4充放电,在输出电容放电结束(电压为0V)的状态下完成开关管零电压导通,功率损耗最小,这就是软开关过程。软开关过程使整个高压开关电 *收稿日期:2010-06-21; 修订日期:2010-11-11 基金项目:中国工程物理研究院预研基金项目 作者简介:周长庚(1956—),男,博士,研究员,从事核技术及应用研究;zh ou changg@https://www.360docs.net/doc/9717627019.html,。

开关电源课程设计

太原理工大学课程设计任务书 指导教师签名:日期:

前言 随着电力电子技术的发展,开关电源的应用越来越广泛。反激式开关电源以其设计简单,体积小巧等优势,广泛应用于小功率场合。开关电源以其小型、轻量和高效率的特点,被广泛地应用于各种电气设备和系统中,其性能的优劣直接关系到整个系统功能的实现。开关稳压电源有多种类型,其中单端反激式开关电源由于具有线路简单,所需要的元器件少,能够提供多路隔离输出等优点而广泛应用于小功率电源领域。 本论文根据输入电压经EMI滤波设计整流桥,再与直流变压器开关管构成反激电路。通过输出反馈经UC3842控制占空比,从而使输出电压稳定。反激电路中开关管开通原边线圈储存能量,副边不导通。原边关断时,线圈储存的能量通过互感向负载提供能量。输出电压反馈由TL431和光耦构成,当输出稳定时,有一个稳定的电流;当输出电压增大时,TL431分流增加,发光二极管亮度改变,使三级管电流改变,致使开关管控制导通占空比改变,从而使输出电压减小。另外,芯片UC3842引脚接一电流反馈,通过控制分压值实现截流保护,防止输出过电流。 设计中,直流变压器的设计是重点,需要计算其原边电感,原副边匝数,铁芯的选择,根据这些参数构造电路图,计算各电容电阻值及二极管承受的反压,选择合适的型号。 论文先介绍了开关电源及反激式开关电源,然后介绍器件选型,再分部分介绍主电路、控制电路和保护电路,最后附表为选择时参数参考表和总电路图。

目录 前言 第一章开关电源概述 (1) 1.1开关电源综述 (1) 1.2反激式开关电源介绍 (2) 第二章总体方案的确定 (2) 2.1总体设计思路及框图 (2) 2.2仿真原理图 (3) 第三章具体电路设计 (5) 3.1EMI滤波电路 (5) 3.2整流滤波电路设计 (6) 3.3高频变压器的设计 (7) 3.4控制反馈电路的设计 (15) 3.5保护电路的设计 (17) 3.6输出侧滤波电路设计 (18) 第四章电路仿真与结果 (19) 4.1 EMI滤波电路 (19) 4.2整流电路 (21) 4.3反激型电路 (22) 4.4反馈电路 (23) 4.5总电路 (24) 心得体会 (25) 参考文献 (26)

详解自激开关电源电路图

详解自激开关电源电路图 该文章讲述了详解自激开关电源电路图. 自激开关电源电路 图,STR41090电源属于自激式并联型开关电源,适应电网电压能力为150-280V。 振荡过程 C808上约300V直流电压经R811加到N801的(2)脚内部开关管的B极,同时经T802的(1)、(3)绕组加到N801的(3)脚内部开关管的C极,开关管开始导通,电流流过T802的(1)、(3)绕组,在(1)、(3)绕组产生感应电压,极性为(3)正(1)负,经耦合,在(6)、(7)绕组也产生感应电压,极性为(7)正(6)负,此正反馈电压经C819、R817、R816送回到N801的(2)脚,使开关管电流进一步增大,雪崩的过程使开关管迅速饱和。开关管饱和期间,T802(1)、(3)绕组的电流线性增大,VD821、VD822截止,T802储存磁场能量。由于C819不断被充电,使N801的(2)脚电压不断下降,到某一时刻,N802(2)脚上的电压不能维持内部开关管的饱和,开关管退出饱和状态,C极电流减小,T802各绕组的感应电压极性全部翻转,反馈绕组(6)、(7)脚的电压极性为(6)正(7)负,经C819、R817、R816送到N801的(2)脚,使N801(2)脚电压进一步减小,又一雪崩过程使开关管迅速截止。开关管截止期间,VD821导通,在C822电容上形成112V电压;VD822也导通,在C824电容上形成18V电压,T802储存的磁场能量被释放。另一方面,C819上的电压经R817、R816、VD812、VD813放电,同时300V电压经R811给C819反向充电,这两个因素使C819左端的电压回升,即N801(2)脚的电压回升,当(2)脚电压上升0.6V以上

-48V高频开关电源

深圳市普顿电力设备有限公司 48V直流通信电源 (直流变换器-通信电源-高频开关电源)(通信机房基站移动通信专用) 使 用 手 册

一:普顿整流模块简介 (一) 整流模块的工作原理 整流模块的原理框图如图5-1所示,EMI 电路有两个功能: 1)防止市电电网由于负载的开关及闪电造成的尖峰对整流模块造成的危害; 2)阻止整流模块内高频开关产生的干扰电压及电流反灌给电网。 EMI 交流输入 全桥整流 DC/DC 变换电路 输出整流滤波电路 PWM 控制电路 电压、电流检测 监控接口 直流输出 图5-1 普顿-4830-2U 整流模块工作原理框图 整流模块变换电路为双正激拓扑结构,开关管同时导通,不存在桥式拓扑中桥臂直通的危险;变压器也不存在因偏磁而造成饱和的危险;从拓扑结构上保证了模块的可靠性。双路互补倍频的双正激拓扑,使整流模块工作频率高达160kHz 。 本模块的设计采用了高频脉宽调制技术,低差自主均流技术,以及高可靠快速保护技术。低差自主均流控制单元确保模块并联运行时实现模块间自动均流,从轻载(5%负载)到额定负载,模块间最大电流误差<2A 。高可靠快速保护以及专门设计的短路回收特性,确保模块长期短路也不会损坏,完善的保护功能保证了系统与模块安全可靠运行。 该模块具有150V AC ~300V AC 的电压输入范围。为确保模块安全可靠地工作,设计了二级限流功能,当电网电压在176V AC ±5V 以下时,电源模块自动进入限流工作区间,最大输出电流为15A ;当电网电压在176V AC ±5V 到300V AC 之间时,模块额定工作电流为30A 。

整流模块采用了输入、输出滤波电路及屏蔽结构,使模块具有电磁兼容性,各项杂音指标均优于部颁标准。模块结构以及内部元器件布局,考虑了各种安全规范,使模块具有较高的安全性。 二:普顿整流模块外形结构 图5-2 输出显示DISPLAY CD 电流显示 电压显示 VD POWER 电源开关 运行 RUN 均充微调 EC ADJ FC 浮充 均充 EC 浮充微调 FC ADJ MANUAL手动 自动AUTO 故障 ALM DC+DC-E N L 并机接口 A型机箱机械尺寸图 图5-3

开关电源学习 书籍推荐

《开关电源入门》,图灵出版的和美国半导体总工写的.《开关电源设计与优化》写的不适合初学者 1、《开关电源指南》第2版,浙江大学徐德鸿翻译的,也有可能是他的学生翻译,他署名出版而已.说实话,翻译水平很烂,错误相当多,但里面很多内容,相当不错,很适合入门.英文水平高的,可以看英文原版. 2、《开关电源设计》第2版,华南理工大学王志强翻译的,挺厚的,黑白相间的书皮,也不错. 3、《电力电子系统建模》浙大徐德鸿翻译,《开关变换器的建模与控制》, 张卫平著. 这两本书,详细讲解了开关电源的建模方式和环路补偿,怎么调整电源环路的稳态性能和暂态性能.这两本书看懂了,做电源,我个人觉得,理论水平已经达到一定高度了. 4、《直流开关电源的软开关技术》和《全桥移相软开关技术》,南航阮新波的博士论文,整理后出版的两本书,国内凡是写软开关的书,大部分都是照抄它们或者无一不参考它们.其中后一本书已经绝版了,市场上已经买不到,淘宝网上有复印版本卖,大概45元,质量很不错的. 5、《开关电源磁性元器件》,赵修科著.磁性器件,可以说是开关电源的心脏,不懂磁,想做好电源,那是不可能的.这本书对磁的理解深刻而全面. 6、control loop cookbook 德州仪器的技术资料,作者就是提出著名右半平面零点概念的那个人,相当的好. 其他的书嘛,就是大学教材,模拟电路和经典控制理论,一定是要读通掌握才行.总的来说,软开关,就看阮新波足够;环路方面,主要还是看外国人写的;磁和变压器方面,主要看赵修科和台湾人写的. 仿真软件还是要掌握一些的. 1、orcadpspice适合做电路元件级级仿真,仿模拟电路和开关电源小信号模型,效果相当好. 2、saber适合做系统级仿真,特别适合开关电源这种含有脉冲式信号的电路,模型库参数全,仿真精度高,尤其是强大的仿真结果后续处理能力,是我用过的仿真软件中,功能最强大的一款.不过,在国内普及程度,没有pspice高,一套正版8万

开关电源的PCB布局走线

首先从开关电源的设计及生产工艺开始描述吧,先说说印制板的设计。开关电源工作在高频率,高脉冲状态,属于模拟电路中的一个比较特殊种类。布板时须遵循高频电路布线原则。 1、布局:脉冲电压连线尽可能短,其中输入开关管到变压器连线,输出变压器到整流管连接线。脉冲电流环路尽可能小如输入滤波电容正到变压器到开关管返回电容负。输出部分变压器出端到整流管到输出电感到输出电容返回变 压器电路中X电容要尽量接近开关电源输入端,输入线应避免与其他电路平行,应避开。 Y电容应放置在机壳接地端子或FG连接端。共摸电感应与变压器保持一定距离,以避免磁偶合。如不好处理可在共摸电感与变压器间加一屏蔽,以上几项对开关电源的EMC性能影响较大。 输出电容一般可采用两只一只靠近整流管另一只应靠 近输出端子,可影响电源输出纹波指标,两只小容量电容并联效果应优于用一只大容量电容。发热器件要和电解电容保持一定距离,以延长整机寿命,电解电容是开关电源寿命的瓶劲,如变压器、功率管、大功率电阻要和电解保持距离,电解之间也须留出散热空间,条件允许可将其放置在进风口控制部分要注意:高阻抗弱信号电路连线要尽量短如取样反馈环路,在处理时要尽量避免其受干扰、电流取样信号

电路,特别是电流控制型电路,处理不好易出现一些想不到的意外,其中有一些技巧 现以3843电路举例见图(1)图一效果要好于图二,图二在满载时用示波器观测电流波形上明显叠加尖刺,由于干扰限流点比设计值偏低,图一则没有这种现象、还有开关管驱动信号电路,开关管驱动电阻要靠近开关管,可提高开关管工作可靠性,这和功率 MOSFET高直流阻抗电压驱动特性有关。 下面谈一谈印制板布线的一些原则。 线间距:随着印制线路板制造工艺的不断完善和提高,一般加工厂制造出线间距等于甚至小于0.1mm已经不存在什么问题,完全能够满足大多数应用场合。考虑到开关电源所采用的元器件及生产工艺,一般双面板最小线间距设为

基于MCU控制的高压开关电源

收稿日期:2010 08 30 基金项目:重庆市自然科学基金资助项目(2008BB2314) 作者简介:王斌(1974 ),男,江苏淮安人,副教授,博士,主要从事电力电子系统的数字控制的研究。 文章编号:1004 2474(2011)01 0064 04基于MCU 控制的高压开关电源 王 斌1,芶志平2,毛海燕2 (1.重庆大学自动化学院,重庆400030;2.中国电子科技集团公司第26研究所,重庆400060) 摘 要:针对压电陶瓷驱动电源的应用设计了一种基于单片机(M CU )控制的高压开关电源,实现了低压(9~ 18V )输入下的高压(150V)输出。电路主回路采用准谐振反激变换拓扑结构,M CU 芯片控制脉宽调制(PW M )电源管理芯片完成变换器升压,并驱动H 桥逆变电路输出频率可调的方波电压。数字控制的高压开关电源工作波形稳定,尖峰噪声小,输出电压精度高。实验结果验证了高压开关电源的性能。 关键词:压电陶瓷;开关电源;单片机(M CU )控制;准谐振中图分类号:T N86 文献标识码:A A High Voltage Switching Power Supply Based on MCU C ontrol WANG Bin 1 ,GOU Zhiping 2 ,MAO Haiyan 2 (1.College of Au tomation,Chongqing University,Ch ong qin g 400030China; 2.26th In stitu te of China E lectron ics T ech nology Group Corporation,C hongqing 400060,Ch ina ) Abstract:A high v oltag e switching po wer supply based on the micr o pro gr am contro l unit (M CU )fo r piezoe lect ric ceramic actuator has been designed.T he 150V high voltag e output has been r ealized at the condition of 9V to 18V low vo ltag e input.A quasi r eso nant fly back conversion t opolo gy was used for the circuit main lo op.T he boos ted vo ltag e of the co nv erter w as r ealized by M CU chip contro lled pulse w idth mo dulation (PW M )regulator.T he M CU co nt rols the sw itching fr equency of the H br idge inver ter to output the squar e w ave voltage.T he dig itally con tr olled swit ching po wer supply has the char act eristics of stable w avefo rm,low peak noise and high precisio n o f out put vo ltag e.T he perfor mance of t he hig h voltag e sw itching pow er supply has been ver ified ex perimentally. Key words:piezoelect ric ceramic;switching po wer supply;M CU contro l;quasi resonant 0 引言 压电陶瓷作为一种微位移器件,在精密工程应用领域里有着广泛的应用前景。压电陶瓷材料的工作特性很大程度上取决于驱动电源的性能,驱动电源必须输出稳定性好的高幅值电压,并具有较好的动态性能,可适应外界条件的突变[1 2] 。传统的高压驱动电源通常以模拟脉宽调制芯片为核心控制开关电路、整流电路等完成稳定电压输出。随着数字控制技术的发展,单片机、数字信号处理器等数字芯片也逐渐参与到开关电源的设计,带来了可编程性、高集成度、高扩展性等优点[3 4]。作者提出了一种基于MC68H C908JK3芯片的高压开关电源,在低压(9~18V )输入下能输出高精度频率可调输出电压,可满足压电陶瓷驱动电源的应用需求。 1 高压开关电源的设计 高压电源输入9~18V,输出150V 方波电压,频率可控。电路结构采用单片机控制开关电源的方 式,原理框图如图1所示。主功率回路采用准谐振反激式开关电源拓扑结构,控制芯片为M C33060,直流电压经H 桥逆变电路转换后得到150V 方波电压。负载电压和电流采样信号经A/D 转换后,输入单片机(M CU )控制芯片M C68H C908JK3,单片机根据软件算法完成恒流或恒压控制,同时输出频率可调的驱动信号到H 桥逆变电路,实现直流电压到方波信号的转换。电路以M CU 芯片为控制核心,不仅能完成高精度精确的受控电压和电流输出,还能实现过压保护、过流保护、上位机通讯等一些重要的辅助功能。 图1 高压开关电源原理框图 反激式开关变换电路如图2所示。M C33060是低功耗固定频率的脉宽调制(PWM )控制芯片,内 第33卷第1期压 电 与 声 光 V ol.33N o.12011年2月 P IEZOEL ECT RICS &A COU ST O OP T ICS F eb.2010

相关文档
最新文档