智能车电磁组完整程序

智能车电磁组完整程序
智能车电磁组完整程序

智能车光电传感器和摄像头的选择

第15卷第4期2011年12月 扬州职业大学学报 Journal of Yangzhou Polytechnic College Vol.15No.4 Dec.2011智能车光电传感器和摄像头的选择 戚玉婕 (扬州职业大学,江苏扬州225009) 摘要:智能车设计综合了光学传感器、硬件电路和软件算法等多方面跨领域的知识技巧。本文针对黑白赛道智能车的赛道光学识别模块,系统地介绍了红外反射式光电传感器、激光传感器和可见光摄像头的实现原理及硬件电路;同时结合实际比较了其优缺点。 关键词:红外反射式传感器;激光传感器;摄像头;智能车设计 中图分类号:TP212文献标识码:A文章编号:1008-3693(2011)04-0023-04 Choice of Photoelectric Sensor and Camera in Intelligent Car QI Yu-jie (Yangzhou Polytechnic College,Yangzhou225009,China) Abstract:Intelligent car designing is a modern and effective way in science and technology teaching.It in-tegrates some interdisciplinary skills,such as design and choice of optical sensor,hardware circuit and algo-rithm.In view of the benefit of designing the optical recognition module,the working mechanism and hardware design of several optical system,including infrared photoelectric sensor,laser sensor and camera are intro-duced in this article.Furthermore,combined with practical experience in teaching,pros and cons of the three alternative sensors are discussed to help teaching activities in intelligence car designing. Key words:infrared photoelectric sensor;laser sensor;camera;intelligent car designing 智能车也称无人车,是一个集环境感知规划决策和多等级辅助驾驶等功能于一体的综合系统。1953年,世界上第一台无人驾驶牵引车诞生,这是一部采用埋线电磁感应方式跟踪路径的自动导向车。如今,随着传感技术的不断进步,无人驾驶车发展也越来越快。智能车的光学传感器模块起到了至关重要的作为。光学传感器将获得的道路信息、测速传感器将现行车速信息传递至系统,系统对获得的图像和数据信息进行分析处理,经过特定的控制算法计算得出最佳速度和舵机转角,这是智能车系统的基本工作原理。 传感器是智能车的“眼睛”,必须能够真实、快速地反馈赛道信息。光电传感器和摄像头是两种工业应用最广泛的光学传感器。光电传感器包括红外传感器、激光传感器等,广泛应用于无人生产线,自动巡逻等领域;摄像头则广泛应用于汽车安全的智能技术中,如视觉增强系统、前照灯自动调整系统、转向监视系统等。本文结合我校开展智能车设计的经验,介绍了智能车设计中用到的光电传感器和摄像头,并比较两者的性能差别。 1光电传感器智能车道路识别系统设计 光电传感器(反射式)的光源有很多种,常用的有红外发光二极管,普通发光二极管和激光二 收稿日期:2011-09-26 作者简介:戚玉婕(1985—),女,扬州职业大学电子工程系助教,硕士。

飞思卡尔智能车电磁组信号采集

?пㄖ ???? ??? ? ??? ?? ? ? 1? ? ??? ? 哖 世?? ???? ??? ??? ??? ? ??? ㄎ? ?? ??????仁??20kHz??????⌒ ???仁?VLF? ??⌒???仁仁?? ? 仁 ?仁??⌒????3kHz?30kHz?⌒?? 100km?10km? ?? 3.1?? ??? ? ? ?? ? ? ?а ? ?????? ??? ? ? ? ? ?? ??オ???? ??? ??? ? ? ??? ? ? ???о? ??? ??? ??? ? ? ? ? ?? ? ??? й ?????? ? ? ?? ? ???? ?н ????? ? ? на???? ??? ? ? ?? ? ? ?? а ? ???? ?? ??? ?? ? ??? ? ? ?? ?? ??? ??? ?? ??仁? ??? ?? ???? ??? ?? ?? ????? ?? ? ?? ?????? ↓ ? ?? ?? ↓ ? ?? ?? ??? ???? ? ??? ?? ? ? ?? ? ↓ ?? ?? ? ? ? ? ?? っ ?? ???/& ????? ??? ? ? ??/&? ?? ? ?

?йㄐ ???? ?? ?LC? ?? ? ? ?? ?? ? ?? ??????? ??? ??AD???? 享 ?? 儈?↓? фн?? ?? ???AD? ???? ? ?? ?? 3.3 ?? ?? ???????? ?? 傼 ??н ??? ? ? н ? ?? ?? ?н ? н? ? ? ??? ? ?? ?нっ ???? ?????? ? ф? 儈? ? ?

智能车电磁环境制作

第五届全国大学生智能汽车竞赛 20KHz 电源参考设计方案 (竞赛秘书处技术组版本1.0) 第五届全国大学“飞思卡尔杯”智能汽车竞赛新增加了“电磁组”。根据比赛技术要求,电磁组竞赛,需要选手设计的智能车能够检测到道路中心线下电线中20KHz交表电流产生的磁场来导引小车沿着道路行驶。在平时调试和比赛过程中需要能够满足比赛技术要求的20KHz的交流电源驱动赛道中心线下的线圈。本文档给出了电源设计参考方案,参赛队伍可以根据这些参考设计方案自行设计制作所使用电源。 一、 电源技术指标要求: 根据《竞赛比赛细则》附件三关于电磁组赛道说明,20KHz电源技术要求如下: 1、驱动赛道中心线下铺设的0.1-0.3mm直径的漆包线; 2、频率范围:20K±2K; 3、电流范围:50-150mA; 下图是赛道起跑区示意图,在中心线铺设有漆包线。 图1 竞赛跑道起跑区示意图

首先分析赛道铺设铜线的电抗,从而得到电源输出的电压范围。 我们按照普通的练习赛道总长度50,使用直径为0.2mm漆包线。在30摄氏度下,铜线的电阻率大约为 0.0185欧姆平方毫米/米。计算可以得到中心线的电阻大约为29.4欧姆。 按照导线电感量计算机公式: 4 2ln0.75() l L l nH d ?? =×? ?? ?? 。其中l, d的单位 均为cm。可以计算出直径为0.2mm,长度50米的铜线电感量为131微亨。对应20KHz下,感抗约为16.5欧姆。 可以看出,线圈的电感量小于其电阻值。由于导线的电感量与铺设的形状有关系,上述计算所得到的电感量不是准确数值。另外,我们可以在输出时串接电容来抵消电感的感抗。所以估算电源电压输出范围的时候,我们不再特别考虑线圈的电感对于电流的影响。 为了方便设计,我们设计电源输出电压波形为对称方波。由于线圈电感的影响,线圈中的电流为上升、下降沿缓变的方波波形。如下图所示 图2 线圈驱动电压与电流示意图 对于电阻为29.4欧姆的赛道导线,流过100mA的电流,电压峰值应该大于3V。考虑到赛道长度有可能进一步增加、漆包线的直径减少等原因,设计电源输出电压的峰值为6V。在输出电流为150mA的时候,电源输出功率大约为0.9W。 二、 电源组成 电源电路包括振荡电路、功率输出电路、恒流控制电路以及电源等组成。 如下图所示:

智能车技术报告(新)

南京工业大学信息学院电子设计大 赛(智能车) 技术报告 学校:南京工业大学 专业:电子信息工程 参赛队员:沈春娟袁乐乐袁冯杰

引言 根据本次比赛规则的要求,结合“飞思卡尔”的一些要求,本队已经完成了智能车系统的设计、制作、安装和调试。该智能车的设计思路是:首先,通过路径识别传感器采集路径信息,经STC12C5A32S2单片机处理输出控制信号,通过电机驱动控制两个直流电机的转速,实现智能车快速寻迹的目的。 利用红外反射式传感器实现小车自动寻迹导航的设计与实现。使用红外反射式传感器感知与地面颜色有较大反差的引导线,从而实现自主式寻迹。利用PWM 技术对直流电机进行速度调节,两轮驱动,运用两个直流电机转速差异进行方向的控制调节。 本文所述智能车寻迹系统采用红外反射式传感器识别路径上的黑线,通过PWM技术对两个直流电机的速度进行控制,由速度差决定转向的角度,使用开环控制结合PD算法对速度进行简单修正实现直流电机的速度控制。该系统以STC公司的生产的单片机STC 12C5A32S2为控制核心,主要由电源模块、核心控制模块、路径识别模块、(车速检测模块)和直流驱动电机控制模块组成。为了使智能车更加快速、平稳、准确地行驶,本系统将路径识别,车速的快速检测与响应,电机和直流驱动电机的正确控制紧密地结合在一起。 技术报告共分为五个部分:第一部分为引言;第二部分是智能车系统设计,介绍智能车总体设计和软、硬件设计及实现方案;第三章是控制算法设计,详述智能车软件实现;第四章是实验验证;第五章是总结。

智能车系统设计 一.硬件设计 本系统硬件部分由电源模块、主控制器模块、路径识别模块、(车速检测模块)和直流驱动电机控制模块组成,系统硬件结构如图所示。 1. 主控制器模块 本系统中,主控制器模块采用STC 12C5A32S2单片机。STC公司的单片机STC 12C5A32S2主要特点就是功能高度的集中,并且易于扩展,超强抗干扰,超强抗静电,低功耗。拥有2个16位定时器(兼容普通8051定时器T0/T1),2路PCA 可再实现2个定时器,拥有8通道、10位高速ADC,速度可达25万次/秒,2路PWM 还可当2路D/A使用。该单片机的运算能力强,自由度大,软件编程灵活。支持C语言程序设计、汇编语言程序设计以及C语言与汇编语言的混合程序设计,在系统可编程,无需编程器,无需仿真器,极大地方便了用户的使用,提高了系统开发效率。我们选择这款单片机主要是因为该单片机集成了两路可编程计数器阵列(PCA)模块,可用于脉宽调制(PWM)输出,来控制车轮的转速。 2. 电源模块 本系统中,为满足智能车各部分正常工作的需要,本系统采用12V 25C航模电池,通过外围电路的整定,电源被分配给各个模块。 电源模块分为两个部分,为了保证控制核心的稳定性,单独供电,主电路板供电采用7805集成稳压块,该集成电路输出电压稳定,加之直流供电,不需要复杂的滤波系统。缺点发热量大,电能利用率低,所以7805可以满足系统要求。电路如图所示: 主控制器模块 电源模块 路径识别模块电机驱动模块 车速检测模块

智能循迹小车

目录 1.第一章绪论 1.1循迹小车的发展现状 1.2 选题意义 1.3本设计的工作 1.3.1设计要求 1.3.2设计思路 2.第二章硬件部分简介 2.1 具体方案论证与设计 2.2 主控芯片的简介 2.2.1 光电反射式传感器(ST178) 2.2.2低功率低失调双比较器LM393 3.第三章光电循迹小车的原理 3.1原理 3.2 传感器电路 3.2.1红外反射式光电传感器原理 3.2.2黑线检测电路

3.3核心控制电路 3.3.1模数转换电路(比较器电路) 3.3.2数字逻辑电路 3.4驱动电路 3.5 拓展功能“防撞” 3.6PCB制板 3.7作品展示 3.8原件清单 4.第四章结论 5.参考文献 6.课程设计心得

绪论 1.1循迹小车发展现状与趋势 智能汽车作为一种智能化的交通工具,体现了车辆工程、人工智能、自动控制、计算机等多个学科领域理论技术的交叉和综合,是未来汽车发展的趋势。寻迹小车可以看作是缩小化的智能汽车,它实现的基本功能是沿着指定轨道自动寻迹行驶。就目前智能小车发展趋势而言:相比价格昂贵、体积大、数据处理复杂

的传感器CCD反射式光电传感器以其价格适中、体积小、数据处理方便等更具有发展优势。 1.2 选题意义 汽车电子迅猛发展,智能车产生和不断探索并服务于人类的趋势将不可阻挡。智能车的研究将会给汽车这个产生了一百多年的交通工具带来巨大的科技变革。人们在行驶汽车时,不再只在乎它的速度和效率,更多是注重驾驶时的安全性,舒适性,环保节能性和智能性等。各国科学家和汽车工作人员以及汽车爱好者都在致力于智能车的研究,研究的成果有很多都已应用于人们的日常生活生产之中,例如在2005年1月美国发射的“勇气”号和“机遇”号火星探测器实质上都是装备先进的智能车辆。因此,研究智能车的实际意义和取得的价值都非常重大。本课题利用传感器识别路径,将赛道信息进行识别处理,利用主控芯片控制小车的行进进而完成循迹。 1.3本设计的工作 1.3.1设计要求 要求:设计并制作一个简易光电智能循迹电动车,其行驶路线示意图如图1-1:(其中粗黑些为光电寻迹线)要求智能循迹小车从起点出发,沿粗黑色引导线到达终点后立即停车但行驶全程行驶时间不能大于90s。

电磁组智能车恒磁式20KHZ信号源设计导图

现在我们借助电磁组用的20KHZ的信号发生器看看能学到些什么。 信号发生器分三个部分组成,20K信号发生器、功率输出部分(功率输出可以采用多种方式,我们在这里只讨论用分立元件组成的H桥)、恒流源部分。20K信号的发生有多种方式,可以使用单片机也可以使用555还可以使用其他的振荡电路(教材上有详细的介绍)。下面我们主要讨论一下H桥和恒流控制。 这是一个H桥功率输出+恒流电路,现在我们把它拆分成两部分来看。首先是H桥的主体如下图所示。 这是上臂由PNP三极管和下臂由NPN三极管构成的H桥。其原理是在三极管工作在关闭和饱和两种状态的基础下,当控制Q1和Q4导通并且另外两只三极管截至的情况下电流会从负载(RL)的左侧流向右侧(红线方向);同理当Q2和Q3导通Q1和Q4截至的时候电流会从负载的右侧流向左侧(绿线方向)。 让NPN三极管工作在饱和的状态(当开关使)只要使其基极电流足够大就可以了(不可太大会烧坏管子的),当Vbe大于导通电压时集电极和发射极导通。一般NPN三极管当开关使的电路如下图所示。 与NPN三极管不同的是PNP三极管的Vbe为负压时(电流从发射极流向基极)发射极和集电极导通。一般PNP三极管当开关使的电路如下图所示。

通过观察这两个开关电路可以发现NPN三极管开关电路的负载比三极管更靠近电源正极,而PNP三极管开关电路的负载比三极管更靠近地。为什么要这么做呢,如果放反了会怎么样呢,以NPN三极管为例。 我们都知道NPN三极管正常工作时发射极电位是小于基极电位的,所以上图电路中的三极管是工作在放大状态下的。这个电路的好处在于基极电流很小(输入阻抗很大),基极电流近似等于(基极电压-导通电压)/负载电阻/β。在共集放大电路(在学习共集放大电路的时候不妨也顺便看看共基放大电路)和推挽电路中会看到它的身影。这个电路稍微改造一下就变成了一个最简单的(之一吧)恒流源。 流过负载电阻RL的电流近似恒定为(Vref-导通电压)/Rfb。那么这个电路是如何恒流的呢,反馈电阻Rfb(在这里就不叫负载电阻了)是关键。我们都知道在RL在一定范围内变化时(这点很重要,RL如果太大下文就不成立了)三极管的集电极电流=基极电流*β,集电极电流与RL无关,但是β会随着三极管工作产生的热量变化,所以β值的变化是恒流最大的敌人。好在这里有Rfb,当β增大时集电极电流增大即流过Rfb的电流就会增大所以导致三极管发射极电压升高,进而导致基极电流变小使集电极电流稳定下来。这就是所谓的负反馈。可以把这个电路抽象成一个串接在主回路上的可调电阻器。

第五届飞思卡尔智能车大赛华中科技大学电磁组技术报告

第五届飞思卡尔杯全国大学生 智能汽车竞赛 技 术 报 告 学校:华中科技大学 队伍名称:华中科技大学五队 参赛队员:方华启 张江汉 诸金良 带队教师:何顶新 罗惠

关于技术报告和研究论文使用授权的说明 本人完全了解第五届全国大学生“飞思卡尔”杯智能汽车竞赛关保留、使用技术报告和研究论文的规定,即:参赛作品著作权归参赛者本人,比赛组委会和飞思卡尔半导体公司可以在相关主页上收录并公开参赛作品的设计方案、技术报告以及参赛模型车的视频、图像资料,并将相关内容编纂收录在组委会出版论文集中。 参赛队员签名: 带队教师签名: 日期:

目录 第1章引言 (1) 1.1 概述 (1) 1.2 全文安排 (2) 第2章电路设计 (3) 2.1 电路系统框图 (3) 2.2 电源部分 (4) 2.3 电机驱动部分 (5) 2.4 电磁传感器 (6) 第3章机械设计 (8) 3.1 车体结构和主要参数及其调整 (8) 3.2 舵机的固定 (10) 3.3 传感器的固定 (11) 3.4 编码器的固定 (11) 第4章软件设计 (12) 4.1 程序整体框架 (12) 4.2 前台系统 (13) 4.3 后台系统 (13) 4.4 软件详细设计 (14) 第5章调试 (15) 第6章全文总结 (16) 6.1 智能车主要技术参数 (16) 6.2 不足与改进 (16) 6.3 致谢与总结 (17) I

参考文献 (18) 附录A 源代码 (18) II

第1章引言 第1章引言 教育部为了加强大学生实践、创新能力和团队精神的培养,在已举办全国大学生数学建模、电子设计、机械设计、结构设计等4大竞赛的基础上,委托教育部高等学校自动化专业教学指导分委员会主办每年一度的全国大学生智能汽车竞赛(教高司函[2005]201号文)[1]。 为响应教育部的号召,本校积极组队参加第五届“飞思卡尔”杯全国大学生智能汽车竞赛。从2009 年12 月开始着手进行准备,历时近8 个月,经过设计理念的不断进步,制作精度的不断提高,经历 2 代智能车硬件平台及相关算法的改进,最终设计出一套完整的智能车开发、调试平台。作为电磁组的华中科技大学五队采用轻质量机械设计、大前瞻传感器和连续化算法处理的基本技术路线,在前瞻距离、噪声抑制、驱动优化、整车布局等方面加强研究创新,在有限计算能力下获得了较高的赛道信息准确率。使智能车能够满足高速运行下的动力性和稳定性需求,获得了良好的综合性能和赛场表现。 本文将对智能车的总体设计和各部分的详细设计进行一一介绍。 1.1 概述 1.1.1 电路设计 飞思卡尔电磁组智能汽车硬件主要分为主控板,传感器板。本车在主控板上主要特色为电机使用H桥驱动,从性能和扩展性上优于集成驱动器方案。传感器板设计着重考虑提高传感器的前瞻量和信号的抗干扰能力。 1.1.2 机械设计 机械方面,主要是对舵机的安装进行了研究,加长了舵机的连杆,以增加反应速度。另外,主要研究车差速性能的研究以及传感器支架的固定。 1.1.3 控制程序设计 一方面使用免费的μCOS操作系统,这给智能车的整体调试提供了很多方便;另一方面,在大前瞻传感器的基础上设计出合理的舵机、电机控制算法,在满足稳定性要求的基础上提高速度。 1

飞思卡尔智能车电磁组程序员成长之路(未完待续)

飞思卡尔智能车电磁组程序员成长之路 1.飞思卡尔智能车小车入门 智能汽车电磁组简介: 第五届全国大学“飞思卡尔杯”智能汽车竞赛新增加了“电磁组”。根据比赛技术 要求,电磁组竞赛,需要选手设计的智能车能够检测到道路中心线下电线中20KHz 交 变电流产生的磁场来导引小车沿着道路行驶。在平时调试和比赛过程中需要能够满足比 赛技术要求的 20KHz 的交流电源驱动赛道中心线下的线圈。同时参赛选手需要自行设 计合适的电磁传感器来检测赛道信息完成智能寻迹功能。 智能车制作是一个涵盖电子、电气、机械、控制等多个领域和学科的科技创新活动。简单点来说可以将其分为硬件电路(包括电源、MUC 控制部分、电机驱动、传感器)、机械、算法三方面的设计。电磁组在机械方面可以参照光电组的设计方案,这里不再赘述。本设计指导只讲述20KHZ 电源、电磁传感器设计方案以及部分算法。 智能车对单片机模块需求: 飞思卡尔单片机资源:

智能车涉及到IO模块,中断模块,PWM模块,DMA模块,AD模块等。在车模调试中还有必须的模块。如SCI模块、定时器模块,SPI模块等。其中还涉及到一些算法和数据的存储和搬移。一个好程序框架对智能车的制作过程中会达到事半功倍的效果。但是就智能车这样系统来说,如果完全专门移植一个操作系统或者写一个程序的bootload,感觉有一些本末倒置,如果有成熟的,可以借用的,那样会比较好。 2.电磁传感器的使用 20KHz电源参考设计方案: 电源技术指标要求: 根据官网关于电磁组赛道说明,20KHz 电源技术要求如下: 1.驱动赛道中心线下铺设的 0.1-0.3mm 直径的漆包线; 2.频率围:20K±2K; 3.电流围:50-150mA; 图 2.1 是赛道起跑区示意图,在中心 线铺设有漆包线。 首先分析赛道铺设铜线的电抗,从而得 到电源输出的电压围。我们按照普通的练习 赛道总长度 50m,使用直径 0.2mm 漆包线。在30 摄氏度下,铜线的电阻率大约为 0.0185 欧姆平方毫米/米。计算可以得到中心线的电阻大约为 29.4 欧姆。 按照导线电感量计算机公式: 其中 l, d 的单位均为 cm。可以计算出直径为 0.2mm,长度 50 米的铜线电感量为131 微亨。对应 20KHz 下,感抗约为 16.5 欧姆。

飞思卡尔智能车比赛电磁组路径检测设计方案

飞思卡尔智能车比赛电磁组路径检测设计方案电磁组竞赛车模 路径检测设计参考方案 (竞赛秘书处 2010-1,版本 1.0) 一、前言 第五届全国大学生智能汽车竞赛新增加了电磁组比赛。竞赛车模需要能够通 过自动识别赛道中心线位置处由通有 100mA 交变电流的导线所产生的电磁场进行路径检测。除此之外在赛道的起跑线处还有永磁铁标志起跑线的位置。具体要求请参阅《第五届智能汽车竞赛细则》技术文档。 本文给出了一种简便的交变磁场的检测方案,目的是使得部分初次参加比赛 的队伍能够尽快有一个设计方案,开始制作和调试自己的车模。本方案通过微型车模实际运行,证明了它的可行性。微型车模运行录像参见竞赛网站上视频文件。 二、设计原理 1、导线周围的电磁场 根据麦克斯韦电磁场理论,交变电流会在周围产生交变的电磁场。智能汽车 竞赛使用路径导航的交流电流频率为 20kHz,产生的电磁波属于甚低频(VLF) 电磁波。甚低频频率范围处于工频和低频电磁破中间,为 3kHz,30kHz,波长为 100km,10km。如下图所示: 图 1:电流周围的电磁场示意图

导线周围的电场和磁场,按照一定规律分布。通过检测相应的电磁场的强度 和方向可以反过来获得距离导线的空间位置,这正是我们进行电磁导航的目的。 由于赛道导航电线和小车尺寸 l 远远小于电磁波的波长,,电磁场辐射能量很小(如果天线的长度 l 远小于电磁波长,在施加交变电压后,电磁波辐射功率正比于天线长度的四次方),所以能够感应到电磁波的能量非常小。为此,我们将导线周围变化的磁场近似缓变的磁场,按照检测静态磁场的方法获取导线周围的磁场分布,从而进行位置检测。 由毕奥-萨伐尔定律知:通有稳恒电流 I 长度为 L 的直导线周围会产生磁场,距离导线距离为 r 处 P 点的磁感应强度为: 图 2 sin直线电流的磁场 , d, ,(0 , 4 10, 7 TmA 1 ) B , ,, cos,1 2 ,。 (1) ,1 4 r 由此得: B , cos, 4 r 4 r

飞思卡尔智能车技术报告

第六届“飞思卡尔”杯全国大学生智能汽车邀请赛技术报告 学校: 队伍名称: 参赛队员: 带队教师:

关于技术报告和研究论文使用授权的说明 本人完全了解第六届“飞思卡尔”杯全国大学生智能汽车邀请赛关保留、使用技术报告和研究论文的规定,即:参赛作品著作权归参赛者本人,比赛组委会和飞思卡尔半导体公司可以在相关主页上收录并公开参赛作品的设计方案、技术报告以及参赛模型车的视频、图像资料,并将相关内容编纂收录在组委会出版论文集中。 参赛队员签名: 带队教师签名: 日期: 摘要 随着现代科技的飞速发展,人们对智能化的要求已越来越高,而智能化在汽车相关产业上的应用最典型的例子就是汽车电子行业,

汽车的电子化程度则被看作是衡量现代汽车水平的重要标志。同时,汽车生产商推出越来越智能的汽车,来满足各种各样的市场需求。本文以第六届全国大学生智能车竞赛为背景,主要介绍了智能车控制系统的机械及硬软件结构和开发流程。 机械硬件方面,采用组委会规定的标准 A 车模,以飞思卡尔半导体公司生产的80管脚16 位单片机MC9S12XS128MAA 为控制核心,其他功能模块进行辅助,包括:摄像头数据采集模块、电源管理模块、电机驱动模块、测速模块以及无线调试模块等,来完成智能车的硬件设计。 软件方面,我们在CodeWarrior IDE 开发环境中进行系统编程,使用增量式PD 算法控制舵机,使用位置式PID 算法控制电机,从而达到控制小车自主行驶的目的。 另外文章对滤波去噪算法,黑线提取算法,起止线识别等也进行了介绍。 关键字:智能车摄像头图像处理简单算法闭环控制无线调试 第一章引言 飞思卡尔公司作为全球最大的汽车电子半导体供应商,一直致力于为汽车电子系统提供全范围应用的单片机、模拟器件和传感器等器件产品和解决方案。飞思卡尔公司在汽车电子的半导体器件市场拥有领先的地位并不断赢得客户的

电磁组智能车全国一等奖代码

void main(void) { while(1) { AD_GetValue(); //获得传感器AD值Cal_PostitionA(); //获得? if(SenA!=50) { Delayms(500); break; } Delayms(50); SenA=50; } #include /* common defines and macros */ #include "derivative.h" /* derivative-specific definitions*/ #define SERVO_MIDDLE_V ALUE 1184 舵机中值 #define SERVO_RANGE 180 舵机转动范围 void Set_PWM(uint PWM1,uint PWM2) { PWMDTY1=PWM1; PWMDTY0=PWM2; } void Set_Servo(uchar value) //舵机 { uint i; if(value>100||value<0) value=last_value; 保持上一次状态 last_value=value; if(value<=50) i=SERVO_MIDDLE_V ALUE-(50-value)*18/5; if(value>50) i=SERVO_MIDDLE_V ALUE+(value-50)*18/5; PWMDTY23=i; } void Pwm_Init(void) //PWM初始化 { PWME=0X00; //禁止PWM输出 PWMCTL_CON23=1; //2和3联合成16位PWM,并且2的寄存器为级联后寄存器

飞思卡尔智能车设计报告

飞思卡尔智能车设计报告

目录 1.摘要 (3) 2.关键字 (3) 3.系统整体功能模块 (3) 4.电源模块设计 (4) 5.驱动电路设计 (4) 6.干簧管设计 (5) 7.传感器模块设计 (6) 8.传感器布局 (6) 9.软件设计 (7) 9.1控制算法 (7) 9.2软件系统实现(流程图) (10) 10.总结 (11) 11.参考文献 (12)

1.摘要 “飞思卡尔”杯全国大学生智能汽车竞赛是由教育部高等自动化专业教学指导分委员会主办的一项以智能汽车为研究对象的创意性科技竞赛,是面向全国大学生的一种具有探索性工程实践活动,是教育部倡导的大学生科技竞赛之一。该竞赛以“立足培养,重在参与,鼓励探索,追求卓越”为指导思想,旨在促进高等学校素质教育,培养大学生的综合知识运用能力、基本工程实践能力和创新意识,激发大学生从事科学研究与探索的兴趣和潜能,倡导理论联系实际、求真务实的学风和团队协作的人文精神,为优秀人才的脱颖而出创造条件。该竞赛以汽车电子为背景,涵盖自动控制、模式识别、传感技术、电子、电气、计算机、机械等多个学科的科技创意性比赛。 本文介绍了飞思卡尔电磁组智能车系统。本智能车系统是以飞思卡尔32 位单片机K60为核心,用电感检测赛道导线激发的电磁信号, AD 采样获得当前传感器在赛道上的位置信息,通过控制舵机来改变车的转向,用增量式PID进行电机控制,用编码器来检测小车的速度,共同完成智能车的控制。 2.关键字 电磁、k60、AD、PID、电机、舵机 3.系统整体功能模块 系统整体功能结构图

4.电源模块设计 电源是一个系统正常工作的基础,电源模块为系统其他各个模块提供所需要的能源保证,因此电源模块的设计至关重要。模型车系统中接受供电的部分包括:传感器模块、单片机模块、电机驱动模块、伺服电机模块等。设计中,除了需要考虑电压范围和电流容量等基本参数外,还要在电源转换效率、噪声、干扰和电路简单等方面进行优化。可靠的电源方案是整个硬件电路稳定可靠运行的基础。 全部硬件电路的电源由7.2V,2A/h的可充电镍镉电池提供。由于电路中的不同电路模块所需要的工作电流容量各不相同,因此电源模块应该包含多个稳压电路,将充电电池电压转换成各个模块所需要的电压。 电源模块由若干相互独立的稳压电源电路组成。在本系统中,除了电机驱动模块的电源是直接取自电池外,其余各模块的工作电压都需要经电源管理芯片来实现。 由于智能车使用7.2V镍镉电池供电,在小车行进过程中电池电压会有所下降,故使用低压差电源管理芯片LM2940。LM2940是一款低压稳压芯片,能提供5V的固定电压输出。LM2940低压差稳压芯片克服了早期稳压芯片的缺点。与其它的稳压芯片一样,LM2940需要外接一个输出电容来保持输出的稳定性。出于稳定性考虑,需要在稳压输出端和地之间接一个47uF低等效电阻的电容器。 舵机的工作电压是6伏,采用的是LM7806。 K60单片机和5110液晶显示器需要3.3伏供电,采用的是LM1117。 5.驱动电路设计 驱动电路采用英飞凌的BTS7960,通态电阻只有16mΩ,驱动电流可达43A,具有过压、过流、过温保护功能,输入PWM频率可达到25KHz,电源电压5.5V--27.5V。BTS7960是半桥驱动,实际使用中要求电机可以正反转,故使用两片接成全桥驱动。如图下图所示。

智能车电磁组完整程序

#include /* common defines and macros */ #include "derivative.h" /* derivative-specific definitions */ int left1=0; int left2=0; int right1=0; int right2=0; int AR_LEFT=0;//left2-right2 int AR_RIGHT=0; int CR=0;//左边相加减右边相加 int preCR=0; int ppreCR=0; int mkp=0; int mki=0; int mkd=0; int ideal_speed=0; //设定速度 int speed=0; int s_ideal0[6]={75,80,42,42,42,42}; //普通道、长直道、普通到弯、长直道到弯、弯内、偏离黑线 int s_ideal1[6]={70,75,42,42,42,42}; int s_ideal2[6]={62,70,42,40,41,40}; int s_ideal3[6]={54,66,42,40,41,40}; int table_mkp0[6]={30,30,30,30,30,30}; //ni 16.31 ,shun 15.16 int table_mkp1[6]={25,25,25,25,25,25}; int table_mkp2[6]={5,4,4,20,20,20}; int table_mkp3[6]={4,4,4,10,8,9}; //稳定速度 int table_mki0[6]={0,0,20,20,20,20}; int table_mki1[6]={0,0,20,20,20,20}; int table_mki2[6]={0,0,0,10,10,20}; int table_mki3[6]={0,0,0,0,0,0}; int table_mkd0[6]={0,0,0,0,0,0}; int table_mkd1[6]={0,0,0,0,0,0}; int table_mkd2[6]={0}; int table_mkd3[6]={0,0,0,0,0,0}; int s_table[6]; int b_mkp[6]=0; int b_mki[6]=0; int b_mkd[6]=0;

飞思卡尔 电磁组

第十届“飞思卡尔”杯全国大学生 智能汽车竞赛 技术报告 学校:常熟理工学院 队伍名称:物电电磁二队 参赛队员:梅亚军、沈锦杰、黄志鹏、张峰 带队老师:徐健、顾涵

关于技术报告和研究论文使用授权的说明 本人完全了解第十届“飞思卡尔”杯全国大学生智能汽车竞赛关保留、使用技术报告和研究论文的规定,即:参赛作品著作权归参赛者本人,比赛组委会和飞思卡尔半导体公司可以在相关主页上收录并公开参赛作品的设计方案、技术报告以及参赛模型车的视频、图像资料,并将相关内容编纂收录在组委会出版论文集中。 参赛队员签名: 带队教师签名: 日期:

摘要 本文介绍了常熟理工学院物电电磁二队电磁车的成果。智能车的硬件平台采用带MK60DN256Vll10处理器,软件平台为IAR Embedded Workbench开发环境,车模采用大赛组委会统一提供的两辆B型车模。 文中介绍了智能车机械结构调整,传感器电路设计,舵机、电机控制算法以及起跑线的检测等。车模以MK60DN256Vll10单片机为控制核心,以安装在车体前的工字电感作为循迹传感器,采用干簧管检测起跑线,以欧姆龙编码器检测速度信息。车模系统的简单工作原理是MK60DN256Vll10单片机通过AD口采集电感检测的拟量,并通过算法处理,然后返回值用于舵机控制,根据编码器返回值进行电机的闭环控制。通过串口,借用蓝牙等工具进行舵机PD参数,电机PID的调节,以及整定传感器参数的整合处理,再通过数字红外进行两车之间联系,保持车距。 关键字:机械结构、电磁寻线、舵机PD控制、电机PID控制

目录 第一章总体方案设计------------------------------------------------------------------------------------------- 6 第二章智能车机械结构调整与优化 ------------------------------------------------------------------------ 9 2.1 主销内倾 ---------------------------------------------------------------------------------------------- 9 2.2 主销后倾 -------------------------------------------------------------------------------------------- 10 2.3 外倾角 ------------------------------------------------------------------------------------------------ 11 2.4车轮安装示意图如下:---------------------------------------------- 12 2.5 舵机的安装----------------------------------------------------------------------------------------- 12 2.6 舵机安装示意图如下: ------------------------------------------------------------------------- 13 2.7 小结 --------------------------------------------------------------------------------------------------- 13 第三章电路设计说明 --------------------------------------------------------------------------------------- 14 3.1 电源模块--------------------------------------------------------------------------------------------- 14 3.2 传感器模块------------------------------------------------------------------------------------------ 15 3.3 电机模块--------------------------------------------------------------------------------------------- 15 3.4 舵机模块--------------------------------------------------------------------------------------------- 16 3.5 最小系统板设计 ----------------------------------------------------------------------------------- 16 3.6 系统主板设计 -------------------------------------------------------------------------------------- 17 3.7 小结 --------------------------------------------------------------------------------------------------- 18 第四章智能车控制软件设计说明 ------------------------------------------------------------------------- 19 4.1 软件设计总体框架 -------------------------------------------------------------------------------- 19 4.2 电机PID控制 -------------------------------------------------------------------------------------- 20 4.3 舵机的控制----------------------------------------------------------------------------------------- 24 4.4 传感器数据的处理 -------------------------------------------------------------------------------- 24 4.5 小结 --------------------------------------------------------------------------------------------------- 24 第五章开发工具、制作、安装、调试过程说明 ------------------------------------------------------ 25 5.1 软件编译环境 -------------------------------------------------------------------------------------- 25 5.2 显示模块 -------------------------------------------------------------------------------------------- 25 5.3 蓝牙调试模块-------------------------------------------------------------------------------------- 26 5.4 上位机调试----------------------------------------------------------------------------------------- 26 5.5 本章小结 -------------------------------------------------------------------------------------------- 27 模型车的主要技术参数说明 --------------------------------------------------------------------------------- 28 结论 ---------------------------------------------------------------------------------------------------------------- 29 参考文献 ---------------------------------------------------------------------------------------------------------- 31 附录A:程序源代码 ------------------------------------------------------------------------------------------ 32

飞思卡尔技术报告个人小结

读技术报告个人小结 最近这段时间读了一些关于智能车的技术报告,现在我最大的感觉就是对智能车有了新的较为全面的一些了解,当然这也只是对智能车构造有了一些认识,不再像以前只是知道智能车的存在。在读技术报告的过程中,我有了自己的收获,同时也了解到了现在自身存在的问题。首先我想将自己所读技术报告中的一些关键技术做一个简单的总结。 电磁组 一.智能车机械结构调整与优化 关于智能车前轮定位的调整有以下几个参数。主销内倾和主销后倾都有使汽车转向自动回正,保持直线行驶的功能。不同之处是主销内倾的回正与车速无关,主销后倾的回正与车速有关,因此高速时主销后倾回正作用大,低速时主销内倾的回正作用大。前轮前束的作用是保证汽车的行驶性能,减少轮胎的磨损。前轮在滚动时,其惯性力自然将轮胎向内偏斜,如果前束适当,轮胎滚动时的偏斜方向就会抵消,轮胎内外侧磨损的现象会减少. 关于舵机的安装可以使用站立式。系统执行一个周期所用的时间为5ms左右,舵机作出响应需要十多毫秒的时间,提高系统反应速度唯一的时间瓶颈是舵机的响应时间。因此,不断优化舵机控制策略是令智能车平稳高速行驶的有效方法。在模型车制做过程中,赛车的转向是通过舵机带动左右横拉杆来实现的。转向舵机的转动速度和功率是一定,要想加快转向机构响应的速度,唯一的办法就是优化舵机的安装位置和其力矩延长杆的长度。由于功率是速度与力矩乘积的函数,过分追求速度,必然要损失力矩,力矩太小也会造成转向迟钝,因此设计时就要综合考虑转向机构响应速度与舵机力矩之间的关系,通过优化得到一个最佳的转向效果。经过最后的实际的参数设计计算,最后得出一套可以稳定、高效工作的参数及机构。 为了达到较远前瞻,必须把电感架到较远的位置,会引起车重心特别靠前,后轮正压力不足导致甩尾。为了使重心后移,可以通过调整传感器支架的搭建方式,使得保证结构稳定的前提下尽量减轻重量。同时,可以把舵机和电池均往后移,以达到预期的效果。 在实际调试过程中还可以对车轮进行粘胎处理,以图有效地防止由于轮胎与轮辋错位而引起的驱动力损失的情况。 二.智能车传感器模块设计 电感应选用10mH电感。只有在10mH电感中,得到感应电动势曲线是较为规整的正弦波,频率和赛道电源频率一致,为20kHz,幅值较其他型号的大,且随导线距离变化,规律为近大远小。其他电感得到信号不好。 应用电动势的大小和通过线圈回路的磁通量的变化率成正比。由于在导线周围不同位置,磁感应强度的大小和方向不同,所以不同位置上的电感产生的感应电动势也应该是不同。据此,则可以确定电感的大致位置。 利用电感传感器识别路径一般有两种不同的方法: (1) 数字型寻线算法。利用多个水平放置的电感传感器,将整个赛道分为多个区域,感应电动势最大的电感是最靠近导线的电感,来判断电磁线的位置。这种查询方式的优势在于算法简单,易于实现。但是这种方法采集到的信息是离散的点,不利于精细控制;且要用到多个电感,会加重车头重量,增大小车的转动

相关文档
最新文档