飞思卡尔 电磁组

飞思卡尔 电磁组
飞思卡尔 电磁组

第十届“飞思卡尔”杯全国大学生

智能汽车竞赛

技术报告

学校:常熟理工学院

队伍名称:物电电磁二队

参赛队员:梅亚军、沈锦杰、黄志鹏、张峰

带队老师:徐健、顾涵

关于技术报告和研究论文使用授权的说明

本人完全了解第十届“飞思卡尔”杯全国大学生智能汽车竞赛关保留、使用技术报告和研究论文的规定,即:参赛作品著作权归参赛者本人,比赛组委会和飞思卡尔半导体公司可以在相关主页上收录并公开参赛作品的设计方案、技术报告以及参赛模型车的视频、图像资料,并将相关内容编纂收录在组委会出版论文集中。

参赛队员签名:

带队教师签名:

日期:

摘要

本文介绍了常熟理工学院物电电磁二队电磁车的成果。智能车的硬件平台采用带MK60DN256Vll10处理器,软件平台为IAR Embedded Workbench开发环境,车模采用大赛组委会统一提供的两辆B型车模。

文中介绍了智能车机械结构调整,传感器电路设计,舵机、电机控制算法以及起跑线的检测等。车模以MK60DN256Vll10单片机为控制核心,以安装在车体前的工字电感作为循迹传感器,采用干簧管检测起跑线,以欧姆龙编码器检测速度信息。车模系统的简单工作原理是MK60DN256Vll10单片机通过AD口采集电感检测的拟量,并通过算法处理,然后返回值用于舵机控制,根据编码器返回值进行电机的闭环控制。通过串口,借用蓝牙等工具进行舵机PD参数,电机PID的调节,以及整定传感器参数的整合处理,再通过数字红外进行两车之间联系,保持车距。

关键字:机械结构、电磁寻线、舵机PD控制、电机PID控制

目录

第一章总体方案设计------------------------------------------------------------------------------------------- 6 第二章智能车机械结构调整与优化 ------------------------------------------------------------------------ 9

2.1 主销内倾 ---------------------------------------------------------------------------------------------- 9

2.2 主销后倾 -------------------------------------------------------------------------------------------- 10

2.3 外倾角 ------------------------------------------------------------------------------------------------ 11

2.4车轮安装示意图如下:---------------------------------------------- 12

2.5 舵机的安装----------------------------------------------------------------------------------------- 12

2.6 舵机安装示意图如下: ------------------------------------------------------------------------- 13

2.7 小结 --------------------------------------------------------------------------------------------------- 13 第三章电路设计说明 --------------------------------------------------------------------------------------- 14

3.1 电源模块--------------------------------------------------------------------------------------------- 14

3.2 传感器模块------------------------------------------------------------------------------------------ 15

3.3 电机模块--------------------------------------------------------------------------------------------- 15

3.4 舵机模块--------------------------------------------------------------------------------------------- 16

3.5 最小系统板设计 ----------------------------------------------------------------------------------- 16

3.6 系统主板设计 -------------------------------------------------------------------------------------- 17

3.7 小结 --------------------------------------------------------------------------------------------------- 18 第四章智能车控制软件设计说明 ------------------------------------------------------------------------- 19

4.1 软件设计总体框架 -------------------------------------------------------------------------------- 19

4.2 电机PID控制 -------------------------------------------------------------------------------------- 20

4.3 舵机的控制----------------------------------------------------------------------------------------- 24

4.4 传感器数据的处理 -------------------------------------------------------------------------------- 24

4.5 小结 --------------------------------------------------------------------------------------------------- 24 第五章开发工具、制作、安装、调试过程说明 ------------------------------------------------------ 25

5.1 软件编译环境 -------------------------------------------------------------------------------------- 25

5.2 显示模块 -------------------------------------------------------------------------------------------- 25

5.3 蓝牙调试模块-------------------------------------------------------------------------------------- 26

5.4 上位机调试----------------------------------------------------------------------------------------- 26

5.5 本章小结 -------------------------------------------------------------------------------------------- 27 模型车的主要技术参数说明 --------------------------------------------------------------------------------- 28 结论 ---------------------------------------------------------------------------------------------------------------- 29 参考文献 ---------------------------------------------------------------------------------------------------------- 31 附录A:程序源代码 ------------------------------------------------------------------------------------------ 32

引言

智能车辆是一个集环境感知、规划决策、多等级辅助驾驶等功能于一体的综合系统,它集中运用了计算机、现代传感、信息融合、通讯、人工智能及自动控制等技术,是典型的高新技术综合体。目前对智能车辆的研究主要致力于提高汽车的安全性、舒适性,以及提供优良的人车交互界面。近年来,智能车辆己经成为世界车辆工程领域研究的热点和汽车工业增长的新动力,很多发达国家都将其纳入到各自重点发展的智能交通系统当中。

竞赛要求在规定的汽车模型平台上,采用飞思卡尔半导体公司的8位、16位、32位微控制器作为核心控制单元,自主构思控制方案进行系统设计,包括传感器信号采集处理、电机驱动、转向舵机控制以及控制算法软件开发等位微控制器作为核心控制模块,制作完成一个能够自主识别道路的模型汽车。参赛队员的目标是模型汽车需要按照规则以最短时间完成单圈赛道。

竞赛旨在培养创新精神、协作精神,提高工程实践能力的科技活动。该竞赛是以迅猛发展的汽车电子为背景,涵盖了控制、模式识别、传感技术、电子、电气、计算机、机械等多个学科交叉的科技创意性比赛。

在本文中,我们详细介绍了基于电磁传感器智能车系统。详细介绍车体机械结构的调整,传感器电路的设计,舵机控制算法,电机控制算法。在做车的整个过程中,培养了我们团队合作能力,动手的能力,创新的能力,对我们今后的学习产生积极的影响。

第一章总体方案设计

1.1 车体结构的总体设计:

(1)为了降低重心,主控板,电池尽量靠后就低放置。

(2)考虑到放远前瞻(约40 CM)可能带来车头过重,我们尽量选用尺寸小的10 mH的电感。选用质量轻的航模碳素杆作为支架。

(3)舵机直立安装,连杆加长,提高响应速度。

(4)两个方向的碳素杆形成三角结构,增加传感器稳定性。

1.2 整体车模如下图:

图1.2.1 整体车模左视图

图1.2.2 整体车模俯视图

1.3 主要模块介绍

1)传感器模块:通过感知电感发生的电流电压变化得到赛道的偏移量。

2)控制器模块:其中MK60DN256Vll10 是系统的控制核心。它负责接收赛道信息、小车速度等反馈信息,并对这些信息进行处理,得到合适的控制量来对舵机与驱动电机进行控制。

4)电源模块:根据得到的赛道偏移量计算出舵机要转向的角度和电机输出速度。

5)测速模块:采用512线编码器精确速度控制。

6)舵机控制模块:舵机采用SD5立式安装。

7)起跑线检测模块:本小车采用的起跑线检测传感器为干簧管。磁铁附近存在的强磁场引发干簧管闭合,从而进行控制。

8)液晶显示模块:液晶显示和按键是用来方便调试之用。通过液晶上的显示,我们完成了数据记录为后面的数据拟合打下了基础。按键动态修改RAM的变量的值,节约了很多时间。

第二章智能车机械结构调整与优化

2.1 主销内倾

所谓主销内倾,是将主销(即转向轴线)的上端向内倾斜。从汽车的前面看去,主销轴线与通过前轮中心的垂线之间形成一个夹角,即主销内倾角。主销内倾的作用是使车轮转向后能及时自动回正和转向轻便。由于主销内倾,转向轮在转向时绕主销转动,必须使车轮陷入地面以下。这当然是不可能的,实际转向时,是强迫汽车的前部稍稍抬高。这样,汽车的重力将使转向轮自动回正。确定主销内倾角时,还可调整主销(即转向轴线)与地面的交点到轮胎接地中心的距离,即调整主销偏距。减少主销偏距,可以减轻转向时的摩擦阻力。主销内倾不能过大,否则转向过于沉重。主销内倾角一般为8°到13°,由前悬架的结构来确定。

主销后倾和主销内倾都有使转向轮自动回正的作用。但主销后倾的回正作用与车速有关,而主销内倾的回正作用与车速无关。因此,高速时主要靠主销后倾的作用,而低速时主要靠主销内倾的作用。主销内倾可以增大摩擦力,避免甩尾。

图 2.1.1

2.2 主销后倾

主销后倾是指从汽车的侧面看时每个前轮转向轴的倾斜,倾斜程度是用后倾角来度量的。如果转向轴向后倾斜,即上端的球形接头或支杆安装点在下端的球形接头后面,则后倾角就是正的;如果转向轴向前倾斜,则后倾角就是负的。后轮不必检测后倾角。

主销后倾角越大,方向稳定性越好,自动回正作用也越强,但转向越沉重。汽车主销后倾角一般不超过30,由前悬架在车架上的安装位置来保证。

现代轿车由于采用低压宽幅子午线轮胎,高速行驶时轮胎的变形加大,接地点后移,因此主销后倾角可以减小,甚至为负值(变成主销前倾),以避免由于回正力矩过大而造成前轮摆振。

主销后倾角影响汽车直线行驶的稳定性和转向轮的回正功能。正后倾角比较大,则前轮有沿直线行驶的趋势。一方面,如果正后倾角大小适当,则可以确保汽车的行驶稳定性,而且使转向轮在转向后能够回正;另一方面,正后倾角增加了转向阻力。因此,如果汽车配置了动力转向系统,则所允许采用的正后倾角要比单纯的手动转向系统大许多。

主销后倾角太小会使转向不稳定,并使车轮晃动。在极端的情况下,负后倾角与随之引起的车轮晃动会加剧前轮

的杯状化磨损。如果主销后倾角左右不等,

则汽车将会被拉向正后倾角较小(或更大

的负后倾角)的一侧。在解决汽车跑偏方

面的问题时,要特别注意这一点。

图2.2.1

2.3 外倾角

车轮面与地面不垂直。从车头望向车轮,车轮与铅垂线的夹角称为外倾角(Camber). 若轮胎上端向外倾斜即左右轮呈"\/"形, 称为正外倾角(Positive Camber),向内倾斜为负外倾角。基本上,正外顷角的设定有较佳的灵活度,而负外顷角具较稳定的直进性。

定义为由车前方看轮胎中心线与垂直线所成的角度,向外为正,向内为负。其角度的不同能改变轮胎与地面的接触点及施力点,直接影响轮胎的抓地力及磨耗状况。并改变了车重在车轴上的受力分布,避免轴承产生异常磨损。此外,外倾角的存在可用来抵消车身荷重后,悬吊系统机件变形及活动面间隙所产生的角度变化。外倾角的存在也会影响车子的行进方向,这正如摩托车可利用倾斜车身来转弯,因此左右轮的外倾角必须相等,在力的平衡下不致影响车子的直进性,再与束角(Toe)配合,提高直进稳定性及避免轮胎耗不均。增加负的外倾角需配合增加Toe-out;增加正的外倾角则需配合增加Toe-in。

图 2.3.1

2.4 车轮安装示意图如下:

图 2.4.1

2.5 舵机的安装

舵机摆杆的长度直接影响到舵机的转矩。由公式舵机转矩= 舵机摆杆作用力* 摆杆长度,得:舵机摆杆作用力越大,反应越灵敏,转向速度越快。转矩一定时,摆杆越长,输出的作用力越小,所以摆杆不能太长,不然会拉不动轮胎左右转向,从这个角度考虑拉杆越短越好。但是我们知道,拉杆越长的时候,舵机转一小圈,下面拉杆的会转很大的范围,也就是说,摆杆长度决定了舵机和拉杆变化的比例也就说明相应速度。所以我们又希望摆杆很长,这样轮子转向的响应速度就会很快。

综合考虑,我们选用的舵机摆杆的长度在30mm左右。同时考虑到阿克曼转向理论,四个轮子路径的圆心大致上交会于后轴的延长线上瞬时转向中心,这样可以使车辆在过弯时转向轮处于纯滚动状态,减少过弯时的阻力,减小轮胎的磨损,提高车辆转弯性能。

2.6 舵机安装示意图如下:

图 2.6.1

2.7 小结

舵机的安装直接影响前轮的转向,前轮定位很重要,我们花了好长时间去调前轮的定位,不断地尝试寻求合适的倾向角。

第三章电路设计说明

3.1 电源模块

电源模块为系统其他各个模块提供所需要的电源。设计中,除了需要考虑电压范围和电流容量等基本参数之外,还要在电源转换效率、降低噪声、防止干扰和电路简单等方面进行优化。可靠的电源方案是整个硬件电路稳定可靠运行的基础。

全部硬件电路的电源由配发的标准车模用7.2V 2000mAh Ni-cd 蓄电池提供。由于电路中的不同电路模块所需要的工作电压和电流容量各不相同,因此电源模块应该包含多个稳压电路,将充电电池电压转换成各个模块所需要的电压。

主要包括以下不同的电压。

(1)5V电压:主要为单片机系统、传感器电路以及部分接口电路提供电源,电压要求稳定、噪声小。

(2)6V电压:主要为舵机提供电源,提高舵机响应速度。

(3)7.2V 电压:这部分直接取自蓄电池两端电压,主要为后轮电机驱动模块和部分接口电路提供电源。

(4)12V电压:电机驱动模块使用直流12V,使用MC34063 升压电源模块将电源电压升压至12V。

电机驱动电路的电源可以直接使用蓄电池两端电压。模型车在启动过程中往往会产生很大的冲击电流,一方面会对其他电路造成电磁干扰;另一方面由于电池内阻造成电池两端的电压下降,甚至会低于稳压电路所需要的最低电压值,产生单片机复位现像。为了克服启动冲击电流的影响,可以在电源中增加容值较大的电解电容,也可以采用缓启动的方式控制电机。在启动

时,驱动电路输出电压有一个渐变过程,使得电机启动速度略为降低从而减小启动冲击电流的幅度。

3.2 传感器模块

此电路由电感线圈产生感应电动势,经过谐振电容产生过电压,由运放放大,再经过整流滤波最后产生直流信号供给单片机进行AD 转换。如下图。

图3.2.1

3.3 电机驱动模块

电机驱动电路为一个由分立元件制作的直流电动机可逆双极型桥式驱动器,其功率元件由四支 N 沟道功率 MOSFET 管组成,额定工作电流可以轻易达到 100A 以上,大大提高了电动机的工作转矩和转速。该驱动器主要由以下部分组成: PWM信号输入接口、逻辑换向电路、死区控制电路、电源电路、上桥臂功率 MOSFET 管栅极驱动电压泵升电路、功率 MOSFET 管栅极驱动电路、桥式功率驱动电路、缓冲保护电路等。

图 3.3.1

3.4 舵机模块

由于舵机工作频率为50HZ,需采用双通道PWM 控制舵机转向。3.5最小系统板设计

最小系统板使用MK60DN256Vll10芯片。最小系统板中包括单片机时钟(有源晶振提供)与复位电路、3.3V稳压电路。

图 3.5.1

图 3.5.2

3.6系统主板设计

由于硬件是分模块设计的,最终要接在一起才能相互通信。主板电路主要有电池接口、单片机最小系统板插座、传感器电路及其接口、舵机及电机驱动接口。另外,主板上还集成了出5V稳压以外的所有电源电路。

图 3.6.1

3.7小结

对于硬件电路部分,一定要用料扎实,稳定第一,抗干扰性能一定要高。

单片机电压一定要稳定,防止舵机和电机启动的时候拉低电压导致复位。解决这个问题最实用的办法就是加上储能器件,加上适当大小的电容是必要的。

硬件电路是智能车的基础,只有打好基础才能继续软件方面的工作。

第四章智能车控制软件设计说明

4.1 软件设计总体框架

小车的控制包括舵机的PD控制,电机的PID控制,传感器数值的处理,路径优化处理。根据传感器采集的数据进行速度,以及转交的控制,实现小车快速,稳定的运行。

系统结构框架如图:

4.2 电机PID控制

4.2.1 PID 算法

控制算法是微机化控制系统的一个重要组成部分,整个系统的控制功能主要由控制算法来实现。目前提出的控制算法有很多。根据偏差的比例(P)、积分(I)、微分(D)进行的控制,称为PID 控制。实际经验和理论分析都表明,PID 控制能够满足相当多工业对象的控制要求,至今仍是一种应用最为广泛的控制算法之一。

4.2.2 模拟PID

在模拟控制系统中,调节器最常用的控制规律是PID 控制,常规PID 控制系统原理框图如图1.1 所示,系统由模拟PID 调节器、执行机构及控制对象组成。

PID 调节器是一种线性调节器,它根据给定值r (t )与实际输出值c(t )构成的控制偏差:e(t ) =r (t )-c(t ) (1.1)

将偏差的比例、积分、微分通过线性组合构成控制量,对控制对象进行控制,故称为PID 调节器。在实际应用中,常根据对象的特征和控制要求,将P、I、D 基本控制规律进行适当组合,以达到对被控对象进行有效控制的目的。例如,P 调节器,PI调节器,PID 调节器等。

模拟PID 调节器的控制规律为:

飞思卡尔电磁传感器

“飞思卡尔”杯全国大学生智能汽车邀请赛 电 磁 传 感 器 设计报告 学校:天津职业技术师范大学 制作人:自动化工程学院 电气0714 连刘雷

引言 这份技术报告中,我通过自己对这个比赛了解的传感器方面,详尽的阐述了传感器制作的原理和制作方法。具体表现在电路的可行性和实验的验证结果。 目录 引言 (2) 目录 (2) 第一章、电磁传感器设计思路及实现方案简介 (3) 1.1方案设计思路 (3) 1.2 磁场检测方法 (5) 第二章、电路设计原理 (7) 2.1感应磁场线圈 (7) 2.2信号选频放大 (8) 参考文献 (10)

第一章、电磁传感器设计思路及实现方案简介 1.1方案设计思路 根据麦克斯韦电磁场理论,交变电流会在周围产生交变的电磁场。智能汽车竞赛使用路径导航的交流电流频率为20kHz,产生的电磁波属于甚低频(VLF)电磁波。甚低频频率范围处于工频和低频电磁破中间,为 3kHz~30kHz,波长为100km~10km。如下图所示: 图1.1、电流周围的电磁场示意图 导线周围的电场和磁场,按照一定规律分布。通过检测相应的电磁场的强度和方向可以反过来获得距离导线的空间位置,这正是我们进行电磁导航的目的。 由于赛道导航电线和小车尺寸l 远远小于电磁波的波长λ,电磁场辐射能量 很小(如果天线的长度l 远小于电磁波长,在施加交变电压后,电磁波辐射功率正比于天线长度的四次方),所以能够感应到电磁波的能量非常小。为此,我们将导线周围变化的磁场近似缓变的磁场,按照检测静态磁场的方法获取导线周围的磁场分布,从而进行位置检测。 由毕奥-萨伐尔定律知:通有稳恒电流I 长度为L 的直导线周围会产生磁场,距离导线距离为r 处P 点的磁感应强度为:

飞思卡尔智能汽车设计技术报告

第九届“飞思卡尔”杯全国大学生 智能汽车竞赛 技术报告 学校:武汉科技大学队 伍名称:首安二队参赛 队员:韦天 肖杨吴光星带队 教师:章政 0敏

I

关于技术报告和研究论文使用授权的说明 本人完全了解第九届“飞思卡尔”杯全国大学生智能汽车竞赛关保留、使用技术报告和研究论文的规定,即:参赛作品著作权归参赛者本人,比赛组委会和飞思卡尔半导体公司可以在相关主页上收录并公开参赛作品的设计方案、技术报告以及参赛模型车的视频、图像资料,并将相关内容编纂收录在组委会出版论文集中。 参赛队员签名: 带队教师签名: 日期:

II

目录 第一章引言 (1) 1.1 概述 (1) 1.2 内容分布 (1) 第二章系统总体设计 (2) 2.1 设计概述 (3) 2.2 控制芯片的选择 (3) 2.3 线性 CCD 检测的基本原理 (3) 2.3 系统结极 (5) 第三章机械系统设计 (7) 3.1 底盘加固 (7) 3.2 轮胎处理 (7) 3.3 四轮定位 (8) 3.4 差速器的调整 (12) 3.5 舵机的安装 (13) 3.6 保护杆的安装 (15) 3.7 CCD的安装 (16) 3.8 编码器的安装 (17) 3.9 检测起跑线光电管及加速度计陀螺仪的安装 (18) 第四章硬件系统设计 (19) 4.1 最小系统版 (20) 4.2 电源模块 (21) 4.3 CCD模块 (22) 4.4 驱动桥模块 (23) 4.5 车身姿态检测模块 (24) 4.7 测速模块 (24) 4.8 OLED液晶屏及按键、拨码 (25) 第5章程序设计 (27)

飞思卡尔智能车经验

RT,留下一点不算成功的经验吧。 先说说个人认为要取得好成绩的两个最重要的先决条件。 1. 人,这个是大前提,对于一个好的队伍,判别标准其实很简单,就是队员3个人是玩伴关系还是领导和下属关系。前者,大家都是来玩这个智能车的,自然主观能动性就会很高,能自主学习。不会总是“等着所谓队长分配任务”。这样效率就会很高。成绩自然不会低,后者,如果“队长”个人能力很强的话,就会出现到最后只有“队长”一个人在干。其他的队员就会因为自己技术不行,渐渐退出。而不会因为自己不会而去主动的学习。如果“队长”能力一般,再没有一些强力指导老师的情况下,这样的队伍一般会悲剧掉。所以,新人在参加这个智能车比赛的时就要明确动机。参加智能车确实是来学习知识的,但不会有人真正的来教你。一切都靠自己。 2.跑道,这个是客观条件中最重要的,一条污浊、破损、不符合规则的跑道,是不可能出成绩的。我们学校的赛道就是因为当初制作和后期保养不到位,导致赛道诸多永久性污浊、破损。一开始车刚能爬的时候,问题还不明显,后来在测试让车能平滑过S弯时问题就来了,由于赛道污浊,远处的跑道在CCD看了是错误,导致S弯和普通弯看起来一样,致使S弯策略根本没有启用,当时一直到修改S弯策略,到后来调出图像来看才发现是采集的问题。至于赛道污浊破损带来的干扰要不要处理,答案是肯定的,因为就算是比赛用的跑道也会有擦不掉,补不了的地方。但处理这些问题,应该是放在车辆原先行驶策略都调试正确的情况下,再人为的加入这些干扰。这样修改程序起来就有的放矢。 下面再以个人的观点介绍一下3个组别的特点,给新人选择做一个参考。 摄像头:有点像开卷考试,能得到的东西很多,但是如何把这些东西用好就是一个学问。摄像头的关键就是如何从采集回来的图像所包含的诸多信息中,选出一些高效方便的信息来控制车辆。至于控制策略,个人觉得一个能根据不同赛道类型而变化比例系数的比例控制器就能很好的满足控制需要。 光电组:想象起来很容易,其实很累的一个组,原理最简单,但是为了能有30CM以上的前瞻,和比较连续的偏差变化,就要下大功夫,先不说别的,让你装15个激光管,而且要保证不焊烧并要把光点打在一条线上,就是很繁琐的事情。总得来说,光电组拼的就是电路和传感器结构。不过对于看客来说,光电组是最好“看”的组,一排壮观的激光加上摆头的机械~ 电磁组:听起来有点复杂,其实比前两个组都轻松的组,电磁组又可分为数字和模拟两个类别。数字传感器就是和光电一样弄一排的传感器,看看哪个传感器接收到的信号最强以判断中线位置。模拟的就是比较两个传感器之间信号强度的差值来判断。电磁组好处就是不容易受到干扰,比赛上也见的,电磁车跑完的成功率是很高的,而且很容易判别起跑线。基本不用懂脑筋。而且如果选用是模拟传感器的话,能得到比较平滑的控制。 先说这些,想到再继续 关于摇头激光车的一点个人理解:为什么光电的车,要多花一个舵机去让传感器摇头呢?因为。为了能获得赛道上一个比较宽范围的信息,就必须把传感器做的很长。这样的后果 就是重量。折中的办法就是摇头,通过摇头,可以使一个小尺寸的传感器检测到大范围 DEMOK工作室淘宝小店

基于嵌入式STM32的飞思卡尔智能车设计



飞思卡尔智能车大赛是面向全国大学生举办的应用型比赛, 旨在培养创新精 神、协作精神,提高工程实践能力的科技活动。大赛主要是要求小车自主循迹并 在最短时间内走完整个赛道。针对小车所安装传感器的不同,大赛分为光电组、 电磁组和摄像头组。 本文介绍了本院自动化系第一届大学生智能汽车竟赛的智能车系统。 包括总 体方案设计、机械结构设计、硬件电路设计、软件设计以及系统的调试与分析。 机械结构设计部分主要介绍了对车模的改进,以及舵机随动系统的机械结构。硬 件电路设计部分主要介绍了智能车系统的硬件电路设计, 包括原理图和 PCB 设计 智能车系统的软、 硬件结构及其开发流程。该智能车车模采用学校统一提供的飞 思卡尔车模,系统以 STM32F103C8T6 作为整个系统信息处理和控制命令的核心, 使用激光传感器检测道路信息使小车实现自主循迹的功能
关键字:飞思卡尔智能车STM32F103C8T6
激光传感器
第一章 概述

1.1 专业课程设计题目
基于嵌入式 STM32 的飞思卡尔智能车设计
1.2 专业课程设计的目的与内容
1.2.1 目的 让学生运用所学的计算机、传感器、电子电路、自动控制等知识,在老师的 指导下,结合飞思卡尔智能车的设计独立地开展自动化专业的综合设计与实验, 锻炼学生对实际问题的分析和解决能力,提高工程意识,为以后的毕业设计和今 后从事相关工作打下一定的基础。 1.2.2 内容 本次智能车大赛分为光电组和创新做,我们选择光电组小车完成循迹功能。 该智能车车模采用学校统一提供的飞思卡尔车模, 系统以 STM32F103C8T6 作为整 个系统信息处理和控制命令的核心,我们对系统进行了创造性的优化: 其一, 硬件上采用激光传感器的方案, 软件上采用 keil 开发环境进行调试、 算法、弯道预判。 其二,传感器可以随动跟线,提高了检测范围。 其三,独立设计了控制电路板,充分利用 STM32 单片机现有模块进行编程, 同时拨码开关、状态指示灯等方便了算法调试。
1.3 方案的研讨与制定
1.3.1传感器选择方案 方案一:选用红外管作为赛道信息采集传感器。 由于识别赛道主要是识别黑白两种不同的颜色, 而红外对管恰好就能实现区 分黑白的功能,当红外光照在白色KT板上时,由于赛道的漫反射作用,使得一部 分红外光能反射回来, 让接收管接的输出引脚的电压发生变化,通过采集这个电 压的变化情况来区分红外光点的位置情况,以达到区分赛道与底板的作用。 红外管的优点在于价格便宜,耐用;缺点却用很多:1、红外光线在自然环 境中,无论是室内还是室外均比较常见,就使得其抗干扰能力不强,容易受环境 变化的影响。2、调试不方面,由于红外光是不可见光,调试的时候需要采用比 较麻烦的方法来判断光电的位置。3、由于红外管光线的直线性不好,就使得红 外传感器所能准确的判断的最远距离比较小,也就是通常所说的前瞻不够远。

飞思卡尔智能车电机资料

3.1.6驱动电机介绍 驱动电机采用直流伺服电机,我们在此选用的是RS-380SH型号的伺服电机,这是因为直流伺服电机具有优良的速度控制性能,它输出较大的转矩,直接拖动负载运行,同时它又受控制信号的直接控制进行转速调节。在很多方面有优越性,具体来说,它具有以下优点: (1)具有较大的转矩,以克服传动装置的摩擦转矩和负载转矩。 (2)调速范围宽,高精度,机械特性及调节特性线性好,且运行速度平稳。 (3)具有快速响应能力,可以适应复杂的速度变化。 (4)电机的负载特性硬,有较大的过载能力,确保运行速度不受负载冲击的 影响。 (5)可以长时间地处于停转状态而不会烧毁电机,一般电机不能长时间运行于 停转状态,电机长时间停转时,稳定温升不超过允许值时输出的最大堵转转矩称为连续堵转转矩,相应的电枢电流为连续堵转电流。 图3.1为该伺服电机的结构图。图3.2是此伺服电机的性能曲线。 图3.1 伺服电机的结构图

图3.2 伺服电机的性能曲线 3.1.7 舵机介绍 舵机是一种位置伺服的驱动器,适用于那些需要角度不断变化并可以保持的控制系统。其工作原理是:控制信号由接收机的通道进入信号调制芯片,获得直流偏置电压。它内部有一个基准电路,产生周期为20ms,宽度为1.5ms的基准信号,将获得的直流偏置电压与电位器的电压比较,获得电压差输出。最后,电压差的正负输出到电机驱动芯片决定电机的正反转。当电机转速一定时,通过级联减速齿轮带动电位器旋转,使得电压差为0,电机停止转动。舵机的控制信号是PWM信号,利用占空比的变化改变舵机的位置。一般舵机的控制要求如图3.3所示。图3.4为舵机的控制线。

飞思卡尔智能车电磁组信号采集

?пㄖ ???? ??? ? ??? ?? ? ? 1? ? ??? ? 哖 世?? ???? ??? ??? ??? ? ??? ㄎ? ?? ??????仁??20kHz??????⌒ ???仁?VLF? ??⌒???仁仁?? ? 仁 ?仁??⌒????3kHz?30kHz?⌒?? 100km?10km? ?? 3.1?? ??? ? ? ?? ? ? ?а ? ?????? ??? ? ? ? ? ?? ??オ???? ??? ??? ? ? ??? ? ? ???о? ??? ??? ??? ? ? ? ? ?? ? ??? й ?????? ? ? ?? ? ???? ?н ????? ? ? на???? ??? ? ? ?? ? ? ?? а ? ???? ?? ??? ?? ? ??? ? ? ?? ?? ??? ??? ?? ??仁? ??? ?? ???? ??? ?? ?? ????? ?? ? ?? ?????? ↓ ? ?? ?? ↓ ? ?? ?? ??? ???? ? ??? ?? ? ? ?? ? ↓ ?? ?? ? ? ? ? ?? っ ?? ???/& ????? ??? ? ? ??/&? ?? ? ?

?йㄐ ???? ?? ?LC? ?? ? ? ?? ?? ? ?? ??????? ??? ??AD???? 享 ?? 儈?↓? фн?? ?? ???AD? ???? ? ?? ?? 3.3 ?? ?? ???????? ?? 傼 ??н ??? ? ? н ? ?? ?? ?н ? н? ? ? ??? ? ?? ?нっ ???? ?????? ? ф? 儈? ? ?

飞思卡尔智能车竞赛光电组技术报告

第九届“飞思卡尔”杯全国大学生智能车竞赛光电组技术报告 学校:中北大学 伍名称:ARES 赛队员:贺彦兴 王志强 雷鸿 队教师:闫晓燕甄国涌

关于技术报告和研究论文使用授权的说明书本人完全了解第八届“飞思卡尔”杯全国大学生智能汽车竞赛关保留、使用技术报告和研究论文的规定,即:参赛作品著作权归参赛者本人,比赛组委会和飞思卡尔半导体公司可以在相关主页上收录并公开参赛作品的设计方案、技术报告以及参赛模型车的视频、图像资料,并将相关内容编纂收录在组委会出版论文集中。 参赛队员签名: 带队教师签名: 日期:2014-09-15日

摘要 本文介绍了第九届“飞思卡尔杯全国大学生智能车大赛光电组中北大学参赛队伍整个系统核心采用飞思卡尔单片机MC9S12XS128MAA ,利用TSL1401线性CCD 对赛道的行扫描采集信息来引导智能小车的前进方向。机械系统设计包括前轮定位、方向转角调整,重心设计器件布局设计等。硬件系统设计包括线性CCD传感器安装调整,电机驱动电路,电源管理等模块的设计。软件上以经典的PID算法为主,辅以小规Bang-Bang 算法来控制智能车的转向和速度。在智能车系统设计开发过程中使用Altium Designer设计制作pcb电路板,CodeWarriorIDE作为软件开发平台,Nokia5110屏用来显示各实时参数信息并利用蓝牙通信模块和串口模块辅 助调试。关键字:智能车摄像头控制器算法。

目录 1绪论 (1) 1.1 竞赛背景 (1) 1.2国内外智能车辆发展状况 (1) 1.3 智能车大赛简介 (2) 1.4 第九届比赛规则简介 (2) 2智能车系统设计总述 (2) 2.1机械系统概述 (3) 2.2硬件系统概述 (5) 2.3软件系统概述 (6) 3智能车机械系统设计 (7) 3.1智能车的整体结构 (7) 3.2前轮定位 (7) 3.3智能车后轮减速齿轮机构调整 (8) 3.4传感器的安装 (8) 4智能车硬件系统设计 (8) 4.1XS128芯片介绍 (8) 4.2传感器板设计 (8) 4.2.1电磁传感器方案选择 (8) 4.2.2电源管理模 (9) 4.2.3电机驱动模块 (10) 4.2.4编码器 (11) 5智能车软件系统设 (11) 5.1程序概述 (11) 5.2采集传感器信息及处理 (11) 5.3计算赛道信息 (13) 5.4转向控制策略 (17) 5.5速度控制策略 (19) 6总结 (19)

飞思卡尔智能车摄像头组freescale程序代码

extern int left,w,top,h; extern HDC m_hdc; CBrush brush3(RGB(0,255,0)); CBrush brush4(RGB(255,0,0)); CBrush brush5(RGB(255,255,0)); #else #include #include "math.h" // #include "LQfun.h" #endif #ifdef ccd #define MAX_VIDEO_LINE 39 #define MAX_VIDEO_POINT 187 #else //#define MAX_VIDEO_LINE 26 // #define MAX_VIDEO_POINT 301 #define MAX_VIDEO_LINE 78 #define MAX_VIDEO_POINT 57 #endif extern unsigned char g_VideoImageDate[MAX_VIDEO_LINE][MAX_VIDEO_POINT]; #define INT8U unsigned char #define INT8S signed char #define INT16U unsigned int #define INT16S int #define INT32S int #define NO_DATA_180 254 //#define INT32U unsigned int unsigned char LIMIT=((MAX_VIDEO_POINT)/2); unsigned char MIDDLE[MAX_VIDEO_LINE]; #define MAX_BLACK_NUM 7 INT8S n;

第五届飞思卡尔智能车大赛华中科技大学电磁组技术报告

第五届飞思卡尔杯全国大学生 智能汽车竞赛 技 术 报 告 学校:华中科技大学 队伍名称:华中科技大学五队 参赛队员:方华启 张江汉 诸金良 带队教师:何顶新 罗惠

关于技术报告和研究论文使用授权的说明 本人完全了解第五届全国大学生“飞思卡尔”杯智能汽车竞赛关保留、使用技术报告和研究论文的规定,即:参赛作品著作权归参赛者本人,比赛组委会和飞思卡尔半导体公司可以在相关主页上收录并公开参赛作品的设计方案、技术报告以及参赛模型车的视频、图像资料,并将相关内容编纂收录在组委会出版论文集中。 参赛队员签名: 带队教师签名: 日期:

目录 第1章引言 (1) 1.1 概述 (1) 1.2 全文安排 (2) 第2章电路设计 (3) 2.1 电路系统框图 (3) 2.2 电源部分 (4) 2.3 电机驱动部分 (5) 2.4 电磁传感器 (6) 第3章机械设计 (8) 3.1 车体结构和主要参数及其调整 (8) 3.2 舵机的固定 (10) 3.3 传感器的固定 (11) 3.4 编码器的固定 (11) 第4章软件设计 (12) 4.1 程序整体框架 (12) 4.2 前台系统 (13) 4.3 后台系统 (13) 4.4 软件详细设计 (14) 第5章调试 (15) 第6章全文总结 (16) 6.1 智能车主要技术参数 (16) 6.2 不足与改进 (16) 6.3 致谢与总结 (17) I

参考文献 (18) 附录A 源代码 (18) II

第1章引言 第1章引言 教育部为了加强大学生实践、创新能力和团队精神的培养,在已举办全国大学生数学建模、电子设计、机械设计、结构设计等4大竞赛的基础上,委托教育部高等学校自动化专业教学指导分委员会主办每年一度的全国大学生智能汽车竞赛(教高司函[2005]201号文)[1]。 为响应教育部的号召,本校积极组队参加第五届“飞思卡尔”杯全国大学生智能汽车竞赛。从2009 年12 月开始着手进行准备,历时近8 个月,经过设计理念的不断进步,制作精度的不断提高,经历 2 代智能车硬件平台及相关算法的改进,最终设计出一套完整的智能车开发、调试平台。作为电磁组的华中科技大学五队采用轻质量机械设计、大前瞻传感器和连续化算法处理的基本技术路线,在前瞻距离、噪声抑制、驱动优化、整车布局等方面加强研究创新,在有限计算能力下获得了较高的赛道信息准确率。使智能车能够满足高速运行下的动力性和稳定性需求,获得了良好的综合性能和赛场表现。 本文将对智能车的总体设计和各部分的详细设计进行一一介绍。 1.1 概述 1.1.1 电路设计 飞思卡尔电磁组智能汽车硬件主要分为主控板,传感器板。本车在主控板上主要特色为电机使用H桥驱动,从性能和扩展性上优于集成驱动器方案。传感器板设计着重考虑提高传感器的前瞻量和信号的抗干扰能力。 1.1.2 机械设计 机械方面,主要是对舵机的安装进行了研究,加长了舵机的连杆,以增加反应速度。另外,主要研究车差速性能的研究以及传感器支架的固定。 1.1.3 控制程序设计 一方面使用免费的μCOS操作系统,这给智能车的整体调试提供了很多方便;另一方面,在大前瞻传感器的基础上设计出合理的舵机、电机控制算法,在满足稳定性要求的基础上提高速度。 1

飞思卡尔智能车比赛电磁组路径检测设计方案

飞思卡尔智能车比赛电磁组路径检测设计方案电磁组竞赛车模 路径检测设计参考方案 (竞赛秘书处 2010-1,版本 1.0) 一、前言 第五届全国大学生智能汽车竞赛新增加了电磁组比赛。竞赛车模需要能够通 过自动识别赛道中心线位置处由通有 100mA 交变电流的导线所产生的电磁场进行路径检测。除此之外在赛道的起跑线处还有永磁铁标志起跑线的位置。具体要求请参阅《第五届智能汽车竞赛细则》技术文档。 本文给出了一种简便的交变磁场的检测方案,目的是使得部分初次参加比赛 的队伍能够尽快有一个设计方案,开始制作和调试自己的车模。本方案通过微型车模实际运行,证明了它的可行性。微型车模运行录像参见竞赛网站上视频文件。 二、设计原理 1、导线周围的电磁场 根据麦克斯韦电磁场理论,交变电流会在周围产生交变的电磁场。智能汽车 竞赛使用路径导航的交流电流频率为 20kHz,产生的电磁波属于甚低频(VLF) 电磁波。甚低频频率范围处于工频和低频电磁破中间,为 3kHz,30kHz,波长为 100km,10km。如下图所示: 图 1:电流周围的电磁场示意图

导线周围的电场和磁场,按照一定规律分布。通过检测相应的电磁场的强度 和方向可以反过来获得距离导线的空间位置,这正是我们进行电磁导航的目的。 由于赛道导航电线和小车尺寸 l 远远小于电磁波的波长,,电磁场辐射能量很小(如果天线的长度 l 远小于电磁波长,在施加交变电压后,电磁波辐射功率正比于天线长度的四次方),所以能够感应到电磁波的能量非常小。为此,我们将导线周围变化的磁场近似缓变的磁场,按照检测静态磁场的方法获取导线周围的磁场分布,从而进行位置检测。 由毕奥-萨伐尔定律知:通有稳恒电流 I 长度为 L 的直导线周围会产生磁场,距离导线距离为 r 处 P 点的磁感应强度为: 图 2 sin直线电流的磁场 , d, ,(0 , 4 10, 7 TmA 1 ) B , ,, cos,1 2 ,。 (1) ,1 4 r 由此得: B , cos, 4 r 4 r

飞思卡尔智能车设计报告

飞思卡尔智能车设计报告

目录 1.摘要 (3) 2.关键字 (3) 3.系统整体功能模块 (3) 4.电源模块设计 (4) 5.驱动电路设计 (4) 6.干簧管设计 (5) 7.传感器模块设计 (6) 8.传感器布局 (6) 9.软件设计 (7) 9.1控制算法 (7) 9.2软件系统实现(流程图) (10) 10.总结 (11) 11.参考文献 (12)

1.摘要 “飞思卡尔”杯全国大学生智能汽车竞赛是由教育部高等自动化专业教学指导分委员会主办的一项以智能汽车为研究对象的创意性科技竞赛,是面向全国大学生的一种具有探索性工程实践活动,是教育部倡导的大学生科技竞赛之一。该竞赛以“立足培养,重在参与,鼓励探索,追求卓越”为指导思想,旨在促进高等学校素质教育,培养大学生的综合知识运用能力、基本工程实践能力和创新意识,激发大学生从事科学研究与探索的兴趣和潜能,倡导理论联系实际、求真务实的学风和团队协作的人文精神,为优秀人才的脱颖而出创造条件。该竞赛以汽车电子为背景,涵盖自动控制、模式识别、传感技术、电子、电气、计算机、机械等多个学科的科技创意性比赛。 本文介绍了飞思卡尔电磁组智能车系统。本智能车系统是以飞思卡尔32 位单片机K60为核心,用电感检测赛道导线激发的电磁信号, AD 采样获得当前传感器在赛道上的位置信息,通过控制舵机来改变车的转向,用增量式PID进行电机控制,用编码器来检测小车的速度,共同完成智能车的控制。 2.关键字 电磁、k60、AD、PID、电机、舵机 3.系统整体功能模块 系统整体功能结构图

4.电源模块设计 电源是一个系统正常工作的基础,电源模块为系统其他各个模块提供所需要的能源保证,因此电源模块的设计至关重要。模型车系统中接受供电的部分包括:传感器模块、单片机模块、电机驱动模块、伺服电机模块等。设计中,除了需要考虑电压范围和电流容量等基本参数外,还要在电源转换效率、噪声、干扰和电路简单等方面进行优化。可靠的电源方案是整个硬件电路稳定可靠运行的基础。 全部硬件电路的电源由7.2V,2A/h的可充电镍镉电池提供。由于电路中的不同电路模块所需要的工作电流容量各不相同,因此电源模块应该包含多个稳压电路,将充电电池电压转换成各个模块所需要的电压。 电源模块由若干相互独立的稳压电源电路组成。在本系统中,除了电机驱动模块的电源是直接取自电池外,其余各模块的工作电压都需要经电源管理芯片来实现。 由于智能车使用7.2V镍镉电池供电,在小车行进过程中电池电压会有所下降,故使用低压差电源管理芯片LM2940。LM2940是一款低压稳压芯片,能提供5V的固定电压输出。LM2940低压差稳压芯片克服了早期稳压芯片的缺点。与其它的稳压芯片一样,LM2940需要外接一个输出电容来保持输出的稳定性。出于稳定性考虑,需要在稳压输出端和地之间接一个47uF低等效电阻的电容器。 舵机的工作电压是6伏,采用的是LM7806。 K60单片机和5110液晶显示器需要3.3伏供电,采用的是LM1117。 5.驱动电路设计 驱动电路采用英飞凌的BTS7960,通态电阻只有16mΩ,驱动电流可达43A,具有过压、过流、过温保护功能,输入PWM频率可达到25KHz,电源电压5.5V--27.5V。BTS7960是半桥驱动,实际使用中要求电机可以正反转,故使用两片接成全桥驱动。如图下图所示。

飞思卡尔智能车电磁组程序员成长之路(未完待续)

飞思卡尔智能车电磁组程序员成长之路 1.飞思卡尔智能车小车入门 智能汽车电磁组简介: 第五届全国大学“飞思卡尔杯”智能汽车竞赛新增加了“电磁组”。根据比赛技术 要求,电磁组竞赛,需要选手设计的智能车能够检测到道路中心线下电线中20KHz 交 变电流产生的磁场来导引小车沿着道路行驶。在平时调试和比赛过程中需要能够满足比 赛技术要求的 20KHz 的交流电源驱动赛道中心线下的线圈。同时参赛选手需要自行设 计合适的电磁传感器来检测赛道信息完成智能寻迹功能。 智能车制作是一个涵盖电子、电气、机械、控制等多个领域和学科的科技创新活动。简单点来说可以将其分为硬件电路(包括电源、MUC 控制部分、电机驱动、传感器)、机械、算法三方面的设计。电磁组在机械方面可以参照光电组的设计方案,这里不再赘述。本设计指导只讲述20KHZ 电源、电磁传感器设计方案以及部分算法。 智能车对单片机模块需求: 飞思卡尔单片机资源:

智能车涉及到IO模块,中断模块,PWM模块,DMA模块,AD模块等。在车模调试中还有必须的模块。如SCI模块、定时器模块,SPI模块等。其中还涉及到一些算法和数据的存储和搬移。一个好程序框架对智能车的制作过程中会达到事半功倍的效果。但是就智能车这样系统来说,如果完全专门移植一个操作系统或者写一个程序的bootload,感觉有一些本末倒置,如果有成熟的,可以借用的,那样会比较好。 2.电磁传感器的使用 20KHz电源参考设计方案: 电源技术指标要求: 根据官网关于电磁组赛道说明,20KHz 电源技术要求如下: 1.驱动赛道中心线下铺设的 0.1-0.3mm 直径的漆包线; 2.频率围:20K±2K; 3.电流围:50-150mA; 图 2.1 是赛道起跑区示意图,在中心 线铺设有漆包线。 首先分析赛道铺设铜线的电抗,从而得 到电源输出的电压围。我们按照普通的练习 赛道总长度 50m,使用直径 0.2mm 漆包线。在30 摄氏度下,铜线的电阻率大约为 0.0185 欧姆平方毫米/米。计算可以得到中心线的电阻大约为 29.4 欧姆。 按照导线电感量计算机公式: 其中 l, d 的单位均为 cm。可以计算出直径为 0.2mm,长度 50 米的铜线电感量为131 微亨。对应 20KHz 下,感抗约为 16.5 欧姆。

(毕业设计)飞思卡尔智能车及机器视觉

图像处理在智能车路径识别中的应用 摘要 机器视觉技术在智能车中得到了广泛的应用,这项技术在智能车的路径识别、障碍物判断中起着重要作用。基于此,依据飞思卡尔小车的硬件架构,研究机器视觉技术应用于飞思卡尔小车。飞思卡尔智能车处理器采用了MC9S12XS128芯片,路况采集使用的是数字摄像头OV7620。 由于飞思卡尔智能车是是一款竞速小车,因此图像采集和处理要协调准确性和快速性,需要找到其中的最优控制。因此本设计主要需要完成的任务是:怎样用摄像头准确的采集每一场的图像,然后怎样进行二值化处理;以及怎样对图像进行去噪处理;最后也就是本设计的难点也是设计的核心,怎样对小车的轨迹进行补线。 本设计的先进性,在众多的图像处理技术中找到了适合飞思卡尔智能车的图像处理方法。充分发挥了摄像头的有点。经过小车的实际测试以及相关的MATLAB 仿真,最终相关设计内容都基本满足要求。小车的稳定性和快速性得到显著提高。 关键词:OV7620,视频采集,图像处理,二值化

The Application of Image Processing in the Recognition of Intelligent Vehicle Path ABSTRACT CameraMachine vision technology in the smart car in a wide range of applications, the technology identified in the path of the smart car, and plays an important role in the obstacles to judge. Based on this, based on the architecture of the Freescale car, machine vision technology used in the Freescale car. Freescale smart car the processor MC9S12XS128 chip traffic collected using a digital camera OV7620. Freescale's Smart car is a racing car, so the image acquisition and processing to coordinate the accuracy and fast, you need to find the optimal control. This design need to complete the task: how to use the camera to accurately capture every image, and then how to binarization processing; and how to image denoising; last is the difficulty of this design is the design of the core, how to fill line on the trajectory of the car. The advanced nature of the design found in many image processing techniques of image processing methods for Freescale Smart Car. Give full play to the camera a bit. The actual testing of the car and MATLAB simulation, the final design content can basically meet the requirements. The car's stability and fast to get improved significantly. KEY WORDS:OV7620,Video Capture,PictureProcessing,Binarization

飞思卡尔智能车竞赛摄像头组——技术报告 精品

"飞思卡尔"杯全国大学生智能汽车竞赛 技术报告

关于技术报告和研究论文使用授权的说明 本人完全了解第八届"飞思卡尔"杯全国大学生智能汽车竞赛关保留、使用技术报告和研究论文的规定,即:参赛作品著作权归参赛者本人,比赛组委会和飞思卡尔半导体公司可以在相关主页上收录并公开参赛作品的设计方案、技术报告以及参赛模型车的视频、图像资料,并将相关内容编纂收录在组委会出版论文集中。 参赛队员签名:孟泽民 章志诚 徐晋鸿 带队教师签名:陈朋 朱威 日期:2013.8.15

摘要 本文设计的智能车系统以MK60N512ZVLQ10微控制器为核心控制单元,通过Ov7620数字摄像头检测赛道信息,使用K60的DMA模块采集图像,采用动态阈值算法对图像进行二值化,提取黑色引导线,用于赛道识别;通过编码器检测模型车的实时速度,使用PID 控制算法调节驱动电机的转速和转向舵机的角度,实现了对模型车运动速度和运动方向的闭环控制。为了提高模型车的速度并让其更稳定,我们使用自主编写的Labview上位机、SD卡模块、无线模块等调试工具,进行了大量硬件与软件测试。实验结果表明,该系统设计方案可行。 关键词:MK60N512VMD100,Ov7620,DMA,PID,Labview,SD卡

Abstract In this paper we will design a smart car system based on MK60N512ZVLQ10 as the micro-controller unit. We use a Ov7620 digital image camera to obtain lane image information. The MCU gets the image by its DMA module. Then convert the original image into the binary image by using dynamic threshold algorithm in order to extract black guide line for track identification. An inferred sensor is used to measure the car`s moving speed. We use PID control method to adjust the rotate speed of driving electromotor and direction of steering electromotor,to achieve the closed-loop control for the speed and direction. To increase the speed of the car and make it more reliable,a great number of the hardware and software tests are carried on and the advantages and disadvantages of the different schemes are compared by using the Labview simulation platform designed by ourselves,the SD card module and the wireless module. The results indicate that our design scheme of the smart car system is feasible. Keywords: MK60N512VMD100,DMA,Ov7620,PID,Labview,SD card

飞思卡尔智能车简介

智能车制作 F R E E S C A L E 学院:信息工程学院 班级:电气工程及其自动化132 学号:6101113078 姓名:李瑞欣 目录: 1. 整体概述 2.单片机介绍 3.C语言 4.智能车队的三个组 5.我对这门课的建议

一、整体概述 智能车的制作过程包括理论设计、实际制作、整车调试、现场比赛等环节,要求学生组成团队,协同工作。内容涵盖自动控制、模式识别、传感技术、电子、电气、计算机、机械与汽车等多学科多专业。 下面是一个智能车的模块分布: 总的来说智能车有六大模块:信号输入模块、控制输出模块、数据处理模块、信息显示模块、信息发送模块、异常处理模块。 1、信号输入模块: 智能车通过传感器获知赛道上的路况信息(直道,弯道,山坡,障碍物等),同时也通过传感器获取智能车自身的信息(车速,电磁电量等)。这些数据构成了智能车软件系统(大脑)的信息来源,软件系统依靠这些数据,改变智能车的运行状态,保证其在最短的时间内按照规定跑完整个赛道。 2、控制输出模块: 智能车在赛道上依靠转向机构(舵机)和动力机构(电机)来控制运行状态,这也是智能车最主要的模块,这个模块的好坏直接决定了你的比赛成绩。 电机和舵机都是通过PWM控制的,因此我们的软件系统需要根据已有的信息进行分析计算得到一个合适的输出数据(占空比)来控制电机和舵机。 3数据处理模块: 主要是对电感、编码器、干簧管的数据处理。信号输入模块得到的数据非常原始,有杂波。基本上是不能直接用来计算的。因此需要有信号处理模块对采集的数据进行处理,得到可用的数据。 4信息显示模块: 智能车调试过程中,用显示器来显示智能车的部分信息,判断智能车是否正常运行。正式比赛过程中可关闭。主流的显示器有:Nokia 5110 ,OLED模块等,需要进行驱动移植。

(完整版)飞思卡尔智能车光电组技术报告

第十届全国大学生“飞思卡尔”杯华 北赛 智能汽车竞赛 技术报告 目录 目录 (1) 第一章方案设计 (1) 1.1系统总体方案的选定 (1) 1.2系统总体方案的设计 (1) 1.3 小结 (2) 第二章智能汽车机械结构调整与优化 (3) 2.1智能汽车车体机械建模 (3) 2.2 智能汽车传感器的安装 (4) 2.2.1速度传感器的安装 (4) 1

2.2.2 线形CCD的安装 (5) 2.2.3车模倾角传感器 (5) 2.3重心高度调整 (5) 2.3.1 电路板的安装 (6) 2.3.2 电池安放 (6) 2.4 其他机械结构的调整 (6) 2.5 小结 (6) 第三章智能汽车硬件电路设计 (7) 3.1主控板设计 (7) 3.1.1电源管理模块 (7) 3.1.2 电机驱动模块 (8) 3.1.3 接口模块 (9) 3.2智能汽车传感器 (10) 3.2.1 线性CCD传感器 (10) 3.2.2 陀螺仪 (10) 3.2.3 加速度传感器 ...............................................................错误!未定义书签。 3.2.3 编码器 (11) 3.3 键盘,数码管..........................................................................错误!未定义书签。 3.4液晶屏 (12) 3.5 小结 (12) 第四章智能汽车控制软件设计 (13) 4.1线性CCD传感器路径精确识别技术 (13) 4.1.1新型传感器路径识别状态分析 (14)

AD转换基准电压总结(飞思卡尔电磁组)

基准电压总结 通常AD/DA芯片都有两个电压输入端,一个是Vcc,一个是Vref,上图所示的芯片是DAC0832,Vcc是芯片的工作电压,Vref是DA转换的基准电压,AD/DA芯片对Vcc 的要求不是很高,但对基准电压Vref的要求就比较高。 S12的VRH引脚就是AD转换的基准电压输入端,在最小系统板上通过0Ω电阻和Vcc连在了一起。 一、什么叫基准电压 我们知道,AD/DA转换时需要一个电压参考值,而且要求这个参考值要稳定,这个稳定的电压参考值就叫做基准电压。比如AD(8位)转换时,假设参考电压时5V,输入量是2V,则转换后得到的数字量就是(2/5)*255=102。 二、智能车制作过程中遇到的问题 最开始我们组是利用LM2940稳压芯片输出的5V电压作为S12芯片内部AD转换的电压参考值,但采集回来的电磁信号AD值时常出现跳变,为什么?经过排除其他原因后,我们发现原因就在于基准电压不稳定,夸张地举个例子(8位AD),假设参考电压是5V,采集到的电磁模拟信号是2V,那么得到的数字量是102,但是由于某种原因参考电压突然变为4V,那么得到的数字量就突变为127,转换不准确,使得S12单片机产生误动作,要是时常发生这类突变,后果可想而知,车子根本跑不了!!! 三、LM2940与MC1403芯片 通过上面举的例子,我想说的是,LM2940输出的5V电压并非稳定,因为LM2940属于功率型稳压芯片,就是说其输出的电压会受流过LM2940的电流的影响,电流短时间发生较大变化时,其输出电

压也会相应发生变化(1V以内,典型值是0.5V),由于挂在LM2940上的负载较多,电流值变化较大,也就是说输出电压也会变化,而AD转换需要的却是一个稳定的参考电压,显然LM2940无法满足这个条件,因此AD值跳变是肯定的; 那么用哪个芯片作为基准电压更为恰当呢,答案肯定是有很多的,我们后来采用的芯片是MC1403,其输出电压很稳定,输出电压值为2.5V,关键在于即使输入电压变化较大,MC1403的输出误差也在1%以内,显然这可以满足我们AD转换所需基准电压的要求。下图是MC1403芯片的一个简介。 但是,2.5V作为基准电压显然是太低啦,因此我们需要对其进行升压,利用运算放大器的放大功能,采用的运算放大器是LMV358,电路图如下:

飞思卡尔 电磁组

第十届“飞思卡尔”杯全国大学生 智能汽车竞赛 技术报告 学校:常熟理工学院 队伍名称:物电电磁二队 参赛队员:梅亚军、沈锦杰、黄志鹏、张峰 带队老师:徐健、顾涵

关于技术报告和研究论文使用授权的说明 本人完全了解第十届“飞思卡尔”杯全国大学生智能汽车竞赛关保留、使用技术报告和研究论文的规定,即:参赛作品著作权归参赛者本人,比赛组委会和飞思卡尔半导体公司可以在相关主页上收录并公开参赛作品的设计方案、技术报告以及参赛模型车的视频、图像资料,并将相关内容编纂收录在组委会出版论文集中。 参赛队员签名: 带队教师签名: 日期:

摘要 本文介绍了常熟理工学院物电电磁二队电磁车的成果。智能车的硬件平台采用带MK60DN256Vll10处理器,软件平台为IAR Embedded Workbench开发环境,车模采用大赛组委会统一提供的两辆B型车模。 文中介绍了智能车机械结构调整,传感器电路设计,舵机、电机控制算法以及起跑线的检测等。车模以MK60DN256Vll10单片机为控制核心,以安装在车体前的工字电感作为循迹传感器,采用干簧管检测起跑线,以欧姆龙编码器检测速度信息。车模系统的简单工作原理是MK60DN256Vll10单片机通过AD口采集电感检测的拟量,并通过算法处理,然后返回值用于舵机控制,根据编码器返回值进行电机的闭环控制。通过串口,借用蓝牙等工具进行舵机PD参数,电机PID的调节,以及整定传感器参数的整合处理,再通过数字红外进行两车之间联系,保持车距。 关键字:机械结构、电磁寻线、舵机PD控制、电机PID控制

目录 第一章总体方案设计------------------------------------------------------------------------------------------- 6 第二章智能车机械结构调整与优化 ------------------------------------------------------------------------ 9 2.1 主销内倾 ---------------------------------------------------------------------------------------------- 9 2.2 主销后倾 -------------------------------------------------------------------------------------------- 10 2.3 外倾角 ------------------------------------------------------------------------------------------------ 11 2.4车轮安装示意图如下:---------------------------------------------- 12 2.5 舵机的安装----------------------------------------------------------------------------------------- 12 2.6 舵机安装示意图如下: ------------------------------------------------------------------------- 13 2.7 小结 --------------------------------------------------------------------------------------------------- 13 第三章电路设计说明 --------------------------------------------------------------------------------------- 14 3.1 电源模块--------------------------------------------------------------------------------------------- 14 3.2 传感器模块------------------------------------------------------------------------------------------ 15 3.3 电机模块--------------------------------------------------------------------------------------------- 15 3.4 舵机模块--------------------------------------------------------------------------------------------- 16 3.5 最小系统板设计 ----------------------------------------------------------------------------------- 16 3.6 系统主板设计 -------------------------------------------------------------------------------------- 17 3.7 小结 --------------------------------------------------------------------------------------------------- 18 第四章智能车控制软件设计说明 ------------------------------------------------------------------------- 19 4.1 软件设计总体框架 -------------------------------------------------------------------------------- 19 4.2 电机PID控制 -------------------------------------------------------------------------------------- 20 4.3 舵机的控制----------------------------------------------------------------------------------------- 24 4.4 传感器数据的处理 -------------------------------------------------------------------------------- 24 4.5 小结 --------------------------------------------------------------------------------------------------- 24 第五章开发工具、制作、安装、调试过程说明 ------------------------------------------------------ 25 5.1 软件编译环境 -------------------------------------------------------------------------------------- 25 5.2 显示模块 -------------------------------------------------------------------------------------------- 25 5.3 蓝牙调试模块-------------------------------------------------------------------------------------- 26 5.4 上位机调试----------------------------------------------------------------------------------------- 26 5.5 本章小结 -------------------------------------------------------------------------------------------- 27 模型车的主要技术参数说明 --------------------------------------------------------------------------------- 28 结论 ---------------------------------------------------------------------------------------------------------------- 29 参考文献 ---------------------------------------------------------------------------------------------------------- 31 附录A:程序源代码 ------------------------------------------------------------------------------------------ 32

相关文档
最新文档