悬挑构件承载力计算

悬挑构件承载力计算
悬挑构件承载力计算

悬挑构件承载力计算书

针对15、16、17号楼挑廊部分存在落地式外脚手架直接支撑在悬挑构件上的情况,特编制本计算书,验算悬挑构件的承载力是否满足需要。16号楼挑廊长度75.1米,为最不利情况,以此数据为计算依据。

悬挑梁最大悬挑长度3.9米,挑廊长度75.1米,根据外架布置间距需设置51排立杆,外架搭设高度(0.45+34.85+1.5=36.8M )。小计立杆102根,长度36.8米,大横杆42根,拦腰杆21根,长度75.1米,小横杆51*21=1071根,长度1.2米,合计9770.1米。按3.0mm 壁厚计算钢管重量,每米钢管重量3.48KG 。总计总量33999.948KG,约为34T ,换算为作用力为340KN 。悬挑部分共计23根悬挑梁,则每根悬挑梁近似荷载为340/23=14.78KN 。悬挑梁截面尺寸400×700,上部9根HRB500 25,下部4根HRB500 25。

1、悬挑梁负弯矩计算

外架搭设离墙间距350mm ,外架宽度800mm 。

悬挑梁受力点悬挑长度(350+800|2=750) ,端部集中荷载14.78KN ,则负弯矩为: W=FL=14.78×0.75=11.09KN ·M

2、正截面承载力计算

梁截面受压区高度:

X=h 0-b f m h cm /220- =640-400/13.16/10704000026402?-

=26.47mm

X 0h b ξ≤=0.544×640=348.16

梁负弯钢筋截面积:

y

cm S f xb f A ==16.13×24×400/610=253.85mm 2

A〉25×25×3.14|9=218.06 mm2S

则悬挑部分满足外架荷载要求。

(整理)阳台梁承载力验算终

花溪区洛平新城集中安置点建设项目一标段 悬挑脚手架作用下阳台梁承载力验算书 一、悬挑脚手架对其下结构梁的受力影响 1、悬挑脚手架的节点做法 悬挑脚手架悬挑钢梁的常规做法是利用型钢(一般是Ⅰ字型钢),一端从建筑物伸出,另一端伸入楼层内,在楼层内梁板上锚固。锚固点一般是在楼层外边梁一处,另一处在钢梁的尾端(见图1)。 (图1) 2、悬挑钢梁对结构梁的受力分析 根据《建筑施工扣件式钢管脚手架安全技术规范》(JGJ130-2011)规定,悬挑钢梁按纯悬挑构件计算,钢丝绳不参与计算,其计算模型见图2: (图2) 从以上模型中可以很容易看出,A点处悬挑钢梁受到向上的支撑力,反之,结构边梁受到悬挑钢梁向下的压力,即一道悬挑钢梁对其支撑梁施加了一个向下的集中荷载。在实际施

工中,一跨边梁上往往会支撑三到四道钢梁,这些钢梁就相当于对结构梁施加了二到四个集中荷载,当这些集中荷载增加到一定程度后,显然会对支撑梁结构安全有一定影响,尤其是在实际施工中会将阳台的悬挑梁和阳台边梁作为悬挑架的支撑构件,其受到的影响较大。下面通过对各型号的标准层阳台梁受力的计算,来验算阳台梁结构是否受影响。 二、4-6、17-19栋阳台梁(11-17交A轴外挑梁)验算 一)悬挑钢梁放置在悬挑阳台边梁的计算、验算 2.1 建筑物建筑构件概况 4-6、17-19栋标准层住宅,阳台尺寸为3.5m×1.5m,阳台悬挑梁尺寸为200mm×400mm,阳台边梁为200mm×400mm,阳台板厚100,混凝土强度为C30,楼板及梁底面、侧面均不粉刷,直接刮腻子刷乳胶漆,楼地面做法为30mm厚干干硬性水泥砂浆上铺10厚地板砖。阳台边梁上带100高C20钢筋混凝土翻沿,翻沿上做900高栏杆。 2.2 脚手架搭设方案 本工程采用型钢悬挑钢管扣件式脚手架,悬挑钢梁选用I16工字钢,脚手架步距为1.8m,纵距为1.5m,横距为0.8m,内立杆距墙面0.3m,每层设拦腰杆,悬挑钢梁挑出长度为1.2m,楼层内锚固长度为1.8m,脚手架搭设高度按照《危险性较大的分部分项工程安全管理办法》要求按19.6m(7层10.8步)计算,连墙件为每层三跨布置,竹脚手板满铺两层(首层和操作层),操作层按一层同时施工,安全网采用密目网在外侧全封闭。 2.3 脚手架内外立杆荷载计算(根据悬挑脚手架方案所得) 内外立杆总荷载分别为:P1=6.64KN;P1=6.64KN 2.4 悬挑钢梁的受力计算 将内外立杆荷载P1、P2代入以下悬挑钢梁计算简图: P1=6.64 KN; P2=6.64KN;q=0.246KN/m; 求得A点处支撑梁受到悬挑钢管的向下的集 中荷载为:N=18.45KN

框架结构的“悬挑”小问题

框架结构的“悬挑”小问题 问题1、按照计算书配筋,悬挑梁配筋的时候应该注意哪些 悬挑梁抗弯纵筋面积比计算值增加15%,底筋不放大,并不小于上部钢筋的1/4~1/3,箍筋不小于8@100。主要是PKPM中,对悬挑梁是按非抗震梁计算的,故结果偏小。 解答:对于悬挑构件,配筋适当加大是可以,应该的;更应该注意悬挑构件的底部配筋,应为悬挑大的话要考虑竖向地震作用!因为悬挑梁不能破坏,抗震地区在结构上输入“硬抗”的构建,是不能破坏的,所以一般的话配筋都回放大的,根据重要程度和承荷多少,放大系数在1.1~1.5左右。 规范对悬挑梁要求高与一般梁。 问题2、不知道大家有没有碰到过封口梁梁高大于悬挑梁高(梁面平齐,梁底有高差)的情况。 我们都知道传力途径应该是封口梁到悬挑梁,悬挑梁就是封口梁支座,但是问题来了——若两梁底存在不小的高差(200以上),封口梁的底部钢筋还能不能锚固到悬臂梁里,假如锚不进去是不是就不能把悬臂梁看做封口梁的支座,余下两种可能的结论: 1、悬臂梁实际上并非悬臂而是一次梁,传力路径应该是“伪悬臂”到封口梁 2、两者相互作用 回过头,假如上述结论成立,那是不是意味着封口梁底必需不低于悬挑梁,此悬挑梁才是真正意义上的悬挑梁。

解答:封口梁是可以比悬臂梁高的,封口梁与悬臂梁的相对刚度并不改变悬臂梁是封口梁支座的事实,有变化的是悬臂梁对封口梁的嵌固程度有多少,也就是涉及到封口梁与悬臂梁是刚接还是铰接的问题。即使封口梁钢筋的锚不能锚固在梁内,也不会改变梁的传力路径,这只能说明这个节点的锚固措施不是很好,可以通过悬臂梁端部加掖的措施处理,如果是按照铰接设计可以不用处理。 问题3、附加箍筋为什么在梁端而不在根部,它的主要作用不是抗剪吗?记得悬挑的剪力是根部最大。 解答:端部受集中荷载,悬挑梁剪力在端部和根部是一样的。 问题4、为什么要在端部对纵筋进行弯折?主要作用是什么? 解答:由于悬臂梁剪力较大且全长承受负弯矩,“斜弯作用”及“沿筋劈裂”引起的受力状态更为不利。试验表明,在作用剪力较大的悬臂梁内,因梁全长受负弯矩作用,临界斜裂缝的倾角明显较小,因此悬臂梁的负弯矩纵向受力钢筋不宜切断,而应按弯矩图分批下弯,能够提高构件的抗剪承载力和混凝土抗裂性能,在混凝土梁的受拉区中,弯起钢筋的弯起点可设在按正截面受弯承载力计算不需要该钢筋的截面之前,但弯起钢筋与梁中心线的交点应位于不需要该钢筋的截面之外,同时弯起点与按计算充分利用该钢筋的截面之间的距离不应小于h0/2,对悬臂梁而言,这应该就是你说的端部钢筋向下弯折吧!

悬挑架 悬挑工字钢阳台梁 承载验算

关于XXXXXX工程阳台处 悬挑工字钢阳台梁承载的验算 根据XXXXXX工程《悬挑扣件式钢管脚手架施工方案》中P14页计算得知,阳台梁支座处局部压应力最大弯矩 MA = 15.043 kN?m。根据XXXXXX3楼结构施工图设计中结施-46中知阳台梁截面为200×400最小配筋为3D14;3D14,砼标号为C25,试验算此梁截面。 1、计算资料 混凝土强度等级为C25,fc =11.943N/mm2,ft =1.271N/mm2 钢筋抗拉强度设计值 fy = 360N/mm2, Es = 200000N/mm2; 纵筋的混凝土保护层厚度 c = 25mm 由配筋面积 As 求弯矩设计值 M,查表得纵筋受拉钢筋面积 As = 462mm2 截面尺寸 b×h = 200×450, h0 = h - as = 450-37.5 =412.5mm 2、计算结果 相对界限受压区高度ξb =β1 / [1 + fy / (Es〃εcu)] = 0.8/[1+360/(200000*0.0033)] = 0.518 混凝土受压区高度x =As〃fy / (α1〃fc〃b) =462*360/(1*11.943*200) = 70mm 相对受压区高度ξ= x / h0 = 70/412.5 = 0.169 ≤ξb

= 0.518 弯矩设计值M =α1〃fc〃b〃x〃(h0 - x / 2) =1*11.943*200*70*(412.5-70/2) = 62.816kN〃m 配筋率ρ= As / (b〃h0) = 462/(200*412.5) = 0.56% 纵筋的最小配筋率ρmin =Max{0.20%, 0.45ft/fy} =Max{0.20%, 0.16%} = 0.20% M=62.816kN〃m> MA = 15.043 kN?m 满足要求! 3、卸载措施 根据上述验算可知,阳台梁能够承受从悬挑工字钢上传来的荷载,满足安全要求。另外现场采取以下卸载方式结合施工:采用钢丝绳斜拉45o~60o角度进行卸载,具体方法为采用Φ16钢丝绳斜拉,现场绑扎在每根工字钢上外侧立杆外端的工字钢上进行斜拉。

楼梯及阳台处普通型钢悬挑脚手架计算书

楼梯及阳台处普通型钢悬挑脚手架计算书 一、参数信息: 1.脚手架参数 双排脚手架搭设高度为 19.5 米,立杆采用单立杆; 搭设尺寸为:立杆的纵距为 1.5米,立杆的横距为1米,立杆的步距为1.8 米; 内排架距离墙长度为0.30米; 大横杆在上,搭接在小横杆上的大横杆根数为 2 根; 脚手架沿墙纵向长度为 150 米; 采用的钢管类型为Φ48×3.0; 横杆与立杆连接方式为单扣件;取扣件抗滑承载力系数 0.80; 连墙件布置取两步两跨,竖向间距 3.6 米,水平间距3 米,采用扣件连接; 连墙件连接方式为双扣件连接; 2.活荷载参数 施工均布荷载(kN/m2):3.000;脚手架用途:结构脚手架; 同时施工层数:2 层; 3.风荷载参数 本工程地处**省***市,查荷载规范基本风压为0.400,风荷载高度变化系数μz 为1.000,风荷载体型系数μs为0.645; 计算中考虑风荷载作用; 4.静荷载参数 每米立杆承受的结构自重荷载标准值(kN/m2):0.1248;

脚手板自重标准值(kN/m2):0.300;栏杆挡脚板自重标准值(kN/m):0.150; 安全设施与安全网自重标准值(kN/m2):0.005;脚手板铺设层数:7 层; 脚手板类别:竹笆片脚手板;栏杆挡板类别:栏杆、竹笆片脚手板挡板; 5.水平悬挑支撑梁 悬挑水平钢梁采用16号工字钢,其中建筑物外悬挑段长度2.8米,建筑物内锚固段长度 2.8 米。 与楼板连接的螺栓直径(mm):20.00; 楼板混凝土标号:C30; 6.拉绳与支杆参数 支撑数量为:1; 钢丝绳安全系数为:8.000; 钢丝绳与墙距离为(m):3.000; 悬挑水平钢梁采用钢丝绳与建筑物拉结,最里面面钢丝绳距离建筑物 1.2 m。

4.3-偏心受压构件承载力计算

4.2 轴心受压构件承载力计算 一、偏心受压构件破坏特征 偏心受压构件在承受轴向力N和弯矩M的共同作用时,等效于承受一个偏心距为e =M/N的偏心力N的作用,当弯矩M相对较小时,e0就很小,构件接近于轴心受压,0 相反当N相对较小时,e0就很大,构件接近于受弯,因此,随着e0的改变,偏心受压 构件的受力性能和破坏形态介于轴心受压和受弯之间。按照轴向力的偏心距和配筋情 况的不同,偏心受压构件的破坏可分为受拉破坏和受压破坏两种情况。 1.受拉破坏 当轴向压力偏心距e0较大,且受拉钢筋配置不太多时,构件发生受拉破坏。在这 种情况下,构件受轴向压力N后,离N较远一侧的截面受拉,另一侧截面受压。当N 增加到一定程度,首先在受拉区出现横向裂缝,随着荷载的增加,裂缝不断发展和加 宽,裂缝截面处的拉力全部由钢筋承担。荷载继续加大,受拉钢筋首先达到屈服,并 形成一条明显的主裂缝,随后主裂缝明显加宽并向受压一侧延伸,受压区高度迅速减 小。最后,受压区边缘出现纵向裂缝,受压区混凝土被压碎而导致构件破坏(图 4.3.1)。此时,受压钢筋一般也能屈服。由于受拉破坏通常在轴向压力偏心距e0较 大发生,故习惯上也称为大偏心受压破坏。受拉破坏有明显预兆,属于延性破坏。 2.受压破坏 当构件的轴向压力的偏心距e0较小,或偏心距e0虽然较大但配置的受拉钢筋过 多时,就发生这种类型的破坏。加荷后整个截面全部受压或大部份受压,靠近轴向压力一侧的混凝土压应力较高,远离轴向压力一侧压应力较小甚至受拉。随着荷载 逐渐增加,靠近轴一侧混凝土出现纵向裂缝,进而混凝土达到极限应变εcu被压碎,受压钢筋的应力也达到f y′,远离一侧的钢筋可能受压,也可能受拉,但因本身截面应力太小,或因配筋过多,都达不到屈服强度(图4.3.2)。由于受压破坏通常在轴向压力偏心距e0较小时发生,故习惯上也称为小偏心受压破坏。受压破坏无明显预兆,属脆性破坏。

受力构件承载力计算

《建筑结构》补修课导学三 2008年06月17日 王启平 第三章 受弯构件承载力计算 受弯构件的两种破坏形式:1.沿弯矩最大截面破坏,称为正截面破坏;2.是沿剪力最大或弯矩和剪力都较大的截面破坏,破坏截面与构件的轴线斜交,称为斜截面破坏。 (a )正截面破坏 (b )斜截面破坏 图3-1 受弯构件的两种破坏形式 3.1一般构造要求 3.1.1截面形式 在受弯构件中,仅在截面的受拉区配置纵向受力钢筋的截面,称为单筋截面。同时在截面的受拉区和受压区配置纵向受力钢筋的截面,称为双筋截面。 3.1.2梁的构造要求 梁中一般配置纵向受力钢筋、弯起钢筋、箍筋和架立钢筋,如图3-3所示。 图 梁的配筋 1. 截面尺寸 梁高与跨度之比l h /称为高跨比。对于肋形楼盖的主梁为1/8~1/14,次梁为1/12~1/18;独立梁不小于1/15(简支)和1/20(连续)。 矩形截面梁的高宽比b h /一般取2.0~3.0;T 形截面梁的b h /.一般取2.5~4.0 (此处b 为梁肋宽)。为便于统一模板尺寸,通常采用矩形截面梁的宽度或T 形截面梁的肋宽b = 100、120、150、(180)、200、(220)、250和300mm ,300mm 以上的级差为50mm ,括号中的数值仅用于木模;梁的高度h = 250、300、750、800、900、1000mm 等尺寸。当

第8章受扭构件的扭曲截面承载力习题答案

第8章 受扭构件的扭曲截面承载力 8.1选择题 1.下面哪一条不属于变角度空间桁架模型的基本假定:( A )。 A . 平均应变符合平截面假定; B . 混凝土只承受压力; C . 纵筋和箍筋只承受拉力; D . 忽略核心混凝土的受扭作用和钢筋的销栓作用; 2.钢筋混凝土受扭构件,受扭纵筋和箍筋的配筋强度比7.16.0<<ζ说明,当构件破坏时,( A )。 A . 纵筋和箍筋都能达到屈服; B . 仅箍筋达到屈服; C . 仅纵筋达到屈服; D . 纵筋和箍筋都不能达到屈服; 3.在钢筋混凝土受扭构件设计时,《混凝土结构设计规范》要求,受扭纵筋和箍筋的配筋强度比应( D )。 A . 不受限制; B . 0.20.1<<ζ; C . 0.15.0<<ζ; D . 7.16.0<<ζ; 4.《混凝土结构设计规范》对于剪扭构件承载力计算采用的计算模式是:( D )。 A . 混凝土和钢筋均考虑相关关系; B . 混凝土和钢筋均不考虑相关关系; C . 混凝土不考虑相关关系,钢筋考虑相关关系; D . 混凝土考虑相关关系,钢筋不考虑相关关系; 5.钢筋混凝土T 形和I 形截面剪扭构件可划分为矩形块计算,此时( C )。 A . 腹板承受全部的剪力和扭矩; B . 翼缘承受全部的剪力和扭矩; C . 剪力由腹板承受,扭矩由腹板和翼缘共同承受; D . 扭矩由腹板承受,剪力由腹板和翼缘共同承受; 8.2判断题 1.钢筋混凝土构件在弯矩、剪力和扭矩共同作用下的承载力计算时,其所需要的箍筋由受弯构件斜截面承载力计算所得的箍筋与纯剪构件承载力计算所得箍筋叠加,且两种公式中均不考虑剪扭的相互影响。( × ) 2.《混凝土结构设计规范》对于剪扭构件承载力计算采用的计算模式是混凝土和钢筋均考虑相关关系;( × ) 3. 在钢筋混凝土受扭构件设计时,《混凝土结构设计规范》要求,受扭纵筋和箍筋的配筋强度比应不受限制( × )

悬挑结构施工要点(3点)

悬挑结构施工要点(3点) 导言 悬挑结构是一些建筑设计师的“常用手法”,近年来成为超高层建筑与大型公共建筑方案的重要结构形式。由于悬挑结构对结构受力要求非常高,如何才能避开悬挑施工的质量“雷区”?一起来看看吧。 悬挑结构的有限元优化 施工中常利用有限元软件对结构受力进行优化,以保证日后施工的质量。悬挑结构的有限元优化过程大概分为以下步骤。 (1)优化设计思路 在用ABAQUS软件优化过程中,为设计出符合要求的钢筋混凝土桁架结构,应在对钢筋混凝土桁架结构建立初始方案模型之后进行ABAQUS优

化设计。如此处理的主要目的为保证钢筋混凝土桁架结构满足强度和刚度要求的基础上,节省钢筋和混凝土量,降低造价。因此,在优化过程中选择合理的设计变量、状态变量及优化目标,最后查看优化分析结果。 (2)优化过程及结果分析 根据优化设计思路,首先进行初始方案参数化建模,求解后处理计算结果,从而确定设计变量和优化目标,最后对优化结果进行评估。若达到优化目标,则退出循环,反之则继续优化。 应注意在结构设计主要参数处理时,由于结构通常比较复杂,在不影响结构内力和位移的前提下,需要对部分结构构件进行简化,选取最大悬挑梁为研究对象,随后对各类需要计算的单元进行选取,如混凝土实体单元、钢筋桁架单元等;随后再根据材料属性选择相应参数,如混凝土等级选择C30,弹性模量选择相对应数值,其他参数均按初始方案建模。 钢筋混凝土悬挑构件有挑板式和挑梁式2种,挑板式是指以楼层圈梁

为支座,向结构外延伸的板。挑梁式是指梁从主体结构中的主梁或次梁延伸出来,延伸出的端部没有支承的竖向受力梁,而板则由梁支撑。 悬挑结构施工难,主筋受力大,所以其悬挑长度不大,自建房就更小了。一般较为合理的悬挑长度最好控制在1~1.5m,而且与悬挑构件相连的楼板或梁的长度要大于悬挑长度的1.5倍。如果再长,就只能在悬挑构件的端部做承重柱了。 悬挑结构施工常见问题 1.抗倾覆能力不足 悬挑结构是靠压重或外加拉力来保持稳定的,规范要求设计计算是取倾覆转动点在外墙皮向里的O’点,并要求抗倾覆力矩的0.8倍大于倾覆力矩,即抗倾覆有不小于1.25的安全系数,若稳定力矩小于倾覆力矩时,必然失稳,倾覆坍塌。如雨篷梁上的压重(砌砖的高度)尚不能满足稳定要求时,就拆除支撑及模版,将会发生坍塌,造成人员伤亡。 2. 模板支撑方案不当 悬挑结构根部受力最大,当混凝土浇筑后,尚未达到足够强度时,模版支撑产生沉降,根部混凝土随即开裂,拆模后将从根部产生断裂坍塌。若悬挑结构为变截面,施工时将模版做成等截面外形,而造成根部断面减小,拆模后也会产生断塌事故。 为防止模板立柱下陷,应注意以下几点: (1)立柱不得支于松软的土上和未经处理的回填土上; (2)立柱下面的垫木要有足够的底面积和刚度; (3)注意立柱受震动后的动势;

高空悬挑构件模板脚手架

烟台澳斯邦工程悬挑模板支撑体系简述 烟台奥斯邦1#办公楼地上建筑面积27532,11层,其中9、10层楼层相对下层有悬挑结构,这种高空、悬挑结构属于本工程的施工难点,施工难度和危险性较大,保证施工安全和稳定是一大难点,如采用传统落地式支撑模板脚手架的话,支撑高度远远超过8米,满足不了施工要求且不经济,因此选用槽钢悬挑式扣件钢管支撑模板脚手架为首选施工方案,因无详细图纸,无法进行受力计算,所以暂根据本工程效果图(见最后附图),提供三种槽钢支架的形式供参考,具体选择需根据受力验算情况进行: 1、形式一,在悬挑结构的下层楼面设置悬挑型钢,模板架立杆直接支设在悬挑型钢上,悬挑型钢下部设置顶撑,顶撑设置钢丝绳拉结(图1) 2、形式二,在悬挑结构的下二层楼面设置悬挑型钢,模板架立杆直接支设在悬挑型钢上,悬挑型钢上层设置斜拉钢丝绳拉结在悬挑型钢上(图2) 3、形式三,在悬挑结构的下二层楼面设置悬挑型钢,模板架立杆直接支设在悬挑型钢上,悬挑型钢下部设置顶撑,顶撑设置钢丝绳拉结,悬挑型钢上层设置斜拉钢丝绳拉结在悬挑型钢上(图3)以上三种形式可根据结构受力情况验算后选择,其中形式三为形1和形2的结合,形成双保险,结构稳定安全相对容易保证,但用料大,成本增加,工序也相应增多。如经过受力验算后仍不能满足要求,再酌情考虑其他方案。

1、模板支撑体系施工构造措施 1.1悬挑型钢 支撑结构型钢的纵向间距应与上部支撑架立杆的纵向间距相同,

且需经过受力计算,符合安全要求,模板支撑架立杆直接支撑在悬挑型钢上,型钢应平行,且间距符合受力计算要求。立管基脚处应焊接Φ25mm的钢筋,钢筋长出型钢面20cm,以确保上部架体稳定,型钢的固定端长度不应小于悬挑端长度的1.25倍。悬挑型钢的锚筋应采用一级圆钢,下层楼板钢筋绑扎施工时应根据型钢平面布置图进行预埋,型钢末端应设2个锚箍。 1.2立杆 梁板立杆纵横向间距应经过计算确定,立杆接长严禁搭接,相邻立杆且接头不得在同步内,至少错开500mm。 1.3水平杆和扫地杆 纵向扫地杆设置在距立杆底端200mm高处的立杆上,横向扫地杆设置在紧靠纵向扫地杆下方的立杆上,水平杆间距不得大于1800mm,且需满足计算要求,纵横向水平杆必须双向拉通,水平杆接头不得在同步或同跨内,错开距离不得小于500mm。 1.4剪刀撑 模板支撑脚手架外侧周边及内部纵横向每四跨由底到顶设置连续竖向剪刀撑,并在竖向剪刀撑顶部交点平面、扫地杆处设置水平剪刀撑,间距不得超过6米。 1.5周边拉结 悬挑结构模板支模架与楼层内模板支架应连续设置形成整体,不得断开,模板支撑架应与有结构柱的部位进行刚性连接。 1.6封闭措施

悬挑脚手架作用下阳台梁承载力验算

悬挑脚手架作用下阳台梁承载力验算 根据本工程特点,型钢工具式悬挑脚手架分别在二层、八层、十四层、二十层结构悬挑,考虑到阳台处脚手架外附加荷载较大,为保证结构传力可靠,需对阳台梁承载力进行验算。 结合结构图,以27-29轴最大阳台跨度为最不利受力计算,见图1、图2。 图一

图二 根据外脚手架方案,立杆纵向间距1.6m,单立杆竖向力P=20KN,则型钢作用于阳台上,其受力简图如下: 一、阳台连系梁承载力验算 阳台连系梁截面为200*550,混凝土强度等级为C30,受力纵筋采用HRB400三级钢,箍筋采用HRB400三级钢。 2 计算条件: 荷载条件: 均布恒载标准值: 0.00kN/m 活载准永久值系数: 0.50 均布活载标准值: 0.00kN/m 支座弯矩调幅幅度: 0.0% 梁容重 : 25.00kN/m3计算时考虑梁自重: 考虑

恒载分项系数 : 1.20 活载分项系数 : 1.40 活载调整系数 : 1.00 配筋条件: 抗震等级 : 不设防纵筋级别 : HRB400 混凝土等级 : C30 箍筋级别 : HRB400 配筋调整系数 : 1.0 上部纵筋保护层厚: 25mm 面积归并率 : 30.0% 下部纵筋保护层厚: 25mm 最大裂缝限值 : 0.400mm 挠度控制系数C : 200 截面配筋方式 : 双筋 3 计算结果: 单位说明: 弯矩:kN.m 剪力:kN 纵筋面积:mm2箍筋面积:mm2/m 裂缝:mm 挠度:mm ----------------------------------------------------------------------- 梁号 1: 跨长 = 600 B×H = 200 × 550 左中右弯矩(-) : 0.000 -0.119 -0.536 弯矩(+) : 0.000 0.001 0.000 剪力: 0.097 -0.893 -1.883 上部as: 35 35 35 下部as: 35 35 35 上部纵筋: 220 220 220 下部纵筋: 220 220 220 箍筋Asv: 191 191 191 上纵实配: 2E14(308) 2E14(308) 2E14(308) 下纵实配: 2E14(308) 2E14(308) 2E14(308) 箍筋实配: 2E6@250(226) 2E6@250(226) 2E6@250(226) 腰筋实配: 6d8(302) 6d8(302) 6d8(302) 上实配筋率: 0.28% 0.28% 0.28% 下实配筋率: 0.28% 0.28% 0.28% 箍筋配筋率: 0.11% 0.11% 0.11% 裂缝: 0.000 0.000 0.001 挠度: -0.000 -0.000 -0.000 最大裂缝:0.001mm<0.400mm 最大挠度:0.000mm<3.000mm(600/200) 本跨计算通过. ----------------------------------------------------------------------- 梁号 2: 跨长 = 1600 B×H = 200 × 550 左中右弯矩(-) : -0.536 0.000 -0.750 弯矩(+) : 0.000 0.416 0.000 剪力: 2.506 -0.134 -2.774

4.2 轴心受压构件承载力计算

轴心受压构件承载力计算 按照箍筋配置方式不同,钢筋混凝土轴心受压柱可分为两种:一种是配置纵向钢筋和普通箍筋的柱(图4.2.1a),称为普通箍筋 柱;一种是配置纵向钢筋和螺旋筋(图)或 焊接环筋(图4.2.1c)的柱,称为螺旋箍筋柱或 间接箍筋柱。 需要指出的是,在实际工程结构中,几 乎不存在真正的轴心受压构件。通常由于荷 载作用位置偏差、配筋不对称以及施工误差 等原因,总是或多或少存在初始偏心距。但 当这种偏心距很小时,如只承受节点荷载屋 架的受压弦杆和腹杆、以恒荷载为主的等跨 多层框架房屋的内柱等,为计算方便,可近 似按轴心受压构件计算。此外,偏心受压构件垂直于弯矩作用平面的承载力验算也按轴心受压构件计算。 一、轴心受压构件的破坏特征 按照长细比的大小,轴心受压柱可分为短柱和长柱两类。对方形和矩形柱,当≤8时属于短柱,否则为长柱。其中为柱的计算长度,为矩形截面的短边尺寸。 1.轴心受压短柱的破坏特征 配有普通箍筋的矩形截面短柱,在轴向压力N作用下整个截面的应变基本上是均匀分布的。N较小时,构件的压缩变形主要为弹性变形。随着荷载的增大,构件变形迅速增大。与此同时,混凝土塑性变形增加,弹性模量降低,应力增长逐渐变慢,而钢筋应力的增加则越来越快。对配置HPB235、HRB335、HRB400、RRB400级热轧钢筋的构件,钢筋将先达到其屈服强度,此后增加的荷载全部由混凝土来承受。在临近

破坏时,柱子表面出现纵向裂缝,混凝土保护层开始剥落,最后,箍筋之间的纵向钢筋压屈而向外凸出,混凝土被压碎崩裂而破坏(图4.2.2)。破坏时混凝土的应力达到棱柱体抗压强度。当短柱破坏时,混凝土达到极限压应变=,相应的纵向钢筋应力值=E s=2×105×mm2=400N/mm2。因此,当纵向钢筋为高强度钢筋时,构件破坏时纵向钢筋可能达不到屈服强度。设计中对于屈服强度超过400N/mm2的钢筋,其抗压强度设计值只能取400N/mm2。显然,在受压构件内配置高强度的钢筋不能充分发挥其作用,这是不经济的。 2.轴心受压长柱的破坏特征 对于长细比较大的长柱,由于各种偶然因素造成的初始偏心距的影响是不可忽略的,在轴心压力N作用下,由初始偏心距将产生附加弯矩,而这个附加弯矩产生的水平挠度又加大了原来的初始偏心距,这样相互影响的结果,促使了构件截面材料破坏较早到来,导致承截能力的降低。破坏时首先在凹边出现纵向裂缝,接着混凝土被压碎,纵向钢筋被压弯向外凸出,侧向挠度急速发展,最终柱子失去平衡并将凸边混凝土拉裂而破坏(图4.2.3)。试验表明,柱的长细比愈大,其承截力愈低,对于长细比很大的长柱,还有可能发生“失稳破坏”。 由上述试验可知,在同等条件下,即截面相同,配筋相同,材料相同的条件下,长柱承载力低于短柱承载力。在确定轴心受压构件承截力计算公式时,规范采用构件

阳台处计算书

悬挑式扣件钢管脚手架计算书 钢管脚手架的计算参照《建筑施工扣件式钢管脚手架安全技术规范》(JGJ130-2001)。 计算的脚手架为双排脚手架,搭设高度为21.6米,立杆采用单立管。 搭设尺寸为:立杆的纵距1.50米,立杆的横距1.05米,立杆的步距1.80米。 采用的钢管类型为48×3.5, 连墙件采用2步3跨,竖向间距3.60米,水平间距4.50米。 施工均布荷载为3.0kN/m2,同时施工2层,脚手板共铺设12层。 悬挑水平钢梁采用[12.6号槽钢,其中建筑物外悬挑段长度3.20米,建筑物内锚固段长度1.30米。 悬挑水平钢梁采用支杆与建筑物拉结,最外面支杆距离建筑物3.10m,支杆采用9号角钢b ×d×r=90×10×10mm。 一、大横杆的计算: 大横杆按照三跨连续梁进行强度和挠度计算,大横杆在小横杆的上面。 按照大横杆上面的脚手板和活荷载作为均布荷载计算大横杆的最大弯矩和变形。 1.均布荷载值计算 大横杆的自重标准值 P1=0.038kN/m 脚手板的荷载标准值 P2=0.150×1.050/3=0.052kN/m 活荷载标准值 Q=3.000×1.050/3=1.050kN/m 静荷载的计算值 q1=1.2×0.038+1.2×0.052=0.109kN/m 活荷载的计算值 q2=1.4×1.050=1.470kN/m 大横杆计算荷载组合简图(跨中最大弯矩和跨中最大挠度) 大横杆计算荷载组合简图(支座最大弯矩) 2.强度计算 最大弯矩考虑为三跨连续梁均布荷载作用下的弯矩 跨中最大弯矩计算公式如下:

跨中最大弯矩为 M1=(0.08×0.109+0.10×1.470)×1.5002=0.350kN.m 支座最大弯矩计算公式如下: 支座最大弯矩为 M2=-(0.10×0.109+0.117×1.470)×1.5002=-0.412kN.m 我们选择支座弯矩和跨中弯矩的最大值进行强度验算: =0.412×106/5080.0=81.008N/mm2 大横杆的计算强度小于205.0N/mm2,满足要求! 3.挠度计算 最大挠度考虑为三跨连续梁均布荷载作用下的挠度 计算公式如下: 静荷载标准值q1=0.038+0.052=0.091kN/m 活荷载标准值q2=1.050kN/m 三跨连续梁均布荷载作用下的最大挠度 V=(0.677×0.091+0.990×1.050)×1500.04/(100×2.06×105×121900.0)=2.220mm 大横杆的最大挠度小于1500.0/150与10mm,满足要求! 二、小横杆的计算: 小横杆按照简支梁进行强度和挠度计算,大横杆在小横杆的上面。 用大横杆支座的最大反力计算值,在最不利荷载布置下计算小横杆的最大弯矩和变形。 1.荷载值计算 大横杆的自重标准值 P1=0.038×1.500=0.058kN 脚手板的荷载标准值 P2=0.150×1.050×1.500/3=0.079kN 活荷载标准值 Q=3.000×1.050×1.500/3=1.575kN 荷载的计算值 P=1.2×0.058+1.2×0.079+1.4×1.575=2.369kN

受压构件承载力计算复习题(答案)详解

受压构件承载力计算复习题 一、填空题: 1、小偏心受压构件的破坏都是由于 而造成 的。 【答案】混凝土被压碎 2、大偏心受压破坏属于 ,小偏心破坏属 于 。 【答案】延性 脆性 3、偏心受压构件在纵向弯曲影响下,其破坏特征有两 种类型,对长细比较小的短柱属于 破坏,对长细比较大的细长柱,属于 破坏。 【答案】强度破坏 失稳 4、在偏心受压构件中,用 考虑了纵向弯曲的 影响。 【答案】偏心距增大系数 5、大小偏心受压的分界限是 。 【答案】b ξξ= 6、在大偏心设计校核时,当 时,说明s A '不屈 服。 【答案】s a x '2 7、对于对称配筋的偏心受压构件,在进行截面设计时, 和 作为判别偏心受压类型的唯一依据。

【答案】b ξξ≤ b ξξ 8、偏心受压构件 对抗剪有利。 【答案】轴向压力N 9、在钢筋混凝土轴心受压柱中,螺旋钢筋的作用是使截面中间核心部分的混凝土形成约束混凝土,可以提高构件的______和______。 【答案】承载力 延性 10、偏心距较大,配筋率不高的受压构件属______受压情况,其承载力主要取决于______钢筋。 【答案】大偏心 受拉 11、受压构件的附加偏心距对______受压构件______受压构件影响比较大。 【答案】轴心 小偏心 12、在轴心受压构件的承载力计算公式中,当f y <400N /mm 2 时,取钢筋抗压强度设计值f y '=______;当f y ≥400N /mm 2时,取钢筋抗压强度设计值f y '=______N /mm 2。 【答案】f y 400 二、选择题: 1、大小偏心受压破坏特征的根本区别在于构件破坏时,( )。 A 受压混凝土是否破坏 B 受压钢筋是否屈服 C 混凝土是否全截面受压 D 远离作用力N 一侧钢筋是否屈服

第8章___受扭构件承载力计算1

第8章 受扭构件承载力计算 一、填空题 1、 素混凝上纯扭构件的承载力t t u W f T 7.0=介于__________和__________分析结果之间。t W 是假设________ 导出的。 2、 钢筋混凝土受扭构件随着扭矩的增大,先在截面________最薄弱的部位出现斜裂缝,然后形成大体连续的 _________。 3、 由于配筋量不同,钢筋混凝土纯扭构件将发生__________破坏、________破坏、___________破坏、_________ 破坏。 4、 钢筋混凝土弯、剪、扭构件,剪力的增加将使构件的抗扭承载力___________;扭矩的增加将使构件的抗剪承载 力_____________。 5、 为了防止受扭构件发生超筋破坏,规范规定的验算条件是_____________。 6、 抗扭纵向钢筋应沿__________布置,其间距______________。 7、 T 行截面弯、剪、扭构件的弯矩由___________承受,剪力由___________承受,扭矩由__________承受。 8、 钢筋混凝土弯、剪、扭构件箍筋的最小配筋率min ,sv ρ= __________,抗弯纵向钢筋的最小筋率ρ= __________, 抗扭纵向钢筋的最小配筋率tl ρ= ___________。 9、 混凝土受扭构件的抗扭纵筋与箍筋的配筋强度比ζ应在___________范围内。 10、为了保证箍筋在整个周长上都能充分发挥抗拉作用,必须将箍筋做成________形状。,且箍筋的两个端头应 ______________________。 二、判断题 1、钢筋混凝土构件受扭时,核芯部分的混凝土起主要抗扭作用。 ( ) 2、素混凝土纯扭构件的抗扭承载力可表达为t t u W f T 7.0=,该公式是在塑性分析方法基础上建立起来的。 ( ) 3、受扭构件中抗扭钢筋有纵向钢筋和横向箍筋,它们在配筋方面可以互相弥补,即一方配置少时,可由另一方多配置一些钢筋以承担少配筋一方所承担的扭矩。( ) 4、受扭构件设计时,为了使纵筋和箍筋都能较好地发挥作用,纵向钢筋与箍筋的配筋强度比值ζ应满足以下条件:0.6≤ζ≤1.7。 ( ) 5、在混凝土纯扭构件中,混凝土的抗扭承载力和箍筋与纵筋是完全独立的变量。( ) 6、矩形截面钢筋混凝土纯扭构件的抗扭承载力计算公式cor stl yv t t A S A f W f T ζ 2.135.0+≤只考虑混凝土和箍 筋提供的抗扭计算。 ( ) 7、在纯扭构件中,当t t W f T 175.0≤时,可忽略扭矩的影响,仅按普通受弯构件的斜截面受剪承载力公式计算箍 筋用量。 ( ) 8、在弯、剪、扭构件中,当0035.0bh f V t c ≤或05 .11 .0bh f V t c +≤ λ时,可忽略剪力的影响,按纯扭构件的受 承载力公式计算箍筋用量。 ( )

悬挑结构的常见问题汇总

悬挑结构的常见问题汇总 悬挑结构的施工要点 1、(事前控制,按模板施工方案,落实技术交底)模板支撑体系要有足够的刚度、强度、稳定性; 2、按照设计及相关规范要求起拱; 3、确保上部钢筋位置的准确放置,转角部位放射钢筋加强; 4、浇筑砼时,设专人旁站,确保钢筋踩踏,位置发生变化; 5、加强砼养护不少于14d,强度达到100%拆模,上部有结构时,应在悬挑构件下部加设临时支撑点。 悬挑结构事故的原因分析 1.悬挑结构根部受力最大,当混凝土浇筑后,尚未达到足够强度时,模版支撑产生沉降,根部混凝土随即开裂,拆模后将从根部产生断裂坍塌。若悬挑结构为变截面,施工时将模版做成等截面外形,而造成根部断面减小,拆模后也会产生断塌事故。 为防止模版立柱下陷,应注意以下几点:1)立柱不得支于松软的图上和未经处理的回填土上;2)立柱下面的垫木要有足够的底面积和刚度;3)注意立柱受震动后的动势;4)防止化冻过程中立柱下陷;5)防止积水造成下陷。此外,悬挑构件支模时要考虑木制模板湿胀干缩现象对构件质量的影响。 2.悬挑结构是靠压重或外加拉力来保持稳定的,规范要求设计计算是取倾覆转动点在外墙皮

向里的O’点,并要求抗倾覆力矩的0.8倍比喻大于倾覆力矩,即抗倾覆有不小于1.25的安全系数,若稳定力矩小于倾覆力矩时,必然失稳,倾覆坍塌。如雨篷梁上的压重(砌砖的高度)尚不能满足稳定要求时,就拆除支撑及模版,将会发生坍塌,造成人员伤亡。 3.悬挑构件不同于通常的梁板结构,在垂直荷载作用下,挑梁产生负弯矩,上边手拉,因而受拉主筋应配置在上边。若把钢筋放在下边,或施工时支垫不妥,钢筋被踩踏向下变形过大,或被浇筑的混凝土压到下面,或锚固长度不够,或有是断面厚度尤其是根部厚度达不到要求,是构件的有效断面减小,承载能力明显降低,难以承受构件自重及上部荷载等原因,当模版拆除后,均会导致根部断塌。 4.不少悬挑结构坍塌都是由于拆模过早,混凝土未达到足够强度所造成,所以规范规定,悬挑构件的拆模强度必须不小于100%,在实际施工中必须遵守。在施工悬挑构件时,要及时验算,确定拆模的恰当时间,施工中只要条件允许,适当晚拆模或间隔保留部分支撑是有好处的。 5.悬挑结构的固端弯矩与作用荷载成正比,如施工荷载超过设计荷载,模板下沉,根部出现裂缝,尤其是当有根部向外浇筑混凝土时,随着荷载的增加,模板变形,也极易在根部产生裂缝,导致拆模后断裂。 更多关于悬挑结构的内容请移步到:https://www.360docs.net/doc/e817493656.html,

悬挑架_悬挑工字钢阳台梁_承载验算

关于裕升璞院1#楼阳台处 悬挑工字钢阳台梁承载的验算 根据裕升璞院1#楼《悬挑扣件式钢管脚手架施工方案》中P10页计算得知,阳台梁支座处局部压应力最大弯矩 MA = 1.699 kN?m。根据1#楼结构施工图设计中结施-17中知阳台梁截面为200×600最小配筋为2D14;2D14,N4D12。砼标号为C35,试验算此梁截面。 1、计算资料 混凝土强度等级为C35,fc =11.943N/mm2,ft =1.271N/mm2 钢筋抗拉强度设计值 fy = 360N/mm2, Es = 200000N/mm2; 纵筋的混凝土保护层厚度 c = 25mm 由配筋面积 As 求弯矩设计值 M,查表得纵筋受拉钢筋面积 As = 462mm2 截面尺寸 b×h = 200×600, h0 = h - as = 600-37.5 =562.5mm 2、计算结果 相对界限受压区高度ξb =β1 / [1 + fy / (Es〃εcu)] = 0.8/[1+360/(200000*0.0033)] = 0.518 混凝土受压区高度x =As〃fy / (α1〃fc〃b) =462*360/(1*11.943*200) = 70mm 相对受压区高度ξ= x / h0 = 70/562.5 = 0.124≤ξb =

0.518 弯矩设计值M =α1〃fc〃b〃x〃(h0 - x / 2) =1*11.943*200*70*(562.5-70/2) = 8.82kN〃m 配筋率ρ= As / (b〃h0) = 462/(200*562.5) = 0.41% 纵筋的最小配筋率ρmin =Max{0.20%, 0.45ft/fy} =Max{0.20%, 0.16%} = 0.20% M=8.82kN〃m> MA = 1.699 kN?m 满足要求! 3、卸载措施 根据上述验算可知,阳台梁能够承受从悬挑工字钢上传来的荷载,满足安全要求。另外现场采取以下卸载方式结合施工:采用钢丝绳斜拉45o~60o角度进行卸载,具体方法为采用Φ15钢丝绳斜拉,现场绑扎在每根工字钢上外侧立杆外端的工字钢上进行斜拉。

施工升降机操作平台计算书(悬挑式)

悬挑式扣件钢管脚手架计算书 依据规范: 《建筑施工扣件式钢管脚手架安全技术规范》JGJ130-2011 《建筑结构荷载规范》GB50009-2012 《钢结构设计规范》GB50017-2003 《混凝土结构设计规范》GB50010-2010 计算参数: 钢管强度为205.0 N/mm2,钢管强度折减系数取1.00。 双排脚手架,搭设高度18.8米,立杆采用单立管。 立杆的纵距1.45米,立杆的横距0.8米,内排架距离结构0.25米,立杆的步距1.80米。 采用的钢管类型为φ48×3.0, 连墙件采用3步3跨,竖向间距5.40米,水平间距2.70米。 施工活荷载为2.0kN/m2,同时考虑2层施工。 脚手板采用木板,荷载为0.35kN/m2,按照铺设4层计算。 栏杆采用木板,荷载为0.17kN/m,安全网荷载取0.0100kN/m2。 脚手板下大横杆在小横杆上面,且主结点间增加两根大横杆。 基本风压0.30kN/m2,高度变化系数1.3300,体型系数0.1150。 悬挑水平钢梁采用18号工字钢,建筑物外悬挑段长度1.85米,建筑物内锚固段长度2.40米。悬挑水平钢梁采用悬臂式结构,没有钢丝绳或支杆与建筑物拉结。 钢管惯性矩计算采用 I=π(D4-d4)/64,抵抗距计算采用 W=π(D4-d4)/32D。 一、大横杆的计算 大横杆按照三跨连续梁进行强度和挠度计算,大横杆在小横杆的上面。 按照大横杆上面的脚手板和活荷载作为均布荷载计算大横杆的最大弯矩和变形。 1.均布荷载值计算 大横杆的自重标准值 P1=0.038kN/m 脚手板的荷载标准值 P2=0.350×1.450/3=0.169kN/m 活荷载标准值Q=2.000×1.450/3=0.967kN/m

最新3受弯构件承载力计算汇总

3受弯构件承载力计 算

1 、一般构造要求 受弯构件正截面承载力计算 1 、配筋率对构件破坏特征的影响及适筋受弯构件截面受力的几个阶段 受弯构件正截面破坏特征主要由纵向受拉钢筋的配筋率ρ大小确定。配筋率是指纵受受拉钢筋的截面面积与截面的有效面积之比。 (3-1) 式中As——纵向受力钢筋的截面面积,; b——截面的宽度,mm; ——截面的有效高度, ——受拉钢筋合力作用点到截面受拉边缘的距离。

根据梁纵向钢筋配筋率的不同,钢筋混凝土梁可分为适筋梁、超筋梁和少筋梁三种类型,不同类型梁的破坏特征不同。 (1)适筋梁 配置适量纵向受力钢筋的梁称为适筋梁。 适筋梁从开始加载到完全破坏,其应力 变化经历了三个阶段,如图3.8。 第I阶段(弹性工作阶段):荷载很小 时,混凝土的压应力及拉应力都很小, 梁截面上各个纤维的应变也很小,其应 力和应变几乎成直线关系,混凝土应力 分布图形接近三角形,如图3.8(a)。 当弯矩增大时,混凝土的拉应力、压应 力和钢筋的拉应力也随之增大。由于混 凝土抗拉强度较低,受拉区混凝土开始 表现出明显的塑性性质,应变较应力增 加快,故应力和应变不再是直线关系, 应力分布呈曲线, 当弯距增加到开裂弯距时,受拉边缘纤维的应变达到混凝土的极限拉应变,此时, 截面处于将裂未裂的极限状态,即第I阶段末,用Ia表示,如图3.13(b)所示。这时受压区塑性变形发展不明显,其应力图形仍接近三角形。Ia阶段的应力状态是抗裂验算的依据。 第Ⅱ阶段(带裂缝工作阶段):当弯矩继续增加时,受拉区混凝土的拉应变超过其极其拉应变,受拉区 出现裂缝,截面即进入第Ⅱ阶段。裂缝出现后,在裂缝截面处,受拉区混凝土大部分退出工作,未开裂部分混凝土虽可继续承担部分拉力,但因靠近中和轴很近,故其作用甚小,拉力几乎全部由受拉钢筋承担,在裂缝出现的瞬间,钢筋应力突然增加很大。随着弯矩的不断增加,裂缝逐渐向上扩展,中和轴逐渐上移。由于受压区应变不断增大,受压区混凝土呈现出一定的塑性特征,应力图形呈曲线形,如图3.8?所示。第Ⅱ阶段的应力状态代表了受弯构件在使用时的应力状态,故本阶段的应力状态作为裂缝宽度和变形验算的依据。 当弯矩继续增加,钢筋应力不断增大,直至达到屈服强度,这时截面所能承担的弯矩称为屈服弯矩。 它标志截面即将进入破坏阶段,即为第Ⅱ阶段极限状态,以Ⅱa表示,如图3.8(d)所示。 第Ⅲ阶段(破坏阶段):弯矩继续增加,截面进入第Ⅲ阶段。这时受拉钢筋的应力保持屈服强度不变,钢筋的应变迅速增大,促使受拉区混凝土的裂缝迅速向上扩展,中和轴继续上移,受压区混凝土高度缩小,混凝土压应力迅速增大,受压区混凝土的塑性特征表现得更加充分,压应力呈显著曲线分布[图3.8(e)]。到本阶段末(即Ⅲa阶段),受压边缘混凝土压应变达到极限应变,受压区混凝土产生近乎水平的裂缝,混凝土被压碎,甚至崩脱[图3.8(a)],截面宣告破坏,此时截面所承担的弯矩即为破坏弯矩Mu,这时的应力状态作为构件承载力计算的依据[图3.8(f)]。

相关文档
最新文档