常用地图投影及转换公式

常用地图投影及转换公式
常用地图投影及转换公式

中文名称:地图投影英文名称:Map Projection

定义1:按照一定的数学法则,把参考椭球面上的点、线投影到可展面上的方法。所属学科:测绘学(一级学科);测绘学总类(二级学科)

定义2:根据一定的数学法则,将地球表面上的经纬线网相应地转绘成平面上经纬线网的方法。

所属学科:大气科学(一级学科);动力气象学(二级学科)

定义3:运用一定的数学法则,将地球椭球面的经纬线网相应地投影到平面上的方法。即将椭球面上各点的地球坐标变换为平面相应点的直角坐标的方法。

所属学科:地理学(一级学科);地图学(二级学科)

常用地图投影及转换公式

1.约定椭球体参数

a -- 椭球体长半轴

b -- 椭球体短半轴

f -- 扁率

e -- 第一偏心率

e′ -- 第二偏心率

N -- 卯酉圈曲率半径

R -- 子午圈曲率半径

B -- 纬度,L -- 经度,单位弧度(rad)

-- 纵直角坐标, -- 横直角坐标,单位米(m)

我国常用的3个椭球体参数如下(源自“全球定位系统测量规范 GB/T 18314-2001”):

2.墨卡托(Mercator)投影

2.1墨卡托投影简介

墨卡托(Mercator)投影,是一种"等角正切圆柱投影”,荷兰地图学家墨卡托(Gerhardus Mercator 1512-1594)在1569年拟定, 假设地球被围在一中空的圆柱里,其标准纬线与圆柱相切接触,然后再假想地球中心有一盏灯,把球面上的图形投影到圆柱体上,再把圆柱体展开,这就是一幅选定标准纬线上的“墨卡托投影”绘制出的地图。

墨卡托投影没有角度变形,由每一点向各方向的长度比相等,它的经纬线都是平行直线,且相交成直角,经线间隔相等,纬线间隔从标准纬线向两极逐渐增大。墨卡托投影的地图上长度和面积变形明

显,但标准纬线无变形,从标准纬线向两极变形逐渐增大,但因为它具有各个方向均等扩大的特性,保持了方向和相互位置关系的正确。在地图上保持方向和角度的正确是墨卡托投影的优点,墨卡托投影地图常用作航海图和航空图,如果循着墨卡托投影图上两点间的直线航行,方向不变可以一直到达目的地,因此它对船舰在航行中定位、确定航向都具有有利条件,给航海者带来很大方便。

“海底地形图编绘规范”(GB/T 17834-1999,海军航保部起草)中规定1:25万及更小比例尺的海图采用墨卡托投影,其中基本比例尺海底地形图(1:5万,1:25万,1:100万)采用统一基准纬线30°,非基本比例尺图以制图区域中纬为基准纬线。基准纬线取至整度或整分。

2.2墨卡托投影坐标系

取零子午线或自定义原点经线(L0)与赤道交点的投影为原点,零子午线或自定义原点经线的投影为纵坐标X轴,赤道的投影为横坐标Y轴,构成墨卡托平面直角坐标系。

2.3 墨卡托投影正反解公式

墨卡托投影正解公式:(B,L)→(X,Y),标准纬度B0,原点纬度 0,原点经度L0

墨卡托投影反解公式:(X,Y) →(B,L),标准纬度B0,原点纬度 0,原点经度L0

公式中EXP 为自然对数底,纬度B 通过迭代计算很快就收敛了。

3高斯-克吕格(Gauss-Kruger)投影和UTM (Universal Transverse Mercator )投影

3.1高斯-克吕格投影简介

高斯-克吕格(Gauss-Kruger)投影,是一种“等角横切圆柱投影”。德国数学家、物理学家、天文学家高斯(Carl Friedrich Gauss ,1777一 1855)于十九世纪二十年代拟定,后经德国大地测量学家克吕格(Johannes Kruger ,1857~1928)于 1912年对投影公式加以补充,故名。设想用一个圆柱横切于球面上投影带的中央经线,按照投影带中央经线投影为直线且长度不变和赤道投影为直线的条件,将中央经线两侧一定经差范围内的球面正形投影于圆柱面。然后将圆柱面沿过南北极的母线剪开展平,即获高斯一克吕格投影平面。

图2.11 高斯投影示意图

N

高斯一克吕格投影后,除中央经线和赤道为直线外,其他经线均为对称于中央经线的曲线。高斯-克吕格投影没有角度变形,在长度和面积上变形也很小,中央经线无变形,自中央经线向投影带边缘,变形逐渐增加,变形最大处在投影带内赤道的两端。由于其投影精度高,变形小,而且计算简便(各投影带坐标一致,只要算出一个带的数据,其他各带都能应用),因此在大比例尺地形图中应用,可以满足军事上各种需要,并能在图上进行精确的量测计算。

按一定经差将地球椭球面划分成若干投影带,这是高斯投影中限制长度变形的最有效方法。分带时既要控制长度变形使其不大于测图误差,又要使带数不致过多以减少换带计算工作,据此原则将地球椭

图2.13 高斯投影的分带

球面沿子午线划分成经差相等的瓜瓣形地带,以便分带投影。通常按经差6度或3度分为六度带或三度带。六度带自0度子午线起每隔经差6度自西向东分带,带号依次编为第 1、2…60带。三度带是在六度带的基础上分成的,它的中央子午线与六度带的中央子午线和分带子午线重合,即自 1.5度子午线起每隔经差3度自西向东分带,带号依次编为三度带第 1、2…120带。我国的经度范围西起 73°东至

135°,可分成六度带十一个,各带中央经线依次为75°、81°、87°、……、117°、123°、129°、135°,或三度带二十二个。

我国大于等于50万的大中比例尺地形图多采用六度带高斯-克吕格投影,三度带高斯-克吕格投影多用于大比例尺测图,如城建坐标多采用三度带的高斯-克吕格投影。

3.2 UTM投影(通用横轴墨卡托投影)简介

UTM投影全称为“通用横轴墨卡托投影”,是一种“等角横轴割圆柱投影”,椭圆柱割地球于南纬80度、北纬84度两条等高圈,投影后两条相割的经线上没有变形,而中央经线上长度比0.9996。在6?带内最大长度变形不超过0.04%。UTM投影是为了全球战争需要创建的,美国于1948年完成这种通用投影系统的计算。与高斯-克吕格投影相似,该投影角度没有变形,中央经线为直线,且为投影的对称轴,中央经线的比例因子取0.9996是为了保证离中央经线左右约330km处有两条不失真的标准经线。

UTM投影分带方法与高斯-克吕格投影相似,是自西经180°起每隔经差6度自西向东分带,将地球划分为60个投影带。

UTM是国际比较通用的地图投影,主要用于全球自84?N-80?S之间地区的制图。美国编制世界各地军用地图和地球资源卫星像片所采用的全球横轴墨卡托投影(UTM)是横轴墨卡托投影的一种变型;我国的卫星影像资料常采用UTM投影。

3.3.高斯-克吕格投影与UTM投影异同

高斯-克吕格(Gauss-Kruger)投影与UTM投影(Universal Transverse Mercator,通用横轴墨卡托投影)都是横轴墨卡托投影的变种,目前一些国外的软件或国外进口仪器的配套软件往往不支持高斯-克吕格投影,但支持UTM投影,因此常有把UTM投影当作高斯-克吕格投影的现象。

从投影几何方式看,高斯-克吕格投影是“等角横切圆柱投影”,投影后中央经线保持长度不变,即比例系数为1;UTM投影是“等角横轴割圆柱投影”,圆柱割地球于南纬80度、北纬84度两条等高圈,投影后两条割线上没有变形,中央经线上长度比0.9996。

从计算结果看,两者主要差别在比例因子上,高斯-克吕格投影中央经线上的比例系数为1, UTM投影为0.9996,高斯-克吕格投影与UTM投影可近似采用 X[UTM]=0.9996 * X[高斯],Y[UTM]=0.9996 * Y[高斯],进行坐标转换(注意:如坐标纵轴西移了500000米,转换时必须将Y值减去500000乘上比例因子后再加500000)。

从分带方式看,两者的分带起点不同,高斯-克吕格投影自0度子午线起每隔经差6度自西向东分带,第1带的中央经度为3°;UTM 投影自西经180°起每隔经差6度自西向东分带,第1带的中央经度为-177°,因此高斯-克吕格投影的第1带是UTM的第31带。此外,两投影的东伪偏移都是500公里,高斯-克吕格投影北伪偏移为零,UTM北半球投影北伪偏移为零,南半球则为10000公里。

3.4.高斯-克吕格投影与UTM投影坐标系

高斯-克吕格投影与UTM投影是按分带方法各自进行投影,故各带坐标成独立系统。以中央经线(L0)投影为纵轴X, 赤道投影为横轴Y,两轴交点即为各带的坐标原点。为了避免横坐标出现负值,高斯- 克吕格投影与UTM北半球投影中规定将坐标纵轴西移500公里当作起始轴,而UTM南半球投影除了将纵轴西移500公里外,横轴南移10000公里。由于高斯-克吕格投影与UTM投影每一个投影带的坐标都是对本带坐标原点的相对值,所以各带的坐标完全相同,为了区别某一坐标系统属于哪一带,通常在横轴坐标前加上带号,如

(4231898m,21655933m),其中21即为带号。

3.5.高斯-克吕格投影与UTM投影正反解公式

高斯-克吕格投影和UTM投影公式从目前公开出版的教材、文献及网上我看到好几种版本,可归结为下列两组:

我把原来教科书及国内文献上常见的一套公式列作高斯-克吕格投影公式,POSC(国际石油技术软件开放公司)及国外文献上见到的另一套公式列作UTM投影公式。

常常能看到两套投影公式混用的文献资料,文中谈论的是UTM投影,但列出的公式却是国内教材上的高斯-克吕格投影公式,让我很困惑。为此,我设定比例因子都为1,用下列两组公式分别进行了同点的投影计算,计算结果在中高纬度时两套公式差异很小,小数后6位都是一致的;在低纬度时,投影结果差异拉大,横轴在小数第三位开始出现差异。假如精确到厘米级,上述试验说明两套公式混用应该没问题。不过,有可能会有其它极端的情况,毕竟是不同的投影公式。

高斯-克吕格投影正解公式:(B,L)→(X,Y),原点纬度 0,中央经度L0

上面公式中东纬偏移FE = 500000米 + 带号 * 1000000;

高斯-克吕格投影比例因子k0 = 1

UTM投影正解公式:(B,L)→(X,Y),原点纬度 0,中央经度L0

上面公式中东纬偏移 FE= 500000米;北纬偏移 FN北半球= 0,FN南半球= 10000000米;

UTM投影比例因子k0 = 0.9996,其它参数同高斯-克吕格投影正解公式。

高斯-克吕格投影反解公式:(X,Y) →(B,L),原点纬度 0,中央经度

L0

UTM投影反解公式:(X,Y) →(B,L),原点纬度 0,中央经度L0

式中参数同高斯-克吕格投影反解公式。

4兰勃特等角投影(Lambert Conformal Conic);

4.1兰勃特等角投影简介

兰勃特等角投影,在双标准纬线下是一“等角正轴割圆锥投影”,由德国数学家兰勃特(https://www.360docs.net/doc/e818617285.html,mbert)在1772年拟定。设想用一个正圆锥割于球面两标准纬线,应用等角条件将地球面投影到圆锥面上,

然后沿一母线展开,即为兰勃特投影平面。兰勃特等角投影后纬线为同心圆弧,经线为同心圆半径。

前面已经介绍的墨卡托(Mercator)投影是它的一个极端特例。

兰勃特投影采用双标准纬线相割,与采用单标准纬线相切比较,其投影变形小而均匀,兰勃托投影的变形分布规律是:

a) 角度没有变形;

b) 两条标准纬线上没有任何变形;

c) 等变形线和纬线一致,即同一条纬线上的变形处处相等;

d) 在同一经线上,两标准纬线外侧为正变形(长度比大于1),而两标准纬线之间为负变形(长度比小于1)。变形比较均匀,变形绝对值也比较小;

e) 同一纬线上等经差的线段长度相等,两条纬线间的经纬线长度处处相等。

兰勃特投影常用于小比例尺地形图。“1:1000000地形图编绘规范及图式 GB/T 14515-93”中规定1:100万地形图采用正轴等角圆锥投影(兰勃特等角投影),并采用了国际地理学会规定的全球统一使用的国际百万分之一地图的分幅原则,按纬差4°从赤道向北、经差6°从-180°向东分幅,每个投影分幅单独计算坐标,每幅两条标准纬线,第一标准纬线为图幅南端纬度加30′的纬线,第二标准纬线为图幅北端纬度减30′的纬线。由于是纬差4°分带投影的,所以当沿着纬线方向拼接地图时,不论多少图幅,均不会产生裂隙;但

是,当沿着经线方向拼接时,因拼接线分别处于上下不同的投影带,投影后的曲率不同,致使拼接时会产生裂隙。

4.2 兰勃特等角投影坐标系

以图幅的原点经线(一般是中央经线L0)作纵坐标X轴,原点经线与原点纬线(一般是最南端纬线)的交点作为原点,过此点的切线作为横坐标Y轴,构成兰勃特平面直角坐标系

4.3 兰勃特等角投影正反解公式

兰勃特等角投影正解公式:(B,L)→(X,Y),原点纬度 B0,原点经度L0,第一标准纬线B1,第二标准纬线B2:

兰勃特等角投影反解公式:(X,Y) →(B,L),原点纬度 B0,原点经度L0,第一标准纬线B1,第二标准纬线B2:

式中参数同兰勃特等角投影正解公式。

1B通过迭代获取

5我国主要类型地图所采用的地图投影系统(表2.2)表2.2 我国主要类型地图所采用的地图投影系统

6.地图投影的选择

地图投影选择得是否恰当,直接影响地图的精度和使用价值。这里所讲的地图投影选择,主要指中、小比例尺地图,不包括国家基本比例尺地形图。因为国家基本比例尺地形图的投影、分幅等,是由国家测绘主管部门研究制订,不容许任意改变。另外,编制小区域大比例尺地图,无论采用什么投影,变形都是很小的。

选择制图投影时,主要考虑以下因素:制图区域的范围、形状和地理位置,地图的用途、出版方式及其他特殊要求等,其中制图区域的范围、形状和地理位置是主要因素。

对于世界地图,常用的主要是正圆柱、伪圆柱和多圆锥投影。在世界地图中常用墨卡托投影绘制世界航线图、世界交通图与世界时区图。

我国出版的世界地图多采用等差分纬线多圆锥投影,选用这个投影,对于表现中国形状以及与四邻的对比关系较好,但投影的边缘地区变形较大。

对于半球地图,东、西半球图常选用横轴方位投影;南、北半球图常选用正轴方位投影;水、陆半球图一般选用斜轴方位投影。

对于其他的中、小范围的投影选择,须考虑到它的轮廓形状和地理位置,最好是使等变形线与制图区域的轮廓形状基本一致,以便减少图上变形。因此,圆形地区一般适于采用方位投影,在两极附近则采用正轴方位投影,以赤道为中心的地区采用横轴方位投影,在中纬

度地区采用斜轴方位投影。在东西延伸的中纬度地区,一般多采用正轴圆锥投影,如中国与美国。在赤道两侧东西延伸的地区,则宜采用正轴圆柱投影,如印度尼西亚。在南北方向延伸的地区,一般采用横轴圆柱投影和多圆锥投影,如智利与阿根廷。

目前国内常见的转换有以下几种:

1、大地坐标(BLH)对平面直角坐标(XYZ)。常规的转换应先确定转换参数,即椭球参数、分带标准(3度,6度)和中央子午线的经度。椭球参数就是指平面直角坐标系采用什么样的椭球基准,对应有不同的长短轴及扁率。画到直角坐标系可以写为(x+z*acosθ,y+z*asinθ)a,θ为参数。

2、北京54、全国80及WGS84坐标系(WGS84 Coordinate System)的相互转换。一种国际上采用的地心坐标系。坐标原点为地球质心,其地心空间直角坐标系的Z轴指向BIH (国际时间)1984.O定义的协议地球极(CTP)方向,X轴指向BIH 1984.0的零子午面和CTP赤道的交点,Y轴与Z轴、X

轴垂直构成右手坐标系,称为1984年世界大地坐标系统。

3、任意两空间坐标系的转换。由于测量坐标系和施工坐标系采用不同的标准,要进行精确转换,必须知道至少3个重合点(即为在两坐标系中坐标均为已知的点。采用布尔莎模型进行求解。布尔莎公式。

其中第2类可归入第三类中。常用的方法有三参数法、四参数法和七参数法。

地图投影复习资料

地图投影复习资料 基本概念 地图投影是在平面上建立与地球曲面上相对应的经纬网的数学法则。 任务 (1)研究将地球面上的地理坐标描写到平面上,建立地图数学基础的各种可能的方法; (2)讨论这些方法的理论、变形规律、实用价值以及不同投影坐标的相互换算等问题。 大地水准面与大地体(Geoid ) 大地水准面设想当海水面完全处于静止状态下,并延伸到大陆内部,使它成为一个处处与铅垂线(重力线)正交的连续的闭合曲面,这个曲面叫做。由它所包围的球体,叫做大地体。 地球椭球面与地球椭球体(Ellipsoid) 地球椭球体选择一个大小和形状同大地水准面极为接近的,以椭圆短轴为旋转轴的旋转椭球面。这个旋转椭球面可代表地球的形状,又称为地球椭球面或参考椭球面(原面)。由它所围成的球体,称为或地球椭球。 地球椭球体的形状和大小 扁率(Flattening or Compression) 第一偏心率(First Eccentricity) 第二偏心率(Second Eccentricity) 地球椭球面的基本点、线、面和地理坐标 点 两极 (pole) 线 经线(meridian) 纬线(parallel) 面 平行圈(parallel) 子午圈(meridian) : 长半径为ae ,短半径为 be 的椭圆 地理坐标 地理纬度(latitude ) 地理经度(longitude) 子午圈:通过地面任一点的法线可以有无数法截弧,它们 与椭球面相交则形成无数法截弧,其中有一对互相垂直的法截弧,称为主法截弧。主法截弧都是椭圆,其中一个是子午圈。 卯酉圈:与子午圈垂直的另一个圈称为卯酉圈。地球椭球面上的子午圈始终代表南北方向;卯酉圈除了两个极点外,代表东西方向。 子午圈曲率半径:地球椭球体表面上某点法截弧曲率半径中最小的曲率半径

中国常用的地图投影

中国常用的地图投影举例 第三节中国常用的地图投影举例 科学事业的发展同社会制度和经济基础是密切相联系的,旧中国是一个半封建半殖民地的国家,测绘事业也濒于停顿,编制出版的少量地图质量也很差,更少考虑到采用自己设计及计算的地图投影。在解放前出版的几种地图中曾采用过的几种地图投影,也多半是因循国外陈旧的地图投影,很少自行设计新投影。解放后,在党和政府的领导下,非常重视测绘科学事业的发展,我国测绘工作者不仅在地图投影的理论上有了研究,同时结合我国具体情况,设计了一些适合于我国情况的新的地图投影。下面介绍我国出版的地图中常用的一些地图投影。 世界地图的投影 等差分纬线多圆锥投影 正切差分纬线多圆锥投影(1976年方案) 任意伪圆柱投影:a=0.87740,6=0.85 当φ=65°时P=1.20 正轴等角割圆柱投影 半球地图的投影 东半球图 横轴等面积方位投影φ0=0°,λ0=+70° 横轴等角方位投影φ0=0°,λ0=+70° 西半球图 横轴等面积方位投影φ0=0°,λ0=-110° 横轴等角方位投影φ0=0°,λ0=-110° 南、北半球地图 正轴等距离方位投影 正轴等角方位投影

正轴等面积方位投影 亚洲地图的投影斜轴等面积方位投影φ0=+40°,λ0=+90° φ0=+40°,λ0=+90° 彭纳投影标准纬线φ0=+40°,中央经线λ0=+80°标准纬线φ0=+40°,中央经线λ0=+80° 欧洲地图的投影斜轴等面积方位投影φ0=52°30′,λ0=20° 正轴等角圆锥投影φ1=40°30′,λ0=65°30′ 北美洲地图的投影斜轴等面积方位投影φ0=+45°,λ0=-100° 彭纳投影 南美洲地图的投影斜轴等面积方位投影φ0=0°,λ0=+20° 桑逊投影λ0=+20° 澳洲地图的投影斜轴等面积方位投影φ0=-25°,λ0=+135° 正轴等角圆锥投影φ1=34°30′,φ2=-15°20′ 拉丁美洲地图的投影斜轴等面积方位投影φ0=-10°,λ0=-60° 中国地图的投影中国全图 斜轴等面积方位投影

几种常见地图投影各自的特点及其分带方法

高斯-克吕格(Gauss-Kruger)投影,是一种“等角横切圆柱投影”。德国数学家、物理学家、天文学家高斯(Carl Friedrich Gauss,1777一 1855)于十九世纪二十年代拟定,后经德国大地测量学家克吕格(Johannes Kruger,1857~1928)于 1912年对投影公式加以补充,故名。设想用一个圆柱横切于球面上投影带的中央经线,按照投影带中央经线投影为直线且长度不变和赤道投影为直线的条件,将中央经线两侧一定经差范围内的球面正形投影于圆柱面。然后将圆柱面沿过南北极的母线剪开展平,即获高斯一克吕格投影平面。 一、只谈比较常用的几种:“墨卡托投影”、“高斯-克吕格投影”、“UTM 投影”、“兰勃特等角投影” 1.墨卡托(Mercator)投影 1.1 墨卡托投影简介 墨卡托(Mercator)投影,是一种" 等角正切圆柱投影”,荷兰地图学家墨卡托(Gerhardus Mercator 1512-1594)在1569年拟定,假设地球被围在一中空的圆柱里,其标准纬线与圆柱相切接触,然后再假想地球中心有一盏灯,把球面上的图形投影到圆柱体上,再把圆柱体展开,这就是一幅选定标准纬线上的“墨卡托投影”绘制出的地图。 墨卡托投影没有角度变形,由每一点向各方向的长度比相等,它的经纬线都是平行直线,且相交成直角,经线间隔相等,纬线间隔从标准纬线向两极逐渐增大。墨卡托投影的地图上长度和面积变形明显,但标准纬线无变形,从标准纬线向两极变形逐渐增大,但因为它具有各个方向均等扩大的特性,保持了方向和相互位置关系的正确。 在地图上保持方向和角度的正确是墨卡托投影的优点,墨卡托投影地图常用作航海图和航空图,如果循着墨卡托投影图上两点间的直线航行,方向不变可以一直到达目的地,因此它对船舰在航行中定位、确定航向都具有有利条件,给航海者带来很大方便。 “海底地形图编绘规范”(GB/T 17834-1999,海军航保部起草)中规定1:25万及更小比例尺的海图采用墨卡托投影,其中基本比例尺海底地形图(1:5万,1:25万,1:100万)采用统一基准纬线30°,非基本比例尺图以制图区域中纬为基准纬线。基准纬线取至整度或整分。 1.2 墨卡托投影坐标系 取零子午线或自定义原点经线(L0)与赤道交点的投影为原点,零子午线或自定义原点经线的投影为纵坐标X轴,赤道的投影为横坐标Y轴,构成墨卡托平面直角坐标系。 2.高斯-克吕格(Gauss-Kruger)投影和UTM(Universal

地图投影的基本问题

3.地图投影的基本问题 3.1地图投影的概念 在数学中,投影(Project)的含义是指建立两个点集间一一对应的映射关系。同样,在地图学中,地图投影就是指建立地球表面上的点与投影平面上点之间的一一对应关系。地图投影的基本问题就是利用一定的数学法则把地球表面上的经纬线网表示到平面上。凡是地理信息系统就必然要考虑到地图投影,地图投影的使用保证了空间信息在地域上的联系和完整性,在各类地理信息系统的建立过程中,选择适当的地图投影系统是首先要考虑的问题。由于地球椭球体表面是曲面,而地图通常是要绘制在平面图纸上,因此制图时首先要把曲面展为平面,然而球面是个不可展的曲面,即把它直接展为平面时,不可能不发生破裂或褶皱。若用这种具有破裂或褶皱的平面绘制地图,显然是不实际的,所以必须采用特殊的方法将曲面展开,使其成为没有破裂或褶皱的平面。 3.2地图投影的变形 3.2.1变形的种类 地图投影的方法很多,用不同的投影方法得到的经纬线网形式不同。用地图投影的方法将球面展为平面,虽然可以保持图形的完整和连续,但它们与球面上的经纬线网形状并不完全相似。这表明投影之后,地图上的经纬线网发生了变形,因而根据地理坐标展绘在地图上的各种地面事物,也必然随之发生变形。这种变形使地面事物的几何特性(长度、方向、面积)受到破坏。把地图上的经纬线网与地球仪上的经纬线网进行比较,可以发现变形表现在长度、面积和角度三个方面,分别用长度比、面积比的变化显示投影中长度变形和面积变形。如果长度变形或面积变形为零,则没有长度变形或没有面积变形。角度变形即某一角度投影后角值与它在地球表面上固有角值之差。 1)长度变形 即地图上的经纬线长度与地球仪上的经纬线长度特点并不完全相同,地图上的经纬线长度并非都是按照同一比例缩小的,这表明地图上具有长度变形。 在地球仪上经纬线的长度具有下列特点:第一,纬线长度不等,其中赤道最长,纬度越高,纬线越短,极地的纬线长度为零;第二,在同一条纬线上,经差相同的纬线弧长相等;第三,所有的经线长度都相等。长度变形的情况因投影而异。在同一投影上,长度变形不仅随地点而改变,在同一点上还因方向不同而不同。 2)面积变形 即由于地图上经纬线网格面积与地球仪经纬线网格面积的特点不同,在地图上经纬线网格面积不是按照同一比例缩小的,这表明地图上具有面积变形。 在地球仪上经纬线网格的面积具有下列特点:第一,在同一纬度带内,经差相同的网络面积相等。第二,在同一经度带内,纬线越高,网络面积越小。然而地图上却并非完全如此。如在图4-9-a上,同一纬度带内,纬差相等的网格面积相等,这些面积不是按照同一比例缩

投影转换公式

常用地图投影转换公式 青岛海洋地质研究所 戴勤奋 (Email: qddqinfen@cgs.gov.cn)   最近几乎天天都有Email跟我要这样、那样的坐标系转换或投影转换公式,或问我编的投影程序公式是哪来的,有没有专门介绍投影公式的书等等,让我越来越觉得有必要就此方面写点东西,一来我自己总结一下,二来对那些我没有回Email的同行也有个交代,因为那些公式实在太难敲了。我在“海洋地质制图常用地图投影系列小程序”( http://www.gissky.net)中用的公式来自我原来的积累,同时参考了POSC(http://www.posc.org ,国际石油技术软件开放公司)的文献“Coordinate Conversions and Transformation including Formulas”,该文献由EPSG(http://www.epsg.org ,欧洲石油勘探组)编写,比较全面地介绍了各种地图投影与坐标系的转换方法及计算公式,而且最新更新到了2004年,是我目前看到的最全面、最新的相关文档了,只不过是英文的,我正在打算将它们翻成中文,到时与大家共享。  投影计算公式往往表达方式不止一种,有时很难分辨谁对谁错,我只把“墨卡托投影”、“高斯-克吕格投影”、“UTM投影”、“兰勃特等角投影”(1:100万地形图规范中称作正轴等角圆锥投影,GB/T 14512-93)的正反转换公式列出,因为我基本能保证这些公式的正确性。 “海洋地质制图常用地图投影系列小程序”( http://www.gissky.net)已升级,原下载者请注意下载更新版本。    1. 约定    本文中所列的转换公式都基于椭球体  a -- 椭球体长半轴  b -- 椭球体短半轴  f -- 扁率 ()/a b a ?  e -- 第一偏心率 e = e’ -- 第二偏心率 'e =N -- 卯酉圈曲率半径 2 N =R -- 子午圈曲率半径 2223/2(1)(1sin ) a e R e B ?=?? B -- 纬度,L -- 经度,单位弧度(RAD)   N X -- 纵直角坐标, E Y -- 横直角坐标,单位米(M)

几种常用地图投影

一:等角正切方位投影(球面极地投影) 概念:以极为投影中心,纬线为同心圆,经线为辐射的 直线,纬距由中心向外扩大。 变形:投影中央部分的长度和面积变形小,向外变形逐渐增 大。 用途:主要用于编绘两极地区,国际1∶100万地形图。 二:等距正割圆锥投影 概念:圆锥体面割于球面两条纬线。 变形:纬线呈同心圆弧,经线呈辐射的直线束。 各经线和两标纬无长度变形,即其它纬线均有 长度变形,在两标纬间角度、长度和面积变形 为负,在两标纬外侧变形为正。离开标纬愈远, 变形的绝对值则愈大。 用途:用于编绘东西方向长,南北方向稍宽地区 的地图,如前苏联全图等。 三:等积正割圆锥投影 概念:满足mn=1条件,即在两标纬间经线长度放 大,纬线等倍缩小,两标纬外情况相反。 变形:在标纬上无变形,两标纬间经线长度变形为正, 纬线长度变形为负;在两标纬外侧情况相反。角度 变形在标纬附近很小,离标纬愈远,变形则愈大。 用途:编绘东西南北近乎等大的地区,以及要求面积 正确的各种自然和社会经济地图。

四:等角正割圆锥投影 概念:满足m=n条件,两标纬间经线长度与纬线长度 同程度的缩小,两标纬外同程度的放大。 变形:在标纬上无变形,两标纬间变形为负,标纬外变 形为正,离标纬愈远,变形绝对值则愈大。 用途:用于要求方向正确的自然地图、风向图、洋流图、 航空图,以及要求形状相似的区域地图;并广泛用于制 作各种比例尺的地形图的数学基础。 如我国在1949年前测制的1∶5万地形图,法国、比利 时、西班牙等国家亦曾用它作地形图数学基础,二次大 战后美国用它编制1∶100万航空图。 五:等角正切圆柱投影——墨卡托投影 概念:圆柱体面切于赤道,按等角条件,将经 纬线投影到圆柱体面上,沿某一母线将圆柱体 面剖开,展成平面而形成的投影。是由荷兰制 图学家墨卡托(生于今比利时)于1569年创拟 的,故又称(墨卡托投影)。 变形:经线为等间距的平行直线,纬线为非等 间距垂直于经线的平行直线。离赤道愈远,纬 线的间距愈大。纬度60°以上变形急剧增大, 极点处为无穷大,面积亦随之增大,且与纬线 长度增大倍数的平方成正比,致使原来只有南 美洲面积1/9的位于高纬度的格陵兰岛,在图 上比南美洲大。 用途:等角航线表现为直线,用于编制海图、印度尼西亚和赤道非洲等赤道附近国家和地区的地图、世界时区图和卫星轨迹图等。

地图投影

世界地图常用地图投影知识大全 在不同的场合和用途下使用不同的地图投影,地图投影方法及分类名目众多,象:墨卡托投影,空间斜轴墨卡托投影,桑逊投影,摩尔维特投影,古德投影,等差分纬线多圆锥投影,横轴等积方位投影,横轴等角方位投影,正轴等距方位投影,斜轴等积方位投影,正轴等角圆锥投影,彭纳投影,高斯-克吕格投影,等角圆锥投影等等。 一、世界地图常用投影 1、等差分纬线多圆锥投影(Polyconic Projection With Meridional Interval on Same Parallel Decrease Away From Central Meridian by Equal Difference) 普通多圆锥投影的经纬线网具有很强的球形感,但由于同一纬线上的经线间隔相等,在编制世界地图时,会导致图形边缘具有较大面积变形。1963年中国地图出版社在普通多圆锥投影的基础上,设计出了等差分纬线多圆锥投影。 等差分纬线多圆锥投影的赤道和中央经线是相互垂直的直线,中央经线长度比等于1;其它纬线为凸向对称于赤道的同轴圆弧,其圆心位于中央经线的延长线上,中央经线上的纬线间隔从赤道向高纬略有放大;其它经线为凹向对称于中央经线的曲线,其经线间隔随离中央经线距离的增加而按等差级数递减;极点投影成圆弧(一般被图廓截掉),其长度等于赤道的一半(图2-30)。 通过对大陆的合理配置,该投影能完整地表现太平洋及其沿岸国家,突出显示我国与邻近国家的水陆关系。从变形性质上看,等差分纬线多圆锥投影属于面积变形不大的任意投影。我国绝大部分地区的面积变形在10%以内。中央经线和±44o纬线的交点处没有角度变形,随远离该点变形愈大。全国大部分地区的最大角度变形在10o以内。等差分纬线多圆锥投影是我国编制各种世界政区图和其它类型世界地图的最主要的投影之一。

人教版地理高二选修7第二章第一节地图和地图投影A卷

人教版地理高二选修7第二章第一节地图和地图投影A卷 姓名:________ 班级:________ 成绩:________ 一、单选题 (共15题;共36分) 1. (2分) GIS中,不同类型的地理空间信息储存在不同的图层上。叠加不同的图层可以分析不同要素间的相互关系。 城市交通图层与城市人口分布图层的叠加,可以()。 A . 为商业网点选址 B . 分析建筑设计的合理性 C . 计算城市水域面积 D . 估算工农业生产总值 【考点】 2. (2分)湖水、长江水、黄河水三种含沙量水体反射光谱曲线图,关于图示信息的叙述,正确的是()。 A . 分析使用的地理信息技术是GIS B . ①②曲线对应的是湖水、黄河水 C . 0.7波长λ/μm的反射率区分度最大 D . 含沙量与反射率呈正相关 【考点】 3. (2分)两颗卫星同时运行,每隔九天可以覆盖地球一遍,说明遥感技术 A . 受地面限制条件少 B . 测量范围小、距离远 C . 手段多,获得信息量大 D . 获得资料速度快、周期短 【考点】 4. (2分)有关遥感技术的叙述,不正确的是()。

A . 遥感的关键装置是传感器 B . 遥感技术的主要环节是目标物→传感器→成果 C . 飞机遥感图像分辨率比卫星对地物的分辨率高 D . 遥感技术能在短时间内获得全面资料,以便及时安全安排防灾、救灾工作 【考点】 5. (2分)下列说法不正确的是否()。 A . GIS技术是地图的延伸 B . RS技术是地图的延伸 C . GPS技术可为用户提供精确的三维坐标 D . GIS技术可分析、处理GPS技术及GPS技术提供的图像和数据 【考点】 6. (2分) GIS是用于空间分析的计算机系统,某中学地理小组将它作于课题研究。据此回答: 华北平原地势平坦开阔,土壤深厚肥沃,夏季高温多雨,适宜冬小麦和玉米轮作。若该结论是通过GIS而得到的,那么这属于下列GIS能解决的哪一类问题() A . 趋势分析 B . 模式分析 C . 与分布、位置有关的基本问题 D . 模拟问题 【考点】 7. (2分)下列关于电子地图的说法,正确的是() A . 制作所有地图都需要电子地图作底图 B . 外出学习或旅行,可以先在电子地图上查找出行路线 C . 电子地图可以完全代替纸质地图 D . 电子地图就是分层设色地形图 【考点】 8. (4分)在遥感技术中,可以根据植物的反射波谱特征判断植物的生长状况。

常用地图投影转换公式

常用地图投影转换公式 作者:青岛海洋地质研究所戴勤奋  投影计算公式往往表达方式不止一种,有时很难分辨谁对谁错,我只把“墨卡托投影”、“高斯-克吕格投影”、“UTM投影”、“兰勃特等角投影”(1:100万地形图规范中称作正轴等角圆锥投影,GB/T 14512-93)的正反转换公式列出,因为我基本能保证这些公式的正确性。1.约定 本文中所列的转换公式都基于椭球体 a -- 椭球体长半轴 b -- 椭球体短半轴 f -- 扁率 e -- 第一偏心率 e’ -- 第二偏心率 N -- 卯酉圈曲率半径 R -- 子午圈曲率半径 B -- 纬度,L -- 经度,单位弧度(RAD) -- 纵直角坐标, -- 横直角坐标,单位米(M) 2.椭球体参数 我国常用的3个椭球体参数如下(源自“全球定位系统测量规范 GB/T

界面上的所谓“北京1954“西安1980”及“WGS 84”在实际计算中只涉及了相应的椭球体参数。 3.墨卡托(Mercator)投影 3.1 墨卡托投影简介 墨卡托(Mercator)投影,是一种"等角正切圆柱投影”,荷兰地图学家墨卡托(Gerhardus Mercator 1512-1594)在1569年拟定, 假设地球被围在一中空的圆柱里,其标准纬线与圆柱相切接触,然后再假想地球中心有一盏灯,把球面上的图形投影到圆柱体上,再把圆柱体展开,这就是一幅选定标准纬线上的“墨卡托投影”绘制出的地图。 墨卡托投影没有角度变形,由每一点向各方向的长度比相等,它的经纬线都是平行直线,且相交成直角,经线间隔相等,纬线间隔从标准纬线向两极逐渐增大。墨卡托投影的地图上长度和面积变形明显,但标准纬线无变形,从标准纬线向两极变形逐渐增大,但因为它具有各个方向均等扩大的特性,保持了方向和相互位置关系的正确。 在地图上保持方向和角度的正确是墨卡托投影的优点,墨卡托投影地图常用作航海图和航空图,如果循着墨卡托投影图上两点间的直线航行,方向不变可以一直到达目的地,因此它对船舰在航行中定位、确定航向都具有有利条件,给航海者带来很大方便。 “海底地形图编绘规范”(GB/T 17834-1999,海军航保部起草)中规定1:25万及更小比例尺的海图采用墨卡托投影,其中基本比例尺海底地形图(1:5万,1:25万,1:100万)采用统一基准纬线30°,非基本比例尺图以制图区域中纬为基准纬线。基准纬线取至整度或整分。 3.2 墨卡托投影坐标系 取零子午线或自定义原点经线(L0)与赤道交点的投影为原点,零子午线或自定义原点经线的投影为纵坐标X轴,赤道的投影为横坐标Y轴,构成墨卡托平面直角坐标系。 3.3 墨卡托投影正反解公式 墨卡托投影正解公式:(B,L)→(X,Y),标准纬度B0,原点纬度 0,原点经度L0

常用地图投影公式

常用地图投影公式 1.约定 本文中所列的转换公式都基于椭球体 a -- 椭球体长半轴 b -- 椭球体短半轴 f -- 扁率 e -- 第一偏心率 e’-- 第二偏心率 N -- 卯酉圈曲率半径 R -- 子午圈曲率半径 B -- 纬度,L -- 经度,单位弧度(RAD) -- 纵直角坐标, -- 横直角坐标,单位米(M) 2.椭球体参数 我国常用的3个椭球体参数如下(源自“全球定位系统测量规范GB/T 18314-2001”): 椭球体长半轴a(米)短半轴b(米) Krassovsky (北京54采用)6378245 6356863.0188 IAG 75(西安80采用)6378140 6356755.2882

WGS 84 6378137 6356752.3142 需要说明的是,在“海洋地质制图常用地图投影系列小程序”中,程序界面上的所谓“北京1954“西安1980”及“WGS 84”在实际计算中只涉及了相应的椭球体参数。 3.墨卡托(Mercator)投影 3.1 墨卡托投影简介 墨卡托(Mercator)投影,是一种"等角正切圆柱投影”,荷兰地图学家墨卡托(Gerhardus Mercator 1512-1594)在1569年拟定, 假设地球被围在一中空的圆柱里,其标准纬线与圆柱相切接触,然后再假想地球中心有一盏灯,把球面上的图形投影到圆柱体上,再把圆柱体展开,这就是一幅选定标准纬线上的“墨卡托投影”绘制出的地图。 墨卡托投影没有角度变形,由每一点向各方向的长度比相等,它的经纬线都是平行直线,且相交成直角,经线间隔相等,纬线间隔从标准纬线向两极逐渐增大。墨卡托投影的地图上长度和面积变形明显,但标准纬线无变形,从标准纬线向两极变形逐渐增大,但因为它具有各个方向均等扩大的特性,保持了方向和相互位置关系的正确。 在地图上保持方向和角度的正确是墨卡托投影的优点,墨卡托投影地图常用作航海图和航空图,如果循着墨卡托投影图上两点间的直线航行,方向不变可以一直到达目的地,因此它对船舰在航行中定位、确

世界地图常用地图投影知识大全

世界地图常用地图投影知识大全 2009-09-30 13:20 在不同的场合和用途下使用不同的地图投影,地图投影方法及分类名目众多,象:墨卡托投影,空间斜轴墨卡托投影,桑逊投影,摩尔维特投影,古德投影,等差分纬线多圆锥投影,横轴等积方位投影,横轴等角方位投影,正轴等距方位投影,斜轴等积方位投影,正轴等 角圆锥投影,彭纳投影,高斯-克吕格投影,等角圆锥投影等等。 一、世界地图常用投影 1、等差分纬线多圆锥投影(Polyconic Projection With Meridional Interval o nSame Parallel Decrease AwayFrom Central Meridian by E qual Difference) 普通多圆锥投影的经纬线网具有很强的球形感,但由于同一纬线上的经线间隔相等,在编制世界地图时,会导致图形边缘具有较大面积变形。1963年中国地图出版社在普通多圆锥投影的基础上,设计出了等差分纬线多圆锥投影。 等差分纬线多圆锥投影的赤道和中央经线是相互垂直的直线,中央经线长度比等于1;其它纬线为凸向对称于赤道的同轴圆弧,其圆心位于中央经线的延长线上,中央经线上的纬线间隔从赤道向高纬略有放大;其它经线为凹向对称于中央经线的曲线,其经线间隔随离中央经线距离的增加而按等差级数递减;极点投影成圆弧(一般被图廓截掉),其长度等于赤道的一半(图2-30)。 通过对大陆的合理配置,该投影能完整地表现太平洋及其沿岸国家,突出显示我国与邻近国家的水陆关系。从变形性质上看,等差分纬线多圆锥投影属于面积变形不大的任意投影。我国绝大部分地区的面积变形在10%以内。中央经线和±44o纬线的交点处没有角度变形,随远离该点变形愈大。全国大部分地区的最大角度变形在10o以内。等差分纬线多圆锥投影是我国编制各种世界政区图和其它类型世界地图的最主要的投影之一。

地图投影的基本理论

第一节地图投影的概念与若干定义 一、地图投影的产生 我们了解地球上的各种信息并加以分析研究,最理想的方法是将庞大的地球缩小,制成地球仪,直接进行观察研究。这样,其上各点的几何关系——距离、方位、各种特性曲线以及面积等可以保持不变。 一个直径30厘米的地球仪,相当于地球的五千万分之一;即使直径1米的地球仪,也只有相当于地球的一千三百万分之一。在这一小的球面上是无法表示庞大地球上的复杂事物。并且,地球仪难于制作,成本高,也不便于量测使用和携带保管。 通过测量的方法获得地形图,这一过程,可以理解为将测图地区按一定比例缩小成一个地形模型,然后将其上的一些特征点(测量控制点、地形点、地物点)用垂直投影的方法投影到图纸(图4-1)。因为测量的可观测范围是个很小的区域,此范围内的地表面可视为平面,所以投影没有变形;但对于较大区域范围,甚至是半球、全球,这种投影就不适合了。 由于地球(或地球仪)面是不可展的曲面,而地图是连续的平面。因此,用地图表示地球的一部分或全部,这就产生了一种不可克服的矛盾——球面与平面的矛盾,如强行将地球表面展成平面,那就如同将桔子皮剥下铺成平面一样,不可避免地要产生不规则的裂口和褶皱,而且其分布又是毫无规律可循。为了解决将不可展球面上的图形变换到一个连续的地图平面上,就诞生了“地图投影”这一学科。 二、地图投影的定义 鉴于球面上任意一点的位置是用地理坐标()表示,而平面上点的位置是用直角坐标(X,Y)或极坐标()表示,因此要想将地球表面上的点转移到平面上去,则必须采用一定的数学方法来确定其地理坐标与平面直角坐标或极坐标之间的关系。这种在球面与平面之间建立点与点之间对应函数关系的数学方法,称为地图投影。 三、地图投影的实质 球面上任一点的位置均是由它的经纬度所确定的,因此实施投影时,是先将球面上一些经纬线的交点展绘在平面上,并将相同经度、纬度的点分别连成经线和纬线,构成经纬网;然后再将球面上的点,按其经纬度转绘在平面上相应位置处。由此可见,地图投影的实质就是将地球椭球体面上的经纬网按照一定的数学法则转移到平面上,建立球面上点()与平面上对应点之间的函数关系。 这是地图投影的一般方程式,当给定不同的具体条件时,就可得到不同种类的投影公式,依据各自公式将一系列的经纬线交点()计算成平面直角坐标系(X,Y),并展绘在平面上,连各点得经纬线得平面表象(图4-2)。经纬网是绘制地图的“基础”,是地图的主要数学要素。 四、地图投影的基本方法 (一)几何透视法 系利用透视关系,将地球表面上的点投影到投影面上的一种投影方法。例如,我们假设地球按比例缩小成一个透明的地球仪般球体,在其球心、球面或球外安置光源,将透明球体上的经纬线、地物和地貌投影到球外的一个平面上,所形成的图形,即为地图。 图4-3即是将地球体面分别投影在平面和圆柱体面上的透视投影示意图。几何透视法只能解决一些简单的变换问题,具有很大的局限性,例如,往往不能将全球投影下来。随着数学分析这一学科的出现,人们就普遍采用数学分析方法来解决地图投影问题了。(二)数学解析法 在球面与投影平面之间建立点与点的函数关系(数学投影公式),已知球面上点位的地理坐标,根据坐标转换公式确定在平面上的对应坐标的一种投影方法。

地理信息系统常用的地图投影

地理信息系统常用的地图投影 1、高斯-克吕格投影--------实质上是横轴切圆柱正形投影 该投影是等角横切椭圆柱投影。想象有一椭圆柱面横套在地球椭球体外面,并与某一条子午线(称中央子午线或轴子午线)相切,椭圆柱的中心轴通过椭球体中心,然后用一定的投影方法将中央子午线两侧各一定经差范围内的地区投影到椭圆柱面上,再将此柱面展开即成为投影面。 高斯平面直角坐标系以中央经线和赤道投影后为坐标轴,中央经线和赤道交点为坐标原点,纵坐标由坐标原点向北为正,向南为负,规定为 X轴,横坐标从中央经线起算,向东为正,向西为负,规定为Y轴。所以,高斯-克吕格坐标系的X、Y轴正好对应一般GIS 软件坐标系中的Y和X。 高斯投影的条件和特点 ★中央经线和赤道投影后为互相垂直的直线,且为投影的对称轴 高斯投影的条件★投影具有等角性质 ★中央经线投影后保持长度不变 ★中央子午线长度变形比为1,其他任何点长度比均大于1 ★在同一条经线上,长度变形随纬度的降低而增大,在赤道处为最大 高斯投影的特点★在同一条纬线上,离中央经线越远,变形越大,最大值位于投影带边缘★投影属于等角性质,没有角度变形,面积比为长度比的平方 ★长度比的变形线平行于中央子午线 高斯投影6°和3 为了控制变形,我国地图采用分带方法。我国1:1.25万—1:50万地形图均采用6度分带,1:1万及更大比例尺地形图采用3度分带,以保证必要的精度。 6度分带从格林威治零度经线起,每6度分为一个投影带,该投影将地区划分为60个投影带,已被许多国家作为地形图的数字基础。一般从南纬度80到北纬度84度的范围内使用该投影。 3度分带法从东经1度30分算起,每3度为一带。这样分带的方法在于使6度带的中央经线均为3度带的中央经线;在高斯克吕格6度分带中中国处于第13 带到23带共12个带之间;在3度分带中,中国处于24带到45带共22带之间。 高斯--克吕格投影的优点:★等角性别适合系列比例尺地图的使用与编制; ★径纬网和直角坐标的偏差小,便于阅读使用; ★计算工作量小,直角坐标和子午收敛角值只需计算一个带。 ★由于高斯-克吕格投影采用分带投影,各带的投影完全相同,所以各投影带的直角坐标值也完全一样,所不同的仅是中央经线或投影带号不同。为了确切表示某点的位置,需要在Y坐标值前面冠以带号。如表示某点的横坐标为米,前面两位数字“20”即表示该点所处的投影带号。 2、墨卡托投影---------- 等角正切圆柱投影 定义:假设地球被围在一中空的圆柱里,其标准纬线与圆柱相切接触,然后再假想地球中心有一盏灯,把球面上的图形投影到圆柱体上,再把圆柱体展开,这就是一幅选定标准纬线上的“墨卡托投影”绘制出的地图。 特性:墨卡托投影没有角度变形,由每一点向各方向的长度比相等,它的经纬线都是平行直线,且相交成直角,经线间隔相等,纬线间隔从标准纬线向两极逐渐增大。 墨卡托投影的用途 在地图上保持方向和角度的正确是墨卡托投影的优点,墨卡托投影地图常用作航海图和

坐标系统与地图投影--基础知识

空间参照系统和地图投影 导读:正如上一章所描述的,一个要素要进行定位,必须嵌入到一个空间参照系中,因为GIS所描述是位于地球表面的信息,所以根据地球椭球体建立的地理坐标(经 纬网)可以作为所有要素的参照系统。因为地球是一个不规则的球体,为了能够将 其表面的内容显示在平面的显示器或纸面上,必须进行坐标变换。 本章讲述了地球椭球体参数、常见的投影类型。考虑到目前使用的1:100万以上地 形图都是采用高斯——克吕格投影,本章最后又对该种投影类型和相关的地形图分 幅标准做了简单介绍。 1.地球椭球体基本要素 1.1地球椭球体 1.1.1地球的形状 为了从数学上定义地球,必须建立一个地球表面的几何模型。这个模型由地球的形状决定的。它是一个较为接近地球形状的几何模型,即椭球体,是由一个椭圆绕着其短轴旋转而成。 地球自然表面是一个起伏不平、十分不规则的表面,有高山、丘陵和平原,又有江河湖海。地球表面约有71%的面积为海洋所占用,29%的面积是大陆与岛屿。陆地上最高点与海洋中最深处相差近20公里。这个高低不平的表面无法用数学公式表达,也无法进行运算。所以在量测与制图时,必须找一个规则的曲面来代替地球的自然表面。当海洋静止时,它的自由水面必定与该面上各点的重力方向(铅垂线方向)成正交,我们把这个面叫做水准面。但水准面有无数多个,其中有一个与静止的平均海水面相重合。可以设想这个静止的平均海水面穿过大陆和岛屿形成一个闭合的曲面,这就是大地水准面(图4-1)。 图4-1:大地水准面 大地水准面所包围的形体,叫大地球体。由于地球体内部质量分布的不均匀,引起重力方向的变化,导致处处和重力方向成正交的大地水准面成为一个不规则的,仍然是不能用数学表达的曲面。大地水准面形状虽然十分复杂,但从整体来看,起伏是微小的。它是一个很接近于绕自转轴(短轴)旋转的椭球体。所以在测量和制图中就用旋转椭球来代替大地球体,这个旋转球体通常称地球椭球体,简称椭球体。

几种地图投影的特点及分带方法

一、只谈比较常用的几种:“墨卡托投影”、“高斯-克吕格投影”、“UTM投影”、“兰勃特等角投影。 1.墨卡托(Mercator)投影 1.1 墨卡托投影简介 墨卡托(Mercator)投影,是一种"等角正切圆柱投影”,荷兰地图学家墨卡托(GerhardusMercator1512-1594)在1569年拟定,假设地球被围在一中空的圆柱里,其标准纬线与圆柱相切接触,然后再假想地球中心有一盏灯,把球面上的图形投影到圆柱体上,再把圆柱体展开,这就是一幅选定标准纬线上的“墨卡托投影”绘制出的地图。 墨卡托投影没有角度变形,由每一点向各方向的长度比相等,它的经纬线都是平行直线,且相交成直角,经线间隔相等,纬线间隔从标准纬线向两极逐渐增大。墨卡托投影的地图上长度和面积变形明显,但标准纬线无变形,从标准纬线向两极变形逐渐增大,但因为它具有各个方向均等扩大的特性,保持了方向和相互位置关系的正确。 在地图上保持方向和角度的正确是墨卡托投影的优点,墨卡托投影地图常用作航海图和航空图,如果循着墨卡托投影图上两点间的直线航行,方向不变可以一直到达目的地,因此它对船舰在航行中定位、确定航向都具有有利条件,给航海者带来很大方便。 “海底地形图编绘规范”(GB/T17834-1999,海军航保部起草)中规定1:25万及更小比例尺的海图采用墨卡托投影,其中基本比例尺海底地形图(1:5万,1:25万,1:100万)采用统一基准纬线30°,非基本比例尺图以制图区域中纬为基准纬线。基准纬线取至整度或整分。 1.2 墨卡托投影坐标系 取零子午线或自定义原点经线(L0)与赤道交点的投影为原点,零子午线或自定义原点经线的投影为纵坐标X轴,赤道的投影为横坐标Y轴,构成墨卡托平面直角坐标系。 2.高斯-克吕格(Gauss-Kruger)投影和UTM(UniversalTransverseMercator)投影 2.1 高斯-克吕格投影简介 高斯-克吕格(Gauss-Kruger)投影,是一种“等角横切圆柱投影”。德国数学家、物理学家、天文学家高斯(CarlFriedrichGauss,1777一1855)于十九世纪二十年代拟定,后经德国大地测量学家克吕格(JohannesKruger,1857~1928)于1912年对投影公式加以补充,故名。设想用一个圆柱横切于球面上投影带的中央经线,按照投影带中央经线投影为直线且长度不变和赤道投影为直线的条件,将中央经线两侧一定经差范围内的球面正形投影于圆柱面。然后将圆柱面沿过南北极的母线剪开展平,即获高斯一克吕格投影平面。 高斯一克吕格投影后,除中央经线和赤道为直线外,其他经线均为对称于中央经线的曲线。高斯-克吕格投影没有角度变形,在长度和面积上变形也很小,中央经线无变形,自中央经线向投影带边缘,变形逐渐增加,变形最大处在投影带内赤道的两端。由于其投影精度高,变形小,而且计算简便(各投影带坐标一致,只要算出一个带的数据,其他各带都能应用),因此在大比例尺地形图中应用,可以满足军事上各种需要,并能在图上进行精确的量测计算。 按一定经差将地球椭球面划分成若干投影带,这是高斯投影中限制长度变形的最有效方法。分带时既要控制长度变形使其不大于测图误差,又要使带数不致过多以减少换带计算工作,据此原则将地球椭球面沿子午线划分成经差相等的瓜瓣形地带,以便分带投影。通常按经差6度或3度分为六度带或三度带。六度带自0度子午线起每隔经差6度自西向东分带,带号依次编为第1、2…60带。三度带是在六度带的基础上分成的,它的中央子午线与六度带的中央子午线和分带子午线重合,即自1.5度子午线起每隔经差3度自西向东分带,带号

我国常用的三种地图投影

椭球体参数 我国常用的3个椭球体参数如下(源自“全球定位系统测量规范GB/T 18314-2001”)Krassovsky (北京54采用)(长轴a: 6378245, 短轴b: 6356863.0188) IAG 75(西安80采用)(长轴a: 6378140, 短轴b: 6356755.2882) WGS 84(长轴a: 6378137, 短轴b: 6356752.3142) 墨卡托(Mercator)投影 墨卡托(Mercator)投影,是一种"等角正切圆柱投影”,荷兰地图学家墨卡托(Gerhardus Mercator 1512-1594)在1569年拟定, 假设地球被围在一中空的圆柱里,其标准纬线与圆柱相切接触,然后再假想地球中心有一盏灯,把球面上的图形投影到圆柱体上,再把圆柱体展开,这就是一幅选定标准纬线上的“墨卡托投影”绘制出的地图。 墨卡托投影没有角度变形,由每一点向各方向的长度比相等,它的经纬线都是平行直线,且相交成直角,经线间隔相等,纬线间隔从标准纬线向两极逐渐增大。墨卡托投影的地图上长度和面积变形明显,但标准纬线无变形,从标准纬线向两极变形逐渐增大,但因为它具有各个方向均等扩大的特性,保持了方向和相互位置关系的正确。 在地图上保持方向和角度的正确是墨卡托投影的优点,墨卡托投影地图常用作航海图和航空图,如果循着墨卡托投影图上两点间的直线航行,方向不变可以一直到达目的地,因此它对船舰在航行中定位、确定航向都具有有利条件,给航海者带来很大方便。 “海底地形图编绘规范”(GB/T 17834-1999,海军航保部起草)中规定1:25万及更小比例尺的海图采用墨卡托投影,其中基本比例尺海底地形图(1:5万,1:25万,1:100万)采用统一基准纬线30°,非基本比例尺图以制图区域中纬为基准纬线。基准纬线取至整度或整分。 墨卡托投影坐标系 取零子午线或自定义原点经线(L0)与赤道交点的投影为原点,零子午线或自定义原点经线的投影为纵坐标X轴,赤道的投影为横坐标Y轴,构成墨卡托平面直角坐标系。 高斯-克吕格(Gauss-Kruger)投影和UTM(Universal Transverse Mercator)投影 高斯-克吕格投影与UTM投影异同 高斯-克吕格(Gauss-Kruger)投影与UTM投影(Universal Transverse Mercator,通用横轴墨卡托投影)都是横轴墨卡托投影的变种,目前一些国外的软件或国外进口仪器的配套软件往往不支持高斯-克吕格投影,但支持UTM投影,因此常有把UTM投影当作高斯-克吕格投影的现象。从投影几何方式看,高斯-克吕格投影是“等角横切圆柱投影( transverse conformal cylinder projection)”,投影后中央经线保持长度不变,即比例系数为1;UTM投影是“等角横轴割圆柱投影”,圆柱割地球于南纬80度、北纬84度两条等高圈,投影后两条割线上没有变形,中央经线上长度比0.9996。从计算结果看,两者主要差别在比例因子上,高斯-克吕格投影中央经线上的比例系数为1,UTM投影为0.9996,高斯-克吕格投影与UTM投影可近似采用X[UTM]=0.9996 * X[高斯],Y[UTM]=0.9996 * Y[高斯],进行坐标转换(注意:如坐标纵轴西移了500000米,转换时必须将Y值减去500000乘上比例因子后再加500000)。从分带方式看,两者的分带起点不同,高斯-克吕格投影自0度子午线起每隔经差6度自西向东分带,第1带的中央经度为3°;UTM投影自西经180°起每隔经差6度自西向东分带,第1带的中央经度为-177°,因此高斯-克吕格投影的第1带是UTM的第31带。此外,两投影的东伪偏移都是500公里,高斯-克吕格投影北伪偏移为零,UTM北半球投影北伪偏移为零,南半球则为10000公里。 高斯-克吕格投影简介 高斯-克吕格(Gauss-Kruger)投影,是一种“等角横切圆柱投影”。德国数学家、物理学家、天文学家高斯(Carl Friedrich Gauss,1777一1855)于十九世纪二十年代拟定,后经德国

地图投影复习资料

一、名词解释 地图投影:是利用一定数学方法则把地球表面的经、纬线转换到平面上的理论和方法。 投影变换:是将一种地图投影点的坐标变换为另一种地图投影点的坐标的过程。 极值长度比:通常指沿变形椭圆的长半径a与短半径b的长度比之总称。 曲率半径:曲率的倒数,即某点的弯曲程度。 垂直圈:垂直圈又称地平经圈,指天球上经过天顶的任何大圆。 主法截面:通过A点的法线AL可作出无穷多个法截面,为说明椭球体在某点上的曲率起见,通常研究两个相互垂直的法截面的曲率,这种相互垂直的法截面为主法截面。 长度变形:长度变形又称“长度误差”、“长度变异”、“长度相对变形”,是衡量地图投影变形大小的一种数量指标。(公式见课本21页2.3式) 等角航线:是地球表面上与经线相交成相同角度的曲线。 变形椭圆:地球面上一微分圆投影到平面上一般成为微分椭圆,微分椭圆的任意两相互垂直的直径,投影后为微分椭圆的两共轭直径,且该微分椭圆可以表现投影变形的性质和大小。 面积变形:地球面上无限小面积投影到平面上的大小与它原有面积大小的相对变形。 二、简答题 地图投影的目的与意义 地图投影是将立体地球上的种种标线及位置,转换到平面方格坐标的一种方式,在投影出来的地图上,无论是长度和面机,都必须与实际长度面积等比例,位子也必须正确,这是地图投影最基本的原则。 地图投影与其他学科的关系 地图投影同许多学科和应用技术有着密切的联系 1. 与数学:从地图投影的发展来看,它是伴随着数学的发展而前进的; 2. 与测量学:天文-大地测量为测制地图提供地球参考椭球体的大小形状及有关参数,并建立 大地原点;大地测量学在大地原点的基础上所建立的各级三角点,则需要应用地图投影计算出它们的平面直角坐标; 3. 与地图编制:地图编制与地图投影同属于地图学的重要组成部分; 4. 与航海、航天、宇宙飞行:等角投影无角度变形适用于航海和航天图;宇宙飞行可以服务于 地图投影,并可促使地图投影向新的方向发展。 每种投影的性质,要满足的条件及原因 1. 等角投影:要满足的条件是ω=0,m=n,a=b和β=β’; 2. 等面积投影:要满足的条件是vp=P-1=0或P=1; 3. 等距离投影:要满足的条件是正轴经线长度比m=1,斜轴或横轴垂直圈长度比μ1=1。 地图投影学科发展趋势 1. 外星地图投影:随着宇航技术的发展,到时还会增加更多星体的地图投影; 2. 空间地图投影:空间墨卡托(SOM)投影,是一种最适合于陆地卫星扫描影像制图的投影; 卫星轨迹地图投影,包括卫星轨迹圆柱投影和卫星轨迹圆锥投影,其特点是非常简化并能在地图上显示出卫星轨迹和摄影地区,但变形较大,不能代替SOM投影用于大、中比例尺的卫星影像制图; 3. 多焦投影和变化比例尺投影:多焦投影,在同一种投影的地图上,运用不同的投影中心或视 点位置,增大或者缩小局部范围的比例尺,是制图现象的强度或密度与统计面的大小成比例

相关文档
最新文档