聚合酶链式反应(PCR)基本操作步骤

聚合酶链式反应(PCR)基本操作步骤
聚合酶链式反应(PCR)基本操作步骤

聚合酶链式反应(PCR)

聚合酶链式反应(Polymerase Chain Reaction,PCR)是体外酶促合成特异DNA片段的一种方法,为最常用的分子生物学技术之一。典型的PCR由(1)高温变性模板;(2)引物与模板退火;(3)引物沿模板延伸三步反应组成一个循环,通过多次循环反应,使目的DNA得以迅速扩增。其主要步骤是:将待扩增的模板DNA置高温下(通常为93℃-94℃)使其变性解成单链;人工合成的两个寡核苷酸引物在其合适的复性温度下分别与目的基因两侧的两条单链互补结合,两个引物在模板上结合的位置决定了扩增片段的长短;耐热的DNA 聚合酶(Taq酶)在72℃将单核苷酸从引物的3’端开始掺入,以目的基因为模板从5’→3’方向延伸,合成DNA的新互补链。

PCR能快速特异扩增任何已知目的基因或DNA片段,并能轻易在皮克(pg)水平起始DNA混合物中的目的基因扩增达到纳克、微克、毫克级的特异性DNA片段。因此,PCR 技术一经问世就被迅速而广泛地用于分子生物学的各个领域。它不仅可以用于基因的分离、克隆和核苷酸序列分析,还可以用于突变体和重组体的构建,基因表达调控的研究,基因多态性的分析,遗传病和传染病的诊断,肿瘤机制的探索,法医鉴定等诸多方面。通常,PCR 在分子克隆和DNA分析中有着以下多种用途:

(1) 生成双链DNA中的特异序列作为探针;

(2) 由少量mRNA生成cDNA文库;

(3) 从cDNA中克隆某些基因;

(4) 生成大量DNA以进行序列测定;

(5) 突变的分析;

(6) 染色体步移;

(7) RAPD、AFLP、RFLP等DNA多态性分析等。

一、试剂准备

1. DNA模版

2.对应目的基因的特异引物

3.10×PCR Buffer

4.2mM dNTPmix:含dATP、dCTP、dGTP、dTTP各2mM

5.Taq酶

二、操作步骤

1.在冰浴中,按以下次序将各成分加入一无菌0.5ml离心管中。

10×PCR buffer 5 μl

dNTP mix (2mM) 4 μl

引物1(10pM) 2 μl

引物2(10pM) 2 μl

Taq酶(2U/μl) 1 μl

DNA模板(50ng-1μg/μl) 1 μl

加ddH2O至 50 μl

视PCR仪有无热盖,不加或添加石蜡油。

2.调整好反应程序。将上述混合液稍加离心,立即置PCR仪上,执行扩增。一般:在93℃预变性3-5min,进入循环扩增阶段:93℃40s →58℃30s →72℃60s,循环30-35次,最后在72℃保温7min。

3.结束反应,PCR产物放置于4℃待电泳检测或-20℃长期保存。

4.PCR的电泳检测:如在反应管中加有石蜡油,需用100μl氯仿进行抽提反应混合液,以除去石蜡油;否则,直接取5-10μl电泳检测。

三、PCR反应体系的组成与反应条件的优化

PCR反应体系由反应缓冲液(10×PCR Buffer)、脱氧核苷三磷酸底物(dNTPmix)、耐热DNA聚合酶(Taq酶)、寡聚核苷酸引物(Primer1,Primer2)、靶序列(DNA模板)五部分组成。各个组份都能影响PCR结果的好坏。

1.反应缓冲液:一般随Taq DNA聚合酶供应。标准缓冲液含:50mM KCl,10mM Tris-HCl (pH8.3室温),1.5mM MgCl2。Mg2+的浓度对反应的特异性及产量有着显著影响。浓度过高,使反应特异性降低;浓度过低,使产物减少。在各种单核苷酸浓度为200μM时,Mg2+为1.5mM较合适。若样品中含EDTA或其它螯合物,可适当增加Mg2+的浓度。在高浓度DNA及dNTP条件下进行反应时,也必须相应调节Mg2+的浓度。据经验,一般以1.5-2mM(终浓度)较好。

2.dNTP :高浓度dNTP易产生错误掺入,过高则可能不扩增;但浓度过低,将降低反应产物的产量。PCR中常用终浓度为50-400μM的dNTP。四种脱氧三磷酸核苷酸的浓度应相同,如果其中任何一种的浓度明显不同于其它几种时(偏高或偏低),就会诱发聚合酶的错误掺入作用,降低合成速度,过早终止延伸反应。此外,dNTP能与Mg2+结合,使游离的Mg2+浓度降低。因此,dNTP的浓度直接影响到反应中起重要作用的Mg2+浓度。3.Taq DNA聚合酶酶:在100μl反应体系中,一般加入2-4U的酶量,足以达到每min 延伸1000-4000个核苷酸的掺入速度。酶量过多将导致产生非特异性产物。但是,不同的公司或不同批次的产品常有很大的差异,由于酶的浓度对PCR反应影响极大,因此应当作预试验或使用厂家推荐的浓度。当降低反应体积时(如20μl或50μl),一般酶的用量仍不小于2U,否则反应效率将降低。

4.引物:引物是决定PCR结果的关键,引物设计在PCR反应中极为重要。要保证PCR 反应能准确、特异、有效地对模板DNA进行扩增,通常引物设计要遵循以下几条原则:

⑴引物的长度以15-30bp为宜,一般(G+C)的含量在45-55%,Tm值高于55℃[Tm=4(G+C)+2(A+T)]。应尽量避免数个嘌呤或嘧啶的连续排列,碱基的分布应表现出是随机的。

⑵引物的3’端不应与引物内部有互补,避免引物内部形成二级结构,两个引物在3’端不应出现同源性,以免形成引物二聚体。3’端末位碱基在很大程度上影响着Taq酶的延伸效率。两条引物间配对碱基数少于5个,引物自身配对若形成茎环结构,茎的碱基对数不能超过3个由于影响引物设计的因素比较多,现常常利用计算机辅助设计。

⑶人工合成的寡聚核苷酸引物需经PAGE或离子交换HPLC进行纯化。

⑷引物浓度不宜偏高,浓度过高有两个弊端:一是容易形成引物二聚体(primer-dimer),二是当扩增微量靶序列并且起始材料又比较粗时,容易产生非特异性产物。一般说来,用低浓度引物不仅经济,而且反应特异性也较好。一般用0.25-0.5pM/μl较好。

⑸引物一般用TE配制成较高浓度的母液(约100μM),保存于-20℃。使用前取出其中一部分用ddH2O配制成10μM或20μM的工作液。

5.模板:PCR对模板的要求不高,单、双链DNA均可作为PCR的样品。虽然PCR可以用极微量的样品(甚至是来自单一细胞的DNA)作为摸板,但为了保证反应的特异性,一般还宜用μg水平的基因组DNA或104拷贝的待扩增片段作为起始材料。原材料可以是粗制品,某些材料甚至仅需用溶剂一步提取之后即可用于扩增,但混有任何蛋白酶、核酸酶、Taq DNA聚合酶抑制剂以及能结合DNA的蛋白,将可能干扰PCR反应。

6.PCR循环加快,即相对减少变性、复性、延伸的时间,可增加产物的特异性。

四、注意事项

1.PCR反应应该在一个没有DNA污染的干净环境中进行。最好设立一个专用的PCR实验室。

2.纯化模板所选用的方法对污染的风险有极大影响。一般而言,只要能够得到可靠的结果,纯化的方法越简单越好。

3.所有试剂都应该没有核酸和核酸酶的污染。操作过程中均应戴手套。

4.PCR试剂配制应使用最高质量的新鲜双蒸水,采用0.22μm滤膜过滤除菌或高压灭菌。5.试剂都应该以大体积配制,试验一下是否满意,然后分装成仅够一次使用的量储存,从而确保实验与实验之间的连续性。

6.试剂或样品准备过程中都要使用一次性灭菌的塑料瓶和管子,玻璃器皿应洗涤干净并高压灭菌。

7.PCR的样品应在冰浴上化开,并且要充分混匀。

生物实验高清视频,细胞、分子生物学、蛋白检测技术实验高清视频教程

点击进入微信店铺点击进入淘宝店铺

生物实验高清视频,细胞、分子生物学、蛋白检测技术实验高清视频教程,约7G大小,22个实验项目。适用于教学和学习!

本套实验视频制作耗资上百万,由专业的影视和后期制作团队拍摄+生物、医学领域的教授专家指导+Thermo、Roche等著名企业参与共同制作完成。

分子生物学实验技术共6个视频,包括:DNA甲基化检测、分子克隆技术、高分辨溶解曲线分析技术(HRM)、逆转录聚合酶链式反应(RT-PCR)、荧光定量PCR (real time QPCR)、原位杂交(ISH)。

蛋白检测技术共6个视频,包括:TUNEL法检测细胞凋亡、酶联接免疫吸附测定(ELISA)、免疫印迹法(Western blotting)、免疫组化(IHC)、凝胶迁移实验(EMSA)、染色质免疫沉淀技术(ChIP)。

细胞检测技术共10个视频,包括:siRNA转染、大鼠骨骼肌细胞培养、全骨髓法分离培养大鼠骨髓间充质干细胞、细胞传代、细胞冻存、细胞复苏、细胞划痕、细胞侵染、质粒DNA转染、组织块贴壁法培养大鼠平滑肌细胞。

每个实验视频内容包括详细的实验操作流程,原理讲解,结果分析及疑难解答,并配有相应的详实的文字文档和参考文献!

聚合酶链式反应

实验9 聚合酶链式反应(PCR)技术 【实验目的】 掌握PCR反应的原理及操作技术。 【实验原理】 PCR 技术实际上是在模板DNA、引物和4 种脱氧核苷酸存在的条件下依赖于耐高温DNA 聚合酶的体外酶促合成反应。PCR 技术的特异性取决于引物和模板DNA 结合的特异性。反应分为三步:1 热变性:在高温条件下,DNA 双链解离形成单链DNA;2 退火:当温度突然降低时引物与其互补的模板在局部形成杂交链;3 延伸:在DNA 聚合酶、dNTPs 和Mg2+存在的条件下,聚合酶催化以引物为起始点的DNA 链延伸反应。以上三步为一个循环,每一循环的产物可以作为下一个循环的模板,几十个循环之后,介于两个引物之间的特异性DNA 片段得到了大量复制,数量可达到10 6~7个拷贝。 【器材与试剂】 1.器材 DNA 扩增仪(PCR 仪)、台式离心机、微量取液器、硅烷化的PCR 小管、琼脂糖凝胶电泳系统 2.材料 模板DNA,单、双链DNA均可作为PCR的样品。 3.试剂 (1) 10×PCR 缓冲液 (2) MgCl2 15mmol/L (3) dNTP 混合物:每种2.5mmol/L (4) Taq DNA 聚合酶:5U/μl (5) 引物1和引物2:2 μmol/L (6) 琼脂糖凝胶电泳试剂 【操作步骤】 1. 在0.2ml Eppendorf 管内依次混匀下列试剂,配制20μl 反应体系。

ddH2O 7.8 μl 10×PCR 缓冲液 2 μl MgCl2(15mmol/L) 2 μl dNTP(2.5mmol/L) 2 μl 引物1 (2μmol/L) 2 μl 引物2 (2μmol/L) 2 μl 模板DNA 2 μl Taq DNA 聚合酶(5U/μL)0.2 μl 总体积20 μl 2.按下述循环程序进行扩增 程序阶段程序名称温度时间循环数 1 预变性94℃ 3 min 1 变性94℃30 sec 2 退火52℃30 sec 30 延伸72℃30 sec 3 保温4℃∞ 1 3.扩增结束后,取10μl 扩增产物进行电泳检测。 【要点提示】 1.在90~95℃下可使整个基因组的DNA变性为单链。一般94~95℃下30~60sec。时间过长使TaqDNA聚合酶失活。 2.退火温度一般在45~55℃。退火温度低,PCR特异性差;退火温度高,PCR特异性高,但扩增产量低。。 3.延伸温度一般在70~75℃。此温度下TaqDNA聚合酶活性最高。一般扩增产物长度小于1 kb,延伸时间30 sec即可。当扩增产物长度大于1 kb时,可适当延长延伸时间。

分子生物学综合实验报告

分子生物学综合试验报告

综合实验Ⅰ.Southern杂交 (质粒DNA提取、PCR技术体外扩增DNA、质粒载体和外源DNA的连接反应、 地高辛标记的Southern杂交) 一.实验目的 1.学习Southern杂交的原理及操作方法。 2.学习碱裂解法提取质粒的原理。 3.学习PCR反应的基本原理和实验技术;了解引物设计的一般要求。 4.掌握DNA体外连接的基本技能,了解连接反应的注意事项。 二.实验原理 利用染色体DNA与质粒DNA的变性与复性的差异而达到分离的目的。在碱变性条件下,染色体DNA的氢键断裂,双螺旋解开而变性,质粒DNA氢键也大部分断裂,双螺旋也有部分解开,但共价闭合环状结构的两条互补链不会完全分离,当pH=的乙酸钠将其pH调到中性时,变性的质粒DNA又恢复到原来的碱裂解法提取质粒的主要原理是:利用染色体DNA与质粒DNA的变性与复性的差异而构型,而染色体DNA不能复性,形成缠绕的致密网状结构,离心后,由于浮力密度不同,染色体DNA与大分子RNA、蛋白质-SDS复合物等一起沉淀下来而被除去。 聚合酶链反应(PCR)是体外酶促合成DNA片段的一种技术,PCR 进行的基本条件:DNA模板(在RT-PCR中模板是RNA)、引物、dNTP (dATP、dTTP、dGTP、dCTP)、Taq DNA聚合酶、反应缓冲体系。 PCR循环由三个步骤组成:变性、退火、延伸。每一个循环的产物可作为下一个循环的模板,通过30个左右循环后,目的片段的扩增可达106倍。

DNA片段之间的连接是通过DNA连接酶的催化实现的。DNA连接酶催化具有平末端或互补粘性末端的DNA片段间相邻碱基通过3’,5’磷酸二酯键连接起来。最常用的来源于T4噬菌体的T4DNA连接酶。对于平末端或互补的粘性末端可直接进行连接反应。一个片段是平末端,另一片段为粘性末端或两个片段都是粘性末端但不配对,则需要通过各种方式使其可一匹配或通过平末端进行连接。通常采用末端补平、加同聚物尾、加接头等方式是目的片段之间能够匹配。 地高辛随机引物法标记的原理:在随机引物法标记的反应液中,有随机合成的六聚核苷酸作为引物,dATP、dCTP、dGTP、dTTP和D1G-11-dUTP作为合成底物,以单链DNA作为模板,在Klenow酶的作用下,合成插入地高辛的DNA链。以地高辛标记的探针与靶基因DNA链杂交后,再通过免疫反应进行检测。一般通过酶标记地高辛抗体检测,就可以肯定杂交反应的存在。免疫检验一般用碱性磷酸酶系统,BClP/NBT显色,敏感性很高。 三.实验准备 1.实验材料: 含质粒的大肠杆菌DH5α,LB液体培养基, LB平板培养基 2.实验试剂: Taq DNA聚合酶,10×反应缓冲液(含25mmol MgCl2),dNTP,引物(P1、P2),溴乙啶 (EB) ,点样缓冲液Loading buffer(10×):%溴酚蓝,40%甘油,目的基因及载体, 2×ligation 缓冲液,T4 DNA连接酶, L CaCl2,氨苄青霉素(100mg/mL), TBE电泳缓冲液(5×), DIG Random Labeling Mix(高效),Anti-DIG-AP Conjugate, BCIP/NBT Stock Solution,Blocking Reagent。 20×SSC:柠檬酸钠,3M NaCl,2×SSC:柠檬酸钠, NaCl, EDTA,变性液: NaOH, NaCl,中和度: Tris-HCl、、3M NaCl,Standard buffer:5×SSC、%(w/v) N-Lauroylsarcosine, % (w/v) SDS, 1% Blocking Reagent,Standard buffer+50% formamide,Anti-DIG-AP 碱性磷酸酶标记抗地高辛单抗体,BCIP/NBT储备液,冲洗液:0. 1M

生物实验4 实时定量PCR 实验报告

实验四定量PCR扩增 姓名:李宗翰专业:环境工程学号:1432999 同组人姓名:刘雪飞 一、实验目的 复习定量PCR原理,熟悉绝对定量的操作流程 二、实验原理 实时荧光定量PCR是在PCR反应体系中加入荧光基团,利用荧光信号累积实时监测整PCR进程,最后通过标准曲线对未知模板进行定量分析的方法。在PCR扩增的指数时期,模板的Ct 值和该模板的起始拷贝数存在线性关系,通过Ct值和标准曲线的分析对起始模板进行定量分析 三、实验仪器及材料 real time PCR仪(ABI7500, RotorGene 3000),微量移液器,Tip头,0.2ml光学薄壁管,8联PCR管,1.5ml离心管,SYBR Mix,引物及108 copy/ul 标准品 四、实验步骤 1、标准样品稀释:取4个1.5ml的离心管,写上标记107,106, 105, 104,向每管加入90μl ddH2O,取10μl 108copy/ul 的标样加入到107管中,充分混匀后,从管中取10μl 107copy/ul的液体到106管中。按上述操作依次稀释,得到5个倍数的标准样品。注意,每次稀释都要换Tip头。 2、配制预混液:取119μl ddH2O、7μl引物4204f、7μl引物4448r和7μl Rox 到装有175μl SYBR Mix液的1.5ml离心管中,混匀。 3、分装预混液:取7个小离心管,分别标记108、107、106、105、10 4、UNK (未知样)、NTC(阴性对照)。向其中分别加入42μl预混液和4.7μl模板(1-5号加标样、6号加未知样、7号加等量ddH2O),混匀。 4、戴上手套取两个8联管,并排放置管架上。分别取上述样品20μl至第1-7管中(第8管空出),每个样品两个重复,共14个样品。将加好样的8联管振荡。 5、设置分析仪参数如下:95℃3min;95℃15s+60℃40s为一个循环,循环次数40,融解曲线温度范围60~95℃。振荡好的样品进机进行PCR扩增。 6、扩增后利用软件分析C T值及未知样的定量结果。

DNA提取及PCR扩增实验报告.doc

PCR扩增及DNA琼脂糖凝胶电泳 刘琳1131428 环境科学 一、实验目的 1.学习并掌握PCR扩增的基本原理与实验技术。 2.对扩增后的DNA进行琼脂糖凝胶电泳试验,并分析相应结果。 二、实验原理 1. PCR扩增 多聚酶链反应(PCR)技术的原理类似于DNA的天然复制过程。在微量离心管中加入适量缓冲液,加入微量模板DNA、四种脱氧核苷酸(dNTP)、耐热T aq聚合酶及两个合成DNA的引物,而后加热使模板DNA在高温下(94℃)变性,双链解链,这是所谓变性阶段。降低溶液温度,使合成引物在低温(55℃)与模板DNA互补退火形成部分双链,这是所谓退火阶段。溶液反应温度升至中温(72℃),在Tap酶作用下,用四种dNTP为原料,引物为复制起点,模板DNA的一条双链在解链和退火之后延伸为两条双链,这是延伸阶段。如此反复,在同一反应体系中可重复高温变性、低温退火和DNA合成这一循环,使产物DNA重复合成,并在重复过程中,前一循环的产物DNA可作为后一循环的模板DNA而参与DNA的合成,使产物DNA的量按指数方式扩增。经过30~40个循环,DNA扩增即可完成。 2. DNA琼脂糖凝胶电泳实验 DNA分子在高于其等电点的溶液中带负电,在电场中向阳极移动。在一定的电场强度下,DNA分子的迁移速度取决于分子筛效应,即分子本身的大小和构型是主要的影响因素。DNA分子的迁移速度与其相对分子量成反比。不同构型的DNA分子的迁移速度不同。该电泳方法以琼脂凝胶作为支持物,利用DNA分子在泳动时的电荷效应和分子筛效应,达到分离混合物的目的。 三、实验材料 仪器:PCR扩增仪、0.2ul薄壁管、1.5ml离心管、移液枪、枪头、微波炉、电泳仪、水平电泳槽、制胶版、紫外透射仪。 试剂:TapDNA聚合酶、dNTP、buffer、两种引物、16S全长DNA样本、无菌ddH2O、模板DNA 、TBE、琼脂糖、EB、显色剂。 四、实验步骤 1. PCR扩增 本次试验选择细菌16S rDNA V3区片段进行扩增。 1.1 根据计算,首先取1.5ml离心管按照 2.5ul 10×Buffer 、1 ul dNTP、0.5 ul 341GC、 0.5 ul 534、0.125 ul Taq、19.375u ddH2O的比例配置足量的PCR反应体系。 1.2 分别向9个薄壁管中分别加入24 ul的反应体系,并分别添加8种不同的模版,并于第9个薄壁管中加入无菌ddH2O作为阴性对照。 1.3 将薄壁管放入PCR扩增仪中,按照预定程序进行PCR扩增。其中循环过程需要达到30~40次。程序如下: 预变性:94℃3min 循环:94℃变性30s 55℃退火30s 72℃延伸30s 末次延伸:72℃5min

高中化学定量实验的设计与评价练习题

定量实验的设计与评价训练题1.某助熔剂具有较好的热稳定性,是两种常见钠盐的混合物,其中一种组分是NaCl。为确定另一种组分X及其含量,甲、乙两个小组进行了以下实验。 (1)取适量样品,注入装置A中,测定组分X的化学式。 ①甲组用图Ⅰ的装置进行实验,观察到相应实验现象,则X的化学式是________。 ②乙组只用图Ⅰ中装置A和C进行实验,得到与甲组相同的实验结论,则分液漏斗中盛装的溶液应换为__________,原因是_______________________________________。 (2)甲、乙组分别用以下方法测定组分X的含量。 ①甲组用装置A和图Ⅱ中所示的部分装置(可重复选用)进行实验。请选择必要的装置,依次连接的合理顺序为装置A后接________(填仪器接口的字母)。完成一组实验,除样品的质量外,还需测定的实验数据有_________________________________________________。 ②乙组用酸碱滴定法测定X的含量。准确称取两份样品,滴入少量水润湿后,分别加入 0.200 0 mol·L-1的盐酸40.00 mL,加入2滴酚酞作为指示剂,用0.200 0 mol·L-1的NaOH 溶液滴定过量盐酸至终点,实验数据列于下表中。 Ⅰ.滴定过程中选用的滴定管是________________。 Ⅱ.滴定至终点时的现象为______________________________________________。 Ⅲ.样品中X的质量分数为__________________。 ③乙组测得的X含量比实际值偏高,可能的原因是_________(填字母)。 A.用NaOH溶液润洗滴定管 B.滴定终点读数时仰视液面刻度 C.滴定时少量溶液溅出锥形瓶 D.滴定终点时滴定管尖嘴部分出现气泡

聚合酶链式反应

聚合酶链式反应 聚合酶链式反应是一种用于放大扩增特定的DNA片段的分子生物学技术,它可看作是生物体外的特殊DNA复制,PCR的最大特点,是能将微量的DNA大幅增加。 PCR(聚合酶链式反应)是利用DNA在体外摄氏95°高温时变性会变成单链,低温(经常是60°C左右)时引物与单链按碱基互补配对的原则结合,再调温度至DNA聚合酶最适反应温度(72°C左右),DNA聚合酶沿着磷酸到五碳糖(5'-3')的方向合成互补链。基于聚合酶制造的PCR仪实际就是一个温控设备,能在变性温度,复性温度,延伸温度之间很好地进行控制。 PCR原理 DNA的半保留复制是生物进化和传代的重要途径。双链DNA在多种酶的作用下可以变性解旋成单链,在DNA聚合酶的参与下,根据碱基互补配对原则复制成同样的两分子拷贝。在实验中发现,DNA在高温时也可以发生变性解链,当温度降低后又可以复性成为双链。因此,通过温度变化控制DNA的变性和复性,加入设计引物,DNA聚合酶、dNTP就可以完成特定基因的体外复制。 但是,DNA聚合酶在高温时会失活,因此,每次循环都得加入新的DNA聚合酶 耐热DNA聚合酶--Taq酶可以耐受90℃以上的高温而不失活,不需要每个循环加酶 PCR技术的基本原理类似于DNA的天然复制过程,其特异性依赖于与靶序列两端互补的寡核苷酸引物。 PCR由变性--退火--延伸三个基本反应步骤构成:

①模板DNA的变性:模板DNA经加热至93℃左右一定时间后,使模板DNA双链或经PCR扩增形成的双链DNA解离,使之成为单链,以便它与引物结合,为下轮反应作准备; ②模板DNA与引物的退火(复性):模板DNA经加热变性成单链后,温度降至55℃左右,引物与模板DNA单链的互补序列配对结合; ③引物的延伸:DNA模板--引物结合物在72℃、DNA聚合酶(如TaqDNA聚合酶)的作用下,以dNTP为反应原料,靶序列为模板,按碱基互补配对与半保留复制原理,合成一条新的与模板DNA链互补的半保留复制链,重复循环变性--退火--延伸三过程就可获得更多的“半保留复制链”,而且这种新链又可成为下次循环的模板。每完成一个循环需2~4分钟,2~3小时就能将待扩目的基因扩增放大几百万倍。 反应准备 其中dNTP、引物、模板DNA、Taq DNA聚合酶以及Mg2+的加量(或浓度)可根据实验调整。 PCR反应五要素: 引物(PCR引物为DNA片段,细胞内DNA复制的引物为一段RNA链)、酶、dNTP、模板和缓冲液(其中需要Mg2+)。 PCR所用的酶主要有两种来源:Taq和Pfu,分别来自两种不同的噬热菌。其中Taq扩增效率高但易发生错配。Pfu扩增效率弱但有纠错功能。 模板即扩增用的DNA,可以是任何来源,但有两个原则,第一纯度必须较高,第二浓度不能太高以免抑制

RT-PCR实验报告课件

逆转录pcr rt-pcr 为反转录rcr (reverse transcription pcr )和实时pcr (real time pcr )共同的缩写。逆转录pcr ,或者称反转录pcr(reverse transcription-pcr, rt-pcr) ,是聚合酶链式反应(pcr) 的一种广泛应用的变形。在rt-pcr 中,一条rna 链被逆转录成为互补dna,再以此为模板通过pcr 进行dna 扩增。 由一条rna 单链转录为互补dna(cdna) 称作“逆转录”,由依赖rna 的dna 聚合酶(逆转录酶)来完成。随后,dna 的另一条链通过脱氧核苷酸引物和依赖rna 的dna 聚合酶完成,随每个循环倍增,即通常的pcr 。原先的rna 模板被rna 酶h 降解,留下互补dna。 rt-pcr 的指数扩增是一种很灵敏的技术,可以检测很低拷贝数的rna 。rt-pcr 广泛应用于遗传病的诊断,并且可以用于定量监测某种rna 的含量。(检测基因表达的方法,参见northern blot 法。) rt-pcr 有时候也会指代实时pcr(real-time pcr) 。为了与逆转录pcr 相区别,通常被写作“定量pcr ”(quantitative pcr) 或者rtq-pcr(real-time quantitative pcr) 。 实时pcr 实时pcr(real-time pcr) ,属于定量pcr (q-pcr )的一种,以一定时间内dna 的增幅量为基础进行dna 的定量分析。real time pcr 的定量使用萤光色素,目前有二种方法。 一种是在ds dna 中插入特异的萤光色素;另一种使用一种能与增幅dna 序列中特定寡核酸序 列相结合的一种萤光探针(probe )。real time pcr 与reverse transcription pcr 相结合,能用微量的rna 来找出特定时间、细胞、组织内的特别表达的遗传基因。这两种rt pcr 的组合又被称之为“定量rt-pcr (quantitative rt-pcr )” rt-pcr 技术相关试剂 oligo: 多聚体,相当于mrna 引物 amv (m-mlv):逆转录酶 dntp :脱氧核苷酸 rnase :rna 酶抑制剂 pcr buffer :rt-pcr 缓冲液 mgcl2 :2 价镁离子 pcr 各步骤的目的 (一)预变性: 破坏dna 中可能存在的较难破坏的二级结构。使dna 充分变性,减少dna 复杂结构对扩增的影响,以利于引物更好的和模板结合,特别是对于基因组来源的dna 模板,最好不要吝 啬这个步骤。此外,在一些使用热启动taq 酶的反应中,还可激活taq 酶,从而使pcr 反应得以顺利进行。 (二)变性-- 退火-- 延伸循环: ①模板dna 的变性:模板dna 经加热至93℃左右一定时间后,使模板dna 双链或经pcr 扩增形成的双链dna 解离,使之成为单链,以便它与引物结合,为下轮反应作准备; ②模板dna 与引物的退火( 复性) :模板dna 经加热变性成单链后,温度降至55℃左右,引物与模板dna 单链的互补序列配对结合; ③引物的延伸:dna 模板-- 引物结合物在taqdna 聚合酶的作用下,以dntp 为反应原料,靶序列为模板,按碱基配对与半保留复制原理,合成一条新的与模板dna 链互补的半保留复制链。 (三)pcr 仪扩增循环后72 度延伸10 分钟 用pcr 仪扩增时,( 变性. 退火, 延伸) 循环完成后, 继续72 度延伸了10 分钟的原因:

氢化铝锂操作步骤总结

1】氢化铝锂操作步骤总结氢化铝锂还原反应的操作和格氏反应相似,需要无水,干燥的条件。装置一般有磁力搅伴、滴液漏斗和回流冷凝器(用氯化钙干燥管或N2 隔绝潮湿空气)三口瓶,在冰浴冷却下,先加入氢化铝锂,由滴液漏生慢慢加入无水乙醚或THF ,搅拌几 分钟。再:将溶解在无水乙醚(或THF )中的反应物滴加到氢化铝锂(过量)的乙醚<或THF )溶液中。滴加的速度以维持反应混合物平稳的沸腾迥流为限(据物质要求)(也可以 先加入底物的THF 液,在分次慢加氢化铝锂)。然后继续反应,反应温度据反应活性及物质的稳定性而定。反应结束后,在剧烈搅拌下(一般换成机械搅拌),小心地用含水的乙醚,或乙醚一酒精混合液,或滴加冰水,滴加浓碱溶液来分解过剩的还原试剂(最好不要过量)。最好是用已酸乙酯回流一段时间来分解,分解最终产物是酒精,通常不会影响产物的析离,也不产生氢气。 最后若用的为乙醚溶剂,将反应混合物倒入含有稀酸(一般HCI或H2SO4)的冰水中, 分解铝的复合物,溶解氢氧化铝的沉淀。产物或在水中,或在乙醚层中,分液并萃取几次,萃取前有可能要调节水液的pH 值,以使产品最大程度提取出。若是THF ,过滤沉淀,用干燥剂干燥,再分离就行了。 若涉及到三氯化铝的氢化铝锂复合物的反应,则一般是将回流30min 后的氢化铝锂醚 液在冰水冷却下用滴液漏斗滴加到三氯化铝的醚溶液中,室温下搅拌30min (形成复合氢化 物mixedhydrid )再滴加要还原的物质。 若涉及到改性的氢化铝锂,如手性(BINAL-H )试剂,也是将改性的辅助试剂用醚稀释之后滴加到氢化铝锂的醚液中,等生成手性试剂后在滴加要还原的物质。 2】纯化 乙醚(CH3CH2OCH2CH3) 普通乙醚中常含有一定量的水、乙醇及少量过氧化物等杂质。制备无水乙醚,首先要检验有无过氧化物。为此取少量乙醚与等体积的2%碘化钾溶液,加入几滴稀盐酸一起振摇,若能 使淀粉溶液呈紫色或蓝色,即证明有过氧化物存在。除去过氧化物可在分液漏斗中加入普通乙醚和相当于乙醚体积1/5 新配制的硫酸亚铁溶液,剧烈摇动后分去水溶液。再用浓硫酸及金属钠作干燥剂,所得无水乙醚可用于Grignard 反应。 在250mL 圆底烧瓶中,放置100mL 除去过氧化物的普通乙醚和几粒沸石,装上回流冷凝管。冷凝管上端通过一带有侧槽的软木塞,插入盛有10mL 浓硫酸的滴液漏斗。通入冷凝水,将浓硫酸慢慢滴入乙醚中。由于脱水发热,乙醚会自行沸腾。加完后摇动反应瓶。 待乙醚停止沸腾后,折下回流冷凝管,改成蒸馏装置回收乙醚。在收集乙醚的接引管支管上连一氯化钙干燥管,用与干燥管连接的橡皮管把乙醚蒸气导入水槽。在蒸馏瓶中补加沸石后,用事先准备好的热水浴加热蒸馏,蒸馏速度不宜太快,以免乙醚蒸气来不及冷凝而逸散室内。收集约70mL 乙醚,待蒸馏速度显着变慢时,可停止蒸馏。瓶内所剩残液,倒入指定的回收瓶中,切不可将水加入残液中(飞溅)。 将收集的乙醚倒入干燥的锥形瓶中,将钠块迅速切成极薄的钠片加入,然后用带有氯化钙干燥管的软木塞塞住,或在木塞中插入末端拉成毛细管的玻璃管,这样可防止潮气侵入,并可使产生的气体逸出,放置24 小时以上,使乙醚中残留的少量水和乙醇转化成氢氧化钠和乙醇钠。如不再有气泡逸出,同时钠的表面较好,则可储存备用。如放置后,金属钠表面已全部发生作用,则须重新加入少量钠片直至无气泡发生。这种无水乙醚可符合一般无水要求。另外也可用无水氯化钙浸泡几天后,用金属钠干燥以除去少量的水和乙醇。 纯乙醚 b.p. 34.51 C, nD20 1.3526, d420 0.71378。 . 四氢呋喃(C4H8O ) 四氢呋喃系具乙醚气味的无色透明液体, 市售的四氢呋喃常含有少量水分及过氧化物。 如要制得无水四氢呋喃可与氢化铝锂在隔绝潮气下和氮气气氛下回流(通常1000 mL 约需2~4g 氢化铝锂)

PCR实验报告

PCR实验报告 7月19日高遄 实验目的:了解PCR技术原理,掌握最基础的PCR实验步骤。 实验试剂:模板DNA,Mg2+,buffer,dNTPs,Taq DNA聚合酶,引物,H2O,石蜡油。 实验原理: ●PCR全称聚合酶链反应,是体外快速扩增特定基因或DNA序列最常用的方法。 ●基本原理:首先将双链DNA分子在临近沸点的温度下加热分离成2条单链DNA分子,DNA聚合酶以单链DNA为模板并利用反应混合物中的四种脱氧核苷三磷酸合成新的DNA互补链。PCR反应时,只要在试管内加入模板DNA、PCR引物、四种核苷酸及适当浓度的Mg2+,DNA聚合酶就能在数小时内将目标序列扩增100万倍以上。 (1)双链模板DNA分子首先在高温下解开成长的单链,短链引物分子立即与该模板DNA 两端的特定序列相结合,产生双链区。 (2)DNA聚合酶从引物处开始复制其互补链,迅速产生与目标序列完全相同的复制品。(3)在后续反应中,无论是起始模板DNA还是经复制的杂合DNA双链,都会在高温下解开成为单链,体系中的引物分子再次与其互补序列相结合,聚合酶也再度复制模板 DNA。 (4)由于在PCR反应中选用的一对引物,是按照与扩增区域两端序列彼此互补的原则设计的,因此每一条新生链的合成都是从引物的退火结合位点开始并朝反方向延伸的,每一条新合成的DNA链上都有新的引物结合位点。 (5)整个PCR的反应全过程,即DNA解链(变性)、引物与模板DNA结合(退火)、DNA 合成(链的延伸)三步可以被不断重复。经多次循环之后,反应混合物中所含有的双链DNA分子数,即两条引物结合位点之间的DNA区段的拷贝数,理论上的最高值应该是2^n,能进一步满足遗传分析的需要。 ●试剂作用: (1)引物:DNA复制的起始点,针对复制DNA片段的两端,有5’引物和3’引物 (2)Taq DNA聚合酶:促进dNTPs与模板结合。 (3)Buffer:Tris-HCl反应缓冲液,Taq DNA聚合酶提供一个最适酶催反应条件。 (4)Mg2+:对PCR扩增效率影响很大,浓度过高可降低PCR扩增的特异性,浓度过低则影响PCR扩增产量甚至使PCR扩增失败而不出扩增条带。 (5)dNTPs:底物,在引物引导下合成与模板互补的DNA新链。 (6)石蜡油:防止PCR加热过程中DNA蒸发。 ●试剂配置体积: (1)热启动:94℃,5~10min (2)变性:94℃,45~60s。 (3)退火:50~65℃,1min。退火温度计算:Tm-(5℃~10℃),Tm(解链温度)=4(G+C)+2(A+T)。 (4)延伸:72℃,1~1.5min。 (5)步骤(2)~(4)热循环25~30个周期 (6)保温:延伸72℃,10min ●产物检测:凝胶电泳。

危险试剂的使用

危险试剂的使用 1.危险试剂的采购必须提前申请,经审核同意后提交 给采购部门。 2.采购:凡需要危险化学试剂的单位或部门均应持有 地方政府有关部门核发的危险品采购证明,向具有资格经营化学品的单位购买。 3.危险试剂:易燃易爆具有爆炸性的试剂的存放,应 遵循先进先出的原则,以免存储时间过长,导致试剂变质。 4.爆炸性试剂,剧毒化学试剂,应双人管理,双锁, 双人收发,双人使用,双账。 5.双人使用制度:领取,称量,使用,以及退还仓库 必须有使用人的签字以及部门主管的确认签字;同时管理人员填写好台账(电脑以及手工)管理记录表。 6.尤其像常用的无水三氯化铝,金属钠,三氯氧磷, 钯,正丁基锂,二异丙基氨基锂,氢化铝锂,氢化钠,氢化钙等危险品,要双人收发,双人使用。7.重氮化反应,格式反应等危险反应做好安全以及防 护工作。

常见的危险化学试剂以及处理流程 A)碱金属钠、钾、锂的处理标准操作流程(Na,K,Li) 金属钠的后处理:有两种方法,第一种为优先。 方法一: 1) 准备程序:钠的处理必须在整理好的通风橱内进行,由主管、组长或其指定的有经验的人来操作,并且第二人在场监察,保证该通风橱内无其他任何化学试剂。把灭火砂、消防棉准备好(不要用CO2 灭火器),在向处理瓶中滴加无水乙醇之前,必须保证所有残存的钠浸泡在THF 或甲苯中,若没有完全浸泡,需要将未浸泡部分用磁子吸出棒等将其小心导入,也可加入适量的KOH干燥过的THF 或甲苯浸泡(溶剂总体积不超过瓶子体积的1/3),加入适度大小的磁子让该体系快速搅拌。 2) 操作程序:系统内冲入惰性气体,乙二醇/干冰(-10.5oC)浴(冰水浴有潜在的危险性)冷却后,在三颈瓶上装上滴液漏斗,敞开另外两个或其中一个颈(最好一端装温度计插入剂中部,另一端安上较短的干燥的没有冷凝水冷凝管),开始向体系中缓慢滴加无水乙醇,观察气泡较慢的产生,保持体系冰冷的温度,约10 分钟后,可细心小量增加滴加速度(观察气泡较慢的产生,和控制温度)。滴加过量的无水乙醇,直至无氢气产生,无明显的块状固体残留,体系变清(溶剂总体积不超过瓶子体积的2/3)。 3)后处理程序:继续滴加少量的50%乙醇, 搅拌2 小时,该处理过程约需3 小时。之后稀盐酸水溶液中和,处理液倒入废液桶中。 4)注意事项:操作小心谨慎,不要让磁子等打破三颈瓶! 方法二: 1)准备程序:钠的处理必须在整理好的通风橱内进行,由主管、组长或其指定的有经验的人来操作,并且第二人在场监察,保证该通风橱内无其他任何化学试剂,必须保证操作范围无水。把灭火砂、消防棉准备好(不要用CO2 灭火器)。 2)操作程序:用一个敞口的容器(塑料盆),里面倒入预冷的无水乙醇,用勺取少量的残余钠放入敞口的容器中,同时不停的搅拌,观察气泡缓慢产生,体系温度不超过45 度。残余的含钠粘状物,可分数次用勺挖出来。在蒸馏瓶里剩下少量残余的粘状物,加入适量的KOH 干燥过的THF 浸泡,再可以向蒸馏瓶里缓慢滴加无水乙醇搅拌,小量分批倒入上述敞口的容器。 3)后处理程序:处理后的溶液放置过夜,检查无固体残渣后,用稀盐酸中和,处理液倒入废液桶中。4)注意事项:切记该法不用冰水冷却。该法不适合在天气潮湿时操作。含钠残余物的转移必须小心谨慎。 金属钾的后处理: 搅拌下将待处理的金属钾一小粒一小粒地加到干燥的叔丁醇中(21ml 叔丁醇/g金属钾),再小心加入无甲醇的乙醇,搅拌,促使其全溶,然后用稀酸中和。 金属锂的后处理: 搅拌下将待处理的金属锂一小粒一小粒小心地加到95% 乙醇中(30ml95% 乙醇/g 金属锂),搅拌,促使其全溶,然后用稀酸中和。

PCR(聚合酶链式反应)原理

PCR(聚合酶链式反应)原理 PCR 是体外酶促合成特异DNA片段的方法,主要由高温变性、低温退火和适温延伸三个步骤反复的热循环构成:即在高温(95℃)下,待扩增的靶DNA双链受热变性成为两条单链DNA模板;而后在低温(37~55℃)情况下,两条人工合成的寡核苷酸引物与互补的单链DNA模板结合,形成部分双链;在T aq酶的最适温度(72℃)下,以引物3’端为合成的起点,以单核苷酸为原料,沿模板以5’→3’方向延伸,合成DNA新链。这样,每一双链的DNA模板,经过一次解链、退火、延伸三个步骤的热循环后就成了两条双链DNA分子。如此反复进行,每一次循环所产生的DNA均能成为下一次循环的模板,每一次循环都使两条人工合成的引物间的DNA特异区拷贝数扩增一倍,PCR产物得以2n的批数形式迅速扩增,经过25~30个循环后,理论上可使基因扩增109倍以上,实际上一般可达106~107倍。 1971年Kleppe等人在Journal of molecular biology上发表文章首次准确、精炼、客观的阐述了PCR方法,1976年一种从嗜热水生菌(Thermus aquaticus)分离得到的热稳定的DNA依赖的DNA聚合酶的应用大大增加了PCR的效率。而现今所发展出来的PCR则是源于由Saiki和Mullis等人于1988年发表在Science上的一篇论文,Mullis当时服务于Perkin Elmer(PE)公司,因此PE公司在PCR界有着特殊的地位。后来PE被Applied Biosystems Inc.(ABI)公司收购、分拆、再转卖,而PCR的专利和倍受信赖的PCR仪器生产和销售就留在ABI名下。到如今,PCR方法愈发趋向自动化,并从中衍生出更多的新技术方法,可以说,PCR技术是支撑现代分子生物学发展的一块重要基石。这种技术的广泛应用催生了一个庞大的市场,多个公司均有各种类型的商品化PCR仪出售。PCR 的专利目前依然掌握在ABI和Roche(罗氏)两大公司手中,去年业界颇为引人瞩目ABI 诉MJ公司侵犯侵犯PCR仪知识产权案最终以MJ败诉并宣布破产、最终被Bio-rad收购暂告一段落。其后还会不会有后继的故事还需拭目以待。 PCR原理 DNA的半保留复制是生物进化和传代的重要途径。双链DNA在多种酶的作用下可以变性解链成单链,在DNA聚合酶的作用下,以单链为模版,根据碱基互补配对原则复制成新的单链,与模版配对成为双链分子挎贝。在体外实验中发现,DNA 在高温时也可以发生变性解链,当温度降低后又可以复性成为双链。因此,通过温度变化控制DNA的变性和复性,并设计与模板DNA的5’端结合的两条引物,加入DNA聚合酶、dNTP就可以完成特定基因的体外复制,多次重复“变性解链—退火—合成延伸”的循环就可以以几何级数大量扩增特定的基因。 发现耐热DNA聚合酶对于PCR的应用有里程碑的意义,该类酶可以耐受90℃以上的高温而不失活,不需要每个循环加酶,使PCR技术变得非常简捷、同时也大大降低了成本,PCR技术得以大量应用,并逐步应用于临床。 从PCR原理可以看出,PCR仪的关键是升降温的步骤。现在偶尔还能听到一些前辈们笑谈早年的PCR实验如何在3个水浴锅中完成的趣闻。经过不断改进,今天的PCR 已经越来越完善和智能化。出于市场推广的战略需要,各厂家的PCR仪型号不同,着力宣传的技术指标和参数也不尽统一,编者在这里简单列出选购时我们认为应该考虑的常用指标,希望有助于大家选购PCR仪的选购技巧。 PCR仪介绍及其选购 P CR仪的种类总体来说可以分为两大类:PCR扩增仪和实时荧光定量PCR仪,普通的PCR扩增仪又衍生出带梯度PCR功能的梯度PCR仪、和带原位扩增功能的原位PCR仪等等。1996年由ABI公司首先推出将扩增和检测融为一体的实时荧光定量

实验小专题(1)仪器的连接及操作的先后顺序

实验小专题(1)仪器的连接及操作的先后顺序 1.某化学小组拟采用如下装置(夹持和加热仪器已略去)来电解饱和食盐水,并用电解产生的H2还原CuO粉末来测定Cu的相对原子质量,同时检验氯气的氧化性。 为完成上述实验,正确的连接顺序为E→(填写连接的字母)。 2.亚硝酰氣(ClNO)常用作催化剂和合成洗涤剂,其沸点为-5.5℃,遇水反应生成一种氢化物和两种氧化物。某学习小组在实验室用Cl2和NO制备ClNO并测定其纯度,进行如下实验(夹持装置略去)。请回答: Ⅰ.Cl2的制备 欲收集一瓶千燥的氯气,选择上图中的装置,其连接顺序为:a (按气流方向,用小写字母表示)。 3.氢化铝锂(LiAlH4)是有机合成中的重要还原剂。某课题组设计实验制备氢化铝锂并测定其纯度。已知: 氢化铝锂、氢化锂遇水都剧烈反应井产生同一种气体。 I.制备氢化锂 选择图1中的装置制备氢化锂(有些装置可重复使用): 装置的连接顺序(从左至右)为A→________________。

4.POCl3是有机合成的催化剂,研究小组利用Cl2、PCl3和H2O在105~109℃下制备POCl3。 已知:①PCl3易被氧化易水解,沸点为76℃;②POCl3易水解,沸点为105.8℃。 装置连接顺序是 A—, C 中盛装的物质是_______ 。 5.某课外小组利用H2还原WO3(黄色)粉末测定W(银白色)的相对原子质量,下图是测定装置的示意图,A中的试剂是盐酸。 请回答下列问题: 实验过程中有下面几步:①加热反应管E,②从仪器A逐滴滴加液体,③由仪器G收集气体并检验纯度,④待E试管冷却后,停止从A中滴加液体。正确的实验操作顺序是; 6.水合草酸亚铁(FeC2O4·x H2O)是生产锂电池的原料,难溶于水,受热易分解。某化学兴趣小组对草酸亚铁的一些性质进行探究。回答下列问题: 为探究草酸亚铁的分解产物,将已恒重的装置A接入下图所示部分的装置(可重复选用)进行实验。打开K1和K2,缓缓通入N2,充分加热。实验后石英玻璃管中固体仅残留一种有磁性的黑色化合物。 实验装置中,依次连接的合理顺序。

1聚合酶链式反应PCR技术

实验1 聚合酶链式反应(PCR)技术 【实验目的】 掌握PCR反应的原理及操作技术。 【实验原理】 PCR 技术实际上是在模板DNA、引物和4 种脱氧核苷酸存在的条件下依赖于耐高温DNA 聚合酶的体外酶促合成反应。PCR 技术的特异性取决于引物和模板DNA 结合的特异性。反应分为三步:1 热变性:在高温条件下,DNA 双链解离形成单链DNA;2 退火:当温度突然降低时引物与其互补的模板在局部形成杂交链;3 延伸:在DNA 聚合酶、dNTPs 和Mg2+存在的条件下,聚合酶催化以引物为起始点的DNA 链延伸反应。以上三步为一个循环,每一循环的产物可以作为下一个循环的模板,几十个循环之后,介于两个引物之间的特异性DNA 片段得到了大量复制,数量可达到10 6~7个拷贝。 【器材与试剂】 1.器材 DNA 扩增仪(PCR 仪)、台式离心机、微量取液器、硅烷化的PCR 小管、琼脂糖凝胶电泳系统 2.材料 模板DNA,单、双链DNA均可作为PCR的样品。 3.试剂 (1) 10×PCR 缓冲液 (2) MgCl2 15mmol/L (3) dNTP 混合物:每种2.5mmol/L (4) Taq DNA 聚合酶:5U/μl (5) 引物1和引物2:2 μmol/L (6) 琼脂糖凝胶电泳试剂 【操作步骤】 1. 在0.2ml Eppendorf 管内依次混匀下列试剂,配制20μl 反应体系。

ddH2O 7.8 μl 10×PCR 缓冲液 2 μl MgCl2(15mmol/L) 2 μl dNTP(2.5mmol/L) 2 μl 引物1 (2μmol/L) 2 μl 引物2 (2μmol/L) 2 μl 模板DNA 2 μl Taq DNA 聚合酶(5U/μL)0.2 μl 总体积20 μl 2.按下述循环程序进行扩增 程序阶段程序名称温度时间循环数 1 预变性94℃ 3 min 1 变性94℃30 sec 2 退火52℃30 sec 30 延伸72℃30 sec 3 保温4℃∞ 1 3.扩增结束后,取10μl 扩增产物进行电泳检测。 【要点提示】 1.在90~95℃下可使整个基因组的DNA变性为单链。一般94~95℃下30~60sec。时间过长使TaqDNA聚合酶失活。 2.退火温度一般在45~55℃。退火温度低,PCR特异性差;退火温度高,PCR特异性高,但扩增产量低。。 3.延伸温度一般在70~75℃。此温度下TaqDNA聚合酶活性最高。一般扩增产物长度小于1 kb,延伸时间30 sec即可。当扩增产物长度大于1 kb时,可适当延长延伸时间。

易燃易爆化学试剂使用规程

易燃易爆化学试剂使用规 程 Prepared on 24 November 2020

易燃易爆化学试剂使用规程 一易燃易爆化学试剂储存注意事项: 储存于阴凉、干燥、通风良好的库房,远离火种、热源。库温不超过25℃,相对湿度不超过75%。包装必须密封,切勿受潮。钯碳、金属钠、氢化铝锂、氢化钠等应与氧化剂、酸类、醇类、卤素等分开存放,过氧化氢与还原剂分开存放,切忌混储。采用防爆型照明、通风设施。禁止使用易产生火花的机械设备和工具。储区应备有合适的材料收容泄漏物并配有灭火器材。 二易燃易爆化学试剂的使用: 1、钯碳 危险性质: 钯碳活性高,遇空气自燃,主要是钯与氧反应大量放热并产生火花,点燃了干燥的活性炭等易燃物质。 使用注意事项: 1.2.1 操作人员应配戴好防护眼镜、防护面罩 1.2.2 称量时会接触空气,因此使用前必须冷冻24小时以上,以减缓称量时钯 碳与空气反应的速度。 1.2.3 双人称量完毕后,用于润湿钯碳的溶剂在使用前也必须冷冻24小时以 上,以降低溶剂被钯碳点燃的可能性。 1.2.4 润湿后的钯碳应马上投入反应釜中,特殊情况下不能立即使用应封口后贴 上标签冰冻保存。 后处理注意事项:

1.3.1 称量操作完毕,应及时清场用饮用水润湿的毛巾将称量工具、台面、操作 区域擦拭干净,地面用饮用水润湿的拖把擦拭干净。 1.3.2 对于盛装过钯碳的容器及原包装,应用饮用水冲洗。 1.3.3 反应完毕后过滤时,滤饼(及钯碳)不能抽干,并及时将钯碳转移至事先 准备好的空玻璃瓶中,用水封存贴上标签,交环境健康部统一处理。 2、金属钠 危险性质: 金属钠为极活泼的软质碱金属,暴露在空气中能自行燃烧并爆炸,使熔融物飞溅,遇水或潮气猛烈反应放出氢气,大量放热,引起燃烧或爆炸。 使用注意事项: 2.2.1 操作区域及周围不允许有水渍,也不得进行带水操作,确认干燥后方能进 行操作。 2.2.2 进行切割金属钠操作时,应在指定地点双人操作,非相关人员不得进入, 操作人员应配戴好防护眼镜、防护面罩及防切割手套,操作地点、操作台面、手套及工用具应保持干燥。操作过程中途操作人员离开操作地点应避免手套及脚下带出金属钠,返回操作地点时也应保持手及脚下干燥。 后处理注意事项: 2.3.1 切钠操作完毕,应及时清场,用镊子将台面、地面的金属钠碎屑收集,与 钠皮一起放入原包装瓶中待处理,用无水甲、乙醇润湿的无水干燥毛巾将切钠工具、台面、操作区域擦拭干净,地面用无水甲、乙醇润湿的无水干燥拖把擦拭干净。对盛装过金属钠的器具先用无水甲、乙醇浸泡清洗10 分钟以上,再用水清洁。

实验二PCR扩增(聚合酶链式反应)

实验二 PCR扩增(聚合酶链式反应) 一、实验目的 1.学习聚合酶链式反应概念及技术方法; 2.掌握聚合酶链式反应操作过程。 二、实验原理(聚合酶链式反应) PCR是聚合酶链式反应,是以单链DNA为模板,4种dNTP为底物,在模板3’末端有引物存在的情况下,用酶进行互补链的延伸,多次反复的循环能使微量的模板DNA得到极大程度的扩增。在微量离心管中,加入与待扩增的DNA片段两端已知序列分别互补的两个引物、适量的缓冲液、微量的DNA膜板、四种dNTP溶液、耐热Taq DNA聚合酶、Mg2+等。 反应时先将上述溶液加热,使模板DNA在高温下变性,双链解开为单链状态;然后降低溶液温度,使合成引物在低温下与其靶序列配对,形成部分双链,称为退火;再将温度升至合适温度,在Taq DNA聚合酶的催化下,以dNTP为原料,引物沿5’→3’方向延伸,形成新的DNA片段,该片段又可作为下一轮反应的模板,如此重复改变温度,由高温变性、低温复性和适温延伸组成一个周期,反复循环,使目的基因得以迅速扩增。因此PCR循环过程为三部分构成:模板变性、引物退火、热稳定DNA聚合酶在适当温度下催化DNA链延伸合成 1.模板DNA的变性 模板DNA加热到90-95℃时,双螺旋结构的氢键断裂,双链解开成为单链,称为DNA的变性,以便它与引物结合,为下轮反应作准备。变性温度与DNA中G-C含量有关,G-C间由三个氢键连接,而A-T间只有两个氢键相连,所以G-C含量较高的模板,其解链温度相对要高些。故PCR中DNA变性需要的温度和时间与模板DNA的二级结构的复杂性、G-C含量高低等均有关。对于高G-C含量的模板DNA在实验中需添加一定量二甲基亚砜(DMSO),并且在PCR循环中起始阶段热变性温度可以采用97℃,时间适当延长,即所谓的热启动。 2.模板DNA与引物的退火 将反应混合物温度降低至37-65℃时,寡核苷酸引物与单链模板杂交,形成DNA模板-引物复合物。退火所需要的温度和时间取决于引物与靶序列的同源性程度及寡核苷酸的碱基组成。一般要求引物的浓度大大高于模板DNA的浓度,并由于引物的长度显著短于模板的长度,因此在退火时,引物与模板中的互补序列的配对速度比模板之间重新配对成双链的速度要快得多,退火时间一般为1-2min。 3.引物的延伸 DNA模板-引物复合物在Taq DNA聚合酶的作用下,以dNTP为反应原料,靶序列为模板,按碱基配对与半保留复制原理,合成一条与模板DNA链互补的新链。重复循环变性-退火-延伸三过程,就可获得更多的“半保留复制链”,而且这种新链又可成为下次循环的模板。延伸所需要的时间取决于模板DNA的长度。在72℃条件下,Taq DNA聚合酶催化的合成速度大约为40-60个碱基/秒。经过一轮“变性-退火-延伸”循环,模板拷贝数增加了一倍。在以后的循环中,新合成的DNA都可以起模板作用,因此每一轮循环以后,DNA拷贝数就增加一倍。每完成一个循环需2-4min,一次PCR经过30-40次循环,约2-3h。扩增初期,扩增的量呈直线上升,但是当引物、模板、聚合酶达到一定比值时,酶的催化反应趋于饱和,便出现所谓的“平台效应”,即靶DNA产物的浓度不再增加。

相关文档
最新文档