肠道菌群变化可引发或改善抑郁症

肠道菌群变化可引发或改善抑郁症

龙源期刊网 https://www.360docs.net/doc/e911878153.html,

肠道菌群变化可引发或改善抑郁症

作者:

来源:《科学大观园》2019年第18期

抑郁症在许多人看来是心理疾病,但是东南大学医学院姚红红教授课题组的一项研究发现,肠道菌群的变化可能导致抑郁症发生,而通过菌群移植可以显著改善抑郁样症状。该成果在线发表于最新一期的在微生物领域知名学术期刊《肠道微生物》上。

抑郁症是一种情感障碍性疾病,由社会、环境和个体三方面因素相互作用引起。具有高发病率、高复发率、高致残率和高自杀率等特点,位居全球疾病总负担第二位。姚红红教授课题组发现,敲除NLRP3(炎症小体)基因的小鼠与野生型同窝小鼠相比,表现出显著的抑郁样行为差异,并且其肠道微生物群的组成显著改变,提示这种行为的差异很有可能是肠道菌群的变化引起的。随后,为了确定肠道微生物在其中发挥的作用,该课题组进行了NLRP3基因敲除小鼠的肠道微生物群的移植,随即发现肠道微生物移植可以避免敲除NLRP3基因引起的自发活动增加,同時也改善了慢性不可预测应激诱导的小鼠抑郁样行为。课题组进一步发现移植肠道菌群可以通过抑制环状RNA-HIPK2(一种新型非编码RNA)在脑内的表达,调节慢性不可预测应激诱导的脑内星形胶质细胞功能障碍,从而显著改善小鼠的抑郁样症状。

该研究与其他同类研究相比有明显的创新,一是首次发现炎症小体基因敲除后的抑郁样行为学和正常对照鼠的不同与其肠道菌群的差异相关,二是炎症小体基因敲除鼠肠道菌群移植显著改善抑郁症鼠行为。该成果揭示了宿主—微生物群相互作用的新机制,即移植NLRP3基因敲除小鼠的肠道微生物群,通过环状RNA-HIPK2调节星形胶质细胞功能障碍改善抑郁症状。该研究有助于阐明肠道微生物群与环状RNA之间的相互作用以及肠道菌群和抑郁症的新关系,为未来抑郁症的治疗和微生物群移植临床应用提供实验依据。

肠道菌群小知识

1代谢作用 ? 提供热量 ? 生产短链脂肪酸 ? 合成维生素K 和叶酸 ? 胆汁酸的分泌 ? 参与药物代谢 2. 免疫效果:正常菌群能刺激宿主产生免疫及清除功能 ? 刺激免疫球蛋白A (IgA )的生产 ? 促进抗炎细胞因子的分泌和下调促炎细胞因子 ? 诱导调节性T 细胞 3. 预防病原体入侵:正常菌群在人体某一特定位粘附,定植和繁殖,形成一层菌膜屏障。通过菌群间存在的生物拮抗作用,抑制并排斥病原体的入侵和群集,调整人体与微生物之间的平衡状态 人类肠道菌群 什么是肠道菌群? 人的肠道内寄居着种类 繁多的微生物,这些微生物 称为肠道菌群。肠道菌群按 一定的比例组合,各种菌间 互相制约,互相依存,它们 与宿主存在着共生关系,共 同维护着宿主的生理平衡。 肠道菌群并非是生来就 有的,当胎儿还在母体子宫 内时,胎儿所处的环境几乎 是无菌的,因此胎儿肠道内 是无菌的,婴儿出生时迅速暴露在母体阴道或皮肤的微 生物下,随着从婴儿到老年 的发展变化,我们的肠道菌 群在出生后几个月迅速增多, 多样性增加,到成年后达到 稳定状态,之后老年时期多 样性渐渐减少[1]。这些微小 的生物群体就这样不知不觉 伴随着我们的一生。 肠道菌群的数量和分类 据推测,正常健康成人 肠道菌群总数高达1×1014, 种类超过1000种,而一个成 年人自身的细胞数量约为 1×1013个,也就是说居住在 我们肠道内的菌群数量是人 体细胞总和的10倍。在胃和 小肠中,细菌的种类相对较少。结肠中,每克肠道内容 物存在1012个细菌细胞,细 菌种类达300-1000种,而其中99%的细菌来自于其中30-40种[2] 。 正常人肠道中包括四种主要的细菌门类:厚壁菌门 Firmicutes (约50-75%,包 括梭菌属),拟杆菌门Bacteroidetes (约10-50%, 包括拟杆菌属、普氏菌属和卟啉单胞菌属),放线菌门 Fusobacteria (约1-10%,包括双歧杆菌),变形菌门 Proteobacteria (常常约少于1%,包括大肠杆菌),其中厚壁菌门和拟杆菌门是人类肠道菌群的主要组成部分。大多数细菌属于拟杆菌属、梭菌属、真杆菌属、瘤胃球菌属、消化球菌属、消化链球菌属、双歧杆菌属。其他属,如埃希氏菌属和乳杆菌属较少。拟杆菌属约占肠道中所有细菌的30%[][3]。 我国科学家在健康年轻人体内观察到的9个属的细菌广泛存在,分别为厚壁菌门的考拉杆菌属、罗氏菌属、Blautia 、 Faecalibacterium 、梭菌属、Subdoligranulum 、瘤胃球菌属和粪球菌属以及来自拟杆菌门的拟杆菌属。这9个属的细菌均具有在人体肠道内发酵产生短链脂肪酸的能力,而短链脂肪酸具有维持人体健康的多重作用,例如充当肠道上皮特殊营养和能量组分,保护肠道黏膜屏障,降低人体炎症水平和增强胃肠道运动机能等[4] 。 Phylum Proporti on (%) [3] 厚壁菌门 Firmicutes 50-75% 拟杆菌门 Bacteroidetes 10-50% 放线菌门 Fusobacteria 1-10% 变形菌门Proteobacteri a 少于1% 肠道菌群的作用 正常肠道菌群具有重要 的自我平衡功能[5]。 肠型 未来某一天,当你走进 医院的时候,医生可能不仅 会询问你的过敏史、血型, 还会问到你的肠型。 来自德国海德堡欧洲分 子生物学实验室(EMBL ) 的科学家们提出了这个概念 ——肠型,他们通过全球性实验国际人体肠道元基因组研究计划,发现以肠道内的 细菌种类和数量划分,人类拥有三种肠型,研究人员把这3种肠型命名为拟杆菌型 (Bacteroides )(肠型Ⅰ)、普雷沃氏菌型(Prevotella )(肠型Ⅱ)和瘤胃球菌型 (Ruminococcus )(肠型Ⅲ),

消化道菌群分布

消化道微生物群落分布及构成具有空间特异性。纵向来看,食管、胃、十二指肠、回肠、空肠和结肠的细菌群落构成及菌量存在差异,各部位细菌数目分别为101~2、104~5、106~7、107~8和1010~12CFU/ml;横向来看,胃液与胃黏膜菌群、粪便与大肠黏膜的菌群构成及数量不尽相同。 消化道真菌群落虽然含量远远低于细菌群落,但同样是消化道微生物群落的重要组成部分。正常情况下,粪便中真菌细胞数为10~103个/g,相应细菌群落含量较高,为1011~1012个/g。人类出生后数天或数周消化道内即出现真菌定植。早期基于培养方法的研究认为,70%健康人消化道内存在真菌,其中大部分为念珠菌和酵母菌等。因受到分类和鉴定方法的限制,有大量与人体相关的真菌仍然未知。 一、食管 早期基于细菌培养的研究认为,食管无菌或仅有少量暂住菌。目前少量针对食管细菌群落高通量测序分析的研究报道,正常食管菌群主要以链球菌属、普里沃菌属和韦荣球菌属为主,多来自于口咽部的定植细菌;食管菌群构成虽复杂但相对稳定,大部分食管内细菌已知并可培养。 有学者将食管菌群构成分两型:Ⅰ型,见于正常食管黏膜,以链球菌属为主;Ⅱ型,见于食管炎和Barrett's食管,以普里沃菌属、拟杆菌属、嗜血菌属和韦荣球菌属等革兰阴性厌氧菌/微需氧菌为主。Ⅰ型至Ⅱ型的转变可能导致食管炎症和肠化。 二、胃、十二指肠 胃酸的酸度很高(pH2-3),以前认为胃内基本无活菌。但是目前少量基于微生物高通量测序的研究证实,胃内除幽门螺杆菌()之外仍有大量其他细菌种属,常见有链球菌、奈瑟球菌和乳酸菌属等。与胃内其他菌群相互影响、相互作用,如乳杆菌、双歧杆菌和酵母菌属等益生菌种可以阻止在胃黏膜的定植、黏附和生长。十二指肠内的细菌与胃类似。 三、结肠、直肠 结肠和直肠则有大量细菌,主要是类杆菌(Bacteroides)、双歧杆菌(Bifidobacterium)、大肠埃希氏菌、乳杆菌、铜绿假单胞菌、变形杆菌(Proteus)、梭菌(Clostridium)等。1克干粪含菌总数在4千亿个左右,约占粪重的40%,其中99%以上是厌氧菌。肠道菌群受饮食、年龄等因素影响很大。多食蛋白质的人,大肠埃希氏菌生长旺盛;以吃淀粉为主的人,乳杆菌较多。哺乳期婴儿的肠道菌群主要是双歧杆菌,占总菌数的90%左右;随着成长,双歧杆菌下降,类杆菌、乳杆菌、梭菌等逐渐增多。婴儿刚出生时肠道是无菌的,1-2小时后就有菌出现。开始时菌种和数量少,随后逐步增多。先定殖的是需氧菌,然后是厌氧菌。因前者生长繁殖需消耗周围微环境中的游离氧,这有利于厌氧菌的繁殖。此过程约1周左右。

肠道菌群研究的主要方法

肠道菌群研究的主要方法 长期以来,为了研究肠道菌群的成员及其功能,科学家们建立和发展了众多技术 手段。经典的微生物学研究方法主要通过对细菌进行纯培养,然后在不同的培养条件下对细菌的生理活性进行研究。而随着分子生物学技术的飞速发展,在对环境中的复 杂微生物群落进行研究时,科学家们越来越多地运用不依赖于培养的方法,全面分析 各种微生物在环境中的活动和对环境的影响。 基于分离培养的方法 在肠道微生物学研究中,科学家们通常使用一定的选择性液体或固体培养基,对 粪便或肠道粘膜、肠道内容物等样本进行培养和富集,并对培养得到的细菌种类进行分析。根据肠道细菌的特性,对肠道菌进行培养通常需要在厌氧的条件下进行,严格 的厌氧和培养基的选择对于肠道菌的分离和生长非常重要。但是,局限于纯培养的方法具有很多不足之处。首先,体外培养体系难以模拟微生物在肠道中自然生长繁殖的条件,因此绝大多数的肠道微生物都还不能通过纯培养的方法得到分离;其次,仅仅依靠形态学和生理生化检测也不能对菌株进行准确的鉴定。因此,在研究肠道菌群结构和功能的研究中,研究者们通常结合分离培养方法和分子生物学方法,对感兴趣的细菌种类进行研究。 二.分子生态学研究方法 分子生态学方法通常以环境中各种微生物的基因组核酸(DNA 或RNA)为研究 对象。在以肠道菌群为对象的分子生态学研究中,研究者们最常使用核糖体小亚基 RNA 基因(细菌中的16S r RNA 基因)的全部或部分序列作为分子标签来代表物种,以基 因序列的多样性代表物种的多样性,从而对菌群的组成结构进行分析。细菌16S r RNA 基因具有广泛性、进化变异小、具备高保守区和高变区(V 区)等特点,同时序列还具有信息 量巨大且更新迅速的公开数据库,如Database Project(RDP)、SILVA 、Greengenes 等等,研究者们可以方便地将自己研究中的16S r RNA基因序列与数据库进行比对,确定细菌的分类地位。类似的,为了对肠道菌群中具有特定功能的类群进行检测,研究者们也建立了以功能基因片段为分子标签的分析方法。 常用的分子生态学分析方法分为两大类:基于DNA 指纹图谱的分析方法和基于DNA 测序技术的分析方法。除此之外,可用于实时定量的荧光定量PCR(Real time quantitative PCR)和荧光原位杂交技术(Fluorescence in situ hybridization, FISH)也是常用的分析手段。DNA 指纹图谱技术依据分子大小、核酸序列等特征的不同,将代表微生物群落中各物种的 DNA 分子标记物在凝胶上进行电泳分离,使代表不同物种的分子标记迁移到胶上的不同位置,最终得到的电泳图谱用于显示群落的组成结构。DNA 指纹图谱的最大优点是方便、快速、直观,常用于检测微生物群落结构的动态变化或比较不同群落之间的结构差异。最常用的DNA 指纹图谱技术包括变性梯度凝胶电泳(Denatured gradient gel electrophoresis,DGGE)和末端片段长度多态性(Terminal restriction fragment length polymorphism, T-RFLP)等。 不同于指纹图谱技术,DNA 测序技术的目的在于通过直接获取序列核酸信息的方法, 对群落中各物种的进化地位作出判断。基于单克隆质粒、转化细胞构建和桑格(Sanger)双脱氧法测序的16S r RNA 基因克隆文库长期以来广泛用于研究群落中微生物组成的方法,已被多次应用于人体肠道菌群的多样性分析,并获得了在物种检测深度和物种鉴定水平上均远远优于DNA 指纹图谱技术的结果 肠道菌群与健康相关研究中的应用

肠道菌群与肠上皮细胞和肠道免疫系统的相互作用机制

4.肠道菌群与肠上皮细胞和肠道免疫系统的相互作用机制 武庆斌(苏州大学附属儿童医院消化科苏州 215003) 哺乳动物的胃肠道寄生着最为复杂的微生物群体,被称之为肠道原籍菌群,新近的研究认为这些细菌有近1000多种。新生儿出生时胃肠道是无菌的,免疫系统几乎没有发育,但很快有种类繁多的细菌定植。随着细菌的定植,肠道菌群的建立,刺激机体产生大量的淋巴细胞和淋巴组织,促进全身免疫系统和粘膜免疫系统的正常发育并逐步成熟,这其中也包括肠相关淋巴组织(gut-associated lymphoid tissues ,GALTs)的发育和成熟。GALTs发育成熟的结果是对肠道原籍菌群的耐受和对病原菌的免疫反应。由于宿主基因易感性,肠道粘膜屏障功能减弱或缺乏恰当的粘膜免疫反应(如免疫耐受丢失),就会导致粘膜对肠道菌群免疫反应失控,甚至引起全身免疫反应紊乱,引起慢性持续性的炎症,如过敏性炎症和炎性肠病(inflammatory bowel disease, IBD)就是例证[1,2] 。 一、肠道菌群对婴幼儿粘膜免疫的作用 和肠道菌群的建立、定植和演替一样,出生时GALTs的活性较低,与新生儿期间,全身免疫系统短时间不成熟是一致的[3,4]。新生儿生后,其外周血中几乎测不到分泌IgA的B型浆细胞——推测这种B细胞是由GALTs衍生出来,然后随血流到达粘膜效应部位。一个月后,这些细胞显著增加,12个月后达到最高峰值。这就意味着有持续不断的微生物和外界环境对GALT的刺激所致。无菌鼠的PP结(Peyer’s patches)发育程度低下:仅有极少的生发中心,数量很少的淋巴细胞,主要是CD4+T 细胞、α-βTCRCD8+细胞和分泌IgA浆细胞;脾脏和淋巴结的少有B-和T-细胞带或区域,异常内皮微血管的过度增生,以致结构不完整[5]。正常的口服饮食抗原免疫耐受能力缺失。恢复大龄无菌鼠的正常肠道菌群,食物抗原的免疫耐受功能依旧缺失。这说明在很早的初级阶段,肠道菌群的建立、定植和成熟,对先天免疫系统和获得免疫的启动有着极其重要的作用。的确肠道菌群通过“入侵”肠上皮细胞和M细胞,对GALTs的发育起着很重要的作用。Gronlund等[6] 研究0~6个月的健康的新生儿时,发现肠道内脆弱类杆菌和双歧杆菌定植的时间越早,外周血中IgA定向细胞的含量可以越早地被检测到;随着肠内脆弱类杆菌和双歧杆菌数目的增加,外周血中的IgA定向细胞的数量也逐渐增加。GALTs在未成熟的初期,允许有2种显著对立作用:1)适度、恰当的针对病毒和细菌病原体的炎症反应调控免疫防御机制的发育;2)促进对食物抗原产生免疫耐受的极其复杂的免疫机制。在婴儿期的肠道菌群不断的、进行的构建和演替过程中,GALTs对这些复杂的肠道菌群产生耐受的同时,也有助于免疫系统诱导产生上述2种功能[3]。 二、肠道粘膜免疫系统的防御机制 肠道粘膜免疫系统是由免疫反应启动的有高度器官化场所和分散在固有层和肠上皮间的效应淋巴细胞等两部分组成的防御系统。外来的抗原物质,如细菌、病毒、食物中的大分子蛋白质等被摄入到GALT(如,PP结)和肠壁淋巴结内,这些高度器官化的二级淋巴器官结构是诱导肠特异性免疫的主要部位。被抗原激活的B细胞和T细胞从诱导场所通过淋巴引流管迁移到肠系膜淋巴结,然后进入血液循环,随着血流最后再归巢到粘膜效应部位。这些效应部位是由抗原特异性的T细胞和B细胞、分化的浆细胞、巨噬细胞、树突状细胞(DC)以及嗜酸性粒细胞、嗜碱性粒细胞和肥大细胞等组成。总之,粘膜免疫系统的诱导部位和效应部位产生粘膜和血清抗体反应,T细胞介导免疫,局部免疫刺激或免疫抑制介质以及系统免疫无能(systemic anergy)[5,7]。 PP结位于肠粘膜下,是诱导肠特异性免疫的主要场所。在PP结圆顶区上分布有微皱褶细胞(microfold cell,M细胞)。M 细胞摄取和转运肠腔的抗原,如肠道病原菌、肠道原籍菌、病毒、食物中的抗原等到肠上皮下圆顶区,在此进行抗原处理和诱导特异性的免疫反应。圆顶区内有以B细胞为主的生发中心淋巴虑泡和以T细胞、巨噬细胞以及DC的滤泡间区。生发中心内含大量增殖淋巴母细

肠道菌群对动物免疫的影响

肠道菌群对动物免疫的影响 作者:李海国文章来源:猪病新干线点击数:85 更新时间:2009-12-5 9:26:05 在动物体内环境中通常有一层微生物或微生物层,在正常情况下即动物处于健康状态时,并未表现异常或致病现象,称这一层微生物为正常菌群或固有菌群和原籍菌群。这些菌群是动物机体内环境中不可缺少的组成部分,对动物宿主是有益无害的。 1 肠道菌群及其分布 肠道正常菌群的概念 在动物体内环境中通常有一层微生物或微生物层,在正常情况下即动物处于健康状态时,并未表现异常或致病现象,称这一层微生物为正常菌群或固有菌群和原籍菌群。这些菌群是动物机体内环境中不可缺少的组成部分,对动物宿主是有益无害的。 肠道菌群的分布 人和动物的胃肠道栖息着大约30属500多种细菌,主要由厌氧菌、兼性厌氧菌和需氧菌组成,其中专性厌氧菌占99%以上,而仅类杆菌及双歧杆菌就占细菌总数90%以上。 肠道个体菌群分为3个部分:⑴生理性细菌与宿主共生关系,为专性厌氧菌,是肠道的优势菌群,如双歧杆菌、类杆菌、优杆菌和消化球菌等是膜菌群的主要构成者,具有营养及免疫调节作用。⑵条件致病菌与宿主共栖,以兼性需氧菌为主,为肠道非优势菌群,如肠球菌、肠杆菌,在肠道微生态平衡时是无害的,在特定的条件下具有侵袭性,对人体有害。⑶病原菌多为过路菌,长期定植的机会少,生态平衡时,这些菌数量少,不会致病,如果数量超出正常水平,则可引起人体发病,如变形杆菌、假单胞菌和常为韦氏梭菌等。口腔内的菌群高度复杂,但经过胃被胃酸破坏,对胃肠道影响很小。 胃的酸性环境极大地抑制了微生物的繁殖,减少了进入小肠的微生物数目。在无酸的胃中细菌数会明显增多。胃内除了幽门螺杆菌或相关的菌种外,大多数是革兰氏阳性的需氧菌,如链球菌、葡萄球菌、奈瑟菌、乳酸杆菌和念珠菌,细菌浓度通常小于103/ml。幽门螺杆菌是真正的胃内细菌,它是引起胃炎的主要致病因子,是溃疡病的重要致病因子。 小肠是个过渡区,肠液流量大,足以将细菌在繁殖前冲洗到远端回肠和结肠,十二指肠和空肠相对无菌,含菌浓度为0~105/ml,主要菌种是革兰氏阳性的需氧菌,包括链球菌、葡萄球菌和乳酸杆菌。在远端回肠中,革兰氏阴性菌开始超过革兰氏阳性菌,经常存在大肠菌类和厌氧菌,含菌浓度为103~107/ml。 通过回盲瓣,细菌浓度急剧增加100倍以上,达1010~1012/ml,厌氧菌超过需氧菌102~104倍,主要的菌种是拟杆菌、真杆菌和双歧杆菌以及厌氧的革兰氏阳性球菌,正常人结肠中主要菌群是相同的,并且在一段时间内保持稳定状态。这些肠道固有细菌在维持肠道功能健康方面具有举足轻重的作用。 2 肠道菌群对动物免疫的影响及机理 肠道菌群形成一个庞大而复杂的微生态系统,有重要的生理意义。包括抵御病原体侵袭、刺激机体免疫器官的成熟、激活免疫系统及参与合成多种维生素、调节物质代谢等作用。 菌群屏障作用 动物的先天性或非特异性免疫应答,亦即机体免疫系统识别和排除各种异物,主要依靠机体的屏障作用,包括正常菌群、机体的皮肤黏膜、补体等体液因子抑菌、杀菌、溶菌等作用、吞噬细胞的吞噬作用等。从现代的研究不难看出,正常菌群在机体的屏障作用中是极为重要的一个方面。

炎症性肠病的肠道菌群变化_杨海静

国际消化病杂志 2013年4月 第33卷 第2期 Int J Dig  Dis,April 25,2013,Vol.33,No.2·综述· 炎症性肠病的肠道菌群变化 杨海静 钟 良 摘要:炎症性肠病(IBD)是一种慢性非特异性肠道炎性疾病,其确切病因及发病机制至今仍不清楚。近年来肠道菌群与IBD发病的关系日益受到关注,多项证据表明IBD患者存在肠道菌群紊乱。此文就IBD患者肠道菌群变化及益生菌在IBD中治疗作用的研究进展作一综述。 关键词:炎症性肠病;肠道菌群;益生菌 DOI:10.3969/j.issn.1673-534X.2013.02.016 作者单位: 200040 上海,复旦大学附属华山医院消化内科 通信作者:钟良,Email:zhongniping @163.com 炎症性肠病( IBD)是一类病因和发病机制尚不十分清楚的肠道炎性疾病,包括溃疡性结肠炎(UC)和克罗恩病(CD)。IBD的发病机制涉及遗传易感性、免疫异常、环境因素和肠道菌群改变等多个方面。至今为止,尽管很多研究着眼于调查一些微生物与IBD的关系,但并未证明引起IBD的特定病原体,尚未发现特异的细菌与IBD的发病有直接关系。目前研究的重点放到了肠道菌群的动态变化上。 1 肠道菌群的基本情况及其生理作用 消化道内的所有菌群在一定范围内波动并保 持着相对稳定的平衡状态,称为肠道微生态平衡[ 1] 。胃、十二指肠及空肠内细菌的种类和数量较少,而结肠内菌群最多;这些肠道菌群由厌氧菌、兼性厌氧菌和需氧菌组成,乳酸杆菌和双歧杆菌约占肠道细菌总数的90%以上, 是肠道菌群的主要成员,并与宿主终生相伴[ 2] 。胃肠道正常菌群对宿主的作用是:(1 )营养作用。肠道中的正常菌群能合成某些维生素,还能产生某些酶类,参与营养物质代谢[ 3] 。(2 )防御作用。正常菌群定植在胃肠道黏膜和肠道内容物中,形成微生态平衡,有效阻止病菌和病毒 等外界微生物的入侵和繁殖[4,5] 。(3) 免疫调节作用。(4)促进生长、抗衰老及抑制肿瘤作用。由此可见,胃肠道正常菌群参与人体的生理、生化、病理和药理过程,与人体形成相互依存、相互受益、相互协调又相互制约的动态平衡统一体,实际上已成为宿主生命必须的组成部分。 2 IBD的菌群变化 研究发现,IBD患者的粪便和肠道黏膜菌群组成与正常人有显著不同。在正常对照组肠道组织中,菌群的多样性较高 [6] ,优势菌群占到了全部菌群 的90%;而在IBD组的肠道中, 菌群多样性较低,且病原菌的比例较高,几乎占30%[2,7]。更有研究[8 ] 指出,CD患者肠道菌群的多样性远比UC患者更低。IBD患者的肠道菌群总数量也发生了变化, 目前相关研究并未得到统一的结果。Ott等[9]研究显 示,UC组肠道菌群总数量较正常对照组下降; 而Fy derek等[10] 研究则显示,IBD组的黏膜相关细菌总数高于正常对照组(P=0.049)。IBD患者肠道 发生了微生态失衡,即有害菌超过有益菌,IBD患者肠黏膜的黏附细菌浓度≥109 /ml ,以脆弱类杆菌和肠杆菌为主,占60%以上,而真杆菌则不到30%[11] 。进一步研究发现,IBD患者的肠道免疫系 统对肠道内已发生变化的菌群不能耐受。肠屏障 功能受损,通透性增高,肠腔内的抗原、内毒素等促炎物质进入肠黏膜固有层, 可诱发免疫反应,最终引起IBD的发生[1 2] 。2.1 肠道菌群在IBD发病中的作用 IBD的发病涉及环境、遗传易感性和免疫异常,发病的触发点可能是肠道内致病菌与正常细菌比例失调。诱发肠道炎性反应的因素有:(1)肠道内致病菌增多,分泌的肠毒素使肠上皮通透性增高;(2 )致病菌分泌免疫抑制性蛋白,导致黏膜免疫失调;(3)致病菌直接侵袭、损伤肠上皮细胞;(4)某些过度生长的细菌影响肠上皮细胞的能量代谢,导致 上皮细胞损伤[13] 。免疫缺陷IBD模型在肠道无菌环境下不发生肠道炎性反应[ 14] ,但在恢复正常肠道菌群状态时则出现肠道炎性反应[15,16] ;大量研究证 明,IBD患者的炎性病变通常优先发生于细菌含量 较多的肠段[17,18] ;这些均表明肠道菌群是形成IBD 的必需条件。 2.2 UC的肠道菌群变化 越来越多的研究认为,免疫调节紊乱是UC关 键的直接发病机制, 而肠道菌群是这种免疫损伤过程的重要激发因素。UC患者的肠道菌群发生了重 · 421·

调节肠道菌群的功能性食品

调节肠道菌群的功能性食品 内容 1.肠道主要有益菌及其作用 2.具有调节肠道菌群功能的物质 第一节概述 人体和动植物体一样,按生态学(ecology)规律在一定的生态环境(ecological environment)中生活,机体与机体外环境生态间或与机体内定居的微生物群之间的关系,分别属于外生物态学或宏观生态学(macroecology)和内生态学或微观生态学(microecology)。为着本文的目的,我们只讨论微观生态学的一些方面。 一、肠道微生态 1. 肠道微生态简介 在长期的进化过程中,宿主与其体内寄生的微生物之间,形成了相互依存互相制约的最佳生理状态,双方保持着物质、能量和信息的流转,因而机体携带的微生物与其自身的生理、营养、消化、吸收、免疫及生物拮抗等有密切关系。 有学者曾提出,一个健康人全身寄生的微生物(主要是细菌)有1271g之多,其中眼1g、鼻1g、口腔20g、肺20g、阴道20g、皮肤200g,当然最多的还是肠道,达1000g,总数为100万亿个(1014),相当于人体细胞数(1013)的10倍。在人体微生态系统中,肠道微生态是主要的,最活跃的,一般情况下也是对人体健康有更加显著影响的。 2.人体肠道菌群及其构成 人类肠道菌群约有100余种菌属,400余菌种,菌数约为1012~1013个/g粪便,占干粪便重1/3以上,其中以厌氧和兼性厌氧菌为主,需氧菌比较少。形态上有拟杆菌、球菌、拟球菌和梭菌。这些细菌产生各种酶,起着对人体有益、无关和有害的作用,有的是肠道定植菌,有的只是一时的过路菌。肠道是一个细菌的寄宿地或者说是一个发酵车间。在人体功能与饮食或药物影响下产生的肠道环境条件的改变,肠道菌群的构成与数量也随之而变化。从而也对机体健康,首先是肠道功能产生重要影响。因而人们要研究并力求保持对人体健康最佳的肠道菌群构成,这便是本节及有关章节的阐述的主要问题。 婴儿在出生之前的肠道是无菌的。在出生同时,各种菌开始在婴儿的肠道内繁殖。最初是大肠菌和肠球菌、梭菌占主体,出生后5天左右,双歧杆菌开始占优势。在婴儿期双歧杆菌保持者绝对优势的状态,母乳喂养儿之所以抗病力强,其理由之一即为肠道内双歧杆菌占绝对优势而起到防御感染的作用。 在婴幼儿期占绝对优势的双歧杆菌从断奶开始直到成年期渐渐显示出减少的趋势,类杆

肠道菌群与粘膜免疫系统

肠道菌群与粘膜免疫系统 Michael H.Chapman , Ian R.Sanderson 英国伦敦大学Barts & The London,圣玛丽医院成人及儿童胃肠病科, Turner Street, 伦敦 E1 2AD ,英国 前言 出生时胃肠道是无菌的,但很快有种类繁多的细菌定植,因此成为人体接触病原微生物的首要部位,甚至90%的微生物是通过胃肠道进入人体的。胃肠道最主要的功能在于摄取营养和维持体液的平衡以驱除有害的微生物和其它一些毒素物质。我们就胃肠道粘膜免疫系统的基本组成及病原微生物如何与其和肠道功能的其它方面相互作用进行综述。 肠道的正常菌丛 出生时胃肠道的粘膜免疫系统的活性较低,与成年人比较淋巴细胞和Payer斑都较少。出生后经口菌群定植很快发生。肠道菌群在不断地发生变化直到成年才变得稳定,且会随着饮食结构的改变而发生变化。例如,母乳中IgA水平在婴儿期就起着非常重要的作用。 胃肠道的菌群总量是非常大的,近50%的粪便是细菌,约为1012/克。随着胃肠道的长度发生变化,其细菌数目和种类也不同。除口腔外,菌落随着胃肠道的延伸而逐渐增多,而胃和近端小肠却只有少量的以革兰氏阳性为主的细菌。菌群在小肠远端和结肠变成一个非常复杂的微生物环境。这些区域也正是炎性肠疾病(IBD)最容易受累的部位,这使我们推测粘膜免疫系统对胃肠道菌群的无效或不正常的反应在这些疾病的发病机制中扮演了非常重要的角色。 胃肠道的菌群总量是非常大的,粪便中近50%是细菌,约为1012/克粪便 由于许多方面的原因定义正常的肠道菌群是非常困难的。已知有超过500种不同种类的微生菌群在肠道定植,在回肠末端及结肠部的主要定植菌群包括乳酸杆菌、双歧杆菌、肠球菌和拟杆菌[1-2]。由于许多菌群无法在体外进行培养因而对其研究也一度受到阻碍,近来,借助于新的研究方法如变性梯度凝胶电泳(DGGE)和荧光原位杂交(FISH,利用菌群特异性探针对其进行组织定位)使对这些菌群研究取得重大进展。肠腔和其相关联的粘膜上微生物菌群的数量和类型也是有差别的[3]。粘膜相关菌

肠道菌群失调症的研究进展

肠道菌群失调症的研究进展 王晓华1a,夏文涵1b,王晓刚2,黄广萍2 (1.南昌市卫生学校a.免疫及微生物教研组; b.解剖教研组,南昌330006; 2.南昌市第一医院检验科,南昌330008) 关键词:肠道菌群;肠道菌群失调症;研究进展 中图分类号:R446.5 文献标识码:A 文章编号:1009-8194(2007)08-0136-03 健康人群的胃肠道内寄居着种类繁多的微生物,这些微生物被统称为肠道菌群[1]。种类不同的肠道菌群按一定的比例组合,各菌间互相拮抗,互相协同,在质和量上形成一种动态生物平衡,一般情况下,肠道菌群与人体和外部环境保持着一个平衡状态,对人体的健康起着重要作用。但在某些情况下,这种平衡可被打破形成肠道菌群失调,引发疾病或者加重病情,引起并发症甚至发生多器官功能障碍综合征和多器官功能衰竭[2]。这种由于敏感肠菌被抑制,未被抑制的细菌便乘机繁殖,从而引起菌群失调,导致其正常生理组合被破坏,产生病理性组合,引起临床症状就称为肠道菌群失调症[3](alteration of intestina flor a)。近年来因肠道菌群失调而导致临床发病的机率约为2%~3%。为更好的预防和治疗因肠道菌群失调而致的不良后果,本文针对肠道菌群的特点与机能、肠道菌群失调症病因病理学改变、分类、检查、治疗和预后等相关研究作如下综述。 1 肠道菌群特点 肠道内的细菌是一个巨大而复杂的生态系统,一个人的结肠内就有400个以上的菌种,从口腔进入胃的细菌绝大多数被胃酸消灭,剩下的主要是革兰阳性需氧菌[4],胃内细菌浓度<103 10-3CF U/L(CFU:colony form ing unit菌落形成单位)。小肠菌的构成则介于胃和结肠之间。学者们为了将研究更为细致化,按照Dubos法将主要菌种如类杆菌属,双歧菌属和真杆菌属等根据其存在模式分成三大类:(1)与宿主共生状态的原住菌(autochlho no us m icrobio ta);(2)普遍存在于某种环境的普通菌(nor mal m icrobito ta);(3)偶然进入宿主的病原菌(pathog ens)。依照肠道菌群所持有合成维生素,协助营养素的消化和吸收,产生糖皮质激素作用增强因子,产生过氧化氢、硫化氢及其各种酸、抗生素等物质并结合其对宿主免疫机能的影响力,在机体感染防御中起积极作用这一生理学机能,我们不难理解肠道菌群具有相互影响的特点,任何打破其内外环境的举措都可导致菌群的失调。 2 肠道菌群失调症的发病机制 2.1 病因学 1) 饮食因素:运用测定细菌酶类的方法研究菌丛代谢活性的结果表明,饮食可使粪便菌丛发生明显改变。无纤维食物能促进细菌易位。G unffip等[5]用大鼠作试验研究,结果表明食物纤维能维持肠道菌群正常生态平衡,且细菌代谢纤维的终产物对小肠上皮有营养作用,纤维能维持肠黏膜细胞的正常代谢和细胞动力学。M acF ie[6]报道加入纤维的低渣饮食对保存肠的结构和功能有好的效果,纤维的保护作用是否通过直接刺激肠黏膜或诱导释放营养性胃肠激素尚不清楚。食物纤维能减少细菌易位,但不能使屏障功能恢复至正常。 2) 菌丛的变化因素:菌丛组成可因个体不同而存在差异,但对同一个人来说,在相当长的时期内菌丛组成十分稳定。每个菌种的生态学地位由宿主的生理状态、细菌间的相互作用和环境的影响所确定[7]。在平衡状态下,所有的生态学地位都被占据。细菌的暂时栖生可使生态平衡发生改变。 3) 药物的代谢因素:肠道菌丛在许多药物的代谢中起重要作用[8],包括乳果糖、水杨酸偶氮磺胺吡啶、左旋多巴等。任何抗生素都可导致结肠菌丛的改变,其取决于药物的抗菌谱及其在肠腔内的浓度。氯林可霉素和氨苄青霉素可造成大肠内生态学真空状态,使艰难梭菌增殖。应用甲氰咪胍等H2 受体拮抗剂可导致药物性低胃酸和胃内细菌增殖。 4) 年龄因素[9]:随着年龄的增高,肠道菌群的平衡可发生改变,双歧菌减少,产气荚膜梭菌增加,前者有可能减弱对免疫机能的刺激,后者导致毒素增加使免疫受到抑制。老年人如能维持年青时的肠道菌群平衡,也许能够提高免疫能力。 5) 胃肠道免疫功能障碍因素[10]:胃肠道正常免疫功能来自黏膜固有层的浆细胞,浆细胞能产生大量的免疫球蛋白,即分泌型IgA,此为胃肠道防止细菌侵入的主要物质。一旦胃肠道黏膜合成单体,或双体Ig A,或合成分泌片功能发生障碍,致使胃肠道分泌液中缺乏分泌型Ig A,则可引起小肠内需氧菌与厌氧菌过度繁殖,从而造成菌群失调,引起慢性腹泻。无症状的Ig A缺乏者,小肠内菌群亦可过度繁殖。新生儿期菌群失调发生率较高,亦可能与免疫系统发育未成熟或不完善有关。 2.2 病理改变 1) 细菌生长过盛:胃肠道的解剖和生理学异常会导致近段小肠内结肠型丛增殖,而出现各种代谢紊乱[11],包括脂肪泻,维生素缺乏和碳水化合物吸收不良。并可伴发生于小 收稿日期:2007-06-04

肠道菌群与婴儿免疫影响的相关性

肠道菌群与婴儿免疫影响的相关性 1 2 3 4 婴儿时期肠道菌群开始定殖,形成了数量众多、种类丰富的肠道菌群,但是其定殖情况 5 并不稳定,随着婴儿的生长,肠道微生物组会有很大的变化,直到三岁左右趋于稳定,稳定 6 的肠道微生物定殖对婴儿健康起着重要的作用。不稳定的肠道菌群定殖会对婴儿免疫系统产 7 生潜在的影响。本文从婴儿免疫系统特点入手,通过婴儿肠道菌群与免疫关系试图阐述肠道 8 微生物免疫作用机制。 9 1 婴儿肠道免疫 10 在胚胎发育早期,初级免疫器官骨髓和胸腺开始发育,非特异性免疫在胎儿时期血液循 11 环系统形成,血细胞分化成熟后即形成了单核-吞噬细胞,阻止病原菌的入侵。随着婴儿的 12 生长,特异性免疫也逐步形成。 13 肠道是人体最大的免疫器官。伴随着婴儿免疫系统发育,肠道上皮细胞也在逐渐发育 14 成熟。有研究表明,婴儿T细胞受体及其分化群辅助性T细胞及细胞毒性T细胞可以在胚 15 胎发育阶段被检测到,胚胎发育18周可以在肠道上皮细胞的固有层检测到。出生后的婴儿 16 几乎拥有完整的T细胞,从而进行非特异性免疫。B细胞在胚胎时期婴儿的肝脏及出生后骨 17 髓中分化形成,B细胞产生抗体,婴儿出生后这些细胞需要抗原刺激发生后渗透到肠道中, 18 并在肠道中释放抗体,在肠道中抗体主要是免疫球蛋白A。树突状细胞对婴儿免疫应答起了 19 很重要的作用,树突状细胞产生不同的信号,趋使Th细胞(辅助性T细胞)分化为Th1、 20 Th2细胞及Treg细胞。Treg细胞可以抑制其他免疫细胞的效应功能,特别是T细胞。它们21 在婴儿免疫平衡、自身免疫和过敏反应预防中发挥关键作用[2]。 22 2 肠道菌群对婴儿免疫细胞及免疫因子影响 23 婴儿肠道菌群对婴儿免疫细胞及免疫因子的产生均有一定的影响,同时对于婴儿常见的 24 免疫系统疾病也有着密切的关系。 25 2.1肠道菌群与婴儿免疫系统 肠道菌群可以增加婴儿先天免疫及后天性免疫的免疫应答。无菌新生鼠中肠道菌群定殖 26 27 会确保NK细胞的适量累积,适量的NK细胞同时会阻止病原菌的黏附,减少患病概率。有 28 研究者证实,给无菌的新生小鼠定殖脆弱拟杆菌,体内NK细胞不会过度积累,这样可以降 低成年后患病的风险。还有研究者认为复杂的菌群会影响婴儿的免疫系统。成年后机体免疫29 30 球蛋白E含量取决于婴儿肠道菌群的多样性,多样性越高,成年后IgE增长趋势越明显。 有研究者采用小鼠进行动物实验,发现发酵乳杆菌的摄入促进小鼠脾淋巴细胞分化产生Th1 31 32 细胞,同时小鼠粪便中检测到高浓度的免疫球蛋白A。研究证明肠道微生物能够诱导人体产 33 生IgG,从而抑制病原菌的感染。双歧杆菌同样对婴儿免疫系统产生影响,研究者将双歧杆 菌作用于外周血单核干细胞,发现双歧杆菌可以极大地刺激IL-10和TNF-α的产生,促进机 34 35 体免疫反应。另有研究发现肠道微生物能够对抗肺炎链球菌。研究者采用小鼠体内实验,发 36 现肠道菌群可以上调肺泡巨噬细胞的代谢途径,加强巨噬细胞功能,促进细胞因子TNF-α 37 及IL-10的产生。 38 2.2 肠道菌群与婴儿免疫性疾病 39 婴儿免疫力低下表征可能为湿疹、过敏性皮炎及哮喘等疾病,这些免疫疾病与婴儿肠道

肠道菌群研究方案设计汇总

肠道菌群研究方案设计汇总 研究菌群与疾病,从整体上看,无外乎三种模式:关联关系探究、因果关系探究和应用菌群干预疾病的研究。其实这三点即独立也相互关联。 一、疾病与菌群关联关系类研究 ①特征菌群类研究 此类研究目的主要是客观地描述人体菌群组成的特征,解释某种疾病或现象与其共生菌群的关系。 研究思路: 此类研究方法相对比较简单,设立疾病组和健康组,通过大样本量对比研究,确定特定人群的特征微生物组成。目前此类文章已经发表了很多很多,几乎各种疾病与肠道菌群的关系都有涉及,如今想发高分文章,选题角度一定要新颖,而且一般需要的样本量较大,最好能再结合代谢组学等其他组学做多组学关联分析,在找到差异菌群的同时,对差异的代谢通路进行关联分析,这样文章相对比较容易上档次。 ②菌群影响因素类研究 影响肠道菌群的因素有很多:遗传、生活方式、饮食习惯、运动、生活环境等都是影响肠道菌群平衡的重要原因。 例如:对新生婴儿菌群组成影响因素的研究,比如分娩方式、孕期饮食、喂养方式(母乳、提前添加辅食、配方奶粉)、早产儿等,研究对婴儿肠道菌群影响的因素,对后续指导和维护婴儿健康有重要的作用。

二、疾病与菌群因果关系类研究 ①细菌功能验证及疾病机理研究 潜在致病菌或有益菌的功能验证及疾病机理研究思路: 1.确定一种或几种目标菌,利用动物实验对该菌进行验证,通过分析临床理化指标,探讨该菌与疾病的关系。 2.收集处理后动物模型粪便样本,测序,探讨该菌如何影响肠道菌群致病或改善疾病; 3.结合临床指标、理化结果、微生物结果,综合分析作用机制。 ②疾病的发生发展与菌群相关性研究 研究思路:

三、菌群干预类研究 肠道菌群研究常用的干预手段: 研究思路: 1.研究治疗手段(不同药物干预、同药物不同剂量干预、干预不同天数、益生菌、粪菌移植等)对疾病的治疗效果(临床指标、理化指标等)。基于临床指标判断治疗效果。 2.比较疾病组、疾病干预组、及健康对照组微生物组成的差异 3.验证治疗手段是否是通过改变菌群后治疗效果 至于具体的研究方法,其实现在研究肠道菌群的方法无外乎16S rRNA 测序/宏基因组学测序+代谢组学,可以说这是目前最流行的做法了。代谢组学相对更接近表型,基因测序与代谢组学的结合,能够更全面的阐述深层次的机制问题。

肠道菌群与免疫

肠道菌群与免疫 丁文京,北美医学教育基金会 哺乳动物胃肠道有大量和多样化的共生细菌。近些年来的研究逐渐证明我们的健康高度依赖于肠道共生菌对免疫的贡献。宿主和肠道共生菌的和谐关系以及肠道菌群对免疫的作用是数百万年的共同进化的结果。胃肠道是一个由一个有组织的由宿主真核细胞组成的动态生态系统。这个系统包括一个全功能的免疫系统和无数的栖息在胃肠道,主要是肠道,特别是大肠,各种各样的微生物。使用分子学方法对胃肠道菌群的分析表明细菌种群之间有很大差异性,而在菌群个体则表现为出现的相对稳定性。哺乳动物的免疫系统和肠道菌群的动态平衡对健康至关重要。二者之间需要保持稳定的共生和互惠关系。了解适应性免疫和定植在肠道大量各种菌群的相互关系,以及原始的先天免疫和肠道菌群的整合对胃肠免疫稳态,预防和治疗疾病有重要的意义。 肠道的免疫细胞可能需要微生物来源对其分化。我们已经知道肠道内免疫细胞对某些特殊的菌群存在选择性反应,肠道内哪些细菌参与和影响了免疫系统的发育和功能,以及这些细菌的免疫特点是当前研究的一个焦点。随着研究的广泛开展和逐渐深入,这一神秘面纱正在逐渐被披露出来。 2010年8月发表在《科学(Science)》一篇报道指出正常情况下,树突状细胞(Dendritic cells (DCs))在防止T细胞对肠粘膜不起反应,因此在保持肠道的免疫耐受方面起重要作用。但是,当环境发生变化时,树突状细胞可以激活T细胞,其细胞上的β-链蛋白对树突状细胞起重要的调节作用。当从小鼠的肠道清除β-链蛋白后,调节T细胞的活性和抗炎细胞因子的作用明显降低,而亲炎症的辅助T细胞1和17以及其细胞因子上升。树状细胞缺少β-链蛋白的小鼠表现出对肠炎的敏感性增加。 Daehee Han等人2013年在《免疫(Immunity)》发表文章“树突状细胞信号分子TRAF6的表达是肠道菌群相关的免疫耐受的关键”报道了题目的研究成果。题目指出细胞内信号分子TRAF6是Toll样受体(TLR)在激活树突状细胞过程中起关键作用。当特异性去除树突状细胞信号分子TRAF6后导致丧失粘膜免疫耐受。与此同时,小肠粘膜固有层的T辅助细胞2(Th2细胞)发育和出现嗜酸性粒细胞性肠炎和小肠细胞纤维化。免疫耐受消失需要肠道共生菌存在,但是依赖树状细胞表达MyD88。TRAF6小鼠显示小肠调节性T细胞(Treg)数量减少和诱导iTreg细胞对新型抗原的反应消失。这些结果显示免疫缺陷和树状细胞表达白细胞介素2(IL-2)减少有关。他们还发现在traf6ddc 小鼠Th2细胞相关的反应表现异常。这种免疫缺陷可以通过调节性T细胞活性的恢复。由此他们认为TRAF6在指导树状细胞通过Treg 和Th2细胞免疫保持肠道免疫耐受中起作用。 S Mashoof等人研究切除了胸腺和没有切除胸腺的幼体非洲爪蟾肠道菌群与T淋巴细胞的影响。他们用焦磷酸测序的16S核糖体RNA基因评估胃,小肠和大肠细菌群体中的相对丰度。他们发现整个胃肠道里梭菌科和黄杆菌是所有菌群中含量最丰富的细菌。切除了胸腺和没有切除胸腺的幼体非洲爪蟾,通过UniFrac分析显示两种胃肠道菌群分布无显着差异。他们的研究结果与以前切除胸腺后对肠粘膜免疫球蛋白水平没有显著改变的研究结果一致。这个发表的《自然》的研究结果揭示胸腺对胃肠免疫没有影响。 虽然科学研究证明微生物诱导的细胞因子反应参与肠道内环境稳定,但在稳定状态下的细胞因子平衡和单个细菌物种在建立这种稳态平衡中所起的作用仍然不清楚。Routhiau等人2009年在《免疫(Immunity)》发表了题目为“分段丝状菌在肠道内的辅助性T细胞的反应协调成熟的关键作用”的文章。他们在无菌小鼠做的研究系统性分析表明,无论是菌群还是单个菌种的促炎反应T辅助细胞1(Th1细胞),Th17细胞和调节性T细胞的反应,都不能有效地刺激肠道T 细胞的反应。他们发现分段丝状菌,一种非培养的梭状芽胞杆菌相关的物种,可以在很大程度上

肠道菌群的重塑

两篇Nature:饮食快速改变肠道菌群,第二基因组可在24h 内重塑 来自生物探索 俗话说得好,你吃什么决定了你是怎样的人,然而,新的证据表明,你的饮食决定了你的肠道菌群。哈弗大学曾在《Nature》杂志上揭示了饮食可在一天之内改变肠道菌群的数量及基因表达种类,但该结果出自于动物模型,改变饮食对人类肠道菌群的影响以及这种影响在不同人群中有何差异尚未清楚。 日前,《Nature Reviews Microbiology》报道了改变饮食对人类肠道菌群的影响。研究者Peter Turnbaugh表示,“在此项研究中,我们首次看到了在一天之内,一种新的饮食方式可重塑微生物群落,且这种变化具有一致性和可逆性。 改变饮食对肠道菌群的影响比想象的快 越来越多的证据表明肠道微生物不仅起消化作用,还对整体健康有影响,本文第一作者、前哈弗大学研究员现任杜克大学助理教授Lawrence David表示,操纵这些微生物可为某些疾病的治疗提供新思路。“这项研究最令人兴奋之处是揭示了改变饮食对人类肠道菌群的影响比想象的更快,这表明通过宿主的行为来改变肠道菌群是可行的。” 在本次研究中,研究人员招募了11名志愿者,收集了每名志愿者不同时期的肠道微生物组。志愿者在四天基线期内正常饮食,研究人员详细记录每名志愿者的饮食。基线期过后,每名志愿者在五天内连续食用素食,包括燕麦、大米、洋葱、番茄、南瓜、大蒜、豌豆、扁豆、香蕉、芒果、木瓜。与正常饮食期一致,研究人员记录志愿者的每日饮食及肠道菌群的变化情况。五日之后,志愿者回归正常饮食经历一个六日“清除期”,以确定食物消化引起的肠道菌群变化如何迅速恢复。随后,每名志愿者连续五日食用动物制品:早餐食用熏肉和鸡蛋,午餐食用排骨和牛腩,晚餐选择性食用意大利腊肠、火腿和奶酪,零食

鱼类肠道正常菌群研究进展_宋增福

第26卷第8期2007年8月 水产科学 F I S H E R I E S S C I E N C E V o l .26N o .8 A u g .2007 鱼类肠道正常菌群研究进展 宋增福1 ,吴天星 2 (1.上海水产大学生命学院,上海 200090;2.浙江大学化学系,浙江 杭州 310027) 关键词:鱼;肠道;正常菌群中图分类号:S 917.1 文献标识码:C 文章编号:1003-1111(2007)08-0471-04 收稿日期:2006-10-19; 修回日期:2006-11-29. 作者简介:宋增福(1971-),男,博士,研究方向:水产微生态与疾病防治;E-m a i l :z f s o n g @s h f u .e d u .c n .通讯作者:吴天星(1963-), 男,教授,博士生导师,研究方向:动物营养学与饲料科学;E-m a i l :w u t x @t i a n b a n g .c o m 鱼类肠道正常菌群是肠道的正常组成部分;是肠道微生物与宿主以及所处的水生环境形成的相互依赖、相互制约的微生态系;对营养物质的消化吸收、免疫反应以及器官的发育等方面具有其他因素不可替代的作用,并且影响到鱼类的生长、发育、生理和病理。笔者拟就鱼类肠道菌群的形成、结构与数量、生理功能以及影响菌群结构的因素、与益生菌的关系等方面加以综述。 1 鱼肠道正常菌群的形成 研究表明细菌最初的定植过程在幼鱼发育阶段是非常复杂的,通常受到多种因素的影响,但主要是决定于鱼卵表面、活的饵料和幼鱼饲养水体中的细菌[1-2]。处于孵化阶段的幼鱼具有一个发育不完全的消化道,其内是无菌的。处于孵化过程中的幼鱼主要依靠卵黄来供给营养物质,当其从卵中孵化出来,一旦接触到周围的水生环境和活饵料,多种细菌就开始在肠道上皮定植[3-7]。M r o g a 等[6]研究发现肠道菌群的主要来源是所摄取的活饲料而不是养殖水体。另有结果表明,最先定植的细菌能调节上皮细胞的基因表达,从而使最先定植的细菌与宿主肠道环境相适应,并且可以阻止在这个生态系统中后来的细菌的定植。因此,最初的细菌定植与成年最终稳定的肠道菌群组成结构具有高度相关性。然而,也有的试验结果表明肠道的菌群与鱼的饲料和水体环境中的细菌并不相同[8]。 2 鱼类肠道菌群的特性、组成及数量 鱼类肠道菌群细菌种类繁多,数量极大。有研究报道指出,淡水鱼肠内细菌的数量基本为105~108[9],而海水鱼肠内细菌的数量为106~108[10]。肠道的优势细菌为革兰氏阴性菌,同时也存在革兰氏阳性菌[11]。 由于鱼类的生存生长环境与陆生动物不同,因此,在肠道微生态系中其细菌的某些生理生化特征也表现出特异性。S m i t h 对鱼的肠道的大肠杆菌进行研究时就发现,鱼肠道的大肠杆菌可以液化明胶,不产生吲哚,而这些特性是从陆生动物肠道分离的大肠杆菌所不具备的。 不同种类的鱼之间,由于所处的水体环境、食性等因素,其肠道细菌组成和结构也不尽相同的。研究表明淡水鱼类肠道内专性厌氧菌以A 、B 型拟杆菌科等为主 [11-12] ,好 氧和兼性厌氧细菌则以气单胞菌属、肠杆菌科等为主[9]。乳酸菌在陆生动物是常驻菌,而在鱼类也是肠道菌群的组成部分。R i n g 等[13-19]曾对乳酸菌进行了系统研究。王红宁[20]对淡水养殖池中的鲤鱼肠道的菌群结构研究发现,在鲤鱼肠道中的需氧和兼行性厌氧菌的数量依次为:气单胞菌、酵母菌、大肠杆菌、假单胞菌、葡萄球菌、需氧芽孢杆菌。气单胞菌和酵母菌的数量更多。可以认为是肠道里的优势需氧、兼性厌氧菌。厌氧菌的数量依次是:拟杆菌、乳酸杆菌、梭状芽孢杆菌,其中拟杆菌数量最多,可以认为是肠道中的优势厌氧菌。尹军霞等[21]对淡水养殖池中的4种不同食性鱼—乌鳢、鲢、鳊、鲫的肠道壁菌群进行了定性、定量分析,发现不论是好氧菌还是厌氧菌,同种鱼前肠壁分布一般比中肠壁和后肠壁少;同一肠段相比,都是厌氧菌总数远大于好氧菌总数,一般相差2~3个数量级;不同鱼种之间,肠壁的好氧菌总数差别比厌氧菌总数差别大得多;厌氧菌中的乳酸球菌和双歧杆菌具有一定的正相关性。4种鱼肠道壁中的厌氧菌总数和双歧杆菌分布的规律是:肉食性的乌鳢>杂食性和广食性的鲫>食浮游植物为主的鲢>草食性的鳊,即鱼类肠道壁中的厌氧菌总数和双歧杆菌随着从草食性向肉食性发展而逐渐增加。R a c h e l 等[22]从淡水扁鲨和O s c a r s 以及南方比目鱼中分离到梭菌、革兰氏阴性菌属的梭菌、拟杆菌等细菌。因此,鱼类肠道的菌群组成结构随着鱼种类、食性、生长的环境的不同而呈现出差异。 3 鱼类肠道正常菌群的生理功能 肠道正常菌群在鱼类的生长发育过程中担当非常重要的作用,它既要参与营养物质的消化和吸收,同时又要担当机体的防御功能,维护机体的健康。3.1 营养功能 根据微生态的三流运转理论,微生态系统中存在能源 流动、物质交换和基因传递。动物、人类及植物的组织细胞与正常微生物之间以及正常微生物与正常微生物之间都存在着能源的交换。电镜观察发现肠上皮细胞表面的微绒毛与菌体细胞壁上的菌毛极为贴近,并有物质交换的迹象。 在鱼类肠道微生态环境中,正常菌群的建立通常被认为是对动物发育不完全肠道酶系的有益补充,尤其是在幼鱼发育阶段。它能合成分泌一些天然食物中不含有而宿主 DOI :10.16378/j .cn ki .1003-1111.2007.08.012

相关文档
最新文档