基于单片机的热敏电阻测温系统设计

基于单片机的热敏电阻测温系统设计
基于单片机的热敏电阻测温系统设计

第1章绪论

1.1 热敏电阻

热敏电阻器是敏感元件的一类,按照温度系数不同分为正温度系数热敏电阻器(PTC)和负温度系数热敏电阻器(NTC)。热敏电阻器的典型特点是对温度敏感,不同的温度下表现出不同的电阻值。热敏电阻是开发早、种类多、发展较成熟的敏感元器件。热敏电阻由半导体陶瓷材料组成,热敏电阻是用半导体材料,大多为负温度系数,即阻值随温度增加而降低。温度变化会造成大的阻值改变,因此它是最灵敏的温度传感器。但热敏电阻的线性度极差,并且与生产工艺有很大关系。制造商给不出标准化的热敏电阻曲线。热敏电阻体积非常小,对温度变化的响应也快。但热敏电阻需要使用电流源,小尺寸也使它对自热误差极为敏感。

1.2 工作原理

负温度系数热敏电阻主要材料有氧化锰、氧化钴、氧化镍、氧化铜和氧化铝等金属氧化物为主要原料,采用陶瓷工艺制造而成。这些金属氧化物材料都具有半导体性质,完全类似于锗、硅晶体材料,体内的载流子数目少,电阻较高;温度升高,体内载流子数目增加,自然电阻值降低。负温度系数热敏电阻类型很多,使用区分低温(-60~300℃)、中温(300~600℃)、高温(>600℃)三种。

1.3 热敏电阻的特点

1.灵敏度较高,其电阻温度系数要比金属大10~100倍以上,能检测出10-6℃的温度变化;

2.工作温度范围宽,常温器件适用于-55℃~315℃,高温器件适用温度高于315℃(目前最高可达到2000℃),低温器件适用于-273℃~55℃;

3.体积小,能够测量其他温度计无法测量的空隙、腔体及生物体内血管的温度;

4.使用方便,电阻值可在0.1~100kΩ间任意选择;

5.易加工成复杂的形状,可大批量生产;

6.稳定性好、过载能力强。

第2章单片机介绍

2.1 单片机

单片机(Single chip microcomputer)微型计算机简称单片机,是典型的嵌入式微控制器(Microcontroller Unit),常用英文字母的缩写MCU表示单片机,单片机又称单片微控制器,它不是完成某一个逻辑功能的芯片,而是把一个计算机系统集成到一个芯片上。单片机是一种集成电路芯片,是采用超大规模集成电路技术把具有数据处理能力的中央处理器CPU、随机存储器RAM、只读存储器ROM、多种I/O口和中断系统、定时器/计数器等功能(可能还包括显示驱动电路、脉宽调制电路、模拟多路转换器、A/D转换器等电路)集成到一块硅片上构成的一个小而完善的微型计算机系统。

2.2 STC单片机

STC单片机的供应商是以51内核为主的系列单片机,STC单片机是宏晶生产的单时钟/机器周期的单片机,是高速、低功耗、超强抗干扰的新一代8051单片机的供应商,指令代码完全兼容传统8051,但速度快8—12倍,内部集成MAX810专用复位电路。4路PWM 8路高速10位A、D转换,针对电机控制,强干扰场合。

2.2.1 STC单片机特点

1 .I/O口经过特殊处理

2 .轻松过2KV/4KV 快速脉冲干扰(EFT测试)

3 .宽电压,不怕电源抖动

4 .宽温度范围, -40℃~85℃

5 .高抗静电(ESD保护)

6 .单片机内部的时钟电路经过特殊处理

7 .单片机内部的电源供电系统经过特殊处理

8 .单片机内部的看门狗电路经过特殊处理

9 .单片机内部的复位电路经过特殊处理

第3章硬件设计

3.1总设计框图

温度测量模块主要为温度测量电桥。首先通过热敏电阻进行温度采集,然后利用模数转换器进行模数转换,再经过单片机进行处理,最后通过LED数码管显示温度。

图 3-1 系统总设计框图

3.2 温度测量

基于热敏电阻设计的电路原理图如图3-2所示,其工作原理为:

(1)将P1.0设为低电平,P1.1、P1.2为低电平,Q1导通,J1、J2截止,使C4放电至完全,P3.2为高电平

(2)将P1.0设为高电平、P1.1为高电平,P1.2为低电平,Q1截止,J1导通,J2截止,通过R4电阻对C4充电,单片机内部计时器清零并开始计时,检测P3.2口状态,当P3.2口检测为低电平时,即C4上的电压充至完全,单片机计时器记录下从开始充电到P3.2口转变为低电平的时间TSC

(3)将P1.0设为低电平,P1.1、P1.2为低电平,Q1导通,J1、J2截止,使C4放电至完全,P3.2为高电平

(4)将P1.0设为高电平、P1.1为低电平,P1.2为高电平,Q1截止,J2导通,J1截止,通过RT电阻对C4充电,单片机内部计时器清零并开始计时,检测P3.2口状态,当P3.2口检测为低电平时,即C4上的电压充至完全,单片机计时器记录下从开始放电到P3.2口转变为低电平的时间TEC

可以得到:TSC/R4=TEC/RT,即RT=TEC×R4/TSC

通过单片机计算得到热敏电阻RT的阻值。并通过执行程序可以得到温度值。

从上面所述可以看出,该测温电路的误差来源于这几个方面:单片机的定时器精度、R4电阻的精度、热敏电阻RT的精度,而与单片机的输出电压值、门限电压值、电容精度无关。因此,适当选取热敏电阻和精密电阻的精度,单片机的工作频率够高,就可以得到较好的测温精度。当单片机选用12MHz频率,R4、RT均为1%精度的电阻时,温度误差可以做到小于1℃。

图3-2 测温电路原理图

3.2 STC89C51介绍

STC89C51是一种带4K字节FLASH存储器的低电压、高性能CMOS 8位微处理器,俗称单片机。由于将多功能8位CPU和闪速存储器组合在单个芯片中STC89C51是一种高效微控制器,STC89C2051是它的一种精简版本。STC89C51单片机为很多嵌入式控制

系统提供了一种灵活性高且价廉的方案。外形及引脚排列如图3-3所示。

图3-3管脚图

在操作过程中,运用到几个重要的引脚接口VCC:供电电压。

GND:接地。

P0口:P0口为一个8位漏级开路双向I/O口,每脚可吸收8TTL门电流。当P0口的管脚第一次写1时,被定义为高阻输入。P0能够用于外部程序数据存储器,它可以被定义为数据/地址的低八位。在FIASH编程时,P0 口作为原码输入口,当FIASH进行校验时,P0输出原码,此时P0外部必须接上拉电阻。

P1口:P1口是一个内部提供上拉电阻的8位双向I/O口,P1口缓冲器能接收输出4TTL门电流。P1口管脚写入1后,被内部上拉为高,可用作输入,P1口被外部下拉为低电平时,将输出电流,这是由于内部上拉的缘故。在FLASH编程和校验时,P1口作为低八位地址接收。

P2口:P2口为一个内部上拉电阻的8位双向I/O口,P2口缓冲器可接收,输出4个TTL门电流,当P2口被写“1”时,其管脚被内部上拉电阻拉高,且作为输入。并因此作为输入时,P2口的管脚被外部拉低,将输出电流。这是由于内部上拉的缘故。P2口当用于外部程序存储器或16位地址外部数据存储器进行存取时,P2口输出地址的高八位。在给出地址“1”时,它利用内部上拉优势,当对外部八位地址数据存储器进行读写时,P2口输出其特殊功能寄存器的内容。P2口在FLASH编程和校验时接收高八位地址信号和控制信号。

P3口:P3口管脚是8个带内部上拉电阻的双向I/O口,可接收输出4个TTL门电流。当P3口写入“1”后,它们被内部上拉为高电平,并用作输入。作为输入,由于外部下拉为低电平,P3口将输出电流(ILL)这是由于上拉的缘故。RST:复位输入。当振荡器复位器件时,要保持RST脚两个机器周期的高电平时间。

ALE/PROG:当访问外部存储器时,地址锁存允许的输出电平用于锁存地址的低位字节。在FLASH编程期间,此引脚用于输入编程脉冲。在平时,ALE端以不变的频率周期输出正脉冲信号,此频率为振荡器频率的1/6。因此它可用作对外部输出的脉冲或用于定时目的。然而要注意的是:每当用作外部数据存储器时,将跳过一个ALE脉冲。如想禁止ALE的输出可在SFR8EH地址上置0。此时, ALE只有在执行MOVX,MOVC指令是ALE才起作用。另外,该引脚被略微拉高。如果微处理器在外部执行状态ALE禁止,置位无效。

/PSEN:外部程序存储器的选通信号。在由外部程序存储器取指期间,每个机器周期两次/PSEN有效。但在访问外部数据存储器时,这两次有效的/PSEN信号将不出现。

/EA/VPP:当/EA保持低电平时,则在此期间外部程序存储器(0000H-FFFFH),不管是否有内部程序存储器。注意加密方式1时,/EA将内部锁定为RESET;当/EA端保持高电平时,此间内部程序存储器。在FLASH编程期间,此引脚也用于施加12V编程电源(VPP)。

XTAL1:反向振荡放大器的输入及内部时钟工作电路的输入。

XTAL2:来自反向振荡器的输出。

XTAL1和XTAL2分别为反向放大器的输入和输出。该反向放大器可以配置为片内振荡器。石晶振荡和陶瓷振荡均可采用。如采用外部时钟源驱动器件,XTAL2应不接。有余输入至内部时钟信号要通过一个二分频触发器,因此对外部时钟信号的脉宽无任何要求,但必须保证脉冲的高低电平要求的宽度。

3.4 LED数码管

LED数码管实际上是由七个发光管组成8字形构成的,加上小数点就是8个。这些段分别由字母a,b,c,d,e,f,g,h来表示。当数码管特定的段加上电压后,这些特定的段就会发亮,以形成我们眼睛看到的字样了。LED显示器有共阴极和共阳极两种,以共阴极为例,要显示数字0,需要满足两个条件,一是公共端子COM接地,二是a、b、c、d、e、f段亮,g段不亮,即a、b、c、d、e、f段加高电平1,g段加低电平0。例如,将KEY/LED CS 接到CS0 上,则段码地址为08004H,位码地址为08002H 七段数码管的字型显示表如下:

表3-1 数码管字型显示

图3-4 LED显示

显示过程如下:经过单片机P0输出的八位二进制码,变换成BCD码,在数码管上显示,经过段选信号和位选信号的控制,最后在相应数码管上显示出相应的温度值。程序框图如下:

第4章 软件设计

本设计中采用的处理器是STC 单片机,由此可采用面向MCS-51的程序设计语言,包括ASM51汇编语言和C51高级语言,这两种语言各有特点。汇编语言更接近机器语言,常用来编制与系统硬件相关的程序,如访问I/O 端口、中断处理程序、实时控制程序、实时通信程序等;而数学运算程序则适合用C51高级语言编写,因为用高级语言编写运算程序可提高编程效率和应用程序的可靠性。考虑到设计中要用到乘除运算,在智能测控装置的基本功能软件开发中,全部程序均采用C51高级语言编写

4.1 程序设计

程序主要由主程序和子程序两部分构成。

1.主程序主要实现系统的初始化,温度信号采集。

系统的初始化包括寄存器的初始化(控制寄存器、堆栈、中断寄存器等),通信的初始化,LED 显示的初始化,输出端口的初始化,采集、累计数据的初始化。

2.子程序主要有延时程序和显示程序等。

显示程序包括数据转换(主要实现将各类参数、测量数据、计算累计值等转换成LED 显示所需的数据类型)。

4.2 测量设计

在本次设计中,针对不同电阻对电容的充放电过程是测量温度的关键所在。其原理是先让C4放电,接着通过延时电路让标准电阻对C4充电,当P3.2为0时,记录下时间TSC ,接着继续使C4放电,让热敏电阻对C4充电,记录下时间TEC ,最后通过

TSC R TEC RT 4?=得出线性插值,求出温度。

总结

通过一段时间学习,最后完成了我的设计任务——热敏电阻测温系统设计。本次设计课不仅仅培养了我们实际操作能力,更重要的是,在实验课上,我们学会了很多学习的方法。而这是日后最实用的,真的是受益匪浅。要面对社会的挑战,只有不断的学习、实践,再学习、再实践,让同学们学以致用通过综合分析,找出学习中存在的不足,以便为完善学习计划,改变学习内容与方法提供实践依据。起初我不知道单片机是什么,

但是通过这次课程设计我看到了了单片机的巨大应用市场,觉得这是一个非常有用的东西,学习它会很有助于我们日后的学习和工作。此次课程设计软件与硬件结合,考察了我们的焊接水平与编程能力。因为之前做过焊接的电工实习,所以对于我们来说焊接不成问题,也很顺利。但是到了编程时就出现了很大的障碍,本来以为编程很简单,等到实际操作起来才知道它的复杂性,没有想象中的那么得心应手,理解流程是有思维的前提。其实本身程序的思维是正确的,只是步骤中有点小错误,所以导致整个程序的结果很论,在仔细修改程序之后,终于达到效果。

致谢

本设计是在老师的精心指导和严格要求下完成的,首先我要感谢我的老师在课程设计上给予我的指导、提供给我的支持和帮助,这是我能顺利完成这次设计的主要原因,更重要的是老师帮我解决了许多技术上的难题,让我能把设计做得更加完善。同时感谢实验室的等老师,他们给我们提供了必要的实验器材,提供了很大的方便。其次要感谢我的同学,课程设计的完成,让我在其中学到了许多,尤其是学会了合作,懂得了合作

造就的效益和成果。在这里再次感谢和我一起搭档的同学,还有对我们精心指导的老师。

参考文献

[1].陈利永. 数字电路与逻辑设计. 中国铁道出版社,2011.6:

[2].潘松,《EDA实用教程》,科学出版社,2004年

[3].刘江海.《EDA技术课程设计》.华中科技大学出版社,2009.5

[4].焦素敏.《EDA应用技术》.清华大学出版社,2002.4

[5].《VHDL 程序设计》(第二版). 曾繁泰等. 清华大学出版社

[6].《VHDL入门与应用》陈雪松, 滕立中 .人民邮电出版社

[7.陈利永. 数字电路与逻辑设计. 中国铁道出版社,2011.6:

[8].求是科技. 单片机典型模块设计实例导航. 北京:人民邮电出版社. 2005.8

[9].徐淑华, 程退安等.单片微型机原理及应用. 哈尔滨:哈尔滨工业大学出版社. 2005.1

[10].孙余凯. 精选实用电子电路260例. 北京:电子工业出版社. 2007.6

[11].何立民.单片机应用系统设计[M].北京:航空航天大学出版社,1995

[12].李建忠.单片机原理及应用[M].西安电子科技大学出版社,2004

基于热敏电阻的温度控制器设计

基于热敏电阻的温度控制器设计 王芬 电子信息学院测控技术与仪器1031班 摘要:介绍一种以单片机为核心的温度控制系统。该系统利用热敏电阻的阻值随温度的变化转化为频率的变化,再由单片机处理后显示温度值,并 实时处理。可以通过编程实现设置和显示温度的上下限和加热控制。测量 范围为10度到80度,适合用于空调机内部。 关键字:单片机、温度、控制系统、非线性、线性化 1 引言 在现实生活中,温度的监测和控制在纺织工业、林业、化工、各种军用、民用房以及气象和模拟人工气侯环境中等方面都有着广泛的应用。因此,能否有效地对这些领域的环境温度进行实时监测,是一个必须解决的重要课题目前,国际上新型温度测控系统从集成化向智能化、网络化的方向飞速发展,小型、低功耗、高可靠性、低成本的温度测控系统已经越来越受到关注,并广泛应用于工业控制和自动化测量系统中,给人们的生活带来了根本性的变化。基于其现实的诸多作用,设计了该温度控制器,也可在此基础上修改为其他非电量的测量系统。 2本系统工作原理 基于热敏电阻的温度控制器系统由前向通道、单片机、后向通道组成。前 向通道是单片机对被测控温度的输入通道,后向通道是单片机把处理后的数字 量进行传递、输出显示、控制和调节的通道。其结构框图如图1所示: 图1. 基于热敏电阻的温度控制器系统结构框图 3硬件的实现 3.1 温度传感器 温度传感器采用负温度系数的热敏电阻(NTC),NTC的温度系数大,价格低

廉,用此制造的测温、控温装置在科研、生产等方面使用非常广泛。但由于NTC 的温度特性存在严重的非线性,其非线性曲线图如图2所示。因此必须对系统进行线性化处理,线性化处理的方法很多。有硬件电路的互补法,软件上的最小二乘法等。下面文章将介绍一种新的方法。 图2:NTC 的非线性曲线图 通过观察由理想情况的测得的热敏电阻t R 和温度T 的多组数据,在Excel 上拟和出得出t R 与T 的曲线图,根据图形观察得到t R 和T 的表达式为: t a bT R c dT += + (1) 再通过C 语言编程计算出表达式中的系数a,b,c 和d 。再根据R/F 转换器中 1 0.7(2) t f C R R = + (2) 精确计算出参数C 和t R ,就能得到f 与T 的线性表达式。 T mf n =+ (3) (3)式中的系数m 和n 可通过(1)式和(2)式计算得到。 3.2 R/F 转换器 本系统的特点是用555定时器构成的多谐振荡器能产生矩形脉冲波,把NTC 电阻的变化直接转换为频率的变化,通过555的3脚接到单片机P3.4口定时/计数器0来对R/F 的脉冲计数,计数结果即为A/D 转换的结果。555内部的比较器灵敏度较高,而且采用差分电路形成,它的振荡频率受电源和温度的变化的影响很小。这种方法省去了传统方法中的的放大电路,采样保持器,放大器,A/D 转换器,不论是在硬件电路还是在软件设计上都的到了简化。R/F 转换器的原理图如图3:

基于单片机的温度测量系统设计

基于STC单片机的温度测量系统的研究 摘要:本文针对现有温度测量方法线性度、灵敏度、抗振动性能较差的不足,提出了一种基于STC单片机,采用Pt1000温度传感器,通过间接测量铂热电阻阻值来实现温度测量的方案。重点介绍了,铂热电阻测量温度的原理,基于STC实现铂热电阻阻值测量,牛顿迭代法计算温度,给出了部分硬件、软件的设计方法。实验验证,该系统测量精度高,线性好,具有较强的实时性和可靠性,具有一定的工程价值。 关键词:STC单片机、Pt1000温度传感器、温度测量、铂热电阻阻值、牛顿迭代法。 Study of Temperature Measurement System based on STC single chip computer Zhang Yapeng,Wang Xiangting,Xu Enchun,Wei Maolin Abstract:A method to achieve temperature Measurement by the Indirect Measurement the resistance of platinum thermistor is proposed. It is realized by the single chip computer STC with Pt1000temperature sensor.The shortcomings of available methods whose Linearity, Sensitivity, and vibration resistance are worse are overcame by the proposed method. This paper emphasizes on the following aspects:the principle of temperature measurement by using platinum thermistor , the measurement of platinum thermistor’s resistance based on STC single chip computer, the calculating temperature by Newton Iteration Method. Parts of hardware and software are given. The experimental results demonstrate that the precision and linearity of the method is superior. It is also superior in real-time character and reliability and has a certain value in engineering application. Keywords: STC single chip computer,Pt1000temperature sensor,platinum thermistor’s resistance,Newton Iteration Method 0 引言 精密化学、生物医药、精细化工、精密仪器等领域对温度控制精度的要求极高,而温度控制的核心正是温度测量。 目前在国内,应用最广泛的测温方法有热电偶测温、集成式温度传感器、热敏电阻测温、铂热电阻测温四种方法。 (1) 热电偶的温度测量范围较广,结构简单,但是它的电动势小,灵敏度较差,误差较大,实际使用时必须加冷端补偿,使用不方便。 (2) 集成式温度传感器是新一代的温度传感器,具有体积小、重量轻、线性度好、性能稳定等优点,适于远距离测量和传输。但由于价格相对较为昂贵,在国内测温领域的应用还不是很广泛。 (3) 热敏电阻具有灵敏度高、功耗低、价格低廉等优点,但其阻值与温度变化成非线性关系,在测量精度较高的场合必须进行非线性处理,给计算带来不便,此外元件的稳定性以及互换性较差,从而使它的应用范围较小。 (4)铂热电阻具有输出电势大、线性度好、灵敏度高、抗振性能好等优点。虽然它 的价格相对于热敏电阻要高一些,但它的综合性能指标确是最好的。而且它在0~200°C范

热敏电阻测温电路设计

电子设计大赛论文 (B组) 热敏电阻测温电路设计 第三十组 K3队 组队成员:顾代辉黄龑罗程 2010年5月23日

摘要:科技发展,很多工业化的生产都需要温度测量,这使得温度测量仪器变成一个 很重要的东西。下面我们将题目所给的温度测量电路进行分析和改动设计。题目所给图是一个在工业场合的温度测量系统,采用RTD 电阻温度检测器。通过分析可知,ref R 两端分到的电压即为ref V ,Vo3输出的电压即为NTC 两段分到的电压。而要求我们设计的电路所用的是NTC 负温度系数热敏电阻器。题目要求我们将电流产生电路的电流控制在0.1m A 。这里我们简 单的将 ref R 改成25k 。对于滤波电路,我们设计各个参数使得其截至频率在100Hz 左右,就 能滤掉1000HZ 的干扰信号;对于基准源,我们都用基本的连接方法,输出电压为2.5V ;对于稳压管,输出电压为恒定的5V ;对于串口连接,我们用到MAX232芯片其中一个接口,与单片机的RXD/TXD 连接传输数据。 关键词:温度传感器 AVR 串口显示 I .电路分析 (1) 电流产生电路分析: 首先对于运放A1,由虚短和虚断,可知 111211 120 V V I I === 有: 1121221 O V V V R R --= 可解得:1121122=O V V V = 即第一个运放功能为将信号放大两倍。 对于运放A2,同理,有 212221 220 V V I I === 有:221O V V =可见,运放A2是一个电压跟随器。

又:24211234( )2 REF O REF O O V V R V V V V R R -?+=+=+ 11122O REF O V V V V ==+ 故: REF R 两端分到的电压为 122R O REF REF O O REF V V V V V V V =-=+-= 由此可见: REF R 两端分压恒为基准电压 REF V ,只要基准电压和 REF R 的值不变,则 通过 REF R 的电流REF REF V I R = 2.5 12.5mA k ==为恒定值,该电路的作用为产生恒定电流。 由于3233p n V V V ==,故Rline 和R6相当于并联, 66'1001R R I I Rline ==,故100'101 I I I =≈ 故可认为恒定电流I 都通过热敏电阻RTD 。 运放A3以及NTD 分析: 由叠加法分析,当31V 接地时,033131317100'6100R k V V V V R k =- =-=- 当32V 接地时,03323276100100''26100R R k k V V V R k ++= == 故0303033231'''2V V V V V =+=- …………………… ① 而32()'RTD V Rline R I =+? …………………… ② 31(2)'RTD V Rline R I =+? …………………… ③

基于单片机的温度测量系统

基于51单片机的温度测量系统 来源:微计算机信息作者:赵娜赵刚于珍珠郭守清 摘要: 单片机在检测和控制系统中得到广泛的应用, 温度则是系统常需要测量、控制和保持的一个量。本文从硬件和软件两方面介绍了AT89C2051单片机温度控制系统的设计,对硬件原理图和程序框图作了简洁的描述。 关键词: 单片机AT89C2051;温度传感器DS18B20;温度;测量 引言 单片机在电子产品中的应用已经越来越广泛,并且在很多电子产品中也将其用到温度检测和温度控制。为此在本文中作者设计了基于atmel公司的AT89C2051的温度测量系统。这是一种低成本的利用单片机多余I/O口实现的温度检测电路, 该电路非常简单, 易于实现, 并且适用于几乎所有类型的单片机。 一.系统硬件设计 系统的硬件结构如图1所示。 数据采集 数据采集电路如图2所示, 由温度传感器DS18B20采集被控对象的实时温度, 提供给AT89C2051的口作为数据输入。在本次设计中我们所控的对象为所处室温。当然作为改进我们可以把传感器与电路板分离,由数据线相连进行通讯,便于测量多种对象。 DS18B20是DALLAS公司生产的一线式数字温度传感器,具有3引脚TO-92小体积封装形式;温度测量范围为-55℃~+125℃,可编程为9位~12位A/D转换精度,测温分辨率可达℃,被测温度用符号扩展的16位数字量方式串行输出,支持3V~的电压范围,使系统设计更灵活、方便;其工作电源既可在远端引入,也可采用寄生电源方式产生;多个DS18B20可以并联到3根或2根线上,CPU只需一根端口线就能与诸多DS18B20通信,占用微处理器的端口较少,可节省大量的引线和逻辑电路。以上特点使DS18B20非常适用于远距离多点温度检测系统。分辨率设定,及用户设定的报警温度存储在EEPROM中,掉电后依然保存。DS18B20使电压、特性有更多的选择,让我们可以构建适合自己的经济的测温系统。如图2所示DS18B20的2脚DQ为数字信号输入/输出端;1脚GND为电源地;3脚VDD为外接供电电源输入端。 AT89C2051(以下简称2051)是一枚8051兼容的单片机微控器,与Intel的MCS-51完全兼容,内藏2K的可程序化Flash存储体,内部有128B字节的数据存储器空间,可直接推动LED,与8051完全相同,有15个可程序化的I/O点,分别是P1端口与P3端口(少了)。 接口电路 图2 单片机2051与温度传感器DS18B20的连接图 接口电路由ATMEL公司的2051单片机、ULN2003达林顿芯片、4511BCD译码器、串行EEPROM24C16(保存系统参数)、MAX232、数码管及外围电路构成, 单片机以并行通信方式从~口输出控制信号,通过4511BCD译码器译码,用2个共阴极LED静态显示温度的十位、

半导体热敏电阻温度测量的设计

信息与控制工程学院硬件课程设计说明书 设计题目 半导体热敏电阻测温仪表的设计 学生学号: 学生姓名: 专业班级: 指导教师: 职称: 起止日期:

信息与控制工程学院硬件课程设计说明书 课程设计任务书 一、设计题目:半导体热敏电阻测温仪表的设计 二、设计目的 1、掌握对电路板的设计流程及焊接技巧; 2、掌握C8051F410单片机体系结构及C语言程序设计方法; 3、掌握半导体热敏电阻的测温及热敏电阻测温过程的标定方法; 4、掌握利用Keil进行软件仿真及对可编程逻辑器件进行硬件下载的方法; 5、用Protel 软件进行电路图的绘制, 译码器及LED动态扫描显示驱动电路设计的方法。 三、设计任务及要求 要求学生设计出能够采集R25=10K的热敏电阻测温仪表,分析热敏电阻测温原理,能够通过软件将热敏电阻的阻值-温度特性转换出来,掌握热敏电阻测温过程的标定方法。 热敏电阻测温仪表具体设计指标: 1.输入信号:热敏电阻; 2.显示方法:LED数码管; 3.供电电源:220VAC; 4.测温误差:≤1℃。 四、设计时间及进度安排 设计时间共三周(2011.03.7~2011.03.25),具体安排如下表: 周次设计内容设计时间 第一周1.学习C8051F410单片机体系结构及程序开发;2.设计半导体热敏电阻测温电路,并应用Protel画出其电路原理图。 第二周1.完成半导体热敏电阻测温系统的焊装和硬件调试; 2. 编写实验程序。 第三周1.整机调试; 2.撰写设计说明书; 3.答辩。

设计题目 五、指导教师评语及学生成绩 指导教师评语: 年月日成绩指导教师(签字):

基于AT89C51单片机的测温系统

引言 本文主要介绍了一个基于AT89C51单片机的测温系统,详细描述了利用数字温度传感器DS18B20开发测温系统的过程,重点对传感器在单片机下的硬件连接,软件编程以及各模块系统流程进行了详尽分析,特别是数字温度传感器DS18B20的数据采集过程,并介绍了利用C语言编程对DS18B20的访问,该系统可以方便的实现实现温度采集和显示,使用起来相当方便,具有精度高、量程宽、灵敏度高、体积小、功耗低等优点。DS18B20与AT89C51结合实现最简温度检测系统,该系统结构简单,抗干扰能力强,适合于恶劣环境下进行现场温度测量。 数字温度计与传统的温度计相比,具有读数方便、测温范围广、测温精确、功能多样话等优点。其主要用于对测温要求准确度比较高的场所,或科研实验室使用,该设计使用STC89C52单片机作控制器,数字温度传感器DS18B20测量温度,单片机接受传感器输出,经处理用LED数码管实现温度值显示。

一、设计要求 通过基于MCS-51系列单片机AT89C51和DS18B20温度传感器检测温度,熟悉芯片的使用,温度传感器的功能,数码显示管的使用,C语言的设计;并且把我们这一年所学的数字和模拟电子技术、检测技术、单片机应用等知识,通过理论联系实际,从题目分析、电路设计调试、程序编制调试到传感器的选定等这一完整的实验过程,培养了学生正确的设计思想,使学生充分发挥主观能动性,去独立解决实际问题,以达到提升学生的综合能力、动手能力、文献资料查阅能力的作用,为毕业设计和以后工作打下一个良好的基础。 以MCS-51系列单片机为核心器件,组成一个数字温度计,采用数字温度传感器DS18B20为检测器件,进行单点温度检测,检测精度为?摄氏度。温度显示采用3位LED数码管显示,两位整数,一位小数。具有键盘输入上下限功能,超过上下限温度时,进行声音报警。 二、基本原理 原理简述:数字温度传感器DS1820把温度信息转换为数字格式;通过“1-线协议”,单片机获取指定传感器的数字温度信息,并显示到显示设备上。通过键盘,单片机可根据程序指令实现更灵活的功能,如单点检测、轮转检测、越限检测等。基于DS1820数字温度传感器的温度检测及显示的系统原理图如图 图基于DS1820的温度检测系统框图 三:主要器件介绍(时序图及各命令序列,温度如何计算等) 系统总体设计框图 由于DS18B20数字温度传感器具有单总线的独特优点,可以使用户轻松地组建起传感器网络,并可使多点温度测量电路变得简单、可靠,所以在该设计中采用DS18B20数字温度传感器测量温度。 测温电路设计总体设计框图如图所示,控制器采用单片机AT89S52,温度 传感器采用DS18B20,显示采用4位LED数码管,报警采用蜂鸣器、LED灯实 现,键盘用来设定报警上下限温度。

基于热敏电阻的数字温度计设计

目录 1 课程设计的目的 (1) 2 课程设计的任务和要求 (1) 3 设计方案与论证 (1) 4 电路设计 (2) 4.1 温度测量电路 (3) 4.2 单片机最小系统 (6) 4.3 LED数码显示电路 (8) 5 系统软件设计 (9) 6 系统调试 (9) 7 总结 (11) 参考文献 (13) 附录1:总体电路原理图 (14) 附录2:元器件清单 (15) 附录3:实物图 (16) 附录4:源程序 (17)

1 课程设计的目的 (1)掌握单片机原理及应用课程所学的理论知识; (2)了解使用单片机设计的基本思想和方法,学会科学分析和解决问题; (3)学习单片机仿真、调试、测试、故障查找和排除的方法、技巧; (4)培养认真严谨的工作作风和实事求是的工作态度; (5)锻炼自己的动手动脑能力,以提高理论联系实际的能力。 2 课程设计的任务和要求 (1)采用LED 数码管显示温度; (2)测量温度范围为-10℃~110℃; (3)测量精度误差小于0.5℃。 3 设计方案与论证 方案一:本方案主要是在温度检测部分利用了一款新型的温度检测芯片DS18B20,这个芯片大大简化了温度检测模块的设计,它无需A/D 转换,可直接将测得的温度值以二进制形式输出。该方案的原理框图如图3-1所示。 DS18B20是美国达拉斯半导体公司生产的新型温度检测器件,它是单片结构,无需外加A/D 即可输出数字量,通讯采用单线制,同时该通讯线还可兼作电源线,即具有寄生电源模式。它具有体积小、精度易保证、无需标定等特点,特别适合与单片机合用构成智能温度检测及控 制系统。 图3-1 方案一系统框图 单片机 最小系统 数码 显示 温度传感器 DS18B20

基于单片机测温系统意义

摘要 目前,在自动控制领域用温度作为一种控制量对系统进行自动控制已经越来越普遍。针对这种实际情况本文设计了一种简单实用的温度报警系统。本设计采用了单片机AT89S52和温度传感器DS18B20组成了温度自动测控系统,可根据实际需要任意设定温度值,并进行自动控制。在此设计中利用了AT89S52单片机作为主控制器件,DS18B20作为测温传感器通过LCD数码管串口传送数据,实现温度显示。通过DS18B20直接读取被测温度值,进行数据转换,能够设置温度上下限来设置报警温度。并且在到达报警温度后,系统会自动报警。 关键词:自动控制温度单片机报警

Abstract Now it is very common to use temperature as a control volume to achieve automatic control. This paper designed a simple and practical auto temperature alarm system to meet the actual condition. This design uses a microcontroller AT89S52 and temperature sensor DS18B20 automatic temperature control system formed can be arbitrarily set the temperature according to the actual value and for automatic control. In this design using the AT89S52 microcontroller as the main control device, DS18B20 as an LCD digital temperature sensor tube through the serial transmission of data, to achieve temperature display. DS18B20 measured by direct reading temperature values, data conversion, to set the temperature to set the alarm on the lower temperature. And the temperature reaching the alarm, the system will automatically alarm. Keywords: achieve automatic control temperature AT89S52 alarm

热敏电阻测温电路

热敏电阻测温电路 热敏电阻测量电路 本测温控温电路适用于家用空调、电热取暖器、恒温箱、温床育苗、人工孵化、农牧科研等电热设备。其使用温度范围是0~50℃,测控温精度为±(0.2~0.5)℃. 2.2.1 原理电路 本测温控温电路由温度检测、显示、设定及控制等部分组成,见图2.2.1。图中D1~D4为单电源四运放器LM324的四个单独的运算放大器。RT1~RTn为PTC感温探头,其用量取决于被测对象的容积。 RP1用于对微安表调零,RP2用于调节D2的输出使微安表指满度。S 为转换开关。 图2.2.1 测温控温电路由RT检测到的温度信息,输入D1的反馈回路。该信息既作为D2的输入信号,经D2放大后通过微安表显示被测温度;又作为比较器D4的同相输入信号,与D3输出的设定基准信号,构成D4的差模输入电压。当被控对象的实际温度低于由RP3预设的温度时,RT的阻值较小,此时D4同相输入电压的绝对值小于反相输入电压的绝对值,于是D4输出为高电位,从而使晶体管V饱和导通,继电器K得电吸合常开触点JK,负载RL由市电供电,对被控物进行加热。当被控对象的实际温度升到预设值时, D4同相输入电压的绝对值大于反相输入电压的绝对值, D4的输出为低电位,从而导致V截止,K失电释放触点JK至常开,市电停止向RL供电,被控物进入恒温阶段。如此反复运行,达到预设的控温目的。2.2.2 主要元器件选择本测温控温电路选用PTC热敏电阻为感温

元件,该元件在0℃时的电阻值为264Ω,制作成温度传感器探测头,按图2.2.2线化处理后封装于护套内,其电阻-温度特性见图 2.2. 3. 图2.2.2 线化电路线化后的PTC热敏电阻感温探头具有良好的线性,其平均灵敏度达16Ω/℃左右。如果采用数模转换网络、与非门电路及数码显示器,替代本电路的微安表显示器,很容易实现远距离多点集中的遥测。继电器的选型取决于负载功率。为便于调节,RP1~RP4选用线性带锁紧机构的微调电位器。 2.2.3 安装与调试调试工作主要是调整指示器的零点和满度指示。先将S接通R0,调节RP1使微安表指零,于此同时,调节RP4使其阻值与RP1相同,以保持D1与D4的对称性。然后将S接通R1,调节RP2使微安表指满度。最后,按RT的标准阻-温曲线,将RP3调到与设定温度相应的阻值,即可投入使用。本测温控温电路适用于家用空调、电热取暖器、恒温箱、温床育苗、人工孵化、农牧科研等电热设备。其使用温度范围是0~50℃,测控温精度为±(0.2~0.5)℃. 图2.2.3 传感测头的标准阻-温特性

热敏电阻测温电路的设计说明

课程题目:热敏电阻测温电路的设计院系:机电汽车工程学院 班级: 学生: 学号: 小组成员: 指导教师:

目录 一、设计目的、要求及方案选择-----------------------------------------------------(2) 1、设计目的---------------------------------------------------------------------------(2) 2、设计要求---------------------------------------------------------------------------(2) 3、设计方案的选择--------------------------------------------------------------------( 2) 二、硬件系统各模块电路的设计---------------------------------------------------(3) 1、单片机系统的设计---------------------------------------------------------------(3)1-1、AT89C51的简介及管脚功能---------------------------------------------(3) 1-1、AT89C51的最小系统介绍-----------------------------------------------(5) 2、基于MF58的NTC热敏电阻温度测量电路设计 ---------------------------(7) 2-1、MF58热敏电阻的介绍---------------------------------------------------(8) 2-2、温度测量电路的设计----------------------------------------------------(10) 3、LED数码管显示电路的设计---------------------------------------------------(11) 3-1、显示电路驱动系统的设计

热敏电阻温度测量电路

热敏电阻温度测量电路 下图是温度在0~50℃范围的测量电路。当温度为0℃时输出电压是0V ,温度为50℃时是5V 。他可以与电压表链接来测量温度,也可以连接AD 转换器变换为数字量,利用计算机之类进行测量。 1、工作原理 该电路由检测温度的热敏电阻和1个运算放大器电路,以及将0~50℃的温度信息变换为0~5V 电压的2个运算放大器电路构成。 热敏电阻检测温度时,利用热敏电阻TH R 与电阻3R 分压后的电压作为检测电压进行处理,在这里是利用运算放大器1OP 的电压跟随器电路提取的。输出电压的极性为正,随着温度的上升,热敏电阻的电阻值降低,所以输出电压也下降。 检出的信号加在1OP 和电阻~4R 7R 构成的差动放大电路的正输入端上,而加在负输入端上的是由8R 、9R 、1VR 对5V 分压后的电压,这部分是电压调整电路,可以在温度为0℃时将1OP 的输出电压调整为0V ,这样就可以输出与温度上升成比例的负电压。 2OP 的输出加在由3OP 构成的反转放大电路上被放大,放大倍数为—10211/)(R VR R +倍。调整2VR 可以使温度达50℃时3OP 的输出电压为+5V 。 通过调整1VR 和2VR ,可以在0℃时得到0V 的输出电压,50℃时得到5V 的输出电压,使输出电压与温度成比例。 2、设计 (1)温度测量范围以及输出电压、电源电压的确定:设定温度测量范围为0~50℃,这时的输出电压是0~5V 。电路使用的电源为±15V ,基准电压为5V 。 (2)热敏电阻和运算放大器的选定:这里使用NTC 型热敏电阻,选用25℃的电阻值为10K Ω,误差在±1%以内的NTH4G39A 103F02型,这种热敏电阻的常数为B=3900。 (3)补偿电阻3R 的确定:电阻3R 的作用是当热敏电阻的温度变化时,将相对应的输出电压的变化线性化。设线性化的温度范围是0~50℃,,那么补偿电阻3 R

热敏电阻及测温系统课程设计

热敏电阻及测温系统课程设计

目录 1、总体设计 (1) 1.1 课设任务 (1) 1.2 小组成员及分工 (1) 1.2.1 小组成员组成 (1) 1.2.2 组员分工 (1) 1.3 总体设计方案 (1) 2、硬件设计 (3) 2.1 热敏电阻温度传感器 (3) 2.2 A/D转换器 (3) 2.2.1 AD0809简介 (3) 2.2.2 基于AD0809的数模转换电路4 2.2.3 模数转换单元电路的设计 (4) 2.3 LED数码管显示原理 (5) 2.4 AT89S52单片机 (6) 3 软件设计 (9) 3.1 模数转换 (9) 3.2数码显示 (10) 4、仿真及计算 (11) 4.1 实验步骤 (11) 4.2利用MATLAB对实验数据进行处理 (11) 4.3 仿真公式 (14) 4.4 结果分析 (14) 5、心得体会 (16) 6、参考文献 (17) 附录 (18)

1、总体设计 1.1 课设任务 1.了解热敏电阻的工作原理; 2.掌握热敏电阻调理电路和AD转换; 3.了解非线性特性和其校正方式; 4.使用单片机读取转换值并显示。 本课程设计使用热敏电阻为传感器,结合后端处理电路和AD转换器,并用AT89C51单片机获取数据,测得温度数码管显示出来。 1.2 小组成员及分工 1.2.1 小组成员组成 组长:黄波 组员:华林峰、黄奔涛、柯良 1.2.2 组员分工 当我们拿到这个课题“热敏电阻及温度测试系统”后,首先全组人员开了一个小的讨论会,大家都提出了自己的想法,然后根据课程设计的任务要求进行了明确的分工:组长黄波负责系统的总体的设计和程序的编写;黄奔涛主要负责上网查找相关热敏电阻传感器和AD0809数模转换器的工作原理;华林峰负责对设计过程中实验数据的记录并利用MATLAB软件对实验数据进行处理;柯良则负责文字的处理,撰写课程设计报告;然后,大家一起对热敏电阻调理电路和AD转换进行学习研究,并进行软件的调试;最终实现了课程设计的任务要求,达到了胥老师所预期的结果及“热敏电阻传感器将采集到的电压信号经过 AD0809模数转换器将模拟信号转换为数字信号并在单片机上显示当前的温度值。 1.3 总体设计方案 图1-1 设计方案图 首先通过热敏电阻进行温度采集,然后利用AD0809芯片进行A/D模数转换,再经过AT89C51芯片进行处理,最后通过LED数码管显示温度。

基于单片机的温度检测与控制系统的设计(论文)开题报告

河南中医学院 本科生毕业设计(论文)开题报告 题目:基于单片机温度检测与控制系统设计 院系:信息技术学院 专业:计算机科学与技术 班级:2010级计科班 学号:2010180042 学生姓名:郭文珠 指导教师:谢志豪 2013年11月13日 一、立题依据(包括研究的目的与意义及国内外现状): 研究的目的与意义 这次毕业设计选题的目的主要是让我们将所学的知识应用与生活当中,掌握系统总体设计的流程,方案的论证,选择,实施与完善。通过对温度控制系统的设计、制作、控制、测试的全过程,提高对单片机的认识和实际操作的能力,初步培养在完成工程项目中所应具备的基本素质和要求,培养自己的研发能力,提高自己的查阅资料,语言表达和理论联系实际的能力。 温度控制无论在日常生活还是工业生产中都有分厂重要的作用,随着社会经济的高速发展,更多方面对温度控制的可靠性和稳定性有了更高的要求,而单片机进行温度的调节就具备很高的可靠性[1]。 国内外现状 国外对温度控制技术研究较早,始于20世纪70年代。先是采用模拟式的组合仪表,采集现场信息并行指进示、记录和控制。80年代末出现了分布式控制系统[2]。目前正开发和研制计算机数据采集控制系统的多因子综合控制系统。现在世界各国的温度测控技术发展很快,一些国家在实现自动化的基础上正向着完全自动化、无人化的方向发展[3]。我国对于温度测控技术的研究较晚,始于20世纪80年代。我国工程技术人员在吸收发达国家温度测控技术的基础上,才掌握了温度室内微机控制技术,该技术仅限于对温度的单项环境因子的控制。我国温度测控设施计算机应用,在总体上正从消化吸收、简单应用阶段向实用化、综合性应用阶段过渡和发展[4]。在技术上,以单片机控制的单参数单回路系统居多,尚无真正意义上的多参数综合控制系统,与发达国家相比,存在较大差距。我国温度测量控制现状还远远没有达到工厂化的程度,生产实际中仍然有许多问题困扰着我们,存在着装备配套能力差,产业化程度低,环境控制水平落后,软硬件资源不能共享可靠性差等缺点[5]。在今后的温控系统的研究中会趋于智能化,集成化,系统的各项性能指标更准确,更加稳定可靠。 二、研究主要内容(包括计划解决的具体问题或实现的基本功能,研究中的重难点分析、实用性及创新性分析,预期达到的成果等。不得低于800字): 计划实现的基本功能 温度控制系统主要是完成温度信号采集、处理、显示等功能[6]。设 计叙述了基于单片机的温度检测与控制系统的设计,包括硬件的设计以 及软件的设计,该系统在硬件设计上主要是通过温度传感器对温度进行 采集,把温度转成变化的电压,然后由放大器将信号放大,通过转化器

基于单片机的热敏电阻测温系统设计

第1章绪论 1.1 热敏电阻 热敏电阻器是敏感元件的一类,按照温度系数不同分为正温度系数热敏电阻器(PTC)和负温度系数热敏电阻器(NTC)。热敏电阻器的典型特点是对温度敏感,不同的温度下表现出不同的电阻值。热敏电阻是开发早、种类多、发展较成熟的敏感元器件。热敏电阻由半导体陶瓷材料组成,热敏电阻是用半导体材料,大多为负温度系数,即阻值随温度增加而降低。温度变化会造成大的阻值改变,因此它是最灵敏的温度传感器。但热敏电阻的线性度极差,并且与生产工艺有很大关系。制造商给不出标准化的热敏电阻曲线。热敏电阻体积非常小,对温度变化的响应也快。但热敏电阻需要使用电流源,小尺寸也使它对自热误差极为敏感。 1.2 工作原理 负温度系数热敏电阻主要材料有氧化锰、氧化钴、氧化镍、氧化铜和氧化铝等金属氧化物为主要原料,采用陶瓷工艺制造而成。这些金属氧化物材料都具有半导体性质,完全类似于锗、硅晶体材料,体内的载流子数目少,电阻较高;温度升高,体内载流子数目增加,自然电阻值降低。负温度系数热敏电阻类型很多,使用区分低温(-60~300℃)、中温(300~600℃)、高温(>600℃)三种。 1.3 热敏电阻的特点 1.灵敏度较高,其电阻温度系数要比金属大10~100倍以上,能检测出10-6℃的温度变化; 2.工作温度范围宽,常温器件适用于-55℃~315℃,高温器件适用温度高于315℃(目前最高可达到2000℃),低温器件适用于-273℃~55℃; 3.体积小,能够测量其他温度计无法测量的空隙、腔体及生物体内血管的温度; 4.使用方便,电阻值可在0.1~100kΩ间任意选择; 5.易加工成复杂的形状,可大批量生产; 6.稳定性好、过载能力强。 精选

基于热敏电阻的测温控制系统设计

课程设计报告 课程名称:传感器课程设计 系别:机电工程系 专业班级:自动化1101班 学号: 1109101022 姓名:霍明科 课程题目:基于热敏电阻的测温控制系统设计 完成日期: 2013年11月20日 指导老师: 2013年11月20日

课程设计目的 1.采用了AT89C52单片机、NTC热敏电阻、共阴极数码管显示、电容、排阻、晶振、电阻等元器件。可以通过数码管直观地显示出当前温度值。 2.进一步掌握NTC热敏电阻器件的使用方法,和器件的性能。 课程设计要求(1)设计并制作一个基于NTC热敏电阻的温度测量与控制系统:(2)测温范围:2—42摄氏度; (3)测量精度±1℃; (4)要求能够记录24小时内每间隔30分钟温度值,并能够用数码管回调选定时刻的温度值。 (5)为每一路温度传感器设计越限报警功能。当某路传感器温度超越设定的温度上下阀值时,即产生相应的声光报警信号并显示该传感器的温度值,直至温度回到门限内(要求具有1℃的回差)或通过控制键解除警报。 (6)设计 课程设计注意事项 1.该热敏电阻测温系统测量温度在2-42摄氏度范围内,超出范围则无效,主要用于室内测温。 2.该热敏电阻测温系统能显示温度数据和温度单位符号,但是只能显示温度数据的整数部分,所以不能用于高精度的温度测量。 3.该热敏电阻测温系统所接电源为5V,切记不可接12V等电源,以免烧坏单片机。 4.设计设备时,请进行ntc热敏电阻贴装评估试验,确认无异常后再使用。

课程设计内容 基于热敏电阻的测温控制系统设计中,主要应用了单片机作为控制器,用NTC热敏电阻制作的温度传感器实现温度变化但电压变化后再通过放大器后通过AD转换在将数据送入单片机处理后用LED显示出来实现温度测量。并可利用单片机控制蜂鸣器发生报警信号。该系统使用单片机开发作为控制系统,而将温度传感器和其他器件制作在另外一个板子上,工作时,可将俩个板子连在一块使用。由于单片机上已有按键,LED显示器,蜂鸣器和AD等。所以可以满足系统控制的要求,单片机可以用USB供电,另外一个可以用实验室的直流电源作为供电元件。 课程设计简要操作步骤1.学习基本版电路的画法,连接和使用方法,熟悉实验室的环境。 2.通过电脑以及其他有关书籍了解AT89C52单片机的工作原理及引脚的功能和使用方法,并且连接器电路图。 3.分析热敏电阻的工作原理,选取热敏电阻的型号,画出热敏电阻的测温原理电路图。 4.计算热敏电阻的阻值(R=V*R1(5-V)),通过查表,阻值与温度之间的关系。可以得到此时外界的阻值。 5.用仿真软件画出硬件电路和AD转换电路图,并且检测。如检测正常运行,连接其对应的实物图。 6.编写C语言程序,并且通过电脑将程序送入单片机中。 7.接通电源,分析结果,排除故障,记录数据。

基于单片机的测温系统设计

基于单片机的温度系统设计 [摘要] 随着时代的进步和发展,单片机技术已经普及到我们生活、工作、科研、各个领域,已经成为一种比较成熟的技术, 本文主要介绍了一个基于AT89C52 单片机的测温系统,详细描述了利用数字温度传感器DS18B20 开发测温系统的过程,重点对传感器在单片机下的硬件连接,软件编程以及各模块系统流程进行了详尽分析,特别是数字温度传感器DS18B20 的数据采集过程。对各部分的电路也一一进行了介绍,该系统可以方便的实现实现温度采集和显示,并可根据需要任意设定上下限报警温度,它使用起来相当方便,具有精度高、量程宽、灵敏度高、体积小、功耗低等优点,适合于我们日常生活和工、农业生产中的温度测量,也可以当作温度处理模块嵌入其它系统中,作为其他主系统的辅助扩展。DS18B20 与AT89C52 结合实现最简温度检测系统,该系统结构简单,抗干扰能力强,适合于恶劣环境下进行现场温度测量,有广泛的应用前景。 [关键词] 单片机;AT89C52;温度传感器;DS18B20;

Design of temperature measurement system based on single chip microcomputer [Abstract] With the era of progress and development, single-chip technology has spread to our lives, work, research and in various fields, has become a relatively mature technology. This paper introduces a temperature measuring system based on AT89C52, a detailed description of the use of digital temperature sensor DS18B20 measurement system development process, focusing on the sensor in SCM hardware connection, software programming and system flow of each module in detail, especially the digital temperature sensor DS18B20 data acquisition process. On the part of the circuit and one one were introduced, the system can facilitate the realization of the realization of temperature acquisition and display, and can be arbitrarily set the alarm temperature. it is very convenient to use, has high accuracy, wide measuring range, high sensitivity, small volume and low power consumption, suitable for our daily life and work in agricultural production and temperature measurement, but also can be used as a temperature processing module embedded in other systems, as the other main system aided extension.DS18B20 combined with AT89C52 to achieve the most simple temperature detection system, the system has the advantages of simple structure and strong anti-interference ability, suitable for harsh environment on-site temperature measurement, and has wide application prospect. [Keywords] Single-chip; AT89C52;Temperature sensor;DS18B20;

相关文档
最新文档