电动机保护装置开题报告

电动机保护装置开题报告
电动机保护装置开题报告

电动机保护装置开题报告

————————————————————————————————作者:————————————————————————————————日期:

本科毕业设计开题报告

题目:电动机智能保护装置的设计

专题:

院(系):

班级:

姓名:

学号:

指导教师:

教师职称:

本科毕业设计开题报告

题目电动机智能保护装置的设计来源工程实际

1、研究目的和意义

电动机作为现代工业动力源,异步电动机价格低廉、结构简单、机械性能较好,在各行业中获得了广范的应用。在传统的电动机保护装置大多由电磁元件装置和模拟电子式保护器完成,但其功能单一、精度差、稳定性不高,动作时间慢的特点无法满足人们对电动机保护可靠性越来越高的要求,其保护长期困扰着继电保护专业人员和运行人员,抓好电动机保护的研究与推广工作,对国民经济有着重要的意义,对其进行可靠有效的保护尤为重要。因此电动机保护的自控、集中监控和智能化自处理是电动机保护主要研究方向。

2、国内外发展情况(文献综述)

我国电动机保护装置大概经过了以下的几个发展几个阶断。

一、热继电器、熔断器、电磁式继电器:建国初期,我国引进苏联JR系列继电器。但热继电器等存在致命缺陷,包括整定粗糙、受环境影响大、误差大、重复性差、功能单一等。无法满足高要求,因此也就无法避免被淘汰的命运。

二、模拟电子式电动机保护装置:在上世界八十年代,由于半导体元件普及,涌出一批性能可靠、功能多样的电子式电机保护器。但这类产品仍存在一些无法避免的缺点,整定精度不高、采样精度不高、无法实现具有多功能为一体的全面保护。随着科技的发展,人们对电机保护要求也越来越高,希望电动机保护器结构简单,体积小,接线简单,这些都是模拟电子保护装置无法实现的。

三、数字式电机保护器:这类电机保护器主要以单片机作为电机保护器,可实现智能化综合保护,在采样和整定上有质的飞越,可对信号进行软件非线性校正,极大地降低了被测信号畸变的影响,真正实现了高度采样。电动机保护器正朝着智能化、综合化、高精度、高可靠性发展。

3、研究/设计的目标:

本设计的目标是以单片机为核心的电机保护系统,能够精准、快速、有效的检测出电动机故障,实现电动机及时有效的保护,对电动机的过压、过流、短路等故障进行实时检测,确保电动机安全运行。

4、设计方案(研究/设计方法、理论分析、计算、实验方法和步骤等):

电动机保护装置是分析三相异步电动机在运行中可能发生的常见故障,以单片机为中心控制部件,如短路、过流、低电压、过负荷、单相接地等。该系统具有自检、自诊断、故障参数记忆等功能。

系统分硬件部分和软件部分

一、硬件部分:

硬件部分主要由电压互感器、电流互感器、A/D转换器、单片机,报警,LED显示。系统先由

电压互感器与电流互感器检测出电压和电流滤波电路,信号经A/D转换器供给单片机进行运算,从而完成对电动机的过压过流等保护。过程如图1所示:

三相电压检测三相电流检测滤

A/D转

动作出口电路

触摸键盘

LED显示图1 系统框图

二、软件部分

软件部分主要由汇编语言完成,控制软件如图2所示:

开始

初始化

欠流过流过载

过压正常运行跳闸

报警信号及提示

图2 系统流程图5、案的可行性分析:

单片机技术在国内发展较早,应用技术在国内已经十分成熟,效果理想。另外单片机经济实惠并在国内应用广范,为该系统设计提供大量理论基础。本系统利用少量的外围设备,构成一个完善,性能优良的廉价实用的系统,为实现电动机保护装备低成本开发和更新换代提供了一条切实可行的路径。

6、设计产品的主要用途和应用领域:

该系统主要用于三相异步电动机的短路、过流、低电压、过负荷、单相接地等保护,保证了电动机的安全可靠运行。通过对电动机的智能保护,对提高生产效率和经济效益及节能具有重要的现实意义。

7、时间进程

第一周选择设计题目,并查找有关内容

第二周初步确定设计任务

第三周了解题目的实际引用领域

第四周去图书馆查找资料

第五周撰写开题报告并准备答辩

第六周设定总体的设计方案

第七周传感器选择设计

第八周单片机编程部分设计

第九周单片机外围电路设计

第十周键盘软件设计

第十一周显示软件设计

第十二周设计放大电路

第十三周滤波整形电路设计

第十四周绘制原理图

第十五周将进行有关的理论、试验和计算机仿真研究

第十六周系统调试

第十七周整理并撰写论文

第十八周准备答辩

8、参考文献:

[1] 汤蕰璆.电机学.2010

[2] 顾绳谷.电机及拖动基础.机械工业出版社.2010

[3] 胡汉才.单片机原理及其接口技术.2010

[4] 武予鲁.电动机及其综合保护装置的工作原理与使用.2004

[5] 张毅刚.单片微型计算机原理与应用.2004

[6] 宋凌风.于霞.程树康.异步电动机相关保护及相关实用电路.1993

[7] 许晓峰.电机拖动原理.高等教育出版社.2000

[8] 邵富春. 怎样保护电动机. 1997

[9] 孔德兴.高压异步电动机综合保护器的研究[J].焦作工学院报.2002

[10]鼓树生.单片机实践和系统设计.2007

[11]吕伟.一种基于现场总线技术的智能电动机控制保护装置.2005

[12]王越峰.基于单片机的电动机保护初探.矿山机械.2007

指导教师意见:

教师签字:

年月日毕业设计领导小组意见:

组长签字:

年月日

电机设计开题报告 篇一:异步电动机设计开题报告 开题报告 75kw三相鼠笼异步电动机设计 一、本课题研究意义,国内外研究现状和发展趋势 随着社会的不断发展,如今在各行各业对工业技术要求的不断提高,电机无论是交通运输、航空航天、医疗卫生、农业生产商务与办公设备,还是日常生活中的家用电器都大量地使用各式各样的电机,现有90%以上的动力来源于电动机,电动机已与人们的日常生活密不可分。 20世纪40年代以前,我国电机制造工业极端落后。中华人民共和国成立后,电机工业才获得了迅速发展,产品的品种、数量不断增加,技术水平逐步提高。如今,随着我国科技的日益发展,人们对自动化的需求越来越高,使电动机的复杂控制成为主流,而三相鼠笼式异步电动机其应用领域更是极为广泛。近年来还先后出现和发展了带晶闸管变频装置的低速同步电机,户外电动机,低噪声电动机以及与中小型电机类似的大型电机等多种产品,其中三相鼠笼式异步电动机应用更为突出。 随着国家宏观经济的调整以及市场需求的推动,二十世纪中小型电机的品种将得到更大的发展,尤其是对于发展高效率电机、高品位的出口电机和机电一体化的交流变频电机

将会给予特别的重视,电机的技术发展动向是向小型化、薄型化、轻量化、智能化、高效化、节能化、环保化,电机采用新型磁性、导电、绝缘材料。 二、主要研究内容 三相鼠笼异步电动机的电磁设计,根据参数选取的不同,用手算方法改变铁芯槽形、匝数、气隙的大小以及铁芯的长度,采用三种不同方案的设计。进行方案比较后,选出最优方案,绘制定子电势星形图及定子绕组展开图。首先应根据产品通用标准、技术条件设计原始数据,然后进行电磁设计和结构设计。电磁设计是根据设计技术要求确定电机的电磁负荷,计算转子、定子冲片和铁心各部分尺寸及绕组数据,进而核算电机各项参数及性能,并对设计数据做(原文来自:https://www.360docs.net/doc/e917784497.html, 小草范文网:电机设计开题报告)必要的调整,直到达到要求,提出电磁设计单。 其主要内容包括以下四个步骤,分别是: 1. 额定数据及主要尺寸的计算; 2. 磁路计算; 3. 绕组的连接、电流在绕组中的流向; 4. 起动计算。 5. 额定负载时的损耗及效率计算 三、研究思路和方案 为了提高电机性能,在电机效率、功率因数、启动转矩、

YANG Zhenyu, Engineering Department. The Technology Research of Double Closed-loop Control System for Permanent Magnet BLDCM[J]. Electronic Science & Technology, 2017. WANG Xiaojun, HU Changlun. Modeling and Simulation Analysis of Double-stator Permanent-magnet Motor Control System[J]. micromotors, 2016. Chai F, Chen R. Torque analysis for double-stator permanent-magnet motor[J]. 哈尔滨工业大学学报:英文版, 2002. Feng C , Shu-Kang C , Shu-Mei C . Torque analysis for double-stator permanent-magnet motor[J]. Journal of Harbin Institute of Technology, 2017, 9(4):p.411-414. 王玉彬, 程明, 花为,等. 双定子永磁无刷电机裂比的分析与优化[J]. 中国电机工程学报, 2018, 030(030):62-67. 王雅玲. 电动汽车用双定子永磁无刷电机研究[D]. 山东大学, 2014. 蒲海, 吴敏. 双定子永磁无刷电动机发电机状态有限元时步法的实现[J]. 煤矿机械, 2014, 35(8). 原腾飞. 双定子永磁无刷电机建模及其控制方法探析[J]. 科技创新导报, 2017(14):84-85. 王雅玲, 徐衍亮. 基于电动汽车驱动的双定子永磁无刷直流电机绕组换接运行分析[J]. 电工技术学报, 2014, 029(001):98-103.

驱动轮直流电机选择计算 The final edition was revised on December 14th, 2020.

驱动轮电机用于驱动 AGV 的运行,包括AGV 的直行及差速转弯。在选择电机时,我们通常需要计算出电机的额定功率、额定转矩、额定转速等[28]。而在驱动电机的参数计算之前首先需要明确 AGV 的各项设计要求,如表3-1 所示。 3.1.1 电动机的选择 1. 驱动力与转矩关系 AGV 在地面行驶时,轮子与地面接触,AGV 克服摩擦力向前行驶,电机输出转矩Tq 为小车提供驱动力。而Tq 经减速机减速后得到输出转矩Tt 输出至驱动轮,输出转矩Tt 为: 式中 g i ——减速机减速比; q T ——电机输出转矩; t T ——输出转矩; ——电机轴经减速机到驱动轮的效率。 驱动轮在电机驱动下在地面转动,此时相对于地将形成一个圆周力,而地面对驱动轮也将产生一个等值、反向的力t F ,该力即为驱动轮的驱动力[29] 。驱动力为: 式中 q R ——驱动轮的驱动半径。 由于驱动轮一般刚性较好,视其自由半径、静力半径、滚动半径三者相同,均为q R 。 2. 驱动力与阻力计算 小车在行驶过程中要克服各种阻碍力,这些力包括:滚动阻力f F 、空气阻力w F 、坡度阻力r F 、加速度阻力j F 。这些阻力均由驱动力t F 来克服,因此: (1) 滚动阻力f F 滚动阻力在 AGV 行驶过程中,主要由车轮轴承阻力以及车轮与道路的滚动摩擦阻力所组成,f F 大小为:

式中 F——车轮与轴承间阻力; fz F——车轮与道路的滚动摩擦阻力。 fg 其中,车轮轴承阻力 F为: fz 式中P——车轮与地面间的压力,AGV设计中,小车自重m为100kg,最大载重量 M为200kg,因此最大整车重量为300kg,一般情况下,AGV前行过程中,有三轮m ax 同时着地,满足三点决定一平面的规则,各轮的压力为P=1000N[30]; d——车轮轴直径,驱动轮在本次设计中选择8寸的工业车轮,即d=48mm; D——车轮直径,查文献[40]可知,驱动轮在本次设计中选择8 寸的工业车轮,即D=200mm; μ——车轮轴承摩擦因数,良好的沥青或混凝土路面摩擦阻力系数为—,μ =。 F为: 车轮与道路的滚动摩擦阻力 fg 式中Q——车轮承受载荷,Q=1000N; f——路面摩擦阻力系数,f=。 则: F: (2)空气阻力 w 空气阻力是 AGV 行驶过程当中,车身与空气间形成了相对运动而产生于车身上的阻力,该阻力主要由法向力以及侧向力两部分组成。空气阻力与AGV 沿行驶方向的投影面积以及车身与空气的相对运动速度有关,但由于AGV工作于室内,基本工作环境中无风,且速度不快,同时 AGV 前后方的投影面积均不大,因此认为空气阻力F[31]。 ≈ w F: (3)坡度阻力 r AGV 所实际行驶的路面并非理想化绝对平整,而是存在一定的坡度[32],当 AGV行驶到该坡度处时,重力将产生一个沿着坡度方向的阻力,这个阻力就被称之为坡度阻F,表达式为: 力 r 式中G——AGV 满载总重量; α——最大坡度。 在 GB/T 20721-2006“自动导引小车国标”中表示:路面坡度(H/L)定义为在100mm 以上的长度范围内,路线水平高度差与长度的最大比值,路面坡度的最大比值需要小于(含),对于 AGV 精确定位的停车点,路面坡度需要小于(含)[33]。取坡度: 因此: F: (4)加速度阻力 j

无刷直流电动机 一、简介: 一种用电子换向的小功率直流电动机。又称无换向器电动机、无整流子直流电动机。它是用半导体逆变器取代一般直流电动机中的机械换向器,构成没有换向器的直流电动机。这种电机结构简单,运行可靠,没有火花,电磁噪声低,广泛应用于现代生产设备、仪器仪表、计算机外围设备和高级家用电器。 同步电动机的定子绕组多做成三相对称星形接法,同三相异步电动机十分相似。而转子上粘有已充磁的永磁体,为了检测电动机转子的极性,在电动机内装有位置传感器。驱动器由功率电子器件和集成电路等构成,其功能是:接受电动机的启动、停止、制动信号,以控制电动机的启动、停止和制动;接受位置传感器信号和正反转信号,用来控制逆变桥各功率管的通断,产生连续转矩;接受速度指令和速度反馈信号,用来控制和调整转速;提供保护和显示等等。无刷电动 机结构如图1。 图1无刷直流电动机结构图 二、特点(优点及意义): 1、全面替代直流电机调速、全面替代变频器+变频电机调速、全面替代异步电机+减速机调速; 2、可以低速大功率运行,可以省去减速机直接驱动大的负载;3 3、具有传统直流电机的所有优点,同时又取消了碳刷、滑环结构; 4、转矩特性优异,中、低速转矩性能好,启动转矩大,启动电流小; 5、无级调速,调速范围广,过载能力强; 6、体积小、重量轻、出力大; 7、软启软停、制动特性好,可省去原有的机械制动或电磁制动装置; 8、效率高,电机本身没有励磁损耗和碳刷损耗,消除了多级减速耗,综合节电率可达20%~60%,仅节电一项一年可收回购置成本;

9、可靠性高,稳定性好,适应性强,维修与保养简单;10、耐颠簸震 动,噪音低,震动小,运转平滑,寿命长;11、没有无线电干扰,不产生火花,特别适合爆炸性场所,有防爆型;12、根据需要可选梯形波磁场电机和正旋波磁场电机。i 三、发展历程: 无刷电动机的诞生标志是1955年美国D.Harrison等人首次申请了用晶体管换相电路代替机械电刷的专利。而电子换相的无刷直流电动机真正进入实用阶段,是在1978年的MAC经典无刷直流电动机及其驱动器的推出。之后,国际上对无刷直流电动机进行了深入的研究,先后研制成方波无刷电机和正弦波直流无刷电机。20多年以来,随着永磁新材料、微电子技术、自动控制技术以及电力电子技术特别是大功率开关器件的发展,无刷电动机得到了长足的发展。无刷直流电动机已经不是专指具有电子换相的直流电机,而是泛指具有有刷直流电动机外部特性的电子换相电机。 直流电动机以其优良的转矩特性在运动控制领域得到了广泛的应用,但普通的直流电动机由于需要机械换相和电刷,可靠性差,需要经常维护;换相时产生电磁干扰,噪声大,影响了直流电动机在控制系统中的进一步应用。为了克服机械换相带来的缺点,以电子换相取代机械换相的无刷电机应运而生。1955年美国D.Harrison等人首次申请了用晶体管换相电路代替机械电刷的专利,标志着现代无刷电动机的诞生。而电子换相的无刷直流电动机真正进入实用阶段,是在1978年的MAC经典无刷直流电动机及其驱动器的推出。之后,国际上对无刷直流电动机进行了深入的研究,先后研制成方波无刷电机和正弦波直流无刷电机。20多年以来,随着永磁新材料、微电子技术、自动控制技术以及电力电子技术特别是大功率开关器件的发展,无刷电动机得到了长足的发展。无刷直流电动机已经不是专指具有电子换相的直流电机,而是泛指具有有刷直流电动机外部特性的电子换相电机。ii 四、国内外无刷电机的发展现状: 1、市场:我国无刷直流电机的研制开发起于70年代初期,主要是为我国自行研制的军事装备和宇航技术发展而配套。由于需要量少,只需由某些科研单位试制提供就能满足要求。经过20多年的发展,虽然在新产品开发方面缩短了与国际先进水平的差距,但由于无刷电机产品是总和了电机、微电子、控制、计算机等技术于一身的高技术产品,受到了我国基础工业落后的制约,因此无论在产量、品种、质量及应用上与国际先进水平差距甚大。目前,国内研制的单位虽然不少,但能有一定批量的单位却屈指可数。当今日本、德国、台湾是无刷电机主要生产国和地区,日本的年产量超过8000万台,其中约50%出口海外,德国年产量约3000万台,台湾主要生产较低档次无刷电机,年产量超过1000万台。iii 2、技术:几乎所有的无刷电动机产品都是为特定用途设计制造的。试图生产一种通用系列无刷电动机来适应千变万化的市场需求,是不可能的。各公司设计制造各种特殊结构、特定用途的无刷直流电动机,在设计、结构和工艺新技术方面不断的革新,以适应不同整机市场的需求。例如: ①永磁材料技术:适应不同性能参数永磁材料,瓦型、环型表面粘接结构和

电机数学模型 以二相导通星形三相六状态为例,分析BLDC的数学模型及电磁转矩等特性。为了便于分析,假定: a)三相绕组完全对称,气隙磁场为方波,定子电流、转子磁场分布皆对称; b)忽略齿槽、换相过程和电枢反应等的影响; c)电枢绕组在定子内表面均匀连续分布; d)磁路不饱和,不计涡流和磁滞损耗。 则三相绕组的电压平衡方程可表示为: 错误!未找到引用源。(1) 式中:错误!未找到引用源。为定子相绕组电压(V);错误!未找到引用源。为定子相绕组电流(A);错误!未找到引用源。为定子相绕组电动势(V);L为每相绕组的自感(H);M为每相绕组间的互感(H);p为微分算子p=d/dt。 三相绕组为星形连接,且没有中线,则有 错误!未找到引用源。(2) 错误!未找到引用源。(3) 得到最终电压方程: 错误!未找到引用源。(4) e c c 图.无刷直流电机的等效电路 无刷直流电机的电磁转矩方程与普通直流电动机相似,其电磁转矩大小与磁通和电流幅值成正比 错误!未找到引用源。(5) 所以控制逆变器输出方波电流的幅值即可以控制BLDC电机的转矩。为产生恒定的电磁转矩,要求定子电流为方波,反电动势为梯形波,且在每半个周期内,方波电流的持续时间为120°电角度,梯形波反电动势的平顶部分也为120°

电角度,两者应严格同步。由于在任何时刻,定子只有两相导通,则:电磁功率可表示为: 错误!未找到引用源。(6) 电磁转矩又可表示为: 错误!未找到引用源。(7) 无刷直流电机的运动方程为: 错误!未找到引用源。(8) 其中错误!未找到引用源。为电磁转矩;错误!未找到引用源。为负载转矩;B为阻尼系数;错误!未找到引用源。为电机机械转速;J为电机的转动惯量。 传递函数: 无刷直流电机的运行特性和传统直流电机基本相同,其动态结构图可以采用直流电机通用的动态结构图,如图所示: 图2.无刷直流电机动态结构图 由无刷直流电机动态结构图可求得其传递函数为: 式中: K1为电动势传递系数,错误!未找到引用源。,Ce 为电动势系数; K2为转矩传递函数,错误!未找到引用源。,R 为电动机内阻,Ct 为转矩系数;T m为电机时间常数,错误!未找到引用源。,G 为转子重量,D 为转子直径。基于MATLAB的BLDC系统模型的建立 在Matlab中进行BLDC建模仿真方法的研究已受到广泛关注,已有提出采用节点电流法对电机控制系统进行分析,通过列写m文件,建立BLDC仿真模型,

机器人直流无刷电机是一种应用在智能机器人驱动上的微型电机产品,具备驱动、减速、提升扭矩功能,主要由微型直流无刷电机、齿轮箱组装而成,也称为机器人电机;这种直流无刷电机属于非标电机齿轮箱,采用定制参数、性能特点、结构方式,定制参数范围,直径规格在3.4mm-38mm之间,额定电压在3V-24V,输出力矩范围:1gf.cm到50Kgf.cm之间,减速比范围:5-1500;输出转速范围:5-2000rpm; 机器人直流无刷电机产品参数: 产品名称:儿童智能陪护机器人电机齿轮箱 电压:3V-24V 空载转速:15000 空载电流:300MA 工作温度:-20 (85) 产品说明:儿童智能陪护机器人电机齿轮箱为特定客户开发设计,只作为儿童智能陪护机器人电机齿轮箱的方案展示。 标准直流无刷电机产品参数: 产品名称:5v直流减速电机 产品分类:直流减速电机 电压:5 VDC 材质:五金 旋转方向:cw&ccw 齿轮箱回程差:≤2°(可定制) 轴承:烧结轴承;滚动轴承 轴向窜动:≤0.1mm(烧结轴承);≤0.1mm(滚动轴承) 输出轴径向负载:≤20N(烧结轴承);≤30N(滚动轴承) 输入速度:≤15000rpm 工作温度:-30 (100)

产品名称:直流无刷减速电机(齿轮电机) 产品分类:无刷减速电机 产品规格:Φ20MM产品 电压:12V 空载电流:220 mA (可定制) 负载转速:2.4-1000 rpm(可定制) 减速比:5/25/125/625:1(可定制) 机器人直流无刷电机定制参数、规格范围: 尺寸规格系列:3.4mm、4mm、6mm、8mm、10mm、12mm、16mm、18mm、20mm、22mm、24mm、28mm、32mm、38mm; 电压范围:3V-24V 功率范围:0.1W-40W 输出力矩范围:1gf.cm到50Kgf.cm 减速比范围:5-1500; 输出转速范围:5-2000rpm; 生产厂家

1引言无刷直流电机最本质的特征是没有机械换向器和电刷所构成的机械接触式换向机构。现在,无刷直流电机定义有俩种:一种是方波/梯形波直流电机才可以被称为无刷直流电机,而正弦波直流电机则被认为是永磁同步电机。另一种是方波/梯形波直流电机和正弦波直流电机都是无刷直流电机。国际电器制造业协会在1987年将无刷直流电机定义为“一种转子为永磁体,带转子位置信号,通过电子换相控制的自同步旋转电机”,其换相电路可以是独立的或集成于电机本体上的。本次设计采用第一种定义,把具有方波/梯形波无刷直流电机称为无刷直流电机。从20世纪90年代开始,由于人们生活水平的不断提高和现代化生产、办公自动化的发展,家用电器、工业机器人等设备都向着高效率化、小型化及高智能化发展,电机作为设备的重要组成部分,必须具有精度高、速度快、效率高等优点,因此无刷直流电机的应用也发展迅速[1]。 1.1 无刷直流电机的发展概况 无刷直流电动机是由有刷直流电动机的基础上发展过来的。 19世纪40年代,第一台直流电动机研制成功,经过70多年不断的发展,直流电机进入成熟阶段,并且运用广泛。 1955年,美国的D.Harrison申请了用晶体管换相线路代替有刷直流电动机的机械电刷的专利,形成了现代无刷直流电动机的雏形。 在20世纪60年代初,霍尔元件等位置传感器和电子换向线路的发现,标志着真正的无刷直流电机的出现。 20世纪70年代初,德国人Blaschke提出矢量控制理论,无刷直流电机的性能控制水平得到进一步的提高,极大地推动了电机在高性能领域的应用。 1987年,在北京举办的德国金属加工设备展览会上,西门子和博世两公司展出了永磁自同步伺服系统和驱动器,引起了我国有关学者的注意,自此我国开始了研制和开发电机控制系统和驱动的热潮。目前,我国无刷直流电机的系列产品越来越多,形成了生产规模。 无刷直流电动机的发展主要取决于电子电力技术的发展,无刷直流电机发展的初期,由于大功率开关器件的发展处于初级阶段,性能差,价格贵,而且受永磁材料和驱动控制技术的约束,这让无刷直流电动机问世以后的很长一段时间内,都停

三相无刷直流电机系统结构及工作原理

图2.3 直流无刷电动机的原理框图位置传感器在直流无刷电动机中起着测定转子磁极位置的作用,为逻辑开关电路提供正确的换相信息,即将转子磁钢磁极的位置信号转换成电信号,然后去控制定子绕组换相。位置传感器种类较多,且各具特点。在直流无刷电动机中常见的位置传感器有以下几种:电磁式位置传感器、光电式位置传感器、磁敏式位置接近传感器【3】。 2.4基本工作原理 众所周知,一般的永磁式直流电动机的定子由永久磁钢组成,其主要的作用是在电动机气隙中产生磁场。其电枢绕组通电后产生反应磁场。其电枢绕组通电后产生反应磁场。由于电刷的换向作用,使得这两个磁场的方向在直流电动机运行的过程中始终保持相互垂直,从而产生最大转矩而驱动电动机不停地运转。直流无刷电动机为了实现无电刷换相,首先要求把一般直流电动机的电枢绕组放在定子上,把永磁磁钢放在转子上,这与传统直流永磁电动机的结构刚好相反。但仅这样做还是不行的,因为用一般直流电源给定子上各绕组供电,只能产生固定磁场,它不能与运动中转子磁钢所产生的永磁磁场相互作用,以产生单一方向的转矩来驱动转子转动。所以,直流无刷电动机除了由定子和转子组成电动机本体以外,还要由位置传感器、控制电路以及功率逻辑开关共同构成的换相装置,使得直流无刷电动机在运行过程中定子绕组所产生的的磁场和转动中的转子磁钢产生的永磁磁场,在空间始终保持在(π/2)rad左右的电角度。 2.5无刷直流电机参数 本系统采用的无刷电机参数 ·额定功率:100W ·额定电压:24V(DC) ·额定转速:3000r/min ·额定转矩:0.23N?m ·最大转矩:0.46N?m ·定位转矩:0.01N?m ·额定电流:4.0A

Xxxx大学 本科毕业论文开题报告 基于Simulink的直流电机转速控制仿真研究 学号: xxx 姓名: 导师: 学院: 专业: 日期:

目录 一、选题依据、目的和意义 二、国内外研究现状及发展趋势 三、研究的主要内容及实验方法 四、目标,主要特色及工作进度 五、主要参考文献

一、选题依据、目的和意义 直流电机分为有刷和无刷两种,无刷直流电机(BLDCM)是在有刷直流电动机的基础上发展来的,但它的驱动电流是不折不扣的交流;无刷直流电机又可以分为无刷速率电机和无刷力矩电机。一般地,无刷电机的驱动电流有两种,一种是梯形波(一般是“方波”),另一种是正弦波。有时候把前一种叫直流无刷电机,后一种叫交流伺服电机,确切地讲是交流伺服电动机的一种。 无刷直流电机在重量和体积上要比有刷直流电机小的多,相应的转动惯量可以减少40%—50%左右。由于永磁材料的加工问题,致使无刷直流电机一般的容量都在100kW以下。这种电动机的机械特性和调节特性的线性度好,调速范围广,寿命长,维护方便噪声小,不存在因电刷而引起的一系列问题,所以这种电动机在控制系统中有很大的应用潜力。 1.1选题依据 无刷直流电动机因卓越的性能和不可替代的技术优势倍受人们的关注,特别是自70年代后期以来伴随着永磁材料技术、计算机及控制技术等支撑技术的快速发展及微电机制造工艺水平的不断提高,无刷直流电动机在高性能中、小伺服驱动领域获得广泛应用并日趋占据主导地位。随着无刷直流电机应用领域的不断扩大,要求控制系统设计简易、成本低廉、控制算法合理。建立无刷直流电机控制系统的仿真模型,可以有效的节省控制系统设计时间,及时验证系统的控制算法,同时可以充分利用计算机仿真的优越性,很方便的改变系统的结构,加入不同的扰动和参数变化,可以更好的考察系统在不同结构和不同工况下的静、动特性。因此如何建立无刷直流电机控制系统的仿真模型成为迫切需要解决的关键问题。 1.2目的和意义 无刷直流电动机具有体积小、重量轻、效率高、惯量小和控制精度高、无滑动接触和换相火花、可靠性高、使用寿命长及噪声低等优点,在航空航天、伺服控制、数控机床、机器人、电动汽车、计算机外围设备和家用电器等方面都获得了广泛应用。随着无刷直流电机应用领域的不断扩大,要求控制系统设计简易、成本低廉、控制算法合理、开发周期短。通过建立有效的无刷直流电动机系统仿真模型,可以

毕业论文 课题名称无刷直流电机双闭环PI控制系统仿真 系部 专业 班级 学号 姓名 指导教师

摘要 本设计基于MATLAB/SIMULINK环境,利用其自带模块,编写S-函数程序,建立无刷直流电机的闭环控制系统模型。此系统采用转速-电流PI双闭环控制策略。其中,转速环为控制外环,使用PI控制算法;电流环为控制内环,采用滞环比较PWM控制方式,使得实际电流能跟踪参考电流。在分析了无刷直流电机的物理特性之后,可以建立其数学模型,将它与控制系统数学模型结合,就可以实现电机控制。将仿真结果与理论分析对比之后,可以看到本控制系统具有良好的控制效果。 关键词:无刷直流电机;双闭环控制系统;MATLAB/Simulink;PI控制 Abstract

based on MATLAB/SIMULINK environment, using the automatic module and writing S - function program establish a model of the closed loop control system of brushless dc motor. This system USES PI speed - current double closed-loop control strategy. Among them, the speed loop as the outer ring to use PI control algorithm; Current loop to control the inner ring, using the hysteresis PWM control mode, makes the actual current can track reference current. Physical properties after the analysis of the brushless dc motor, can establish its mathematical model, combined with control system mathematical model, it can achieve motor control. After compare the simulation results and theoretical analysis, you can see this control system has good control effect. Keywords: Brushless DC Motor; double-loop control system; MATLAB/Simulink; PI control

电机转速n (r/min ); 电枢表面线速度v (m/s ); 电枢表面圆周速度Ω (rad/s ); 电枢直径D (m ); 电机的极对数P ; 频率f (Hz); 每极总磁通Φ (Wb ); a :电枢绕组并联支路对数 电枢绕组每相有效匝数W A ; T U ?:电压损耗(开关管损耗等) 电势系数e K :是当电动机单位转速时在电枢绕组中所产生的感应电势平均值。 转矩系数T K :(N.m/A) 是当电动机电枢绕组中通入单位电流时电动机所产生的平均电磁转矩值。 额定功率N P :指电动机在额定运行时,其轴上输出的机械功率(W )。 额定电压N U :是指在额定运行情况下,直流电动机的励磁绕组和电枢绕组应加的电压值,(V )。 额定电流a I :是指电动机在额定电压下,负载达到额定功率时的电枢电流和励磁电流值,(A )。 额定转速N n :是指电动机在额定电压和额定功率时每分钟的转数,单位r/min. 额定转矩N T 2:是指额定电压和额定功率时的输出转矩,单位N.m 。 电机成品的已知量:额定转速N n 、p 、a 、e K 、T K 、a R 60pn f = n D v ?=60π 60 22n p f ?=?=Ωππ a n p C e ??=60 Φ?=e e C K e T C C ?=π 260 Φ?=T T C K a T a a a R U E U I ?--= 功率P :Ω=/P T 机械特性:=n 无刷直流电动机稳态特性的4个基本公式: 电压平衡方程式:T a a a a U R I E U ?+?+= 感应电势公式:n K E e a ?= 转矩平衡方程式: 20T T T em += 电磁转矩公式: a T em I K T ?=

本科毕业设计开题报告 题目:电动机智能保护装置的设计 专题: 院(系): 班级: 姓名: 学号: 指导教师: 教师职称:

本科毕业设计开题报告 题目电动机智能保护装置的设计来源工程实际 1、研究目的和意义 电动机作为现代工业动力源,异步电动机价格低廉、结构简单、机械性能较好,在各行业中获得了广范的应用。在传统的电动机保护装置大多由电磁元件装置和模拟电子式保护器完成,但其功能单一、精度差、稳定性不高,动作时间慢的特点无法满足人们对电动机保护可靠性越来越高的要求,其保护长期困扰着继电保护专业人员和运行人员,抓好电动机保护的研究与推广工作,对国民经济有着重要的意义,对其进行可靠有效的保护尤为重要。因此电动机保护的自控、集中监控和智能化自处理是电动机保护主要研究方向。 2、国内外发展情况(文献综述) 我国电动机保护装置大概经过了以下的几个发展几个阶断。 一、热继电器、熔断器、电磁式继电器:建国初期,我国引进苏联JR系列继电器。但热继电器等存在致命缺陷,包括整定粗糙、受环境影响大、误差大、重复性差、功能单一等。无法满足高要求,因此也就无法避免被淘汰的命运。 二、模拟电子式电动机保护装置:在上世界八十年代,由于半导体元件普及,涌出一批性能可靠、功能多样的电子式电机保护器。但这类产品仍存在一些无法避免的缺点,整定精度不高、采样精度不高、无法实现具有多功能为一体的全面保护。随着科技的发展,人们对电机保护要求也越来越高,希望电动机保护器结构简单,体积小,接线简单,这些都是模拟电子保护装置无法实现的。 三、数字式电机保护器:这类电机保护器主要以单片机作为电机保护器,可实现智能化综合保护,在采样和整定上有质的飞越,可对信号进行软件非线性校正,极大地降低了被测信号畸变的影响,真正实现了高度采样。电动机保护器正朝着智能化、综合化、高精度、高可靠性发展。 3、研究/设计的目标: 本设计的目标是以单片机为核心的电机保护系统,能够精准、快速、有效的检测出电动机故障,实现电动机及时有效的保护,对电动机的过压、过流、短路等故障进行实时检测,确保电动机安全运行。 4、设计方案(研究/设计方法、理论分析、计算、实验方法和步骤等): 电动机保护装置是分析三相异步电动机在运行中可能发生的常见故障,以单片机为中心控制部件,如短路、过流、低电压、过负荷、单相接地等。该系统具有自检、自诊断、故障参数记忆等功能。 系统分硬件部分和软件部分 一、硬件部分: 硬件部分主要由电压互感器、电流互感器、A/D转换器、单片机,报警,LED显示。系统先由

河南科技大学毕业设计(论文)开题报告 (学生填表) 院系:电子信息工程学院2013年03月31日 课题名称无刷直流电机驱动电路 学生姓名赵永亮专业班级自动化093课题类型硬件设计 指导教师丁喆职称副教授课题来源生产实际1. 设计(或研究)的依据与意义 电动机作为机电能量转换装置,一直在人类生产和生活中起着十分重要的作用,其应用范围遍及各个领域。电力拖动自动控制系统已经成为现代电器化及自动化的基础,而实现工业企业的电气化及自动化对于提高产品质量,改善工人的劳动条件,增加工作可靠性以及劳动生产率均有重大的意义。因多年来,人们对电动机的研究一直未停断。电动机主要分为同步电机、异步电机和直流电动机三种类型,其容量大到几万千瓦,小到几瓦。长期以来,直流电动机一直占据着速度控制和位置控制的统治地位。众所周知,直流电动机具有运行效率高、调速性能好等诸多优点,但传统的直流电动机均采用电刷换向,以机械接触方法进行换向,因而存在相应的机械摩擦,带来了火花、噪声、电磁干扰大以及寿命短等缺点,再加上制造成本高以及维修困难等缺点,大大限制了它的应用范围。因此无刷直流电动机应运而生。1955年美国的D.Harrison等人首次申请了用晶体管换向电路代替机械电刷的专利,标志着现代无刷电机的诞生,而电子换向的无刷直流电动机真正进入实用阶段,是在1978年的MAC经典无刷直流电动机及其驱动器的推出之后。 直流无刷电动机的主要特点:高效率:无刷直流电动机转子上既无铜耗也无铁耗,其效率比同容量异步电动机提高5%—12%。.启动转矩大,启动电流小:无刷直流电动机的机械特性和调节特性与他励直流电动机枢控时相应特性类似,所以它的启动转矩大,启动电流小,调节范围宽,且没有因电刷换向器引起的缺点,电子换向取代了机械换向。无刷直流电动机是一种自控式调速系统,它无需像普通同步电动机那样需要启动绕组;在负载突变时,不会产生振荡和失步。无刷直流电机具有直流电动机特性、永磁同步电动机类似的结构。适合长期低速运转、启动频繁的场合,这是变频调速器拖动Y系列电动机不太容易实现的。因此得到了广泛的应用,无论在数控机床,机器人等制造加工领域,还是家用电器如洗衣机,电脑硬盘等场合都日益受到重视。无刷直流电动机是集材料科学、电力电子技术、微电子技术和电机理论等多学科为一体的机电一体化产品,在诸多领域有着广阔的应用前景。因此,对无刷直流电机本体及其控制方法进行系统、深入的研究具有十分重要的现实意义。

概述 无刷直流电机由电动机主体和驱动器组成,是一种典型的机电一体化产品。无刷电机是指无电刷和换向器(或集电环)的电机,又称无换向器电机。 无刷直流电机由电动机主体和驱动器组成,是一种典型的机电一体化产品。电动机的定子绕组多做成三相对称星形接法,同三相异步电动机十分相似。电动机的转子上粘有已充磁的永磁体,为了检测电动机转子的极性,在电动机内装有位置传感器。驱动器由功率电子器件和集成电路等构成,其功能是:接受电动机的启动、停止、制动信号,以控制电动机的启动、停止和制动;接受位置传感器信号和正反转信号,用来控制逆变桥各功率管的通断,产生连续转矩;接受速度指令和速度反馈信号,用来控制和调整转速;提供保护和显示等等。 参数 无刷直流减速电机参数分为标准参数和定制电机参数; 标准小型电机参数如下: 直径尺寸:4mm、6mm、8mm、10mm、12mm、16mm、18mm、20mm、22mm、28mm、32mm、38mm; 齿轮箱材质分为:金属、塑胶材质结构; 输出转速:5-2000rpm; 减速比:5-1500; 功率:3V-24V; 输出扭矩:1gf-cm到50KGf-cm; 定制参数,即可按照项目设备需求定制无刷直流减速电机参数、规格和性能需求。

用途 小型无刷直流减速电机广泛应用在医疗器械,智能家居,机器人,汽车驱动,自动化设备,光学设备,精密仪器,工控设备等领域;按照应用方式分为:持续负载应用、可变负载应用、定位应用;在智能家居、智慧城市、机器人自动化领域均有广泛应用,通常是定制参数,规格模式。 品牌介绍 深圳市兆威机电股份有限公司成立于2001年,是一家研发、生产精密传动系统及汽车精密注塑零组件的制造型企业,为客户提供传动方案设计,零件的生产与组装的定制化服务。

摘要 电动汽车具有清洁无污染,能源来源多样化,能量效率高等特点,可以解决能源危机和城市交通拥堵等问题。电动车作为国家“十二五规划”重点发展的节能环保项目,获得了广泛应用和发展。无刷直流电机用电子换向装置取代了普通直流电动机的机械换向装置,消除了普通直流电机在换向过程中存在的换向火花,电刷磨损,维护量大,电磁干扰等问题,成为了电动车驱动电机的主流选择。本文将采用基于空间电压矢量脉宽调制技术(SVPWM)的正弦波驱动无刷直流电机的方法来解决方波控制下的无刷直流电机启动抖动明显,动矩脉动大,噪声大等问题。控制系统实现了永磁无刷直流电机在不同负载下低转矩纹波,运动平滑,噪音小,启动迅速,效率高的运行效果。 本文主要研究内容如下: 1.对永磁无刷直流电机数学模型与矢量控制工作原理分析,首先对永磁无刷直流电机本体及数学模型分析,接着对矢量控制坐标变换和空间电压矢量脉宽调制技术的原理和实现进行分析。 2.电动汽车用永磁无刷直流电机矢量控制系统实现,首先分析电动汽车用永磁无刷直流电机矢量控制系统结构,最后将电动汽车用永磁无刷直流电机矢量控制系统用Matlab/Simulink仿真。 关键词:电动汽车,无刷直流电机,矢量控制,SVPWM,Simulink

ABSTRACT Electric Vehicle has no pollution and it can supply with diversify energy sources.Also it’s energy efficient is high.These advantages can solve the problems of global energy crisis increasing and city’s traffic jam. Electric Vehicle is widely developed and applied which is called as a national ‘five years plan’focused on development of energy conservation and environment protection projects.The brushless DC motor with electronic commutator which replaces the normal DC motor mechanical switchback unit emerged,and it eliminates a few problems such as commutation sparks,brush wear,a large amount of maintenance,electromagnetic interference and so on,becoming the mainstream selection of the Electric Vehicle drive motor selection. The paper adopted the sinusoidal current drive based on space vector pulse with modulation(SVPWM) method was proposed to solve the problems of start shaking ,large torque ripple and loud noise of brushless direct current motor under the control of square-wave.The control system enabled BLDCM with different load operating in the condition of the low torque ripple smooth rotation ,low noise and high efficiency . The main studies were as follows: (1)Analyzing the mathematical model of BLDCM and the principle of the vector control.firstly,to analyze the ontology of the BLDCM and mathematical model,then analyze the vector control coordinate transformation and theory of space vector pulse width modulation. (2)Electric vehicles with a permanent magnet brushless dc motor vector control system implementation. Firstly analyze the electric car with a permanent magnet brushless dc motor vector control system structure, finally to the electric car with permanent magnet brushless dc motor vector control system with Matlab/Simulink.

毕业设计/论文 开题报告 课题名称基于PROTEUS的直流电机调速系 统仿真设计 类别毕业设计 系别机电与自动化学院 专业班电气工程及其自动化0706班 姓名加珣 评分 指导教师吴雯 华中科技大学武昌分校

华中科技大学武昌分校学生毕业设计开题报告学生姓名加珣学号20071131259专业班级电气0706 系别机电与自动化 学院 指导教师吴雯职称工程师 课题名称基于PROTEUS的直流电机调速系统仿真设计 1课题设计的目的和意义 1.1课题设计的目的 Proteus软件是英国Labcenter electronics公司出版的EDA工具软件,从原理图布图、代码调试到单片机与外围电路协同仿真,一键切换到PCB设计,真正实现了从概念到产品的完整设计。 直流电机虽不需要其它的设备来帮助调速,但自身的结构复杂,制造成本高;在大功率可控晶闸管大批量使用之前,直流电动机用于大多的调速场合。直流调速系统具有较大的起动转矩和良好的起、制动性能以及易于在宽范围内实现平滑调速,至今都是自动调制系统的主要形式。电机的控制部分已经由模拟控制逐渐让位于以单片机为主的微处理器控制。 采用微处理器控制,使整个调速系统的数字化程度,智能化程度有很大改观;采用微处理器控制,使调速系统在结构上简单化,可靠性提高,操作维护变得简捷,电机稳态运行时转速精度等方面达到较高水平。简单的微处理器控制电机,只需利用微处理器控制继电器、电子开关元器件,使电路开通或关断就可实现对电机的控制。对于复杂的微处理器控制电机,则要利用微处理器控制电机的电压、电流、转矩、转速、转角等,使电机按给定的指令准确工作。 1.2课题设计的意义 直流调速系统的发展得力于微电子技术、电力电子技术、传感器技术、永磁材料技术、自动控制技术和微机应用技术的最新发展成就。功率器件控制条件的变化和微电子技术的使用也使新型的电动机控制方法能够得到实现。随着单片机的发展,数字化直流PWM调速系统在工业上得到了广泛的应用,控制方法也日益成熟。 它对单片机的要求是:具有足够快的速度;有PWM口,用于自动产生PWM波;有捕捉功能,用于测频;有A/D转换器、用来对电动机的输出转速、输出电压和电流的模拟量进行模/数转换;有各种同步串行接口、足够的内部ROM和RAM,以减小控制系统的无力尺寸;有看门狗、电源管理功能等。因此该实验中选用单片机AT89C51。通过设计基于AT89C51单片机的直流PWM调速系统并调试得出结论,在掌握

论文题目 : 无刷直流电动机转矩脉动抑制的研究 姓名 : 专业名称 : 控制理论与控制工程 研究方向 : 交流传动与伺服控制 指导教师 : 日期:2011年12月30日 青岛大学硕士研究生学位论文开题报告 一选题的目的和意义

现代社会中,电能是最常用且最为普遍的二次能源。而电机作为机电能量转换装置,经过一个多世纪的发展,其应用范围已遍及现代社会和国民经济的各个领域及环节。为了适应不同的实际应用,各种类型的电机应运而生,其中包括直流电机、异步电机、同步电机、开关磁阻电机和各种其他类型的电机,其容量小到几毫瓦,大到百万千瓦。 相比之下,直流电机具有运行效率高和调速性能好等诸多优点,但是传统直流电机均采用电刷以机械方式换向,因而存在机械摩擦,使电机寿命缩短,并带来了噪音、火花以及无线电干扰等问题,且制造成本高及维修困难。 异步电机结构简单、制造方便、运行可靠、价格便宜,但其机械特性软、启动困难、功率因数低,不能经济地实现范围较广的平滑调速,且必须从电网吸收滞后的励磁电流,从而降低电网功率因数。 他控式变频同步电机具有转矩大、效率和精度高、机械特性硬等优点,但调速困难、容易“失步”等弱点大大限制了它的应用范围。 开关磁阻电机转子既无绕组也无永磁体,其结构简单、成本低廉,在低速时具有较大的转矩,控制换相时无上下桥直通等问题,但其噪声和转矩波动相对较大,这在某种程度上限制了该类型电机的推广应用。 无刷直流电机在保持传统直流电机优越的调速性能基础上,克服了原来机械换向和电刷引起的一系列问题,且具有效率高、功率密度大、功率因数高、体积小、控制精度高等明显优点。但是位置传感器的安装与使用,一般会增加电机的成本,并影响无刷直流电机控制系统的可靠性和工作寿命;另外,位置传感器装入电机内部,还可能会增大电机的体积,在汽车,航空航天,家用电器,办公自动化领域等对电机体积有严格要求与限制的行业中更适于使用无传感器无刷直流电机。 于是对于无刷无位置传感器直流电动机的转矩脉动抑制的研究就有了很大的意义。

相关文档
最新文档