三轴数字陀螺仪篇 (2)

三轴数字陀螺仪篇 (2)
三轴数字陀螺仪篇 (2)

机器人衡态调整三轴数字陀螺仪篇

Z

北京森汉科技有限公司https://www.360docs.net/doc/ea11169426.html,

三轴数字陀螺仪手册--目录

目录

一.硬件介绍 (1)

1.陀螺仪芯片 (1)

2.陀螺仪的载板 (2)

3.SHR-8S机器人三轴分布 (3)

4.STC12C5A60S芯片接口 (4)

5.载板实物 (4)

二.陀螺仪操作 (5)

1.访问格式 (5)

2.软件接口 (5)

三.姿势状态分析 (5)

1.自纠正归位系统介绍 (5)

2.自纠正跳位系统介绍 (6)

四.姿态调整程序解析 (8)

1.行走姿态调整程序 (8)

2.静止站立姿态调整程序 (19)

3.左右平移姿态调整程序 (25)

一.硬件介绍

1.陀螺仪芯片

如下图1-1所示,三轴数字陀螺仪L3G4200D芯片X、Y、Z三轴互相正交分布。

图1-1 坐标方向及背面图

图1-1中明确标出了L3G4200D芯片X、Y、Z轴的坐标方向及背面图。本陀螺仪芯片可供用户选择其尺度量程,量程范围从±250 dps ~±2000 dps,低量程数值用于高精度慢速运动测量,而高量程则用于测量超快速的手势和运动。这款器件提供一个16位数据输出,以及可配置的低通和高通滤波器等嵌入式数字功能。就算时间推移或温度变化,这款器件仍然保持连续稳定的输出。

L3G4200D 特性(ST):

◆三种可选全尺度(±250/500/2000 存保计划)

◆I2C/SPI 数字输出接口

◆16 比特率值的数据输出

◆8 比特温度数据输出

◆两个数字输出线(中断和 data ready)

◆集成低和高通滤波器的用户可选带宽

◆在时间和温度上平稳

◆嵌入式 self-test

◆宽电源电压,2.4 V 到 3.6 V

◆低电压兼容的 IOS,1.8 V

◆嵌入式 power-down 和睡眠模式

◆嵌入式温度传感器

◆嵌入式 FIFO 缓存

◆ 高抗撞击能力

◆ 扩展的工作温度范围(-40°C 到+85°C) ◆ ECOPACK? RoHS 和 “Green ”认证

2.陀螺仪的载板

(1)本次采用陀螺仪的IIC 接口方式,访问陀螺仪内部的三轴数字值。其每一轴的数字值均为有符号的16进制数,以补码的形式存放。采用单片机两个I/O 口(P4.1与P3.3)模拟IIC 与陀螺仪IIC 接口(SCL 、SDA )相接,使用100kHz 采样速率对陀螺仪内部寄存器配置与三轴数字值的读取。其中三轴X 、Y 、Z 数字值的存放寄存器分别为OUT_X_L 与OUT_X_H 、OUT_Y_L 与OUT_Y_H 、OUT_Z_L 与OUT_Z_H ,只要对它们进行读取即可。其应用载板正面及接线提示图如下图1-2所示。

图1-2 载板正面图

(2)陀螺仪芯片的载板背面图如图1-3所示。

图1-3 载板背面图

Z X +5V

SDA

3.SHR-8S 机器人三轴分布

在此特别的说明一下,这里讲到的三轴与L3G4200D 芯片载板的三轴完全重合。 根据三轴数字陀螺仪载板在机器人身长的插接方式,如下图1-4所示的坐标。

图1-4 载板在机器人上的坐标图

X 、Y 平面 Y 、Z 平面

Y 、Z 平面

Z

Y

X ⊕ X Y

4.STC12C5A60S芯片接口

STC12C5A60S芯片是SHR-8S人形机器人的主控板上面的MCU,它负责机器人行走步伐函数的发生,另外还负责红外线接收与识别,与上位机三维图形化软件进行通讯的功能。本次再给它加一个任务就是“三轴数字陀螺仪的数据采样和分析”。所以使用该芯片的IIC采样端口,对L3G4200D进行三轴数字值采样。具体的端口连接参考下面图1-5。

图1-5 STC12C5A60S芯片接口图

根据上图1-5,使用如下的端口协议:

STC12C5A60AD芯片:P4.1 ---- 载板SCL;

P3.3 ---- 载板SDA;

5.载板实物

载板的实物图,如下图1-6所示。实物暂时未出

图1-6 载板实物图

二.陀螺仪操作

本陀螺仪操作接口含有IIC与SPI两种,由于考虑到SPI接口多占用I/O口的问题,所以此次采用IIC接口方式对陀螺仪芯片操作,即一根时钟线SCL和一根数据线SDA连接陀螺仪,实现数据传输。

1.访问格式

基于标准IIC通信格式,对陀螺仪内部寄存器进行访问。采样数率使用100kHz,分别依次从六个寄存器(每一轴的数字值由低8位与高8位组合)读取出三轴X、Y、Z的数字值,其中六个寄存器分别为OUT_X_L与OUT_X_H、OUT_Y_L与OUT_Y_H、OUT_Z_L与OUT_Z_H。

2.软件接口

基于标准IIC的通信协议,编写访问陀螺仪内部数据的接口子程序(void Read_IIC_XYZAxis(void) );其依次读取出每一轴的高低8位,再分别组合存放于有符号16位的整型变量当中,共3个变量(L3G4200D_dis_data[0]、L3G4200D_dis_data[1]、L3G4200D_dis_data[2]),分别对应于X、Y、Z三轴的角速度值。由于用于控制机器人相对较快行走,所以降低陀螺仪返回的角速度值,以缩小100倍处理。

三.姿势状态分析

机器人在行走运动时欲维持其各种平衡状态,首先要研究立正姿势下的平衡方程。由于立正姿势本身就是一种静止状态,而且它相对于所有的稳定状态都可以直接过渡,所以要把立正姿势下的各种平衡关系分类研究透彻。

首先要探讨一下平衡的概念,所谓的平衡,也就是说系统在一定范围内保持着规律性的运动。比如说钟摆本身就是一种特殊的平衡,还有像弹簧的往复震动,小孩子玩的陀螺不停的旋转等等都是一种稳定状态也就是一种平衡。在人体的研究范畴里面,平衡状态的种类是最多的,它的种类要比天上的战斗机还多上百倍。经常看到的杂技演员,在高空做的各种惊险动作,其实都是在从一个稳定态变化到另外的一个稳定态的过程。在这个过程中,我们发现过渡过程都是运动的,而稳定态都是静止的。不过,我们把各种状态归类总结成一下2种。

1.自纠正归位系统介绍

在日常生活中经常会碰到类似的情况,正常行走的行人一不留神,脚踩到一个西瓜皮后,这个人挣扎了几下又直起身来,差一点就摔到了。这种现象归类为自动纠正归位系统现象,如下面的流程图3-1所示。

图3-1 自纠正归位系统图

当稳定的系统受到外界干扰的时候,系统就面临着失稳的风险。如果系统的自纠正能力很强,那么他就会很快地进行自我纠正并回到初始的稳定态。上面的例子里,正常行走的行人就是一个稳定态,它本身就是动态平衡的,行走本身就是一种周期性的运动。突然踩到一个西瓜皮代表一个很强的外界干扰因素随机性地进入系统,行人马上会手舞足蹈地翻腾起来,因为他不想摔倒。这个翻腾的过程就是过度态,它相对来说会比较短暂。随后这个人依靠躯干和四肢的运动,保持住了自己的重心,没有摔倒。最后,他又继续向前行走。我们把踩到西瓜皮的瞬间归为跳出段,把四肢翻腾的过程归为返回段。

2.自纠正跳位系统介绍

还是刚才的那个行人,可是这回的情况不同了,这次他最后摔倒了。这个行人,他起初是在正常行走,一不留神,脚踩到一个西瓜皮,这个人挣扎了几下却无济于事,结果就摔到了。这种现象归类为自动跳位系统现象,如下面的流程图3-2所示。

当稳定的系统受到外界干扰的时候,系统就面临着失稳的风险。如果系统的自纠正能力

在某一方面不是很强,那么它就会被另外的稳定态所代替。在这个例子里,正常行走的行人就是稳定态(A)。突然踩到一个西瓜皮代表一个很强的外界干扰因素随机性地进入系统,行人马上会四肢翻腾,这个翻腾的过程就是过度态。行人在拼命保持自己的重心,但是最后他还是摔倒了。摔倒后,坐在了地上就是稳定态(B)。我们把踩到西瓜皮的瞬间归类为跳出段,把四肢翻腾但是仍然倒下的过程归类为跳位段。

参考以上的两个自纠正系统的特点,下面进行研究“人体立正姿势、双腿劈叉姿势、单腿站立姿势、原地踏步姿势、双足行走姿势等”各种姿势的稳定性和过渡性的特点。

本次使用陀螺仪,就是用于控制机器人处于这两种自纠正系统下维持它的稳态平衡。也就是,在每一种稳态情况下,在一定较小时间内启动陀螺仪维持该稳态平衡,使其当前稳态的姿势状况不变。比如机器人在行走一步时,走完前半步处于稳态(A),再走完下半步处于稳态(B)。在前半步的稳态(A)时,启动陀螺仪及时修正该稳态的偏移,以维持该状态不变。下半步依然如此。如果机器人处于站立等静止状态时,就等同处于一种稳态的情况,依然启动陀螺仪及时修正偏移,以维持稳态的姿势。欲使机器人所有运动姿势正常化,首先调节好机器人所有运动姿势中每一种稳态正常化。如下面流程图3-3所示。

图3-3 陀螺仪应用系统图

四.姿态调整程序解析

1.行走姿态调整程序

在机器人行走过程中,当处在双腿着地某一姿态时,循环启动陀螺仪周期性地采集三轴数字陀螺仪的三轴数字值,紧接着存储在数组L3G4200D_dis_data[3]变量当中,并比较数组L3G4200D_dis_data[3]与对应设定角速度幅限值,依据是否超幅限值改变相应从0到11号舵机的值,调整机器人姿势使其保持当前姿态稳定。当机器人保持在其当前姿态时,就退出循环,继续行走,同样也依旧进入下一个姿态当中去。若在某一姿态的平衡状态被迫改变,就会同样进入循环当中,及时修正机器人的姿势。本调整程序工作逻辑方式是,快速反馈,快速回程。

主要使用的函数名称列举如下:

void Read_IIC_XYZAxis(void) //采集三轴数字值函数

void ExecuteL3G4200D_TwoSetDown(char FB_Amplitude, char LR_Amplitude, uchar delays_value) //调整姿势函数

此三个参数FB_Amplitude 、LR_Amplitude 、delays_value 分别由无线遥控器调节设定。参数在遥控器屏幕上显示位置与相应调整按钮调整功能,如下从图4-1到图4-4所示。

参数FB_Amplitude 参数delays_value

图4-1 参数显示位置图

图4-2 进入与退出参数模式图

图4-3 速度参数设置图

图4-4 陀螺仪参数设定图

注意:机器人在行走当中每一种半步稳态,只需调用该ExecuteL3G4200D_TwoSetDown 函数,即可调整行走当中因惯性导致机器人身体前后左右的偏移,前提是机器人的行走步伐要无误。

其中,该姿态调整函数ExecuteL3G4200D_TwoSetDown 的实现流程图4-5所示。

图4-5 行走姿态调整流程图该姿态调整函数中各块代表代码如下:

以下表为在木地板上不同速度下行走时参考参数:

以下表为在水泥地板上不同速度下行走时参考参数:

电子陀螺仪工作原理【详述】

电子陀螺仪工作原理 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理!更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 电子陀螺仪其实就是机械式陀螺仪的进化,机械式是利用真实的陀螺等机械制作的,而电子是利用芯片来实现陀螺仪的功能,其工作原理类似(电子只不过是模拟出来的而已)。 所有陀螺仪的工作原理是一样的:广泛应用于航海、航空和航天领域,种类很多,其中陀螺罗盘就是代替罗盘的装置。 陀螺仪的原理就是,一个旋转物体的旋转轴所指的方向在不受外力影响时,是不会改变的。人们根据这个道理,用它来保持方向,制造出来的东西就叫陀螺仪。陀螺仪在工作时要给它一个力,使它快速旋转起来,一般能达到每分钟几十万转,可以工作很长时间。然后用多种方法读取轴所指示的方向,并自动将数据信号传给控制系统。 最基础的陀螺仪的结构:基础的陀螺仪是一种机械装置,其主要部分是一个对旋转轴以极高角速度旋转的转子,转子装在一支架内; 历史: 1850年法国的物理学家莱昂·傅科(J.Foucault)为了研究地球自转,首先发现高速转

动中的转子(rotor),由于惯性作用它的旋转轴永远指向一固定方向,他用希腊字gyro(旋转)和skopein(看)两字合为gyro scopei 一字来命名这种仪表。 陀螺仪是一种既古老而又很有生命力的仪器,从第一台真正实用的陀螺仪器问世以来已有大半个世纪,但直到现也,陀螺仪仍在吸引着人们对它进行研究,这是由于它本身具有的特性所决定的。陀螺仪最主要的基本特性是它的稳定性和进动性。人们从儿童玩的地陀螺中早就发现高速旋转的陀螺可以竖直不倒而保持与地面垂直,这就反映了陀螺的稳定性。研究陀螺仪运动特性的理论是绕定点运动刚体动力学的一个分支,它以物体的惯性为基础,研究旋转物体的动力学特性。 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理!更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展.

带你看看高精度陀螺仪有哪些

带你看看高精度陀螺仪有哪些 对于陀螺仪,可能大家没怎么听过这样概念,但是你早已接触过陀螺仪带来的功能。就是在不锁定手机的情况下,进行手机的翻转,界面也跟着翻转;在玩精灵宝可梦的时候,你通过手机的偏转,画面进行的偏转,从而抓到你的皮卡丘。 陀螺仪的另一种叫法又称角速度传感器,从定义上来看陀螺仪是测量载体角运动或者角速度的传感器从应用的角度上来看,陀螺仪多用于导航、定位等系统常用实例如手机GPS 定位导航、卫星三轴陀螺仪定位,其陀螺仪的精度在整个过程中起到了至关重要的作用,也就是高精度的陀螺仪直接决定了惯性导航系统的精度以及制导和自动控制系统的性能品质。 现在随着陀螺仪的发展,技术越来越成熟,陀螺仪的结构和原理都有着很大的变化。由于设备对偏转度的要求越来越精准,已经出现了高精度陀螺仪这一概念,完全不局限在传统的机械陀螺仪当中,下面就来介绍一下,近年来成功开发的高精度陀螺仪。 1.静电陀螺仪 虽然传统的机械陀螺仪已经满足不了用户、或是场景变换上的精度需求了,但并不意味着包含转子结构的陀螺仪已经完全退出了高精度陀螺仪队伍当中。其身为机械陀螺仪的升级版本,静电陀螺仪利用电场克服了转子旋转的摩擦力,大大提高了陀螺仪的精度。可惜生产难度较大,限制了其大规模的应用。 2.压电陀螺仪 对于经常接触传感器的人都会知道,在需要完成测压力这一任务的时候,我们基本会采用压电传感器。但对压电陀螺仪并不清楚,压电陀螺仪是一种振动陀螺,依靠压电材料的压电效应,当角速度不同时,贴在不同方向上的压电薄片的电压也出现偏差,依此测量角速度。作为高精度陀螺仪,压电陀螺仪的抗干扰能力也十分强大,甚至经受的动态核爆实验也没有损坏,因此多用在军工方面。 3.光纤陀螺仪 光纤陀螺仪可谓顺应着时代的陀螺仪潮流而诞生,其具有精度高,体积小等特点,而且在

陀螺仪传感器分类及原理

【悠牛仪器仪表网】陀螺仪传感器是一个简单易用的基于自由空间移动和手势的定位和控制系统。用来感测和维持方向的装置,它是航空、航海及太空导航系统中判断方位的主要依据,并且在汽车安全,航模,望远镜等领域广泛应用。 主要检测空间某些相位的倾角变化、位置变化,主要用于空间物理领域,特别在航空、航海方面有较多的用途,如:飞机上的陀螺仪,当飞机在做360°翻转的时候,陀螺仪将会保持原始的基准状态不变,从而让驾驶员找到本飞机在空间状态的相位变化,也就是:当时飞机处在什么相位。 陀螺仪传感器原理 一个旋转物体的旋转轴所指的方向在不受外力影响时,是不会改变的。人们根据这个道理,用它来保持方向,制造出来的东西就叫陀螺仪。我们骑自行车其实也是利用了这个原理。轮子转得越快越不容易倒,因为车轴有一股保持水平的力量。陀螺仪在工作时要给它一个力,使它快速旋转起来,一般能达到每分钟几十万转,可以工作很长时间。 然后用多种方法读取轴所指示的方向,并自动将数据信号传给控制系统。陀螺仪传感器应用领域以及发展方向现代陀螺仪是一种能够精确地确定运动物体的方位的仪器,它是现代航空,航海,航天和国防工业中广泛使用的一种惯性导航仪器,它的发展对一个国家的工业,国防和其它高科技的发展具有十分重要的战略意义。 传统的惯性陀螺仪主要是指机械式的陀螺仪,机械式的陀螺仪对工艺结构的要求很高,结构复杂,它的精度受到了很多方面的制约。自从上个世纪七十年代以来,现代陀螺仪的发展已经进入了一个全新的阶段。1976年等提出了现代光纤陀螺仪的基本设想,到八十年代以后,现代光纤陀螺仪就得到了非常迅速的发展,与此同时激光谐振陀螺仪也有了很大的发展。 由于光纤陀螺仪具有结构紧凑,灵敏度高,工作可靠等等优点,所以目前光纤陀螺仪在很多的领域已经完全取代了机械式的传统的陀螺仪,成为现代导航仪器中的关键部件。 和光纤陀螺仪同时发展的除了环式激光陀螺仪外,还有现代集成式的振动陀螺仪,集成式的振动陀螺仪具有更高的集成度,体积更小,也是现代陀螺仪的一个重要的发展方向。 陀螺仪传感器分类 根据框架的数目和支承的形式以及附件的性质决定陀螺仪的类型有: 二自由度陀螺仪(只有一个框架,使转子自转轴具有一个转动自由度)。 根据二自由度陀螺仪中所使用的反作用力矩的性质,可以把这种陀螺仪分成三种类型: 积分陀螺仪(它使用的反作用力矩是阻尼力矩);速率陀螺仪(它使用的反作力矩是弹性力矩); 无约束陀螺(它仅有惯性反作用力矩); 现在,除了机、电框架式陀螺仪以外,还出现了某些新型陀螺仪,如静电式自由转子陀螺仪,挠性陀螺仪,激光陀螺仪等。 三自由度陀螺仪(具有内、外两个框架,使转子自转轴具有两个转动自由度。在没有任何力矩装置时,它就是一个自由陀螺仪)。 直流电流传感器 https://www.360docs.net/doc/ea11169426.html,/subject/zhiliudianliuchuanganqi.html

MEMS陀螺仪工作原理

陀螺仪是用来测量角速率的器件,在加速度功能基础上,可以进一步发展,构建陀螺仪。 陀螺仪的内部原理是这样的:对固定指施加电压,并交替改变电压,让一个质量块做振荡式来回运动,当旋转时,会产生科里奥利加速度,此时就可以对其进行测量;这有点类似于加速度计,解码方法大致相同,都会用到放大器。 角速率由科氏加速度测量结果决定 - 科氏加速度 = 2 × (w ×质量块速度) - w是施加的角速率(w = 2 πf) 通过14 kHz共振结构施加的速度(周期性运动)快速耦合到加速度计框架 - 科氏加速度与谐振器具有相同的频率和相位,因此可以抵消低速外部振动 该机械系统的结构与加速度计相似(微加工多晶硅) 信号调理(电压转换偏移)采用与加速度计类似的技术 施加变化的电压来回移动器件,此时器件只有水平运动没有垂直运动。如果施加旋转,可以看到器件会上下移动,外部指将感知该运动,从而就能拾取到与旋转相关的信号。

上面的动画,只是抽象展示了陀螺仪的工作原理,而真实的陀螺仪内部构造是下面这个样子。

PS:陀螺仪可以三个一起设计,分别对应于所谓滚动、俯仰和偏航。 任何了解航空器的人都知道,俯仰是指航空器的上下方向,偏航是指左右方向,滚动是指向左或向右翻滚。要正确控制任何类型的航空器或导弹,都需要知道这三个参数,这就会用到陀螺仪。它们还常常用于汽车导航,当汽车进入隧道而失去GPS信号时,这些器件会记录您的行踪。 无人机在飞行作业时,获取的无人机影像通常会携带配套的POS数据。从而在处理中可以更加方便的处理影像。而POS数据主要包括GPS数据和

IMU数据,即倾斜摄影测量中的外方位元素:(纬度、经度、高程、航向角(Phi)、俯仰角(Omega)及翻滚角(Kappa))。 GPS数据一般用X、Y、Z表示,代表了飞机在飞行中曝光点时刻的地理位置。 飞控是由主控MCU和惯性测量模块(IMU,Inertial Measurement Unit)组成。IMU提供飞行器在空间姿态的传感器原始数据,一般由陀螺仪传感器/加速度传感器/电子罗盘提供飞行器9DOF数据。 IMU中的传感器用来感知飞行器在空中的姿态和运动状态,这有个专有名词叫做运动感测追踪,英文Motion Tracking。运动感测技术主要有四种基础运动传感器,下面分别说明其进行运动感测追踪的原理。 微机电系统(MEMS) IMU中使用的传感器基本上都是微机电系统(MEMS),是半导体工业中非常重要的一个分支。 微机电系统(MEMS, Micro-Electro-Mechanical System)是一种先进的制造技术平台。微机电系统是微米大小的机械系统,是以半导体制造技术为基础发展起来的。 我们的四轴飞行器上用到的加速度陀螺仪MPU6050,电子罗盘 HMC5883L都是微机电系统,属于传感MEMS分支。传感MEMS技术是指用微电子微机械加工出来的、用敏感元件如电容、压电、压阻、热电耦、谐振、隧道电流等来感受转换电信号的器件和系统。 加速器(G-sensors) 加速器可用来感测线性加速度与倾斜角度,单一或多轴加速器可感应结合线性与重力加速度的幅度与方向。含加速器的产品,可提供有限的运动感测功能。 加速度计的低频特性好,可以测量低速的静态加速度。在我们的飞行器上,就是对重力加速度g(也就是前面说的静态加速度)的测量和分析,其它瞬间加速度可以忽略。记住这一点对姿态解算融合理解非常重要。 当我们把加速度计拿在手上随意转动时,我们看的是重力加速度在三个轴上的分量值。加速度计在自由落体时,其输出为0。为什么会这样呢?这里涉及到加速度计的设计原理:加速度计测量加速度是通过比力来测量,而不是通过加速度。

三轴(XYZ)MEMS陀螺仪

三轴(X/Y/Z)MEMS陀螺仪 概述 InvenSense的三轴陀螺仪为全球首例单芯片、以数字输出的三轴MEMS产品,专门为消费性应用产品设计。本公司三轴产品的特征包含,可将陀螺仪的输出数字化的三个16-bit模拟数字转换器(ADC)、高达±2000°/秒(dps)的全格感测范围(full-scale range)、可程序化的低通滤波器、I2C或SPI序列界面(serial interface)、低电压操作(2.1V到3.6V),以及4x4x0.9mm的QFN包装。此系列产品包含ITG-3050与MPU-3050。 本公司三轴产品会将过滤后的陀螺仪数据传达至序列通信总线(serial communications bus)。ITG-3050仅支援输出原始三轴陀螺仪数据。ITG-3050有第二个I2C主要感测总线(master sensor bus),提供可直接升级至MPU系列产品的路径,使其能与InvenSense的软件解决方案结合。MPU产品特征有内建之数字运动感测处理(DMP:Digital Motion Processor)硬件加速引擎、最低512 byte的FIFO,以及含可连接至其他厂牌数字加速器的第二个I2C主要感测总线(sensor bus),感测线性与旋转动作,提供完整的六轴融合演算数据。内建的FIFO与感测总线(sensor bus),可缩短系统运算时间,降低系统耗电量。当FIFO使系统微处理器实时读取感测数据并进入休眠状态的同时,专用感测总线,让产品不须另外连接处理器,就可直接从外接的加速器取得数据,使MPU读取更多资料。 因应现今多功能手机,三轴的MPU-3050可为如游戏与在地服务等常见的应用,提供精确的1:1真实动作追踪功能。另外,32-bit的DMP引擎,支持进阶人机界面(UI:User Interface)功能,启动如空中签字(AirSign)的签名验证、随意触控(TouchAnywhere)的应用与导航控制、动作指令(MotionCommand)的手势快捷方式等,利用手势或使用文字辨识等的应用。 专门为网络电视游戏摇杆与遥控器等可携式消费性电子产品设计的MPU-3050,内建了DMP,大幅降低了系统成本。具运动感测功能之手持式产品的系统处理条件,可藉由整合之运动传感器及DMP,搭配其DMP及内建于系统RF芯片的处理器达成。此搭配不但能降低成本,也能应用于众多不同平台上。 为了因应业界产品快速的发展与变动,本公司提供运动感测应用(MotionApp)平台于使用MPU 产品系列的厂商。运动感测应用平台含可进行运动处理解决方案的核心演算引擎,并含可简易连接到这些引擎的API层(layer)。另外,如手势辨识等的运动感测应用范例,可加快采用运动感测功能之消费性电子产品的上市时间。本公司备有所有三轴产品的评估板(evaluation board)与参考设计套件(reference design kit)。

陀螺仪工作原理与应用

陀螺仪工作原理与应用(陀螺经纬仪Jyro Station) 来源:译自日本《测量》06年8月号作者:日本测量仪器工业会更新日期:2006-9-22 阅读次数:3235 为了求得测量的基准方位和日照时间的方位,必须使用磁针罗盘仪进行天体观测。然而,磁针罗盘仪的精度有限,在天体观测中还要受到确保通视、天气、场所和时间等观测条件的影响。为了解决这些问题,可采用利用了力学原理求得真北的陀螺经纬仪。陀螺经纬仪在隧道测量以及由于不能和已知点通视而无法确定方位、方向角的情况下都能发挥很大的作用。 (图1:陀螺工作站) 1、陀螺工作站的原理 高速旋转的物体的旋转轴,对于改变其方向的外力作用有趋向于铅直方向的倾向。而且,旋转物体在横向倾斜时,重力会向增加倾斜的方向作用,而轴则向垂直方向运动,就产生了摇头的

运动(岁差运动)。当陀螺经纬仪的陀螺旋转轴以水平轴旋转时,由于地球的旋转而受到铅直方向旋转力,陀螺的旋转体向水平面内的子午线方向产生岁差运动。当轴平行于子午线而静止 时可加以应用。 2、陀螺工作站的构造 (图4:陀螺经纬仪的构造 0点调整螺丝,吊线,照明灯,陀螺转子、指针、供电用馈线、反 射镜、陀螺马达、刻度线、目镜)。

陀螺经纬仪的陀螺装置由陀螺部分和电源部分组成。此陀螺装置与全站仪结合而成。陀螺本体在装置内用丝线吊起使旋转轴处于水平。当陀螺旋转时,由于地球的自转,旋转轴在水平面内以真北为中心产生缓慢的岁差运动。旋转轴的方向由装置外的目镜可以进行观测,陀螺指针的振动中心方向指向真北。利用陀螺经纬仪的真北测定方法有“追尾测定”和“时间测定”等。 追尾测定[反转法] 利用全站仪的水平微动螺丝对陀螺经纬仪显示岁差运动的刻度盘进行追尾。在震动方向反转的点上(此时运动停止)读取水平角。如此继续测定之,求得其平均震动的中心角。用此方法进行20分钟的观测可以求得+/-0。5分的真北方向。 时间测定[通过法] 用追尾测定观测真北方向后,陀螺经纬仪指向了真北方向,其指针由于岁差运动而左右摆动。用全站仪的水平微动螺丝对指针的摆动进行追尾,当指针通过0点时反复记录水平角,可以提高时间测定的精度,并以+/-20秒的精度求得真北方向。 (图2:摇头运动) (图3:向子午线的岁差运动)

三轴陀螺仪MPU3050

内建数字运动处理之三轴陀螺仪MPU-3000 MPU-3050 概述 MPU-3000?系列产品运动处理组件为业界第一个内建数字运动处理 ?(DMP?: Digital Motion Processor?)硬件加速引擎的三轴陀螺仪。现今多用途智能型手机要求小尺寸、低耗能的陀螺仪,必需能提供运动游戏要求之宽广的带宽,并提供导航辅助系统、录像与相机防手抖系统、精准动作人机接口控制系统所需之高敏感度及低噪声性能。MPU-3000是产业第一个针对智能型手机完整运动处理所设计的系列产品,特性为运动感测范围最广由250到2000°/sec、内建16-bit的模拟/数字转换器(ADCs)、可程控的数字滤波器、出厂前校准至1%的敏感度、内建六轴的多个感测组件融合算法技术(sensor fusion),以及13mW的低耗电量。 4x4x0.9mm大小的尺寸,加上I2C或SPI的数字接口,MPU-3000系列是在类似产品中第一个能满足手机需求的产品。MPU-3000延用传统惯性传感器结构,加了业界第一个的内建数字运动处理器(DMP)。DMP连同内建之FIFO,不仅能减轻主机应用程序处理器之高频运动演算,也能减少中断(interrupt)次数与主机每秒运算指令数(MIPS),进而改善整体系统效能。 MPU-3000的另一创举为它整合了第二个I2C接口来链接外接的加速器至DMP,此机制使DMP得以接收整合之陀螺仪与加速器的输出,执行六轴的多个感测组件融合算法技术(sensor fusion),再以Quaternion输出到手机应用处理器,并减轻传感器时间同步化及融合演算带给主机的负荷。其他MPU-3000的特性包含内部频率产出、内建温度传感器、可程序化的中断(initerrupt),以及能使影像、录像、GPS数据与传感器同步化的FSYNC机制。关于供电电源弹性,MPU-3000除了模拟供电接脚外,独立的VLOGIC参考接脚可用来设定I2C的逻辑准位。VLOGIC的电压范围最低可由1.71V到最高VDD。 已经证实与量产之Nasiri-Fabrication制程平台,可将MEMS与CMOS整合于单一硅晶圆上,实现具规模之MEMS制程与晶圆层级包装。此晶圆层级的结合,实现了业界最低噪声规格0.03%/√Hz、最低耗电量、以及使用产业最低成本完成最小包装尺寸。 应用

陀螺仪基本原理

陀螺仪介绍2013-1-28

?陀螺仪发展及应用情况 ?MEMS陀螺仪基本原理 ?陀螺仪与加速度传感器、电子罗盘的 对比以及九轴概念 ?测试讨论 2013-1-28

?陀螺仪发展及应用情况 ?MEMS陀螺仪基本原理 ?陀螺仪与加速度传感器、电子罗盘的 对比以及九轴概念 ?测试讨论 2013-1-28

2013-1-28 1850年法国的物理学家莱昂·傅科(J.Foucault )为了研究地球自转,首先发现高速转动中的转子 (rotor ),由于惯性作用它的旋转轴永远指向一固定方向,他用希腊字 gyro (旋转)和skopein (看)两字合为gyro scopei 一字来命名这种仪表。

?最初的陀螺仪主要用于航海,起稳定船体的作用,此时主要是二维陀螺仪; ?后在航空、航天领域开始广泛的应用。用于飞行体运动的自动控制系统中,作为水平、垂直、俯仰、航向和角速度传感器。指示 陀螺仪主要用于飞行状态的指示,作为驾驶和领航仪表使用。在这些应用中都是三维陀螺仪; ?另外,在军事领域,陀螺仪也发挥着重要作用,例如炮弹的旋转、导弹的惯性导航系统,以提高击中-杀伤比 ?最开始用于航海、航空、航天的陀螺仪都是机械式的,到了现代,主要可以分为压电陀螺仪、微机械陀螺仪、光纤陀螺仪、激 光陀螺仪,现代陀螺仪在结构上已不具备“陀螺”,只是在功能上 与传统的机械陀螺仪同样罢了 2013-1-28

2013-1-28 现在广泛使用的MEMS (微机械)陀螺可应用于航空、航天、航海、兵器、汽车、生物医学、环境监控等领域。并且MEMS 陀螺相比传统的陀螺有明显的优势: 1、体积小、重量轻,适合于对安装空间和重量要求苛刻的场合,例如弹载测量等; 2、低成本; 3、更高可靠性,内部无转动部件,全固

Invensense三轴陀螺仪 MPU-3050MPU-3000

概述 MPU-3000?系列产品运动处理组件为业界第一个内建数字运动处理?(DMP?: Digital Motion Processor?)硬件加速引擎的三轴陀螺仪。现今多用途智能型手机要求小尺寸、低耗能的陀螺仪,必需能提供运动游戏要求之宽广的带宽,并提供导航辅助系统、录像与相机防手抖系统、精准动作人机接口控制系统所需之高敏感度及低噪声性能。MPU-3000是产业第一个针对智能型手机完整运动处理所设计的系列产品,特性为运动感测范围最广由250到2000°/sec、内建16-bit 的模拟/数字转换器(ADCs)、可程控的数字滤波器、出厂前校准至1%的敏感度、内建六轴的多个感测组件融合算法技术(sensor fusion),以及13mW的低耗电量。 4x4x0.9mm大小的尺寸,加上I2C或SPI的数字接口,MPU-3000系列是在类似产品中第一个能满足手机需求的产品。MPU-3000延用传统惯性传感器结构,加了业界第一个的内建数字运动处理器(DMP)。DMP连同内建之FIFO,不仅能减轻主机应用程序处理器之高频运动演算,也能减少中断(interrupt)次数与主机每秒运算指令数(MIPS),进而改善整体系统效能。 MPU-3000的另一创举为它整合了第二个I2C接口来链接外接的加速器至DMP,此机制使DMP得以接收整合之陀螺仪与加速器的输出,执行六轴的多个感测组件融合算法技术(sensor fusion),再以Quaternion输出到手机应用处理器,并减轻传感器时间同步化及融合演算带给主机的负荷。其他MPU-3000的特性包含内部频率产出、内建温度传感器、可程序化的中断(initerrupt),以及能使影像、录像、GPS数据与传感器同步化的FSYNC机制。 关于供电电源弹性,MPU-3000除了模拟供电接脚外,独立的VLOGIC参考接脚可用来设定I2C的逻辑准位。VLOGIC的电压范围最低可由1.71V到最高VDD。 已经证实与量产之Nasiri-Fabrication制程平台,可将MEMS与CMOS整合于单一硅晶圆上,实现具规模之MEMS制程与晶圆层级包装。此晶圆层级的结合,实现了业界最低噪声规格0.03%/√Hz、最低耗电量、以及使用产业最低成本完成最小包装尺寸。 应用

陀螺仪的工作原理

陀螺仪的工作原理 陀螺仪的原理 一个旋转物体的旋转轴所指的方向在不受外力影响时,是不会改变的。人们根据这个道理,用它来保持方向,制造出来的东西就叫陀螺仪。我们骑自行车其实也是利用了这个原理。轮子转得越快越不容易倒,因为车轴有一股保持水平的力量。陀螺仪在工作时要给它一个力,使它快速旋转起来,一般能达到每分钟几十万转,可以工作很长时间。然后用多种方法读取轴所指示的方向,并自动将数据信号传给控制系统。 现代陀螺仪 一种能够精确地确定运动物体的方位的仪器,它是现代航空,航海,航天和国防工业中广泛使用的一种惯性导航仪器,它的发展对一个国家的工业,国防和其它高科技的发展具有十分重要的战略意义。传统的惯性陀螺仪主要是指机械式的陀螺仪,机械式的陀螺仪对工艺结构的要求很高,结构复杂,它的精度受到了很多方面的制约。自从上个世纪七十年代以来,现代陀螺仪的发展已经进入了一个全新的阶段。1976年等提出了现代光纤陀螺仪的基本设想,到八十年代以后,现代光纤陀螺仪就得到了非常迅速的发展,与此同时激光谐振陀螺仪也有了很大的发展。由于光纤陀螺仪具有结构紧凑,灵敏度高,工作可靠等等优点,所以目前光纤陀螺仪在很多的领域已经完全取代了机械式的传统的陀螺仪,成为现代导航仪器中的关键部件。和光纤陀螺仪同时发展的除了环式激光陀螺仪外,还有现代集成式的振动陀螺仪,集成式的振动陀螺仪具有更高的集成度,体积更小,也是现代陀螺仪的一个重要的发展方向。 现代光纤陀螺仪 包括干涉式陀螺仪和谐振式陀螺仪两种,它们都是根据塞格尼克的理论发展起来的。塞格尼克理论的要点是这样的:当光束在一个环形的通道中前进时,如果环形通道本身具有一个转动速度,那么光线沿着通道转动的方向前进所需要的时间要比沿着这个通道转动相反的方向前进所需要的时间要多。也就是说当光学环路转动时,在不同的前进方向上,光学环路的光程相对于环路在静止时的光程都会产生变化。利用这种光程的变化,如果使不同方向上前进的光之间产生干涉来测量环路的转动速度,这样就可以制造出干涉式光纤陀螺仪,如果利用这种环路光程的变化来实现在环路中不断循环的光之间的干涉,也就是通过调整光纤环路的光的谐振频率进而测量环路的转动速度,就可以制造出谐振式的光纤陀螺仪。从这个简单的介绍可以看出,干涉式陀螺仪在实现干涉时的光程差小,所以它所要求的光源可以有较大的频谱宽度,而谐振式的陀螺仪在实现干涉时,它的光程差较大,所以它所要求的光源必须有很好的单色性。 陀螺仪工作原理与应用(陀螺经纬仪Jyro Station) 来源:译自日本《测量》06年8月号作者:日本测量仪器工业会更新日期:2006-9-22 阅读次数:6183

一文读懂三轴陀螺仪工作原理和应用

一文读懂三轴陀螺仪工作原理和应用 Iphone 4手机采用了意法半导体的MEMS(微电机系统)陀螺仪芯片,芯片内部包含有一块微型磁性体,可以在手机进行旋转运动时产生的科里奥力作用下向X,Y,Z三个方向发生位移,利用这个原理便可以测出手机的运动方向。而芯片核心中的另外一部分则可以将有关的传感 一、三轴陀螺仪工作原理三轴陀螺仪:同时测定6个方向的位置,移动轨迹,加速。单轴的只能测量一个方向的量,也就是一个系统需要三个陀螺仪,而3轴的一个就能替代三个单轴的。3轴的体积小、重量轻、结构简单、可靠性好,是激光陀螺的发展趋势。 在最新款的iPhone 4手机中内置三轴陀螺仪,它可以与加速器和指南针一起工作,可以实现6轴方向感应,三轴陀螺仪更多的用途会体现在GPS和游戏效果上。一般来说,使用三轴陀螺仪后,导航软件就可以加入精准的速度显示,对于现有的GPS导航来说是个强大的冲击,同时游戏方面的重力感应特性更加强悍和直观,游戏效果将大大提升。这个功能可以让手机在进入隧道丢失GPS信号的时候,凭借陀螺仪感知的加速度方向和大小继续为用户导航。而三轴陀螺仪将会与iPhone原有的距离感应器、光线感应器、方向感应器结合起来让iPhone 4的人机交互功能达到了一个新的高度。 二、三轴陀螺仪的应用在工程上,陀螺仪是一种能够精确地确定运动物体的方位的仪器,它是现代航空,航海,航天和国防工业中广泛使用的一种惯性导航仪器,它的发展对一个国家的工业,国防和其它高科技的发展具有十分重要的战略意义。传统的惯性陀螺仪主要是指机械式的陀螺仪,机械式的陀螺仪对工艺结构的要求很高,结构复杂,它的精度受到了很多方面的制约。自从上个世纪七十年代以来,现代陀螺仪的发展已经进入了一个全新的阶段。1976年美国Utah大学的Vali和Shorthill提出了现代光纤陀螺仪的基本设想,到八十年代以后,现代光纤陀螺仪就得到了非常迅速的发展,与此同时激光谐振陀螺仪也有了很大的发展。由于光纤陀螺仪具有结构紧凑,灵敏度高,工作可靠等等优点,所以目前光纤陀螺仪在很多的领域已经完全取代了机械式的传统的陀螺仪,成为现代导航仪器中的

微机械陀螺仪的工作原理及其应用

本文详细介绍了意法半导体公司的电容式微机械陀螺仪的基本工作原理,其采用对称双质量块结构,驱动质量块由静电力驱动产生可控的运动速度,而检测质量块则由哥氏力推动运动。振荡驱动电路采用了双闭环的控制结构,有效地减小了温度或其它缺陷对振幅的影响,显著提高了陀螺仪的分辨率和稳定性。最后,以单轴偏航陀螺仪LY530AL为例,详细介绍其关键参数及其应用,并配合三轴加速度传感器LIS3LV02DL,实现了新型无线遥控器和鼠标,验证了LY530AL的性能参数。 微机械陀螺仪 陀螺仪又称角速度计可以用来检测旋转的角速度和角度。正如我们所熟知,传统的机械式陀螺、精密光纤陀螺和激光陀螺等已经在航空、航天或其它军事领域得到了广泛地应用。然而,这些陀螺仪由于成本太高和体积太大而不适合应用于消费电子中。微机械陀螺仪由于内部无需集成旋转部件,而是通过一个由硅制成的振动的微机械部件来检测角速度,因此微机械陀螺仪非常容易小型化和批量生产,具有成本低和体积小等特点。近年来,微机械陀螺仪在很多应用中受到密切地关注,例如,陀螺仪配合微机械加速度传感器用于惯性导航、在数码相机中用于稳定图像、用于电脑的无线惯性鼠标等等[1]。 微机械工艺的发展和成熟,使得微机械陀螺仪在消费电子中的广泛应用成为可能,并且已有相应的产品面世,如罗技的空中鼠标。这些都使业界相信微机械陀螺仪很快就会成为继微机械加速计之后用于动作感测的另一重要元件。鉴于此,意法半导体公司基于其先进的Thelma工艺先后开发并量产了超小型单轴偏航陀螺仪LISY300AL和LY530AL。LY530AL具有两种接口:模拟和数字接口,提高了设计的灵活性,简化了设计难度,可测角速率达到±300度/秒。本文以LY530AL为例讨论意法半导体微机械陀螺仪的工作原理及其应用。

三轴陀螺仪mpu6050测试程序

InvenSense公司的三轴陀螺仪MPU6050测试程序。IIC接口,51单片机驱动,LCD1602同步显示。 硬件原理图 //**************************************** // MPU6050 IIC测试程序 // 使用单片机STC89C52 // 晶振:11.0592M // 显示:LCD1602 // 编译环境Keil uVision2 // 参考宏晶网站24c04通信程序 // 功能: 显示加速度计和陀螺仪的10位原始数据 // 时间:2013年3月1日 //**************************************** #include #include //Keil library #include //Keil library #include typedef unsigned char uchar; typedef unsigned short ushort; typedef unsigned int uint; //**************************************** // 定义51单片机端口 //**************************************** #define DataPort P0 //LCD1602数据端口 sbit SCL=P1^0; //IIC时钟引脚定义 sbit SDA=P1^1; //IIC数据引脚定义

sbit LCM_RS=P2^0; //LCD1602命令端口 sbit LCM_RW=P2^1; //LCD1602命令端口 sbit LCM_EN=P2^2; //LCD1602命令端口 //**************************************** // 定义MPU6050内部地址 //**************************************** #define SMPLRT_DIV 0x19 //陀螺仪采样率,典型值:0x07(125Hz) #define CONFIG 0x1A //低通滤波频率,典型值:0x06(5Hz) #define GYRO_CONFIG 0x1B //陀螺仪自检及测量范围,典型值:0x18(不自检,2000deg/s) #define ACCEL_CONFIG 0x1C //加速计自检、测量范围及高通滤波频率,典型值:0x01(不自检,2G,5Hz) #define ACCEL_XOUT_H 0x3B #define ACCEL_XOUT_L 0x3C #define ACCEL_YOUT_H 0x3D #define ACCEL_YOUT_L 0x3E #define ACCEL_ZOUT_H 0x3F #define ACCEL_ZOUT_L 0x40 #define TEMP_OUT_H 0x41 #define TEMP_OUT_L 0x42 #define GYRO_XOUT_H 0x43 #define GYRO_XOUT_L 0x44 #define GYRO_YOUT_H 0x45 #define GYRO_YOUT_L 0x46 #define GYRO_ZOUT_H 0x47 #define GYRO_ZOUT_L 0x48 #define PWR_MGMT_1 0x6B //电源管理,典型值:0x00(正常启用) #define WHO_AM_I 0x75 //IIC地址寄存器(默认数值0x68,只读) #define SlaveAddress 0xD0 //IIC写入时的地址字节数据,+1为读取 //**************************************** //定义类型及变量 //**************************************** uchar dis[4]; //显示数字(-511至512)的字符数组 int dis_data; //变量 //int Temperature,Temp_h,Temp_l; //温度及高低位数据 //**************************************** //函数声明 //**************************************** void delay(unsigned int k); //延时 //LCD相关函数 void InitLcd(); //初始化lcd1602 void lcd_printf(uchar *s,int temp_data); void WriteDataLCM(uchar dataW); //LCD数据

陀螺仪的工作原理

陀螺仪的工作原理 陀螺仪的原理就是,一个旋转物体的旋转轴所指的方向在不受外力影响时,是不会改变的。人们根据这个道理,用它来保持方向,制造出来的东西就叫陀螺仪。我们骑自行车其实也是利用了这个原理。轮子转得越快越不容易倒,因为车轴有一股保持水平的力量。陀螺仪在工作时要给它一个力,使它快速旋转起来,一般能达到每分钟几十万转,可以工作很长时间。然后用多种方法读取轴所指示的方向,并自动将数据信号传给控制系统。 现代陀螺仪是一种能够精确地确定运动物体的方位的仪器,它是现代航空,航海,航天和国防工业中广泛使用的一种惯性导航仪器,它的发展对一个国家的工业,国防和其它高科技的发展具有十分重要的战略意义。传统的惯性陀螺仪主要是指机械式的陀螺仪,机械式的陀螺仪对工艺结构的要求很高,结构复杂,它的精度受到了很多方面的制约。自从上个世纪七十年代以来,现代陀螺仪的发展已经进入了一个全新的阶段。1976年等提出了现代光纤陀螺仪的基本设想,到八十年代以后,现代光纤陀螺仪就得到了非常迅速的发展,与此同时激光谐振陀螺仪也有了很大的发展。由于光纤陀螺仪具有结构紧凑,灵敏度高,工作可靠等等优点,所以目前光纤陀螺仪在很多的领域已经完全取代了机械式的传统的陀螺仪,成为现代导航仪器中的关键部件。和光纤陀螺仪同时发展的除了环式激光陀螺仪外,还有现代集成式的振动陀螺仪,集成式的振动陀螺仪具有更高的集成度,体积更小,也是现代陀螺仪的一个重要的发展方向。 现代光纤陀螺仪包括干涉式陀螺仪和谐振式陀螺仪两种,它们都是根据塞格尼克的理论发展起来的。塞格尼克理论的要点是这样的:当光束在一个环形的通道中前进时,如果环形通道本身具有一个转动速度,那么光线沿着通道转动的方向前进所需要的时间要比沿着这个通道转动相反的方向前进所需要的时间要多。也就是说当光学环路转动时,在不同的前进方向上,光学环路的光程相对于环路在静止时的光程都会产生变化。利用这种光程的变化,如果使不同方向上前进的光之间产生干涉来测量环路的转动速度,这样就可以制造出干涉式光纤陀螺仪,如果利用这种环路光程的变化来实现在环路中不断循环的光之间的干涉,也就是通过调整光纤环路的光的谐振频率进而测量环路的转动速度,就可以制造出谐振式的光纤陀螺仪。从这个简单的介绍可以看出,干涉式陀螺仪在实现干涉时的光程差小,所以它所要求的光源可以有较大的频谱宽度,而谐振式的陀螺仪在实现干涉时,它的光程差较大,所以它所要求的光源必须有很好的单色性。

ALIGN 亚拓 GPRO 三轴陀螺仪的安装与调试方法

一.事前淮备1. 亚拓 GPro 三轴陀螺仪一组。2. 电脑端设定软件。可至这里下载, 目前最新的版本。 https://www.360docs.net/doc/ea11169426.html,/Gpro/CH/ 3. mini USB 连接线。 4. 已组装好直升机一架,电装走线完成,如使用独立接收则接收事先跟遥控完成对频。 5. 安装好舵机,建议尾舵机信号线先不用连接至GPro。 6. 螺距规。 二.遥控器事前设定 1. 建立一新模型。 2. 十字盘类型 (SWASH Plate) : 1 Servo90/H1/Normal。 3. 十字盘混控设定全部取消。 4. 升降,副翼,尾舵的大小舵(DR)/ 指数(Expo)为100/0 5. 最大行程量(ATV / Travel Adustment / Endpoint) 为100 6. SUBTRIM, TRIM 全都为0 7. 螺距曲线JR为 0-50-100, FUTABA T14SG 为 -100,0,+100 8. 飞行模式则依自己需要设定,在GPro 校正时可以在Hold,但在确认油门方向时要在Normal, 建议马达线暂时断线,以防无预警启动。 三. 安装电脑软件 在之前淮备事项里提供的下载点下载的GPro电脑端设定软件。 Win7/Win8请以管理者身份来安装。 在安装完后,桌面会有GPro软件的快捷方式。 特别感谢 台湾模友 lliu0130 经验分享ALIGN 亚拓 GPRO 三轴陀螺仪的安装与调试方法

四. 接收接线方式 1.传统外接式接收 传统接收的接线方式是用彩虹线连接接收及GPro。 建议可以预先在彩虹线上杜邦头标明: T:油门,A: 副翼,E: 升降,G:尾舵感度,R: 尾舵,P:螺距。这样才不易接错。

陀螺仪(gyroscope)原理

内容 MID中的传感器 1 加速计 2 陀螺仪 3 地磁传感器 4

MID中的传感器——已商用的传感器 ◆触摸屏 ◆摄像头 ◆麦克风(ST:MEMS microphones……) ◆光线传感器 ◆温度传感器 ◆近距离传感器 ◆压力传感器(ALPS:MEMS气压传感器……) ◆陀螺仪(MEMS) ◆加速度传感器(MEMS) ◆地磁传感器(MEMS)

集成电路(Integrated Circuit,IC) 把电子元件/电路/电路系统集成到硅片(或其它半导体材料)上。 微机械(Micro-Mechanics) 把机械元件/机械结构集成到硅片(或其它半导体材料)上。 微机电系统(Micro Electro Mechanical Systems,MEMS)MEMS = 集成电路+ 微机械

陀螺仪(Gyroscope) ?测量角速度 ?可用于相机防抖、视频游戏动作感应、汽车电子稳定控制系统(防滑)加速度传感器(Accelerometer) ?测量线加速度 ?可用于运动检测、振动检测、撞击检测、倾斜和倾角检测 地磁传感器(Geomagnetic sensor) ?测量磁场强度 ?可用于电子罗盘、GPS导航

陀螺仪+加速计+地磁传感器 ?电子稳像(EIS: Electronic Image Stabilization)?光学稳像(OIS: Optical Image Stabilization)?“零触控”手势用户接口 ?行人导航器 ?运动感测游戏 ?现实增强

1、陀螺仪(角速度传感器)厂商: 欧美:ADI、ST、VTI、Invensense、sensordynamics、sensonor 日本:EPSON、Panasonic、MuRata、konix 、Fujitsu、konix、SSS 国产:深迪 2、加速度传感器(G-sensor)厂商: 欧美:ADI、Freescale、ST、VTI、Invensense、Sensordynamics、Silicon Designs 日本:konix、Bosch、MSI、Panasonic、北陆电气 国产:MEMSIC(总部在美国) 3、地磁传感器(电子罗盘)厂商: 欧美:ADI、Honeywell 日本:aichi、alps、AsahiKASEI、Yamaha 国产:MEMSIC(总部在美国)

三轴陀螺仪的原理和应用.

三轴陀螺仪的原理和应用 三轴陀螺仪就是可以在同一时间内测量六个不同方向的加速、移动轨迹以及位置的测量装置。单轴的话,就只可以测定一个方向的量,那么一个三轴陀螺就可以代替三个单轴陀螺。它现在已经成为激光陀螺的发展趋向,具有可靠性很好、结构简单不复杂、重量很轻和体积很小等等特点。 很多加速度传感器和角速传感器只是很纯粹的传感器,不一定都是陀螺仪。导弹、轮船以及飞机里都安装有指示仪,定向指示仪是它们的核心部分。它是被安装在可以自由转动方向的框架比较小的飞轮中的,此装置里,由于轴承的摩擦力矩相对来说比较小,因此可以忽略掉。它的刚体结构是属于高度对称的,因此它的质心主要是在连杆中心的位置。如果飞轮绕着自己的对称轴作高速的转动的时候,框架的方向无论发生什么变化,它的中心轴空间的取向是不会发生任何变化的,这个特点是定向指示仪很重要的特征之一。 当给一架飞机安装三轴陀螺仪,同时让它的三个小飞轮的自转轴互相保持垂直的状态,那么根据飞轮轴相对机身的指定方向,驾驶员就可以确定好海伦的航行方向了。其实火箭以及鱼雷之中也安装了定向指示仪的,它有自动导航的功能。鱼雷前进的时候,定向指示仪轴线所指方向是不会发生变化的,当鱼雷受到风浪影响而导致前进的方向发生变化的时候,定向指示仪和鱼雷的纵轴之间就会出现一些偏差,这个时候可以通过启动有关器械来使舵的角度得到一定的改变,这样就可以让鱼雷保持原来的方向继续前进。而在火箭中,是通过使 喷气的方向得到一定的改变来改变飞行的方向。 陀螺仪可以比较准确地测量出运动物体的位置和方向,作为一种惯性的导航仪器,它广泛应用在国防、航天、航海以及航空领域中。它的发展对现代有很重要的意义,例如:高新科技、国防以及国家的工业等等。机械式的陀螺其实是传统的惯性陀螺,它的结构很复杂,因此它对工艺上的结构要求是非常严格的,很多因素都会影响它的测量精度。现代陀螺仪的发展已经越来越快了,技术也越来越成熟,已经成功进入到全新的阶段中。发展最快的当属光纤陀螺仪,它的工作很可靠、灵敏度很高以

三轴陀螺仪和六轴陀螺仪的区别_六轴陀螺仪和九轴陀螺仪的区别

三轴陀螺仪和六轴陀螺仪的区别_六轴陀螺仪和九轴陀螺仪的区别陀螺仪,是一种用来感测与维持方向的装置,基於角动量不灭的理论设计出来的。陀螺仪主要是由一个位於轴心可以旋转的轮子构成。陀螺仪一旦开始旋转,由於轮子的角动量,陀螺仪有抗拒方向改变的趋向。陀螺仪多用於导航、定位等系统。 1850年法国的物理学家福柯(J.Foucault)为了研究地球自转,首先发现高速转动中的转子(rotor),由于惯性作用它的旋转轴永远指向一固定方向,他用希腊字gyro(旋转)和skopein(看)两字合为gyro scopei一字来命名这种仪表。 那时常听到别人说三轴、六轴、九轴陀螺仪,那其中到底有哪些区别呢?跟小编一起来了解下。 三轴陀螺仪和六轴的区别轴陀螺仪是分别感应Roll(左右倾斜)、Pitch(前后倾斜)、Yaw (左右摇摆)的全方位动态信息。 而6轴陀螺仪是指三轴加速器和三轴陀螺仪合在一起的称呼。 三轴加速器就是感应XYZ(立体空间三个方向,前后左右上下)轴向上的加速,比如你突然把装有6轴陀螺仪的产品往前推,它就知道你是在向前加速了,从而实现类似赛车加速的操作。 简单的说,6轴具备3轴的功能,但还要高级一点。 三轴加速器是检测横向加速的,三轴陀螺仪是检测角度旋转和平衡的,合在一起称为六轴传感器。 现在支持陀螺仪的游戏也越来越多了,如纸飞机等飞行类游戏,赛车类游戏,体育竞技游戏等。 六轴的区别和九轴陀螺仪的区别所谓的六轴陀螺仪叫六轴动作感应器比较合适是三轴陀螺仪和加速计的合称如果有三轴陀螺仪也有加速计那就具有六轴动作感应 而九轴感测组件是:三轴加速度计、三轴陀螺仪、三轴磁强计,然后欧拉角加四元数数据融合。

相关文档
最新文档