立体几何中的截面问题方法

立体几何中的截面问题方法
立体几何中的截面问题方法

考点81 空间几何体的截面问题

考点81 空间几何体的截面问题 1.(2018?新课标Ⅰ,理12)已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为( ) A B C D 【答案】A 【解析】正方体的所有棱中,实际上是3组平行的棱,每条棱所在直线与平面α所成的角都相等,如图:所示的正六边形平行的平面,并且正六边形时,α截此正方体所得截面面积的最大,此时正六边形的边长 ,α截此正方体所得截面最大值为:26=,故选A . 2.(2015?新课标Ⅱ,理19)如图,长方体1111ABCD A B C D -中,16AB =,10BC =,18AA =,点E ,F 分别在11A B ,11D C 上,114A E D F ==,过点E ,F 的平面α与此长方体的面相交,交线围成一个正方形. (1)在图中画出这个正方形(不必说明画法和理由); (2)求直线AF 与平面α所成角的正弦值. 【解析】(1)交线围成的正方形EFGH 如图: (2)作EM AB ⊥,垂足为M ,则:10EH EF BC ===,18EM AA ==, ∴6MH ,10AH ∴=。 以边DA ,DC ,1DD 所在直线为x ,y ,z 轴,建立如图所示空间直角坐标系,则: (10A ,0,0),(10H ,10,0),(10E ,4,8),(0F ,4,8),∴(10,0,0),(0,6,8)EF EH =-=-。 设(,,)n x y z =为平面EFGH 的法向量,则:100680n EF x n EH y z ?=-=??=-=?? ,取3z =,则(0,4,3)n =, 若设直线AF 和平面EFGH 所成的角为θ,则:45sin |cos ,|1805AF n θ=<>==,∴直线AF 与平面α .

立体几何动点问题

立体几何与平面解析几何的交汇问题 在教材中,立体几何与解析几何是互相独立的两章,彼此分离不相联系,实际上,从空间维数看,平面几何是二维的,立体几何是三维的,因此,立体几何是由平面几何升维而产生;另一方面,从立体几何与解析几何的联系看,解析几何中的直线是空间二个平面的交线,圆锥曲线(椭圆、双曲线、抛物线)是平面截圆锥面所产生的截线;从轨迹的观点看,空间中的曲面(曲线)是空间中动点运动的轨迹,正因为平面几何与立体几何有这么许多千丝万缕的联系,因此,在平面几何与立体几何的交汇点,新知识生长的土壤特别肥沃,创新型题型的生长空间也相当宽广,这一点,在高考卷中已有充分展示,应引起我们在复习中的足够重视。 一、动点轨迹问题 这类问题往往是先利用题中条件把立几问题转化为平面几何问题,再判断动点轨迹。 例1定点A 和B 都在平面α内,定点α?P ,α⊥PB , C 是α内异于A 和B 的动点,且AC PC ⊥。那么,动点C 在平面α内的轨迹是( ) A. 一条线段,但要去掉两个点 B. 一个圆,但要去掉两个点 C. 一个椭圆,但要去掉两个点 D. 半圆,但要去掉两个点 例2若三棱锥A —BCD 的侧面ABC 内一动点P 到平面BCD 距离与到棱AB 距离相等,则动点P 的轨迹与△ABC 组成的图形可能是( ) ) 解:设二面角A —BC —D 大小为θ,作PR ⊥面BCD ,R 为垂足,PQ ⊥BC 于Q ,PT ⊥AB 于T ,则∠PQR =θ, 且由条件PT=PR=PQ·sinθ,∴ 为小于1的常数,故轨迹图形应选(D )。 二、几何体的截痕

例3:球在平面上的斜射影为椭园:已知一巨型广告汽球直径6米,太阳光线与地面所成角为60°,求此广告汽球在地面上投影椭圆的离心率和面积(椭圆面积公式为S=πab ,其中a,b 为长、短半轴长)。 解:由于太阳光线可认定为平行光线,故广告球的投影 椭园等价于以广告球直径为直径的圆柱截面椭园:此时 b=R ,a= =2R ,∴离心率 , 投影面积S=πab=π·k·2R=2πR 2=18π。 三、动点与某点(面)的距离问题 , 例4.正方体1111D C B A ABCD -中,棱长为a ,E 是 1AA 的中点, 在对角面D D BB 11上找一动点M ,使AM+ME 最小.a 23. 四、常见的轨迹问题 (1) 轨迹类型识别 此类问题最为常见,求解时,关注几何体的特征,灵活选择几何法与代数法. 例5、(北京)平面α的斜线AB 交α于点B ,过定点A 的动直线l 与AB 垂直,且交 α于点C ,则动点C 的轨迹是( ) A .一条直线 B.一个圆 C.一个椭圆 D.双曲线的一支 【解析】直线l 运动后形成的轨迹刚好为线段AB 的垂面,由公理二易知点C 刚好落在平面α与线段AB 的垂面的交线上,所以动点C 的轨迹是一条直线.选择 A. 总结:空间的轨迹最简单的一直存在形式就是两个平面的交线,处理问题中注意识别即可. 例6、如图,在正方体ABCD A 1 B 1C 1D 1 中,若四边形A 1BCD 1 内一动点P 到AB 1和 BC 的距离相等,则点P 的轨迹为( ) … A .椭圆的一部分 B .圆的一部分 C .一条线段 D .抛物线的一部分 O E 例4题图 A % C D A 1 C 1 D 1 B 1 M - C D B C P O

高中数学教学论文 高中数学立体几何学习的几点建议

高中数学立体几何学习的几点建议 一逐渐提高逻辑论证能力 立体几何的证明是数学学科中任一分之也替代不了的。因此,历年高考中都有立体几何论证的考察。论证时,首先要保持严密性,对任何一个定义、定理及推论的理解要做到准确 无误。符号表示与定理完全一致,定理的所有条件都具备了,才能推出相关结论。切忌条件不全就下结论。其次,在论证问题时,思考应多用分析法,即逐步地找到结论成立的充 分条件,向已知靠拢,然后用综合法(“推出法”)形式写出 二立足课本,夯实基础 直线和平面这些内容,是立体几何的基础,学好这部分的一个捷径就是认真学习定理的证明,尤其是一些很关键的定理的证明。例如:三垂线定理。定理的内容都很简单,就是线 与线,线与面,面与面之间的关系的阐述。但定理的证明在出学的时候一般都很复杂,甚至很抽象。掌握好定理有以下三点好处: (1)深刻掌握定理的内容,明确定理的作用是什么,多用在那些地方,怎么用。 (2)培养空间想象力。 (3)得出一些解题方面的启示。 在学习这些内容的时候,可以用笔、直尺、书之类的东西搭出一个图形的框架,用以帮助提高空间想象力。对后面的学习也打下了很好的基础。 三“转化”思想的应用 我个人觉得,解立体几何的问题,主要是充分运用“转化”这种数学思想,要明确在转化过程中什么变了,什么没变,有什么联系,这是非常关键的。例如: 1. 两条异面直线所成的角转化为两条相交直线的夹角即过空间任意一点引两条异面直线的平行线。斜线与平面所成的角转化为直线与直线所成的角即斜线与斜线在该平面内的射影 所成的角。 2. 异面直线的距离可以转化为直线和与它平行的平面间的距离,也可以转化为两平行平面的距离,即异面直线的距离与线面距离、面面距离三者可以相互转化。而面面距离可以转

立体几何中的截面(解析版)

专题13 立体几何中的截面 【基本知识】 1.截面定义:在立体几何中,截面是指用一个平面去截一个几何体(包括圆柱,圆锥,球,棱柱,棱锥、长方体,正方体等等),得到的平面图形,叫截面。其次,我们要清楚立体图形的截面方式,总共有三种,分别为横截、竖截、斜截。最后,我们要了解每一种立体图形通过上述三种截面方式所得到的截面图有哪些。 2、正六面体的基本斜截面: 3、圆柱体的基本截面:正六面体斜截面是不会出现以下几种图形:直角三角形、钝角三角形、直角梯形、正五边形。 【基本技能】

技能1.结合线、面平行的判定定理与性质性质求截面问题; 技能2.结合线、面垂直的判定定理与性质定理求正方体中截面问题; 技能3.猜想法求最值问题:要灵活运用一些特殊图形与几何体的特征,“动中找静”:如正三角形、正六边形、正三棱锥等; 技能4.建立函数模型求最值问题:①设元②建立二次函数模型③求最值。 例1 一个正方体内接于一个球,过这个球的球心作一平面,则截面图形不可能 ... 是() 分析考虑过球心的平面在转动过中,平面在球的内接正方体上截得的截面不可能是大圆的内接正方形,故选D。 例2 如图,在透明的塑料制成的长方体ABCD-A1B1C1D1容器内灌进一些水,固定容器底面一边BC于地面上,再将容器倾斜,随着倾斜程度的不同,有下列四个命题: ①水的部分始终呈棱柱状; ②水面EFGH的面积不改变; ③棱A1D1始终与水面EFGH平行; ④当容器倾斜到如图5(2)时,BE·BF是定值; 其中正确的命题序号是______________ A C B D

分析 当长方体容器绕BC 边转动时,盛水部分的几何体始终满足棱柱定义,故①正确;在转动过程中EH//FG ,但EH 与FG 的距离EF 在变,所以水面EFGH 的面积在改变,故②错误;在转动过程中,始终有BC//FG//A 1D 1,所以A 1D 1//面EFGH ,③正确;当容器转动到水部分呈直三棱柱时如图5(2),因为 BC BF BE V ??= 2 1 水是定值,又BC 是定值,所以BE ·BF 是定值,即④正确。所以正确的序号为①③④. 例3 有一容积为1 立方单位的正方体容器ABCD-A 1B 1C 1D 1,在棱AB 、BB 1及对角线B 1C 的中点各有一小孔E 、F 、G ,若此容器可以任意放置,则该容器可装水的最大容积是( ) A . 21 B .87 C .12 11 D .4847 分析 本题很容易认为当水面是过E 、F 、G 三点的截面时容器可装水的容积最大图(1),最大值为 8 7 12121211=???- =V 立方单位,这是一种错误的解法,错误原因是对题中“容器是可以任意放置”的理解不够,其实,当水平面调整为图(2)△EB 1C 时容器的容积最大,最大容积为1211 112121311=????-=V , 故选C 。 例4 正四棱锥P ABCD -的底面正方形边长是3,O 是P 在底面上的射影,6, PO Q =是 AC 上的一点,过Q 且与, PA BD 都平行的截面为五边形EFGHL ,求该截面面积的最大值. C 1 A B C D A 1 D 1 B 1 E G F 图(1) C 1 A B C D A 1 D 1 B 1 E G F 图(2)

高考中常见的立体几何题型和解题方法

高考中常见的立体几何题型和解题方法 黔江中学高三数学教师:付 超 高考立体几何试题一般共有2——3道(选择、填空题1——2道, 解答题1道), 共计总分18——23分左右,考查的知识点在20个以内. 选择填空题考核立几中的 逻辑推理型问题, 而解答题着重考查立几中的计算型问题, 当然, 二者均应以正 确的空间想象为前提. 随着新的课程改革的进一步实施,立体几何考题正朝着“多 一点思考,少一点计算”的方向发展.从历年的考题变化看, 以简单几何体为载体 的线面位置关系的论证,角与距离的探求是常考常新的热门话题. 一、知识整合 1.有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过 程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与 距离等)中不可缺少的内容,因此在主体几何的总复习中,首先应从解决“平行 与垂直”的有关问题着手,通过较为基本问题,熟悉公理、定理的内容和功能, 通过对问题的分析与概括,掌握立体几何中解决问题的规律——充分利用线线平 行(垂直)、线面平行(垂直)、面面平行(垂直)相互转化的思想,以提高逻辑思维能 力和空间想象能力. 2. 判定两个平面平行的方法: (1)根据定义——证明两平面没有公共点; (2)判定定理——证明一个平面内的两条相交直线都平行于另一个平面; (3)证明两平面同垂直于一条直线。 3.两个平面平行的主要性质: ⑴由定义知:“两平行平面没有公共点”。 ⑵由定义推得:“两个平面平行,其中一个平面内的直线必平行于另一个平 面。 ⑶两个平面平行的性质定理:“如果两个平行平面同时和第三个平面相交, 那 么它们的交线平行”。 ⑷一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。 ⑸夹在两个平行平面间的平行线段相等。 ⑹经过平面外一点只有一个平面和已知平面平行。 以上性质⑵、⑷、⑸、⑹在课文中虽未直接列为“性质定理”,但在解题过 程中均可直接作为性质定理引用。 4.空间角和距离是空间图形中最基本的数量关系,空间角主要研究射影以 及与射影有关的定理、空间两直线所成的角、直线和平面所成的角、以及二面角 和二面角的平面角等.解这类问题的基本思路是把空间问题转化为平面问题去解 决. 空间角,是对由点、直线、平面所组成的空间图形中各种元素间的位置关系 进行定量分析的一个重要概念,由它们的定义,可得其取值范围,如两异面直线 所成的角θ∈(0,2π],直线与平面所成的角θ∈0,2π?????? ,二面角的大小,可用它们的平面角来度量,其平面角θ∈[0,π].对于空间角的计算,总是通过一定 的手段将其转化为一个平面内的角,并把 它置于一个平面图形,而且是一个三

立体几何轨迹与截面问题

轨迹与截面(二) 1.如图,在正方体中,是的中点,为底面内一动点,设 与底面所成的角分别为均不为.若,则动点的轨迹为() A. 直线的一部分 B. 圆的一部分 C. 椭圆的一部分 D. 抛物线的一部分 2.正方体棱长为4,,分别是棱,的中点,则过三点的平面截正方体所得截面的面积为() A. B. C. D. 3.已知球O的半径为2,圆M和圆N是球的互相垂直的两个截面,圆M和圆N的面 MN=() 积分别为2π和π,则|| A.1 B3.2 D5 4.如图,在四棱锥P﹣ABCD中,侧面PAD为正三角形,底面ABCD为正方形,侧面PAD ⊥底面ABCD,M为底面ABCD内的一个动点,且满足MP=MC,则点M在正方形ABCD内的

轨迹为( ) A . B . C . D . 5.如图,记长方体1111ABCD A B C D -被平行于棱11C B 的平面EFGH 截去右上部分后剩下的几何体为Ω,则下列结论中不正确... 的是( ) A .EH ∥FG B .四边形EFGH 是平行四边形 C .Ω是棱柱 D .Ω是棱台 6.如图,在正方体1111ABCD A B C D -中,P 是侧面11BB C C 内一动点,若P 到直线BC 与直线11C D 的距离相等,则动点P 的轨迹所在的曲线是( ) 11 A 1 B 1 P D C A.直线 B.圆 C.双曲线 D.抛物线

7.如图,在棱长为1的正方体1111ABCD A B C D -中,P 为棱11A B 中点,点Q 在侧面 11DCC D 内运动,若1PBQ PBD ∠=∠,则动点Q 的轨迹所在曲线为( ) A.直线 B.圆 C.双曲线 D.抛物线 8.如图所示,最左边的几何体由一个圆柱中挖去一个以圆柱的上底面为底面,下底面圆心为顶点的圆锥而得,现用一个竖直的平面去截这个几何体,则截面图形可能是( ) A .①② B .②③ C .③④ D .①⑤ 9.如图,正方体1111ABCD A B C D -的棱长为3,以顶点A 为球心,2为半径作一个球,则图中球面与正方体的表面相交所得到的两段弧长之和等于( ) A . 56π B .23π C .π D .76 π 10.(2015秋?河南期末)如图,在平行六面体ABCD ﹣A 1B 1C 1D 1中,底面是边长为2的正方形,若∠A 1AB=∠A 1AD=60°,且A 1A=3,则A 1C 的长为( )

立体几何截面问题

立体几何中的截面问题剖析 用平面去截一个几何体,截面的情况可以帮助我们更好地认识几何体,对于一个几何体不同切截方式,所以得截面可能出现不同的情况. 以正方体为例:平面截正方体的截面图形 三角形: 四边形 五边形 六边形 类型一:与截面有关的求值问题 1、在棱长为2的正方体1111ABCD A B C D -中,M 是棱11A D 的中点,过1C ,B ,M 作正方体的截面,则这个截面的面积为( ) A .35 B .35 C .92 D .98 2、 体积为216的正方体1111ABCD A B C D -中,点M 是线段11D C 的中点,点N 在线段11B C 上,//MN BD ,则正方体1111ABCD A B C D -被平面AMN 所截得的截面面积为( ) A. 2717 B .2117 C .1517 D .1317

正三棱柱111ABC A B C -中,所有棱长均为2,点,E F 分别为棱111,BB A C 的中点,若过点,,A E F 作一截面,则截面的周长为( ) A .425133+ B .225133 + C .2513+ D .13252 + 反馈练习: 1、在棱长为2的正方体1111D C B A ABCD -中,E 是正方形C C BB 11的中心,M 为11D C 的中点,过M A 1的平面α与直线DE 垂直,则平面α截正方体1111D C B A ABCD -所得的截面面积为( ) A .23 B .26 C .225 D .3 2、如图,在正方体````ABCD A B C D -中,平面垂直于对角线AC ,且平面截得正方体的六个表面得到截面六边形,记此截面六边形的面积为S ,周长为l ,则( ) A .S 为定值,l 不为定值 B .S 不为定值,l 为定值 C .S 与l 均为定值 D .S 与l 均不为定值 类型二:与截面有关的最值问题 1、已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为( ) A .433 B .332 C .423 D .2 3

【高中学习立体几何的方法有哪些】高中立体几何做辅助线方法

【高中学习立体几何的方法有哪些】高中立体几何做辅助线方法 升入高中后,面对新的课程,新的知识,新的学习方法很多学生多会感到无所适从,尤其是在高中立体几何方面颇感头疼。那么高中学习立体几何的方法有哪些呢?以下是小编分享给大家的高中学习立体几何的方法的资料,希望可以帮到你! 高中学习立体几何的方法一 立足课本,夯实基础 直线和平面这些内容,是立体几何的基础,学好这部分的一个捷径就是认真学习定理的证明,尤其是一些很关键的定理的证明。例如:三垂线定理。(这个定理对今后学习线面垂直以及二面角的平面角的作法非常重要)定理的内容都很简单,就是线与线,线与面,面与面之间的关系的阐述。但定理的证明在出学的时候一般都很复杂,甚至很抽象。掌握好定理有以下三点好处: (1)深刻掌握定理的内容,明确定理的作用是什么,多用在那些地方,怎么用。 (2)培养空间想象力。 (3)得出一些解题方面的启示。 在学习这些内容的时候,可以用笔、直尺、书之类的东西搭出一个图形的框架,(我要求学生用手里的书本当平面,笔作直线)这样亲自实践可以帮助提高空间想象力。对后面的学习也打下了很好的基础。 高中学习立体几何的方法二 培养空间想象力

从认识平面图形到认识立体图形是一次飞跃,要有一个过程。有的同学自制一些空间几何模型并反复观察,这有益于建立空间观念,是个好办法。有的同学有空就对一些立体图形进行观察、揣摩,并且判断其中的线线、线面、面面位置关系,探索各种角、各种垂线作法,这对于建立空间观念也是好方法。 建立空间观念要做到:重视看图能力的培养:对于一个几何体,可从不同的角度去观察,可以是俯视、仰视、侧视、斜视,体会不同的感觉,以开拓空间视野,培养空间感。加强画图能力的培养:掌握基本图形的画法;如异面直线的几种画法、二面角的几种画法等等;对线面的位置关系,所成的角,所有的定理、公理都要画出其图形,而且要画出具有较强的立体感,除此之外,还要体会到用语言叙述的图形,画哪一个面在水平面上,产生的视觉完全不同,往往从一个方向上看不清的图形,从另方向上可能一目了然。加强认图能力的培养:对立体几何题,既要由复杂的几何图形体看出基本图形,如点、线、面的位置关系;又要从点、线、面的位置关系想到复杂的几何图形,既要看到所画出的图形,又要想到未画出的部分。能实现这一些,可使有些问题一眼看穿。 此外,多用图表示概念和定理,多在头脑中证明定理和构造定理的图,对于建立空间观念也是很有帮助的。 高中学习立体几何的方法三 建立数学模型 新课程标准中多次提到数学模型一词,目的是进一步加强数学与现实世界的联系。数学模型是把实际问题用数学语言抽象概括,再从数学角度来反映或近似地反映实际问题时,所得出的关于实际问题的描述。数学模型的形式是多样的,它们可以是几何图形,也可以是方程式,函数解析式等等。实际问题越复杂,相应的数学模型也越复杂。 从形状的角度反映现实世界的物体时,经过抽象得到的空间几何体就是现实世界物体的几何模型。由于立体几何学习的知识内容与学生的联系非常密切,空间几何体是很多物体的几何模型,这些模型可以描述现实世界中的许多物体。他们直观、具体、对培养大家的几何直观能力有很大的帮助。空间几何体,特别是长方体,其中的棱与棱、棱与面、面与面之间的位置关系,是研究直线与直线、直线与平面、平面与平面位置关系的直观载体。学习时,一方面要注意从实际出发,把学习的知识与周围的实物联系起来,另一方面,也要注意经历从现实的生活抽象空间图形的过程,注重探索空间图形的位置关系,归纳、概括它们的判定定理和性质定理。 高中学习立体几何的方法四

立体几何教学中的哲学思想

立体几何教学中的哲学思想 摘要:数学作为一门经典科学,其理论的产生、发展与完善又很好阐释了哲学的各理论。数学教学中需要从哲学的角度认识数学、理解数学,从哲学的角度探讨数学中的辩证思想:自觉地渗透辩证的思维方法、辩证的认识论,从而有助于学生更好地理解数学的产生与发展,更好地理解先人发现数学的历程与艰难,并进而更有助于开拓学生视角、优化学生思维。 关键词:对立与统一;具体到抽象;归纳与类比 中图分类号:G632 文献标识码:B 文章编号:1002-7661(2015)06-276-01 数学的产生与发展是与哲学紧密相连的,哲学作为一切运动最普遍规律的学科,渗透到数学发展的各个阶段和各个领域。同时,数学作为一门经典科学,其理论的产生、发展与完善又很好阐释了哲学的各理论。数学教学中需要从哲学的角度认识数学、理解数学,从哲学的角度探讨数学中的辩证思想:自觉地渗透辩证的思维方法、辩证的认识论,从而有助于学生更好地理解数学的产生与发展,更好地理解先人发现数学的历程与艰难,并进而更有助于开拓学生视角、优化学生思维。

何以需要把哲学认识观融入立体几何的教学中,究其因,一方面,哲学认识观给数学教学送来了获得智慧的经验与方法,能高屋建瓴的认识立体几何,给统领立体几何教学的观点、方法与思想带来了一个高度;另一方面,立体几何中诸多的知识与方法素材更是诠释哲学思想、哲学认识论的良好契机,如空间问题转化为平面问题、几何关系与数量关系的互化都昭示了事物的普遍联系与相互转化。 一、对立与统一地认识问题 唯物主义哲学告诉我们,对立统一规律是辩证法的实质与核心。唯物辩证法认为,事物联系的根本内容就是互相区别、相互对立的矛盾双方之间的联系。用这个观点考查立体几何就容易发现,在立体几何中,处处都存在着典型的、深刻的矛盾辩证法。空间由点、线(直线与曲线)、面(平面与曲面)、体元素构成,点动成线、线动成面、面动成体,从这个角度上说,这四者体现的是部分与整体的关系。当我们在具体判断这些元素位置关系时,它们却是对立统一的:线线、线面、面面等位置关系可以相互转化,呈现对立统一之态。 例如,在判断线面平行时,可以转化为线线平行(线面平行判定定理)思考,抑或可以转化为面面平行(面面平行性质)思考。线线平行、线面平行、面面平行既对立又统一。对立体现的是相互的区别性、统一体现的是相互的联系

立体几何中的最值

立体几何最值问题 姓名 立体几何主要研究空间中点、线、面之间的位置关系,与空间图形有关的线段、角、体积等最值问题常常在试题中出现。下面举例说明解决这类问题的常用方法。 一、运用变量的相对性求最值 例1. 在正四棱锥S-ABCD 中,SO ⊥平面ABCD 于O ,SO=2,底面边长为2,点P 、Q 分别在线段BD 、SC 上移动,则P 、Q 两点的最短距离为( ) A. 5 5 B. 5 5 2 C. 2 D. 1 二、定性分析法求最值 例2. 已知平面α//平面β,AB 和CD 是夹在平面α、β之间的两条线段。AB ⊥CD ,AB=3,直线AB 与平面α成30°角,则线段CD 的长的最小值为______。 三、展成平面求最值 例 3. 如图3-1,四面体A-BCD 的各面都是锐角三角形,且AB=CD=a ,AC=BD=b ,AD=BC=c 。平面α分别截棱AB 、BC 、CD 、DA 于点P 、Q 、R 、S ,则四边形PQRS 的周长的最小值是( ) A. 2a B. 2b C. 2c D. a+b+c 图3-1 四、利用向量求最值 例4. 在棱长为1的正方体ABCD-EFGH 中,P 是AF 上的动点,则GP+PB 的 最小值为_______。

一、线段长度最短或截面周长最小问题 例1. 正三棱柱ABC —A 1B 1C 1中,各棱长均为2,M 为AA 1中点,N 为BC 的中点,则在棱柱的表面上从点M 到点N 的最短距离是多少?并求之. 例2.如图,正方形ABCD 、ABEF 的边长都是1,而且平面ABCD 、ABEF 互相垂直。点M 在AC 上移动,点N 在BF 上移动,若CM=BN=a ).20(<

立体几何中常用的数学思想方法

立体几何中常用的数学思想方法 郑云 数学思想是数学的灵魂,是同学们学习过程中最需要总结的法宝,下面例析数学思想方法在立体几何中的应用。 一. 分类讨论的思想 例1. 不共面的4个定点到平面α的距离都相等,这样的平面α共有( )。 A. 3个 B. 4个 C. 6个 D. 7个 解:把不共面的4个定点看成四面体的4个顶点,平面α可分两类。第一类,如图1所示,4个定点分布在α的一侧1个,另一侧3个,此类α有4个。第二类,如图2所示,4个定点分布在α的两侧各2个,此类α有3个。综上,共有4+3=7(个),故选D 。 二. 转化的思想 化归与转化的思想在立体几何中随处可见,特别是空间问题平面化,如空间中的角与距离转化为平面中的角与距离。 例2. 一个与球心距离为1的平面截球所得的截面面积为π,则球的表面积为( ) A. 82π B. 8π C. 42π D. 4π 解:如图3所示,作出球的大圆截面图,由截面小圆的面积为π 即ππr 2=,得r =1 R r =+=1222 则S R 球==482ππ,应选B 。 图3

三. 函数的思想 例3. 已知圆锥的底面的半径为R ,高为3R ,在它的所有内接圆柱中,全面积的最大值是( ) A. 22πR B. 942π R C. 832πR D. 322πR 解:如图4所示,设内接圆柱的半径为r r R ()0<<,高为h 则有h R R r R 3=-,得h R r =-3()。 图4 ∴当时,全面积最大,最大值为,故选。圆柱全S r rh r r R r r Rr r R R R r R R B =+=+-=--=--?? ???+≤=2226432 4349494 3494 2222222πππππππππ() () 四. 方程的思想 例4. 已知正三棱锥P ABC -的体积为723,侧面与底面所成的二面角为60°。 (1)证明:PA BC ⊥。 (2)求底面中心O 到侧面的距离。 (1)证明:取BC 边的中点D 连结AD 、PD ,则AD BC PD BC ⊥⊥, 故BC APD ⊥平面,因此PA BC ⊥。 (2)解:如图5所示,由(1)可知平面PBC APD ⊥平面 则∠PDA 是侧面与底面所成二面角的平面角 由题意知点O 到各个侧面的距离相等

数学竞赛之立体几何专题精讲(例题+练习)

数学竞赛中的立体几何问题 立体几何作为高中数学的重要组成部分之一,当然也是每年的全国联赛的必然考查内容.解法灵活而备受人们的青睐,竞赛数学当中的立几题往往会以中等难度试题的形式出现在一试中,考查的内容常会涉及角、距离、体积等计算.解决这些问题常会用到转化、分割与补形等重要的数学思想方法. 一、求角度 这类题常以多面体或旋转体为依托,考查立体几何中的异面直线所成角、直线与平面所成角或二面角的大小 解决这类题的关键是 ,根据已知条件准确地找出或作出要求的角. 立体几何中的角包括异面直线所成的角、直线与平面所成的角、二面角三种.其中两条异面直线所成的角通过作两条异面直线的平行线找到表示异面直线所成角的相交直线所成的角,再构造一个包含该角的三角形,解三角形即可以完成;直线和平面所成的角则要首先找到直线在平面内的射影,一般来讲也可以通过解直角三角形的办法得到,其角度范围是[]0,90??;二面角在求解的过程当中一般要先找到二面角的平面角,三种方法:①作棱的垂面和两个半平面相交;②过棱上任意一点分别于两个半平面内引棱的垂线;③根据三垂线定理或逆定理.另外还可以根据面积射影定理cos S S θ'=?得到.式中S '表示射影多边形的面积,S 表示原多边形的面积,θ即为所求二面角. 例1 直线OA 和平面α斜交于一点O ,OB 是OA 在α内的射影,OC 是平面α内过O 点的任一直线,设,,.AOC AOB BOC αβγ∠=∠=∠=,求证:cos cos cos αβγ=?. 分析:如图,设射线OA 任意一点A ,过A 作 AB α⊥于点B ,又作BC OC ⊥于点C ,连 接AC .有: cos ,cos ,cos ;OC OB OC OA OA OB αβγ=== 所以,cos cos cos αβγ=?. 评注:①上述结论经常会结合以下课本例题一起使用.过平面内一个角的顶点作平面的一条斜线,如果斜线和角的两边所成的角相等,那么这条斜线在平面内的射影一定会落在这个角的角平分线上.利用全等三角形即可证明结论成立. ②从上述等式的三项可以看出cos α值最小,于是可得结论:平面的一条斜线和平面内经过斜足的所有直线所成的角中,斜线与它的射影所成的角最小. 例、(1997年全国联赛一试)如图,正四面体ABCD 中,E 在棱AB 上, α O C B A E A

高中数学专题讲义-空间几何体. 截面与距离问题

棱锥、棱台的中截面与轴截面 【例1】 正四棱锥的侧棱长是底面边长的k 倍,求k 的取值范围. 【例2】 正四棱锥的斜高为2,侧棱长为5,求棱锥的高与中截面(即过高线的中点且平 行于底面的截面)的面积? 【例3】 正四棱台的高为17,两底面的边长分别是4和16,求这个棱台的侧棱长和斜高. 【例4】 已知正六棱台的上,下底面的边长和侧棱长分别为a ,b ,c ,则它的高和斜高分 别为 【例5】 已知正三棱锥S ABC -的高SO h =,斜高SM l =,求经过SO 的中点且平行于底面 的截面111A B C ?的面积. M O C 1 B 1 A 1 C A 【例6】 如图所示的正四棱锥V ABCD -,它的高3VO =,侧棱长为7, ⑴ 求侧面上的斜高与底面面积. ⑵ 'O 是高VO 的中点,求过'O 点且与底面平行的截面(即中截面)的面积. 典例分析 板块二.截面与距离问题

H O'O D C B A V 【例7】 如图,已知棱锥V ABC -的底面积是264cm ,平行于底面的截面面积是24cm ,棱锥 顶点V 在截面和底面上的射影分别是1O 、O ,过1O O 的三等分点作平行于底面的截面,求各截面的面积. C A 圆锥、圆台的中截面与轴截面 【例8】 把一个圆锥截成圆台,已知圆台的上、下底面半径的比是14∶,母线长10,求 圆锥的母线长. 【例9】 一圆锥轴截面顶角为120?,母线长为1,求轴截面的面积. 【例10】 圆台的母线长为2a ,母线和轴的夹角为30?,一个底面半径是另一个底面半径的2 倍,求圆台的高与上下两底面面积之和. 【例11】 圆台两底半径分别是2和5,母线长是,求它的轴截面的面积; 【例12】 圆台侧面的母线长为2a ,母线与轴的夹角为30?,一个底面半径是另一个底面 半径的2倍,则两底面半径为 .

立体几何中的数学思想

专题讲座立体几何中的数学思想方法 目录 ............................................................................................................................................ 错误!未定义书签。 一、转化的思想方法 (2) 练习1 (8) 练习1答案 (8) 二、分类讨论的思想方法 (9) 练习2 (10) 练习2答案 (10) 三、运动变化的思想方法 (11) 练习3 (12) 练习3答案 (12) 四、函数与方程的思想方法 (12) 练习4 (16) 练习4答案 (17) 五、类比的思想方法 (17) 练习5 (18) 练习5答案 (18) 中国数学解题研究会齐建民

立体几何是高中数学教学的一个重要内容,这部分内容蕴含着丰富的数学思想方法。实践证明,教学中适时渗透有关的数学思想方法,有助于学生降低学习难度,把握知识本质和内在规律,提高数学素养,发展思维能力。本文主要谈谈在立体几何中的几种主要数学思想方法。 一、转化的思想方法 研究问题时,将研究对象在一定条件下转化为熟悉的、简单的、基本的研究对象的思维方法称为转化的思想方法。这种思想方法是立体几何中最重要的思想方法,贯穿在立体几何教学的始终。立体几何中转化的思想方法主要体现在如下几个方面: 1、空间问题向平面问题转化 将空间问题转化为熟知的平面问题是研究立体几何问题最重要的数学方法之一。 如线面垂直的判定定理转化为三角形全等的平面几何问题; 教材中的几种多面体和旋转体的侧面积公式的推导(除球面和球冠外)、 侧面上最短线问题都是通过侧面展开转化为平面几何问题;旋转体的有关问题不也是转化为关于轴截面的平面几何问题吗? 立体几何中的三种角(线线角、线面角、二面角); 四种距离(线线距、点面距、线面距、面面距)从定义到具体的计算以及三垂线定理都体现了空间到平面的转化。 【例7】已知正三棱锥S ABC -的侧棱长为a ,45ASB ∠=?,,M N 分别是棱,SB SC 上的点,求AMN ?周长的最小值(图甲). N N M M S S 图乙 图甲 A 1C B A C B A

高中数学-空间几何体与截面三视图

高中数学-立体几何知识点与截面三视图 三.球的截面 .圆柱的截面 .圆锥的截面四.三棱锥的截面

五.正方体的截面(需补充两面截 图) 正方体的戡面图

立体几何基础知识点与考点三垂线定理(及逆定理): PA丄面,AO为P0在内射影,a 面,则 a丄OA a丄PO; a丄PO a丄AO 线面垂直: a丄b, a丄c, b, c 面面垂直: a丄面,a 面 面丄面, a丄面,b丄面 ,b c O a 丄 丄 l,a ,a 丄l a 丄a// b // 三类角的定义及求法 (1)异面直线所成的角e, 0 °

空间角:如图,正四棱柱ABCD —A I B I C I D I中 对角线BD i = 8, BD i与侧面B i BCC i所成的为30° ①求BD i和底面ABCD所成的角; ②求异面直线BD i和AD所成的角; ③求二面角C i—BD i—B i的大小。 (① arcsin —:② 60°:③ arcsin —6)4 3 空间距离:点与点,点与线,点与面,线与线, 线与面,面与面间距离。 将空间距离转化为两点的距离,构造三角形, 解三角形求线段的长(如:三垂线定理法, 或者用等积转化法)。 如:正方形ABCD —A i B i C i D i中,棱长为a,则: (1)____________________________________ 点C到面AB i C i的距离为; (2)____________________________________ 点B到面ACB i的距离为 (3)____________________________________ 直线A i D i到面AB i C i的距离为 (4)____________________________________ 面AB i C与面A i DC i的距离为

立体几何问题的题型与方法.

专题六立体几何问题的题型与方法 【考点审视】 高考试卷中立体几何把考查的立足点放在空间图形上,突出对空间观念和空间想象能 力的考查?立体几何的基础是对点、线、面的各种位置关系的讨论和研究,进而讨论几何体。因此高考命题时,突出空间图形的特点,侧重于直线与直线、直线与平面、平面与平面的各种位置关系的考查,以便审核考生立体几何的知识水平和能力。 多面体和棱柱、棱锥、正多面体、球是空间直线与平面问题的延续和深化。要熟练掌握概念、性质以及它们的体积公式,同时也要学会运用等价转化思想,会把组合体求积问题转化为基本几何体的求积问题,会等体积转化求解问题,会把立体问题转化为平面问题来解,会运用“割补法”等求解。 本章主要考查平面的性质、空间两直线、直线和平面、两个平面的位置关系以及空间角和距离、面积及体积。 考试要求 (1)掌握平面的基本性质,会用斜二测的画法画水平放置的平面图形的直观图。能够画出空间两条直线、直线和平面的各种位置关系的图形。能够根据图形想象它们的位置关系。 (2)掌握两条直线平行与垂直的判定、性质定理。掌握两条直线所成的角和距离的概念。 (3)掌握直线和平面平行、垂直的判定、性质定理。掌握直线和平面所成的角、距离的概念。了解三垂线定理及其逆定理。 (4)掌握两个平面平行、垂直的判定、性质定理。掌握二面角、二面角的平面角、两平面间的距离的概念。 (5)会用反证法证明简单的问题。了解多面体的概念,了解凸多面体的概念。 (6)了解棱柱的概念,掌握棱柱的性质,会画直棱柱的直观图。 (7)了解棱锥的概念,掌握正棱锥的性质,会画正棱锥的直观图。 (8)了解正多面体的概念,了解多面体的欧拉公式。 (9)了解球的概念,掌握球的性质,掌握球的表面积、体积公式。 【疑难点拔】 立体几何问题的题型与方法

空间立体几何图形的截面

空间立体几何图形的截面 江苏省前黄高级中学许云峰 教学背景 本课为以立体几何的截面图为核心,让学生借助《几何画板》的实际模拟和探索功能进行学习,由学生自我探究,进行知识迁移,通过类比,自己去尝试并最终解决问题。教师在此过程中进行必要的总结和在学生出现困难时进行指导,由此培养学生思维的独立和发散性,使学生真正成为学习的主体。 教学目标: 1.认知目标:整合几何体的截面情况,形成完整的认知体系。 2.能力目标:学生利用《几何画板》探索问题的能力,以培养学生知识迁移能力,发散思维和类比思维能力。 3.情感目标:培养学生探索创新能力,激发学生学习的热情和积极性。 重点与难点 重点:空间几何体的截面图的作法;空间旋转体的截面作法。 难点:空间几何图形的交点的作法;由极限思想作出空间旋转体的截面图的作法。 教学策略与教法设计 策略:教师提出问题,然后逐层展开,分步进行研究(需学生进行探索和分析),然后学生进行分组讨论和实际操作,通过自主学习、探究学习、合作学习达到认知的意义建构。 教法 1.演示法:把制作的课件展示给学生,便于学生对知识的深层次的把握,并从中获得启发,从而解决问题。这同时也给学生制作作品提供了模板,让学生明白作品需达到的要求。 2.谈话法:在教师指导下,由全班或小组成员围绕某一中心问题发表自己的看法,从而进行相互学习、合作学习,集思广益。 3.成果展示法:将学生制作的作品有选择的展示(以小组为单位进行制作,每个小组推荐1~2个进行演示),让学生获得成功的喜悦和认同,从而激发学生后续学习的热情。 4.讨论法:就学生探索所得成果,各小组可自由提问,或者师生共同评价,最后总结成整体观点。 教学过程设计 先期准备 在《几何画板》中建立立体几何的图形工具包,方便学生在最快的时间内作出准确的立体几何图形,以方便学生进行探究性学习,避免在作图上花费过多时间和精力;同时可以给学生以示范,让学生学会如何作出形象的立体几何直观图。 教学目标提出 探究空间几何图形上过任意三点的截面 1.分三个小组对多面体进行协作探究:第一小组:柱体;第二小组:锥体;第三小组:台体。主要探究任意三点的位置和截面的形状。 2.探究圆锥的截面。 分组探究,层层推进,把问题推向纵深 通过发挥学生自主学习的特点,并根据几何体的特征可以分类,故我们采取分组进行自我探索,相互协作,小组讨论,师生共同总结等方法进行教学。在此过程中,老师作为主导者,主要为学生提供必要的帮助和方向指引,而学习的过程主要靠学生自我完成。 学生进行分组协助学习。 每小组的探索活动都可分为三个层次进行: 以最简单的图形出发,即三棱柱、三棱锥、三棱台研究任意三点的位置的取法。 随后作出过三点的截面(作法依据:公理及其推论),并拖动三点,观察截面的变化情况,从而得出结论,并进行组内交流,形成小组统一观点。

高中立体几何(传统方法)

立体几何(传统方法) 知识精要 1. 直线与平面问题,主要是对空间中的直线与平面的位置关系、距离、角以及它们的综合 问题进行研究.这些问题往往与代数、三角、组合等知识综合,因而在解题过程中,要力求做到概念清晰,方法得当,转化适时,突破得法. 2. 四面体是一种最简单的多面体,它的许多性质可以用类比的思想从三角形的性质而得 来.较复杂的多面体常转化为四面体问题加以解决.解决这一类问题的所常用的数学思想方法有:变换法、类比和转化、体积法、展开与对折等方法. 3. 解决旋转体的有关问题要注意截面的知识的应用.在解决球相切问题时,注意球心连线 通过切点,球心距等于两球半径之和.因此,研究多球相切问题时,连结球心,从而转化为多面体问题. 例题1 从正方体的棱和各个面上的对角线中选出k 条,使得其中任意两条线段所在直线都是异面直线,求k 的最大值. 解答 考察如图所示的正方体上的四条线段AC ,BC 1, A 1D ,它们所在直线两两都是异面直线.又若有5条或与正方体只有8个顶点矛盾.故 K 的最大值是4. 练习1 在正方体的8个顶点、12条棱的中点、6心及正方体的中心共计27是多少 解答 两端点都为顶点的共线三点组共有87 282 ?=有6132?=个;线三点组,所以总共有2831849++=个. 例题2 已知一个平面与一个正方体的12条棱的夹角都等于α,求sin α. 解答 如右图所示,平面BCD 与正方体的12条棱的夹角都 等于α,过A 作AH 垂直平面BCD .连DH ,则A D H α=∠.设正方体的边长为b ,则 02sin 6033 DH == AH == 所以sin sin AH ADH AD α=∠= =. 练习2 如图所示,正四面体ABCD 中,E 在棱AB 上,F 在棱CD 上,使得 B A H B

相关文档
最新文档