增强型地热系统_干热岩_开发技术进展_许天福

增强型地热系统_干热岩_开发技术进展_许天福
增强型地热系统_干热岩_开发技术进展_许天福

1增强型地热系统的概念

地热能由于其清洁可再生性和空间分布的广泛性,已经

成为位居水力、生物质能之后的世界第3大可再生能源。地热资源作为世界各国重点研究开发的可再生清洁能源,主要分为水热型和干热岩型。世界上目前开采和利用地热资源主要是水热型地热,占已探明地热资源的10%左右[1]。干热岩是一种没有水或蒸汽的热岩体,主要是各种变质岩或结晶岩类岩体。干热岩普遍埋藏于距地表3—10km 的深处,其温度范围很广,在150—650℃之间[2]。现阶段,干热岩地热资源是专指埋深较浅、温度较高、有开发经济价值的热岩体,保守估计地壳中干热岩(3—10km 深处)所蕴含的能量相当于全球所有石油、天然气和煤炭所蕴藏能量的30倍。

干热岩在地球上的蕴藏量十分丰富。若将它开采出来加以应用,可以满足人类长期使用。据麻省理工学院(MIT )2006年报告,只要开发3000—10000m 深度2%的干热岩资源储量,就将达到200×1018EJ ,是美国2005年全年能源消耗总量的2800倍[3]。据美国地热能市场评估报告数据(2007),美国国内地热项目开发的数目增至193个,正在开发的地热能量1035MW ,而地热潜力估计12271369MW [4],有极大的开发潜力。

增强型地热系统(Enhanced Geothermal Systems ,EGS )是在干热岩技术基础上提出的,美国能源部的定义是采用人工形成地热储层的方法,从低渗透性岩体中经济地采出深层热能的人工地热系统,如图1所示。据美国能源部的增强型地热系统技术评估报告(2008),需要对EGS 技术中3个关键方面

增强型地热系统(干热岩)开发技术进展

许天福1,张延军1,2,曾昭发3,鲍新华1

收稿日期:2012-09-11;修回日期:2012-10-10

基金项目:国家高技术研究发展计划(863计划)项目(2012AA052801);国家自然科学基金(40972172)

作者简介:许天福,教授,研究方向为多相流反应溶质运移和EGS ,电子信箱:tianfu.good@https://www.360docs.net/doc/ea17534838.html, ;张延军(通信作者),教授,研究方向为岩石力

学和EGS ,电子信箱:zhangyanj@https://www.360docs.net/doc/ea17534838.html,

1.吉林大学地下水资源与环境教育部重点实验室,长春130000

2.吉林大学建设工程学院,长春130026

3.吉林大学地球探测科学与技术学院,长春130026

摘要

增强型地热系统(EGS ),又称干热岩,是一种从低渗透率和低孔隙度的岩层(干热岩)中提取热量从而获取大量热能的一种

工程。有关增强型地热系统的研究与开发已有30余年的历史,但以往只局限于美国、英国、法国、德国、瑞士、日本、澳大利亚等国家。中国高温岩体地热开发研究起步较晚,仅少数科研单位在这方面做了理论探讨和国际合作。本文主要讨论了增强型地热系统的基本理念、国内外研究现状与发展趋势、关键技术、存在的问题以及展望。

关键词干热岩;增强型地热系统;人工压裂;地球物理

中图分类号TK529文献标识码A doi 10.3981/j.issn.1000-7857.2012.32.005

Technology Progress in an Enhanced Geothermal System (Hot Dry Rock)

XU Tianfu 1,ZHANG Yanjun 1,2,ZENG Zhaofa 3,BAO Xinhua 1

https://www.360docs.net/doc/ea17534838.html,boratory of Groundwater Resources and Environment,Ministry of Education,Jilin University,Changchun 130000,China

2.College of Construction Engineering,Jilin University,Changchun 130026,China

3.College of Geo-exploration Science and Technology,Jilin University,Changchun 130026,China

Abstract

Enhanced Geothermal System (EGS),known as Hot Dry Rock (HDR),is an engineering technology where the heat energy is

extracted from low permeability and low porosity rock,namely,HDR in order to gain the quantity of energy.Although the history and development of EGS has been more than 30years,only a small number of countries in the world have a voice in this respect,such as the United States,Britain,France,Germany,Switzerland,Japan,Australia,etc.The basic concept,research and development status,key technologies,issues and expectation involving the EGS are mainly discussed.

Keywords hot dry rock;EGS;artificial fracturing;Geophysics

图1

干热岩热能开发的增强型地热系统示意

Fig.1Scheme of the enhanced geothermal

system in hot dry rock

进行评估,即地质条件、经济可行性和EGS 在其他技术领域的适用性,最后通过耦合模型预测评价能源开发的可行性[5]。

需要指出的是,本文中使用的干热岩和增强型地热系统两个名词概念没有严格的区分,可交换使用。

2国内外研究现状与发展趋势

增强型地热系统已有30多年的研究历史,但以往只局限

在美国、英国、法国、德国、瑞士、日本、澳大利亚等国家。

美国是最早对干热岩的工程开发进行研究的国家,在新墨西哥州中北部的芬顿山成立了干热岩研究中心。美国政府于1973年资助针对干热岩开发的EGS 试验研究,1977年获得了成功,最深钻孔达4500m ,岩体温度为330℃,热交换系统深度为3600m 。1984年建成了世界上第一座高温岩体地热发电站,发电功率由最初的3MW 提高至10MW ,地热流值达

250mW/m 2。

从1980年开始,日本政府资助了一项研究干热岩发电技术可行性的项目。在山形县实施了4个钻孔,深度在2000—

2200m ,岩体温度为250℃,并进行了多次短期的水压测试。1988年,日本政府和几个私人机构还在岩手县资助了一项研

究水-岩体间热交换项目[6]。

1977—1986年,欧共体资助德国在巴伐利亚东北部的Falkenberg 开展了一项EGS 研究:在较浅的深度下,研究岩石

的自身裂隙、水压产生裂隙的形成机制以及水在这些裂隙中的运移机制[7]。

国际能源署(IEA )领导并实施了一系列有关地热利用的国际合作项目。在众多的地热利用国际合作项目中,与干热岩较紧密联系是“地热执行协议”(GIA )中一个为期4年(1997—2001)的重大计划———“干热岩行动计划”(Hot Dry

Rock Task ),该计划由日本的新能源和工业技术发展组织

(NEDO )担任总执行机构,参与该计划的国家有澳大利亚、德国、日本、瑞士、英国、美国以及欧共体。

澳大利亚在2003年在库珀(Cooper )盆地开展了一个有关EGS 的项目,勘查结果显示该盆地的热能储量高达500亿

桶油当量(据澳大利亚Metasource 公司网站),在4500m 的深处干热岩的温度高达270℃[8]。Geodynamics 有限公司在2003年9月完成了第一口注水井,而且通过注水在花岗岩岩体上压裂并形成了一系列永久的连通裂隙。

2008年初,美国麻省理工学院历时3年完成了一份研究

报告———《地热能的未来》,其副标题是“21世纪增强型地热系统(干热岩)对美国的影响”。研究报告指出,增强型地热系统,或称工程型地热系统(即以前所称的干热岩),开发应用潜力巨大,不受地域限制,对环境影响最小,预示美国干热岩开发技术的商业化运行可望在10—15年内实现。

中国高温岩体地热开发研究起步较晚,仅少数科研单位做了理论探讨并参与了干热岩或EGS 国际合作。1993—1995年,中国国家地震局地壳应力研究所和日本中央电力研究所开展合作,在北京房山区进行了干热岩发电的研究试验工作[9]。2000年,赵阳升教授领导的研究团队开始了高温岩体地

热开发的有关问题研究,并对相关技术做了较系统的介绍。

2007年中国能源研究会地热专业委员会与澳大利亚Petratherm 公司签订了2年的合作协议,开展了“中国工程型

地热系统资源潜力的研究”国际交流项目,中澳专家已联合在一些可望有潜力的选定地区开展了初步调查,采集了一些试验样品,并进行了一系列分析测试、模型研究等工作[10]。

2009年6月29日大庆市组织召开全市新能源利用座谈会,

认为大庆市的地热资源非常丰富,分布面积达5000km 2,地下

4000—5000m 深的干热岩所蕴藏的地热能源相当于全市油气

能量的1万倍,开发潜力巨大[11]。2009年11月底—12月初,中国能源研究会地热专业委员会和中国地质环境监测院组团,对澳大利亚“地球动力”公司在南澳大利亚Cooper 盆地的干热岩开发利用现场进行了实地考察。2010年,福建省天华能源科技有限公司开展了福建省泉州市晋江地域增强型地热利用系统工程及地震监测试验研究项目。

中国幅员辽阔,地热资源丰富,中国地热资源潜力为11×

l06EJ/a ,占全球的7.9%[12]。中国有极丰富的深层地热资源。根据

板块构造理论,中国西南部受印度洋板块的挤压作用,东南部受菲律宾板块的挤压作用,东部受太平洋板块的挤压和俯冲作用,地质体活动强烈,发生频繁的火山喷发和地震。这些地区有很高的地热梯度,典型代表如西藏羊八井地区、云南腾冲地区、海南琼北地区、台湾及东南沿海地区、长白山地区等地,都具有极丰富的高温岩体地热资源和很优越的开发条件。

自1972年美国人Smith 等将干热岩的开发利用研究从概念模式转入实验阶段以来,这种发电技术引起了世界各国的广泛关注,通过国际合作和各国不断努力,美国、日本、英国、法国、德国等国家在过去20年间相继进行了有关方面的实验,试验电厂的发电量也逐渐由3MW 增大到11MW ,逐渐接近商业开发的规模。

在干热岩领域,中国前期投入较小,主要资助开展学术交流、探索研究,并未形成国家层面的干热岩技术研发基地和装备条件。中国以往的地热开采一般在1000m 以内,以浅层

地热开发为主。浅层地热的大量开采在一些地区造成了地下水位大幅度下降、地面沉降等后果,同时浅层地热的温度、水量等难以满足高附加值的相关领域,诸如发电、工业加工、农副业加工等的需要。这使得对EGS的研究及工程应用成为今后中国地热资源开发的主导方向。

2012年国家高技术研究发展计划(863计划)启动了“干热岩热能开发与综合利用关键技术研究”项目。下设4个课题,吉林大学、中国科学院广州能源研究所、清华大学和天津大学各承担一个课题,吉林大学为项目的牵头单位。大庆油田,中国科学院地质和地球物理研究所,中国科学院武汉岩土力学研究所和中国地质科学院水文地质环境地质研究所等参加这一研究项目。这一项目为开展EGS的技术研究提供了一个很好的机会,可为将来的工程应用提供技术支撑。

3增强型地热系统关键技术

干热岩资源有着巨大的开发潜力,但在国内外的干热岩开发利用过程中存在很多科学和工程问题,特别是在以下多个方面需要进一步开展研究:资源靶区定位技术;人工压裂;微地震、示踪等监控监测技术;资源评价方法;地热地质模型;地下高温岩体多场耦合过程;地热介质的换热特性机制;能源转换效率评价;发电系统高效利用;示范试验现场建立等。在这些研究领域中2个最为关键的技术是水力压裂和地球物理探测技术。本文对这些关键技术做简要介绍。

3.1干热岩体人工压裂

EGS用于工业化生产最关键的一步是“储层刺激”,即通过钻孔向深部干热岩石裂隙注入高压流体,为裂隙剪切破坏创造有利条件,或使断裂的一个或者两个面产生平移运动,这样会在粗糙面之间形成不整合面,这个不整合面会增加岩层的孔隙度和渗透率。

注入深井钻孔完成后,利用场地实验获取储层相关基本参数(如地应力、节理裂隙特征、流体特征和岩石力学参数等)。在压裂模型和地热开发数值模型技术的基础上规划和设计水力压裂(区域、压力、岩体体积、流体、支撑剂和压裂工艺)。探测仪器选址并安装后,利用微震活动性、微重力测量、重力分析法、自然电位法和倾斜仪阵列等映像和成像手段,探测岩层裂隙分布及流体通道。压裂过程中对流速实时、有效的控制,通过数值模型及其控制技术实现。在控制流速的基础上,采用重复水力压裂或使用携带一定浓度的化学物质(如钡硫酸盐)的水进行压裂或使用爆破技术对流体通道进行扩展,同时利用支持剂的剥落和溶解作用保证流体通道的畅通,并通过低流速注入检测永久性残余增强渗透率。最后对裂隙扩展和热储分别进行软件模拟,同时进行敏感度分析。

近年来,国外的很多学者着手化学刺激技术的开发,主要包括以一定的破裂压力把酸或碱溶液注入地层,以达到溶解裂隙表面可溶性矿物或井筒附近沉积物的方法。化学刺激技术最早应用在石油行业中,以提高石油和天然气井的产量,其中许多方法和化学试剂可以借鉴。3.2地球物理勘查和监测技术

地球物理方法技术在干热岩勘探与开发各个环节中具有重要的作用,适宜于查明各种断裂的方向和性质;圈定地下深部热储的位置;确定与地下热水有关的地质构造;查明火成岩体的分布、规模和性质;监测地下水和热储的水文地质变化特征;判断地下热水的分布与埋藏状况等。地球物理方法技术包括以下内容。

(1)地震勘探与微震监测技术。地震勘探方法技术具有高精度和高分辨率特点,在干热岩的勘探与开发中作用巨大。微震方法对于了解干热岩地热储层的形成及其开发过程中发生的岩石动力学过程,有着极其重要的作用。采用微地震监测技术对油田地层压裂过程和注水采油过程开展监测方面取得较好的效果,可以借鉴到干热岩的开发中[13-15]。

(2)电法、电磁法。干热岩的目标体具有较明显的电性差异,为电法和电磁法的应用提供了基础。电法和电磁方法技术种类较多,根据频率分类包括直流电法、大地电磁测深、可控源音频电磁测深、瞬变电磁、探地雷达等。由于探测的深度和分辨能力不同,电法和电磁法广泛应用于干热岩勘查和开发的各个阶段。其作用包括探测与地下热水有成因关系的断裂构造位置;圈定地下热水分布范围;确定覆盖层厚度、热源的位置以及隐伏基岩岩性;分析热储的裂隙分布规律;分析水热耦合交换的规律等[16-18]。

(3)重磁方法。该方法是以介质的密度和磁化率差异为目标来探测干热岩位置和监测干热岩的开发过程。在以下方面具有重要作用:研究岩浆岩侵入体空间分布;寻找深大构造断裂、基岩坳陷中的凸起构造;研究地热的成因特征等[19]。随着重磁方法的仪器技术发展,测量参数增加和精度提高,重磁方法越来越多地应用于干热岩开发中的监测与评价过程。

(4)井中地球物理方法。通过井中地球物理方法技术测试,研究温度随深度变化的规律,精细研究岩石裂隙的分布规律;精细研究流体与岩石的分布特点以及温度与流体间的变化关系。该测试方法为以上研究工作提供了重要的基础资料。

3.3示踪剂技术

除了用地球物理方法研究压裂效果外,示踪剂方法是研究压裂产生的裂隙密度、联通性和热交换面积的有效方法,同时示踪剂方法也是评价热能产出能力的重要手段。除了经常使用的保守的示踪剂和温度敏感的示踪剂外,一种利用天然的化学组分和同位素,对刺激诱导开裂裂隙面发育情况进行示踪研究的新技术正在开发中。利用现有的解析解和数值模拟技术,通过示踪剂可研究复杂结构面和裂缝处的精确突破曲线。通过设计和分析示踪剂实验,同时测量吸附行为(分配系数),可获得断裂面面积和裂缝间距。设计和分析非等温注射回流示踪现场试验,是EGS的一项不可缺少的技术。3.4其他关键技术

干热岩的经济有效的开发,还需要诸如以下关键技术和方法。(1)野外靶区表征与选址方法,结合地质、物探、干热岩

技术指标体系,进行综合研究,建立靶区地质模型。(2)水-岩-气-热作用机制(包括传热传质、水与管道之间),研究水-气-岩-热的物理-化学反应机制;构建高温高压条件下水-气-岩相互作用的热力学和动力学数据库,构建干热岩实验室模拟系统。(3)干热岩地下水动力-热传递-力学-化学(THMC )多场耦合数值模拟软件开发,建立近井和大尺度的

THMC 耦合模型,并通过实验室和现场数据验证模型。(4)干

热岩经济分析、地下地上结合以及考虑防腐因素的优化实施方案方法。(5)在确定的野外靶区上进行干热岩钻探,同时开展测井工作,进行岩心(样)分析测试,结合测井和分析测试结果验证和完善干热岩关键技术模型,为今后开展干热岩资源研究、开发利用和其他相关地学科学研究提供试验基地。

4展望

近年来中国在钻井、压裂、微地震监测、数值模拟等方面

的技术都有了较大提升,但在干热岩热能开发与综合利用技术方面还面临很多瓶颈,如干热岩资源评价及靶区定位技术、人工压裂及探测评价技术、地下多场耦合作用、高温高压流体运移及高效发电技术等方面。为了克服技术难点,需要国家的持续支持,产学研合作和多学科联合攻关,促进中国干热岩热能开发与综合利用事业的发展,为中国的新能源建设做出贡献。

早期和现今美国、日本、欧洲和澳大利亚尝试发展EGS 都是利用水作为热传递载体。水做为热载体,具有许多优势属性,但同时它也存在严重的缺陷。水的一个不利属性是在高温下它会成为溶解岩石矿物质的强溶剂。水注入到热的岩石裂隙中后,产生强烈的溶解和沉淀作用,这种作用改变裂隙的渗透率,这就使得在稳定方式下操作EGS 变得困难[20]。正确设计和实施“储层刺激”措施,必须以可靠的预测流体与岩石间的化学反应为基础。同时由于水是一种宝贵的、非常有价值的资源(商品),而在热循环中不可避免的水量流失会造成严重的经济损失。

鉴于水作为热载体的EGS 运行中的问题,近年来国内外学者和相关机构进行了用超临界二氧化碳作循环液的强化地热系统的研究。这一方法可以避免水溶液注入可能产生的一系列问题,在实现了CO 2的资源化的同时,又能使其被储存于地下介质中。以CO 2替代水作为循环液体的强化地热系统(CO 2-EGS )是一个新兴的研究领域,国际上刚刚起步。CO 2-

EGS 系统对CO 2减排和可再生能源利用具有重要意义,这方

面的研究正展现出广阔的应用前景。

参考文献(References )

[1]康玲,王时龙,李川.增强地热系统EGS 的人工热储技术[J].机械设计

与制造,2008(9):141-143.

Kang Ling,Wang Shilong,Li Chuan.Machinery Design &Manufacture,2008(9):141-143.

[2]Brown D.The US hot dry rock program-20years of experience in reser -voir testing [C].Proceedings of World Geothermal Congress,Italy,1995:

2607-2611.

[3]Massachusetts Institute of Technology.The future of geothermal energy:Impact of enhanced geothermal systems (EGS)on the United States in the 21st century [R].MIT:Cambridge,MA,2006.https://www.360docs.net/doc/ea17534838.html,/wp-content/uploads/2012/05/future_of_geothermal_energy.pdf.

[4]Islandsbanki Geothermal Energy Team.United States geothermal energy market report[R].Glitnir Geothermal Research,Iceland,2007:1-24.

[5]Geothermal Technologies Program.An evaluation of enhanced geothermal systems technology[R].Energy Efficiency and Renewable Energy,Ameri -ca,2008:1-37.

[6]Kitano K,Hori Y,Kaieda H.Outline of the Ogachi HDR project and character of the reservoirs [C]//Proceedings World Geothermal Congress Kyushu-Tohoku,Japan,May 28-June 10,2000:3773-3778.

[7]Stober I.Depth -and pressure -dependent permeability in the upper continental crust:Data from the Urach 3geothermal borehole,southwest Germany[J].Hydrogeology Journal,Germany ,2011,19(3):685-699.

[8]Hunt S P,Morelli C.Cooper Basin HDR hazard evaluation:Predictive modeling of local stress changes due to HFR geothermal energy opera -tions in South Australia [R].University of Adelaide,Australia.https://www.360docs.net/doc/ea17534838.html,/documents/InducedSeismicityReportSHuntDraftOctober 2006Malvazos4Jan07.pdf.[2006-10-16].

[9]殷秀兰.干热岩地热资源利用前景无限[DB/OL].[2010-03-08].https://www.360docs.net/doc/ea17534838.html,/show.aspx?id=1267&cid=11,2010/03/08.Yin Xiulan.Unlimited prospect for utilization for hot dry rock geothermal resourse [DB/OL].[2010-03-08].https://www.360docs.net/doc/ea17534838.html, https://www.360docs.net/doc/ea17534838.html,/show.aspx?id=1267&cid=11.

[10]毛宏举,马洪伟.增强型地热发电技术及广东省应用前景分析[J].能

源工程,2010(5):25-28.

Mao Hongju,Ma Hongwei.Energy Engineering,2010(5):25-28.

[11]新能源开发在大庆挺热[DB/OL].[2009-07-30].http://www.dqdaily.

com/ztxw/kxfzg/2009-07/30/content_145129_2.htm.

New Energy Development in Daqing quite hot[DB/OL].[2009-07-30].https://www.360docs.net/doc/ea17534838.html,/ztxw/kxfzg/2009-07/30/content_145129_2.htm.[12]孔令珍.中国地热能发展趋势[J].煤炭技术,2006,25(7):107-108.

Kong Lingzhen.Coal Technology,2006,25(7):107-108.

[13]Kristinsdottir L H,Flovenz O G,魣rnason K,et al.Electrical conductiv -ity and P -wave velocity in rock samples from high -temperature Ice -landic geothermal fields[J].Geothermics ,2010,39(1):94-105.

[14]Jaya M S,Shapiro S A.Temperature dependence of seismic properties

in geothermal rocks at reservoir conditions[J].Geothermics ,2010,39(1):115-123.

[15]Yang Y,Ritzwoller M H,Jones C H.Subsurface characterization of the

COSO Geothermal Field and surroundings by Ambient Noise Tomogra -phy[J].Geochemistry,Geophysics,and Geosystems ,2010:1-43.

[16]Volpi G,Manzella A,Fiordelisi A.Investigation of geothermal structures

by magnetotellurics (MT):An example from the Mt.Amiata area,Italy [J].Geothermics ,2003,32(2):131-145.

[17]Oskooi B,Manzella A.2D inversion of the magnetotelluric data from

travale geothermal field in Italy [J].Journal of the Earth &Space Physics ,2011,36(4):1-18.

[18]Schwarz G,Haak V,Rath V.Electrical conductivity studies in the

travale geothermal field,Italy[J].Geothermics,1985,14:654-662.

[19]Karastathis V K,Papoulia J,Di Fiore B,et al.Deep structure

investigations of the geothermal field of the North Euboean Gulf,Greece,using 3-D Local Earthquake Tomography and Curie Depth Point analysis [J].Journal of Volcanology and Geothermal Research ,2011,206(3-4):106-120.

[20]Xu T,Pruess K,Apps A J.Numerical studies of fluid-rock interactions

in Enhanced Geothermal Systems (EGS)with CO 2as working fluid[C]//Proceedings of 33th Workshop on Geothermal Reservoir Engineering,Stanford University,CA,Jan 28-30,2008.

(责任编辑吴晓丽)

就地热再生技术简介2

沥青路面就地热再生技术简介 一、沥青就地热再生技术特点 就地热再生是一种预防性养护工艺,适用就地热再生的基本条件是路面基层的结构完好并有足够的强度和承载能力,路面破损深度小于60mm的沥青路面的维修。就地热再生技术具有以下特点:可全面解决坑槽、车辙等路面病害;纵向接缝及层间连接的质量比较好;能更好地(100%)利用现有的旧沥青混合料,降低工程费用和维修成本(如原材料费、运输费用等),经济效益显著;单线施工方式,对交通的干扰比较小(使交通阻塞及危险降到最低);清洁环保,作业过程以液化石油气为燃料,对环境的污染比较小;再生路面达到使用年限时,还可以继续再生利用。 二、就地热再生设备组成 就地热再生设备主要由加热和再生两大系统组成。加热系统主要由燃烧装置、加热装置、燃料罐、液压装置、发动机、操纵装置和基础车等组成;再生系统主要由新料接料斗、供料装置、路面耙松装置、搅拌装置、添加剂喷洒装置、熨平装置、辅助加热装置及行走装置等组成。 预加热机的作用是就地加热沥青路面,使旧路面的材料软化并达到理想的施工温度。在将热能辐射到磨耗层的理想深度的同时,不会破坏骨料,不会燃焦沥青,因而也不会产生不必要的污染。其燃烧过程是在全密封的装置内进行的,不存在任何明火。预加热机按结构不同可分为集中燃烧式和分散燃烧式,按燃料及加热方式的不同可分为红外线辐射式、热风循环式和红外线热风并用式。 三、就地热再生工艺种类 综合式就地热再生工艺过程为:先把现有沥青路面加热软化,再将旧沥青层收集起来输送到该机组中的双卧轴连续搅拌机上,添加新骨料,补充新沥青,搅拌后输送到机组的摊铺器上,经摊铺、捣实、熨平,最后用压路机碾压形成新的路面。根据路面破损情况的不同和对修复后路面质量等级的不同要求,就地热再生的施工工艺主要有整形再生法、重铺再生法和复拌再生法等三种。 整形再生法:由加热机对旧沥青路面加热至一定温度后,用复拌机将路面翻松并用复拌机上的搅拌器把翻松的材料拌和均匀(可同时加入适量的添加剂恢复沥青性能),然后摊铺到路面上,再用压路机碾压成型。这种方法适合维修破损不严重、

闪蒸地热发电系统设计

闪蒸地热发电系统设计 1.背景: 地热能是指地球内部蕴藏的能量, 一般集中分布在构造板块边缘一带, 起源于地球的熔融岩浆和放射性物质的衰变. 据估计, 距地壳深度3 km 以内蕴藏的热量约为4. 3 *10(19)MJ. 全球地热资源估计为6 *10(6)MW, 其中32% 的地热温度高于130℃,而68%的地热温度低于130℃。通常, 地热资源可以按温度来划分, 地热温度高于150℃为高温, 地热温度低于90℃为低温, 而地热温度处于90~150℃为中温。 不论地热资源是湿蒸汽田或者是热水层,都是直接利用地下热水所产生的蒸汽来推动汽轮机做功的。用100℃以下的地下热水发电,是如何把地下热水转变为蒸汽来供汽轮机做功的呢?这就需要了解水在沸腾和蒸发时它的压力和温度之间的特有关系。大家知道,水的沸点和气压有关,在101.325kPa下,水在100℃沸腾。如果气压降低,水的沸点也相应地降低。50.663kPa时,水的沸点降到81℃;20.265kPa时,水的沸点为60℃;而在3.04kPa时,水在24℃就沸腾。 根据水的沸点和压力之间的这种关系,我们就可以把100℃以下的地下热水送入一个密闭的容器中抽气降压,使温度不太高的地下热水因气压降低而沸腾,变成蒸汽。由于热水降压蒸发的速度很快,是一种闪急蒸发过程,同时热水蒸发产生蒸汽时它的体积要迅速扩大,所以这个容器就叫做“闪蒸器”或“扩容器”。用这种方法来产生蒸汽的发电系统,叫做“闪蒸法地热发电系统”,或者叫做“扩容法地热发电系统”。它又可以分为单级闪蒸法发电系统、两级闪蒸法发电系统和全流法发电系统等。 目前, 绝大多数的地热发电项目是通过钻井抽取地下的地热流体作为高温热源进行发电, 经过发电后的地热流体再灌回地下。 2.工作原理: 闪蒸地热发电系统就是:从地热井输出的具有一定压力的汽水混合物,首先进入汽水分离器,将蒸汽与水分离。分离后的一次蒸汽进入汽轮机;而分离后的地热水进入减压器(也称闪蒸器或称扩容器),压力下降,一部分地热水变为二次蒸汽(压力比一次蒸汽低),然后将其入汽轮机低压段。一次蒸汽和二次蒸汽驱动汽轮机,推动发电机进行发电。 闪蒸系统又可以分为单级闪蒸和多级闪蒸。下图为多级闪蒸系统原理图和热力过程图。

【全文】《北京市地热资源管理办法》(自2018年2月12日起施行)

北京市地热资源管理办法 (1999年8月28日北京市人民政府第35号令发布根据2001年8月27日北京市人民政 府第82号令第一次修改根据2018年2月12日北京市人民政府第277号令第二次修改)第一条为加强本市地热资源的管理,科学勘查、合理开发和保护地热资源,保障地热 资源的可持续利用,根据《中华人民共和国矿产资源法》和《北京市矿产资源管理条例》及 其他有关法律、法规,结合本市实际情况,制定本办法。 第二条本办法所称地热资源是指埋藏在地面以下岩石和流体中的热能,包括热水型、 蒸气型、地压型、岩浆岩型和干热岩型五种类型。其中热水型地热是指温度在25℃以上(含25℃)的基岩水和天然出露的温泉。 第三条凡在本市行政区域内勘查、开发、利用地热资源,必须遵守本办法。 第四条市地质矿产行政主管部门负责本市地热资源的统一管理。 第五条地热资源的勘查、开发,坚持统一规划、合理开发、综合利用、注重效益和开 发与环境保护并重的原则。 在资源合理配置的前提下,应当根据首都城市性质和功能的要求,优先发展有利于改善 城市生态环境、提高人民生活质量的地热开发项目。 第六条地热资源的开发利用规划,由市地质矿产行政主管部门会同有关部门制定,报 市人民政府批准后实施。 第七条勘查地热资源必须依法缴纳探矿权使用费和探矿权价款;开采地热资源必须依 法缴纳采矿权使用费、采矿权价款、资源税和矿产资源补偿费。 矿产资源补偿费按照地热资源的温度、用途和开采量计征。 第八条勘查、开采地热资源,由市地质矿产行政主管部门审批登记,颁发勘查许可证、采矿许可证。 开采热水型地热资源,必须凭市地质矿产行政主管部门核发的允许开采通知书先到市水 行政主管部门办理取水许可证,凭取水许可证到市地质矿产行政主管部门办理采矿许可证。 未经批准擅自开凿地热井,开采热水型地热资源的,依照《北京市实施<中华人民共和 国水法>办法》的规定予以罚款,并限期补办手续;逾期不补办手续的,责令封井。 第九条开发利用地热资源前,开发单位必须向市地质矿产行政主管部门提交地热资源 开发、利用和保护方案,建立健全节能节水措施,完善相关设施。无节能节水设施或者节能 节水设施不符合要求的,不得开发利用。 第十条开发利用地热资源,应当按照温度的差异实施梯级利用,采用先进技术,提高 地热利用率。 第十一条地热井施工必须严格遵守国家有关规范。地热井施工竣工后,开发单位和施 工单位必须在验收合格后3个月内向市地质矿产行政主管部门汇交有关材料。 第十二条本市对地热资源实行保护性限量开采。 市地质矿产行政主管部门在每年年初向开发单位下达地热资源开采计划指标。开发单位 必须在核定的计划指标内开采地热资源,禁止超计划指标破坏性开采地热资源。 开采热水型地热资源,必须在市水行政主管部门核定开采限量的基础上,由市地质矿产 行政主管部门根据地热开发利用规划、地热田开发状况、动态观测资料及利用规模等因素, 向开发单位下达开采计划指标。 开发单位必须按规定向市地质矿产行政主管部门报送地热资源的月开采量、水温、水位 等资料。

关于地热资源勘查及评价方法的讨论

关于地热资源勘查及评价方法的讨论 科学勘查和评价地热资源是合理规划和开发地热资源的基础,没有开展勘查和评价工作就投入开采的地热田,必然会产生开采盲目和管理混乱的问题。我国较大规模的开展地热资源的勘查和开发,始于20世纪70年代。早期的地热勘查工作基本经历了普查、详查、勘探、开发和商业开发五个阶段,走了一条较科学的发展道路(如天津、北京的部分地区)。为全国地热资源的勘查评价工作树立了良好的榜样。近十几年来随着国民经济的发展,地热资源的开发利用迅速形成高潮。许多地区只开展了地热普查工作之后,便进入了商业开发阶段,有的地区甚至没有进行任何正规的地热勘查工作,就直接进入商业开发阶段,经过一段开发后,出现许多开发和管理上的问题,这时会回过头再进行普查或详查工作,核实地热资源量,制定地热资源开发利用规划。这种地热勘查,虽起步过晚,但可以充分利用商业开发资料,降低地热勘查投资。以上两种地热勘查阶段的模式,各有利弊,也是社会发展的必然产物。近年来国内地热资源勘查和评价方法也各不相同。笔者就自己实际工作的感受,浅谈地热资源的勘查、计算和评价,与同行讨论,希望有利地热资源勘查和评价方法的统一和提高。 1 地热资源的勘查方法 1.1 区域地质资料的搜集和分析 地热资源的埋藏分布大多与区域构造断裂,基底埋藏分布,深部地层岩性等密切相关,广泛搜集区域地质构造资料及已有石油,煤炭的勘查资料,是开展地热勘查的必备工作,进而确定地热勘查区所处地质构造部位,基底埋藏特征、地层岩性特征、地热水储存和运移特征等,为地热勘查提供基础地质条件。 1.2 航卫片解译 航卫片的解译可以判断地热勘查区地质构造基本轮廊及隐伏构造;可以显示泉群和地热溢出带位置,地面水热蚀变带的分布,热红外解译可判断地表异常分布等。在勘查面积较大,已有地质资料较少地区,该方法可提供较多的地热地质信息。 1.3 地热地质调查 应在已有的区域地质资料和航卫片解译资料基础上进行,实地验证航卫片解译的重点问题,寻找地质露头,观察地热田的地层及岩性特征,地质构造、岩浆活动与新构造运动情况,分析地热勘查区地热形成的地质构造背景。 调查勘查区地表热异常分布特征及与构造的关系。 调查勘查区温泉出露及分布特征、泉水温度及流量变化特征及开发利用历史,调查勘查区内已有地热井水温、水量、开采层段及地层岩性特征,地热水开发利用及动态变化特征。 对不同精度和工作目的的地热地质调查,其工作内容可以有所侧重。 1.4 地球化学调查 对土壤中砷、汞、锑的探测,可以帮助判定深部隐伏断裂的展布情况。地热井岩芯中水热蚀变矿物鉴定分析可以推断地热活动特征及其演化历史。 对地热水中氟、二氧化硅、硼等组份的测定,可以帮助确定地热异常分布范围。 测定代表性地热水,常温带地下水、地表水、大气降水中稳定性同位素和放射性同位素,可以推断地热流体的成因与年龄。 1.5 地球物理勘查 采用地温测量可以圈定地热异常区,分析热储空间分布特征。 在较大的地热勘查区可以采用重力法确定勘查区基底起伏及断裂构造的空间展布。利用磁法确定火山岩体的分布及蚀变带位置。 可控源音频大地电磁测深及氡气测量等方法可以判定断裂构造展布特征及地层富水情况。

浅谈地热资源的类型与开发利用

龙源期刊网 https://www.360docs.net/doc/ea17534838.html, 浅谈地热资源的类型与开发利用 作者:李心玉张文国 来源:《西部资源》2016年第02期 摘要:地热资源是可为人们开发利用的地球热能,是一项清洁可再生能源。本文分别从温度、埋藏深度和赋存状态划分了地热类型,并介绍了地热资源在发电、直接利用和浅层地温能方面的开发利用。合理、可持续开发利用地热资源不仅节约能源,对保护环境有着重要意义。 随着全球经济的快速发展,对能源需求不断增长,供需矛盾日益凸显,人类开始寻求新型能源、发展清洁可再生能源,以改变严重依赖煤炭、石油等能源结构。地热资源是与太阳能、风能、潮汐能并列的一种清洁可再生能源,地热资源的合理开发和循环利用,不仅可以改善能源结构,而且对保护全球环境有着至关重要作用。 1.地热资源概述 地球内部蕴藏着巨大的热能,如果这些热能在岩浆、火山、构造等地质因素控制下向地壳一定范围内富集,并达到可开发利用的条件,便可成为地热资源。即地热资源是指在当前技术条件下能够为人类开发利用的地球内部热能,包括地热流体及其伴生的有用部分。 目前地热资源主要来源有三方面:一是地球内部放射性元素衰变产生的热量;二是地球熔融岩浆加热作用;三是太阳的热辐射。 2.地热资源的类型 地热资源有多种分类方法,一般按温度、埋藏深度、赋存状态等可划分为不同的类型。 2.1按温度分 根据温度,地热资源可分为高温、中温和低温三类:其中高温地热资源温度大于等于150℃,中温地热资源温度小于150℃且大于等于90℃,以及低温地热资源温度小于90℃。 高温地热资源主要出现在地质活动性强的各大板块边,即如板开裂部分、板块的碰撞带等。著名的冰岛地热田,日本和新西兰的地热田,我国西藏羊八井地热田,都属于高温地热资源。中、低温地热资源则分布在板块内部,如活动断裂带、断陷谷和坳陷盆地地区。 2.2按埋藏深度分 根据地下埋藏深度可分为埋藏深度为200m以上的深层地热资源和埋藏深度200m以下的浅层地热资源。如云南的腾冲、西藏的那曲等地热田,都属于浅层地热资源。

地热勘查规范

中华人民共和国国家标准 GB 11615-89地热资源地质勘查规范 Geologic exploration standard of geothermal resources 1 主题内容与适用范围 本规范规定了地热田地质勘查研究程度、勘查类型与勘探工程控制、勘查工作技术及质量要求、地热储量分类、分级、计算和评价,地热流体与环境影响评价以及地热资源勘查资料整理和报告编写等基本要求。 本规范适用于地热资源的地质勘查,作为地热资源地质勘查设计书编制、各项勘查工作布置、勘查报告编写和审批的主要依据。 2 引用标准 GB 3838 地面水环境质量标准 GB 5084 农田灌溉水质标准 GB 5749 生活饮用水卫生标准 GB 8537 饮用天然矿泉水 GB J4 工业“三废”排放试行标准 GB J8 放射性防护规定 DZ 40 地热资源评价方法 TJ 35 渔业水质标准 TJ 36 工业企业设计卫生标准 3 总则 3.1 本规范所指地热资源是在我国当前技术经济条件下,地壳内可供开发利用的地热能、地热流体及其有用组分。地质勘查的目的在于查明地热田的地质条件、热储特征、地热资源的质量和数量,并对其开采技术经济条件做出评价,为合理开发利用提供依据。 3.2 地热资源按温度分为高温、中温、低温三类(见表1);按地热田规模分为大、中、小型三级(见表2)。

3.3地热资源助查工作分为普查、详查、勘探三个阶段。勘探阶段之后,为地热田开发地质工作。 3.4地热田勘查工作一般应遵循以下原则: 3.4.1按规定的勘查阶段循序渐进,对地热地质条件简单或现有资料较多的小型地热田的勘查,可根据实际情况简化或合并上述勘查阶段。 3.4.2在勘查程序上必须严格遵循在充分搜集利用已有资料的基础上.先进行 航卫片解译、地面地质、地球化学、地球物理等项工作,然后再上钻探的原则。没有上述工作的综合研究成果,不得盲目布置钻探工作。 3.4.3勘查工作内容和投入的工作量应根据勘查阶段、勘探类型和工作区地热地质复杂程度等因素综合考虑确定。应选择经济有效的勘查技术方法、手段和合理的设计施工方案,达到工作阶段的要求。 3.4.4由详查阶段转入勘探阶段,一般应与使用部门对口,应具有使用单位的委托书或与使用单位签订的承包合同书或省、市、自治区厅(局)级以上(含厅局级)主管部门下达的项目任务书。 3.4.5各阶段的勘查工作,必须按本规范要求编写勘查设计书,经主管部门审定后严格组织实施。设计书的主要内容应包括:目的、任务、地理概况、研究程度、区域地质、地热地质条件、工作布置及工作量、地热流体的动态观测、储量

潍坊市地热资源评价与开发利用

潍坊市地热资源评价与开发利用 【摘要】潍坊市地热资源丰富、开采条件便利。近年来,该市出现了一些规模化的地热关联企业和温泉洗浴品牌,对于综合利用资源,改善环境,建设可持续发展社会做出了重要贡献。在论述潍坊市区域地质条件的基础上,对地热资源进行了评价,并对该市地热资源开发利用的方向提出了建议,同时提出了地热资源的保护措施。 【关键词】地热资源;评价与开发利用;山东潍坊 潍坊市位于山东半岛咽喉,地理位置十分重要。北濒渤海,南靠沂山,东连青岛、烟台,西接东营、淄博。面积15859平方公里。潍坊市处北温带季风区,背陆面海,气候属暖温带大陆性季风气候。冬冷夏热,四季分明。年平均气温12.3℃,年平均降水量在650毫米左右。区内低温地热水资源丰富,地热水资源的勘察与开发利用对于合理利用自然资源,改善投资环境,促进经济可持续发展,具有重要意义。 1 区域地质条件 1.1 地层 自新生代以来,该区域在喜玛拉雅山和燕山运动的影响下,一直处于缓慢下降状态[1]。巨厚的新生代地层沉积形成,且新生代地层发育相对比较齐全,自下第三系至第四系地层均有发育,沉积厚度可达4000m以上。 1.2 地质构造 潍坊市所处构造部位特殊。鲁西、鲁东型地层均有分布,且发育齐全[2]。沂沭断裂带纵贯潍坊市南北,它由四条主干断裂组成,自东向西为:昌邑—大店断裂、安丘—莒县断裂、沂水—汤头断裂、唐吾—葛沟断裂。呈北北东向延伸,北部较宽,南部收敛。东部为安丘—莒县地堑、西部是唐吾—马站地堑、中部为汞丹山地垒。另外,益都、临朐西部山区属鲁西隆起的东北边缘,发育有新生代临朐断陷盆地。高密、诸城和五莲东部属胶莱盆地和胶南隆起的一部分,北部昌潍凹陷是济阳坳陷的一部分,与渤海湾毗邻。昌潍凹陷位于沂沭断裂带北端的平原地带,西接济阳拗陷,北临莱州湾。区内有一系列轴向近东西的相间排列的凸起和凹陷[3]。该区自中生代开始发育,普遍沉积了一套侏罗—白垩的红色碎屑岩和火山岩,进入新生代,在喜马拉雅山运动影响下,出现大幅度的下沉。 2 地热地质条件 2.1 地温场特征 地温场的平面分布与地质构造有着密切关系,地温高低与基岩面的起伏呈正

干热岩资源研究和开发技术

干热岩资源研究和开发 技术 文件编码(GHTU-UITID-GGBKT-POIU-WUUI-8968)

干热岩 1、地热异常区:地热异常区指热流量显着高于热流平均值的地区,地热异常区的热流密度值可能高达41.8X1.05毫瓦/米^2,一般地区要比上述值小得多,但平均值可能达到41.8X1.02毫瓦/米^2。用处:许多有用矿产,如、,某些、及等都与有密切的成因联系。故地热异常可成为寻找这些有用的标志。 2、新近系、第四系岩层导热率小,导热性差,起到一种隔热保温的作用,使得近、晚期岩浆活动所产生的热量和来自地壳深部的地球内热不会迅速消失,而在热容较大的地层中保存下来,形成热岩层。 3、干热岩地热资源提取系统由注水井、生产井和人工储留层组成。 4、干热岩地热资源对井开采所采取的技术为人工致裂技术:在岩体中形成众多近似平行的裂隙,使注水井和生产井相连,从而形成地热资源提取的循环通道,让注入的循环水沿着裂隙经过深循环与干热岩进行充分的液相(循环水)、固相(干热岩层)传导换热,利用干热岩的热量不断地加热循环水,使之转换成能够利用的地热资源。 5、干热岩:是指地层深处(深埋超过2000m)普遍存在的没有水或蒸汽的、致密不渗透的热岩体,主要是各种变质岩或结晶岩体,赋存状态有蒸汽型、热水型、地压型、岩浆型的地热资源。较常见的干热岩有黑云母片麻岩、花岗岩、花岗闪长岩等。干热岩型地热资源是专指埋藏较深,温度较高,有开发经济价值的热岩体。 6、地热梯度:又称“”、。指地球不受大气温度影响的地层温度随深度增加的。表示内部温度不均匀 分布程度的。一般埋深越深处的温度值越高,以每百米垂直深度上增加的℃数表示。不同地点地温梯度值不同,通常为(1—3)℃/百米,火山活动区较高。在实际工作中,通常用每深100米或1千米的温度增加值来表示地热梯度;在,也常用每深10米或1米的温度

地热能及地热发电技术概述

地热能及地热发电技术概述 摘要文章主要介绍了地热资源及其分类,地热发电的原理,并对发展地热发电中需要解决的关键问题进行了简要的分析,最后对我国地热发电的发展前景做了一下展望。 关键词地热资源;类别;发电原理;关键问题;发展前景 随着人类对资源的过度开采,煤,石油等化石能源在几十年或一百多年后将被消耗殆尽;另一方面,这些能源的燃烧所造成的环境污染也日益凸显,严重威胁着人类社会的可持续发展。因此,开发可再生新能源已成为当前社会不容忽视的必由之路。我国地处欧亚板块,有着丰富的地热资源,太平洋地热带和地中海——喜马拉雅地热带经过我国版图。因此,开发地热能对解决我国能源短缺有着重大意义,具有美好的发展前景。 1地热资源及其分类 地热资源是指在当前技术经济和地质环境条件下,能够从地壳中科学、合理的开发出来的岩石中的热能量和地热流体中的热能量及其伴生的有用组成。地热能是通过漫长的地质作用而形成的集热、矿、水为一体的矿产资源。地热资源按它在地下的储存形式可分为五大类:蒸汽型、热水型、地压型、干热岩型和岩浆型。 1)蒸汽型地热资源:指以温度较高的蒸汽为主的地下对流水热系统,这类地热资源由于需要特殊的地质条件才能形成,因此储量较少。一般蕴藏在1.5 km 左右的地表深度。 2)热水型地热资源:指地下以水为主的对流水热系统,是存在于地热区的水从周围储热岩体中获得能量形成的,包括喷出地面的热水和湿蒸汽。这类资源分布广泛,储量丰富,是当前重点研究对象。 3)地压型地热资源:蕴藏深度为2km~3 km,以高压水形式存在,溶解大量碳氢化合物,开发时可同时得到压力能,热能,化学能。 4)干热岩型地热资源:在地壳深处,岩石具有很高的温度,储存大量得热能,干热岩型地热资源主要指地表下10km左右深处的干燥无水的热岩石。这类资源十分丰富,是未来开发的重点。 5)岩浆型地热资源:指蕴藏在地层深处的呈完全熔融状态或半熔融状态的岩浆中所具有的巨大能量。 2地热发电的原理及技术

济南市地热资源管理办法

济南市地热资源管理办法 (2013年11月12日市政府第38次常务会讨论通过 2013年11月27日济南市人民政府令第251号公布自2014年1月1日起施行) 第一条为加强我市地热资源管理,促进地热资源的合理开发利用,根据《中华人民共和国矿产资源法》、《山东省实施(中华人民共和国矿产资源法〉办法》等法律法规规定,结合本市实际,制定本办法。 第二条本办法适用于本市行政区域内地热资源的勘查、开发利用、保护和管理。 第三条本办法所称地热资源主要是指天然出露的温泉、人工开采利用的地热流体等。 地热资源属于国家所有,不因其所依附的土地所有权或者使用权而改变。 第四条地热资源的开发利用应当坚持政府主导、社会参与、统筹规划、有序开发的原则,实现资源的综合利用和生态环境的有效保护。 第五条市、县(市、区)国土资源行政主管部门负责地热资源勘查、开发利用和保护的监督管理。 水利、环保等部门按照各自职责做好地热资源管理相关工作。 第六条市、县(市)国土资源行政主管部门会同规划、水利、环保等部门根据城乡总体规划、矿产资源总体规划、水资源综合规划编制地热资源勘查开发规划,并经同级人民政府批准后实施。

经批准的地热资源勘查开发规划,未经法定程序不得擅自更改。 第七条地热资源勘查可以由政府出资,也可以由社会投资。社会投资的应当通过招标、拍卖、挂牌出让等方式取得地热资源探矿权。法律、法规另有规定的除外。 第八条地热资源探矿权申请人办理勘查许可证,应当提交下列材料: (一)申请登记书和申请区块范围图; (二)勘查单位的资格证书复印件; (三)勘查工作计划、勘查合同或者委托勘查的证明文件; (四)勘查实施方案及附件; (五)勘查项目资金来源证明; (六)其他应当提交的材料。 第九条地热资源探矿权人应当自领取勘查许可证之日起6个月内,按照勘查作业技术规范和批准的勘查实施方案开展勘查作业,并定期向勘查项目所在地的县(市、区)国土资源行政主管部门和水行政主管部门报告工作情况。 第十条转让地热资源探矿权,应当具备下列条件: (一)自颁发勘查许可证之日起满2年; (二)完成规定的最低勘查投入;

地热资源的概念、来源及分类

地热资源的概念、来源及分类 郑州地象科技有限公司寇伟 前言:地热资源是近几年国家倡导大力开发利用的可再生能源,很多人对于地热资源的概念、来源、分类、开发利用等还不够了解。郑州地象科技有限公司作为VCT成像深部地热构造探测仪的研制厂家,有义务为大家系列介绍有关地热资源的知识、助推地热能的加速开发利用。 一、地热资源概念 “地热”是地热资源的简称,常指能够经济地为人类所利用的地球内部的热能量资源。地球内部蕴藏有由放射性物质衰变作用等原因所产生巨大的热,地核本身就是一个由地壳和地幔层包裹着的“大热球”,时时刻刻通过各种方式向地球表面传播热量并散发到大气中。地球表面上可看到的火山喷出的熔岩温度高达1200oC~1300oC,天然温泉的温度大多在60 oC以上,有的甚至高达100 oC~140 oC。这足以说明地球内部是一个庞大的热库,蕴藏着巨大的热能。这种热能传播到地表或传至人们可以采集到的地壳上层,就形成了人类可以开发利用的地热资源。 地热能是蕴藏在地球内部的一种自然热能,传播到人类可以开发利用的地壳深度以上就成为了地热资源。和煤、石油、天然气及其它传统矿产资源不一样,地热能与太阳能、风能等都属于可再生能源,相对而言都是取之不尽用之不竭的。而且,地热能不受时间和地域限制,随时都在、到处都有。地热能作为一种清洁能源、可再生能源,其开发前景十分广阔。 二、地热来源假说 关于地热的来源,有多种假说。主流假说认为,地热主要来源于地球内部放射性元素蜕变产生热能,有人估计,在地球的历史中,地球内部由于放射性元素衰变而产生的热量,平均为每年5万亿亿卡路里。还有一种假说认为,地热来源于地球自转产生的旋转能以及重力分异、化学反应,岩矿结晶释放的热能等。除此之外,在地球形成过程中,这些热能的总量超过地球散逸的热能,当形成巨大的热储量上升到低温、刚硬的岩石圈底部时,受到岩石圈的阻挡而逐渐积累起来,使地壳局部熔化形成岩浆作用、变质作用,从而导致该部位最终形成温度高达1300 oC以上的软流层。 三、地热异常的定义 现已基本测算出,地核的温度达6000 oC,地壳底层的温度达900-1000 oC,地表常温层(距地面约15~30米)以下的地温随深度增加而增高。不同地区的地热增温率有一定差异,一般定义国内的地热平均增温率约为3 oC /100米,接近平均增温率的称正常温区,高于平均增温率的地区称地热异常区。 人们通常所说的地热大部分是以水为介质从地下将其带到地面上的。一般定义:温度高于150℃的地热称为高温地热,温度在90~150℃之间的称为中温地热,温度在25~90℃之间的称为低温地热。水的临界温度为374.15℃,由于不同地区地下各深度层的压强、温度、构造都不同,地壳深部水升至地表后的温度差异也会很大,所形成的地热资源类型亦不相同。 四、地热资源的分类 根据地热资源的性质和赋存状态可将其分为:水热型、地压型、干热岩型和岩浆型四类。水热型地热资源又可进一步划分为蒸汽型和热水型地热资源,它是指地下储有大量热能的蓄水层,是现在开发利用的主要地热资源。地压型地热资

干热岩勘查手段

关于干热岩 一、什么是干热岩 干热岩(HDR),也称增强型地热系统(EGS),或称工程型地热系统,是一般温度大于200℃,埋深数千米,内部不存在流体或仅有少量地下流体的高温岩体。这种岩体的成分可以变化很大, 绝大部分为中生代以来的中酸性侵入岩, 但也可以是中新生代的变质岩, 甚 至是厚度巨大的块状沉积岩。干热岩主要被用来提取其内部的热量, 因此其主要的工业指标是岩体内部的温度。 二、干热岩资源的成因类型 根据地壳结构和成因机制,中国干热岩资源主要可分为高放射性产热型、近代火山型、沉积盆地型及强烈构造活动带型。 1、高放射性产热型干热岩资源:类似于法国Soultz地区及澳大 利亚Cooper盆地等高放射性花岗岩地区,中国东南沿海地区,地表及地壳浅部发育许多大型的中生代酸性花岗岩类岩体,该类岩体具有较高的放射性产热特征,在壳源产热和幔源产热均理想的情况下大地热流值可超过100 μW/m2。在覆盖层理想的地方,可以获取理想的干热岩资源。高放射性产热干热岩资源主要集中在中国东南沿海,如广东、福建、江西、海南以及广西部分地区,以燕山期大范围形成的酸性岩体为赋存体形成干热岩资源区。 2、沉积盆地型干热岩资源:沉积盆地型干热岩资源具有基岩覆盖层较大、表层地温梯度较大、增温稳定的特点。深部热源向上传导到达覆盖层时,由于沉积覆盖层热导率小的特点,阻止了热量的散失。本类干热岩资源虽然地表热流值并不太高,但由于热量在浅部的聚集,其底部基岩岩体温度可以达到150℃以上。沉积盆地型干热岩资源主 要分布在关中、咸阳、贵德、共和、东北等白垩系形成盆地的下部,

由于沉积覆盖层具有较高的地温梯度,通常与水热型地热田共生。 3 、近代火山型干热岩资源:近代火山型干热岩资源和火山活动密切相关。国际上很多知名的干热岩资源区均属于这种类型。受底部未冷却岩浆的作用,地表具有明显的水热活动现象。通常在较浅的地方就可以获得较高的温度。近代火山型干热岩资源分布在中国腾冲、长白山、五大连池等地区。其热源特征与底部岩浆活动历史和岩浆活动特征密切相关。 4、强烈构造活动带型干热岩资源:强烈构造活动带型干热岩资源分布在青藏高原。受亚欧板块和印度样板块的挤压,新生代以来青藏高原逐渐隆升,局部有岩浆底侵的存在,在这些区域可能形成理想的干热岩资源。受构造活动的影响,自第四纪以来,西藏高原受到南北向强烈挤压,随着地质应力的变化,早期以东西向展布为主的构造格局逐渐遭受破坏,产生了一系列的北西向走滑断裂及近南北向的张性和张扭性的活动构造带。在这些近南北向断裂带内现代地热活动强烈,又以那曲—羊八井—多庆错活动构造带和查去俄—古堆—错那构造带最为显著。查去俄—古堆—错那构造带内由南往北有错那、古堆、日多、沃卡、松多、查去俄等中—高温地热显示区。这些地区可作为强烈构造活动带型干热岩资源的理想前景区。 三、寻找干热岩的勘查工作步骤 首先是收集地、物、化、遥、地热等各种区域性资料;通过对所收集资料进行分析,选择有远景的地区开展地质调查、物化探、深部钻探工作,然后对岩心进行采样、对钻孔进行测温,获取各种有用信息。最后通过实际工作成果,结合收集相关资料对干热岩资源进行评价。 四、干热岩勘查手段与要求

关于就地热再生技术情况的专报

关于就地热再生技术情况的专报 秦云总工程师: 根据您10月19日关于英达公司就地热再生工艺情况的批示,我委与英达公司进行了沟通,了解了相关工艺及设备情况,并就有关问题咨询了部分专家意见,现将有关情况专报如下: 一、沥青路面就地热再生工艺 旧沥青路面就地热再生是一项较为成熟的沥青路面维修工艺,是提高资源综合利用效率和可持续发展的一项有效的技术经济措施。上世纪七十年代其,欧美国家已经开发出沥青路面就地热再生技术,并在世界各国得到广泛应用,近年来,国内也逐步引进沥青路面现场热再生技术和有关设备。 沥青路面就地热再生工艺是指使用就地热再生机组就地加热旧路面,耙松、收集旧料,增加适量的再生剂和新拌沥青混合料进行机内热搅拌,随即摊铺、熨平、碾压,形成新的沥青混凝土表面层,从而恢复沥青路面使用性能的工艺。 二、上海关于就地热再生技术应用情况 上海率先在全国推广应用就地热再生技术。早在2002年,上海浦东路桥建设股份有限公司斥资1500万元人民币,购买了德国WIRTGEN现场热再生设备,该设备采用丙烷气体作为加热燃料,通过红外加热方法软化旧路面和加热再生新料。该技术在2003年6月在沪宁高速公路上海段养护工程中得到应用,施工方法为再生重铺法,取得了良好的使用效果。根据该工程现场取样实测结果,旧沥青

的三大指标中,针入度和延度明显改善,软化点无明显变化;马歇尔稳定度达14~15kN,车辙实验动稳定度达4000次/mm左右,这两项指标优于新沥青混凝土;水稳定性(冻融劈裂试验残留强度)和表面摩擦系数与新沥青混凝土接近;压实度符合规范要求,表面平整度平均值约为IRI=2.0m/km;由于加热再生的过程中,工作区域四周同时被加热到一定温度,因此路面纵、横接缝情况明显优于传统的铣刨加罩。相关研究成果与经验被编入原市政局《热再生沥青路面施工及验收规程(试行)》(SZ-23-2002),成为全国最早的有关现场热再生技术的地方性施工及验收规程,是上海地区推广应用现场热再生路面技术的规范性文件。 三、英达公司的就地热再生技术特点 英达公司是国内较早从事沥青路面就地热再生工程的企业,该公司曾参与编制交通部“就地热再生”技术指南;该公司的大型复拌就地热再生机组在就地面加热、再生剂洒布系统等方面作了重大改进,交通运输部的鉴定认为“总体上达到国际先进水平,其中间歇式热辐射加热技术、多组多排疏松耙原路面疏松工艺、盘式再生剂洒布系统处于国际领先水平。” 1、采用间歇式热辐射加热技术,确保加热深度可达4~6cm,且 不烧焦路表沥青。 2、采用多组多排疏松耙,对加热后的路面进行耙松,确保施工 中骨料不被打碎,不改变原路面级配。 3、盘式再生剂洒布系统只对旧料进行再生剂洒布,且洒布均

地热资源管理规定

地热资源管理规定 This manuscript was revised by the office on December 10, 2020.

中国地热资源管理制度 2008-05-04 19:10:23 一、地热管理体制 自1986年《矿产资源法》颁布至1998年4月以前,地热资源由中央、省(自治区、直辖市)、地(市)、县各级地质矿产行政主管部门实行统一管理,中央地质矿产主管部门对全国地热资源及其勘查、开发利用、环境保护行使统一监督管理的职能。省(自治区、直辖市)、地(市)、县各级地质矿产行政主管部门对辖区内的地热源及其勘查、开发利用、环境保护行使监督管理的职能。有以下两种情况:①在城市区内有地热资源可供开发利用的城市,一般在市地质矿产主管部门或其他综合部门内设地热管理处,行使对地热资源开发利用的统一管理;②一般地区的地热资源由所在地区的地质矿产行政主管部门统一管理。管理体制如下: 1998年3月10日中华人民共和国第九届全国人民代表大会第一次会议,通过了国务院机构改革方案。1998年4月按改革方案撤销了中华人民共和国地质矿产部,由地质矿产部、国家土地管理局、国家海洋局和国家测绘局共同组建了中华人民共和国国土资源部。有关地热管理职能改由国土资源部行使。 二、地热管理法规与制度 地热资源属矿产资源范畴,在中国的矿产资源分类中,列入能源矿产类。地热资源的勘查与开发,执行《中华人民共和国矿产资源法》及其配套法规,包括:《矿产资源补偿费征收管理规定》、《矿产资源勘查区块登记管理办法》、《矿产和地下水勘探报告审批办法》、《矿产储量登记统计管理办法》、《矿产资源开采登记管理办法》、《探矿权、采矿权转让管理办法》、《全国地质资料汇交登记管理办法》等。1998年3月以前在中央由中华人民共和国地质矿产部对其行使管理职能;在地方,由省(自治区、直辖市)地质矿产行政主管部门根据中央与地方的分工管理权限履行相应的管理职能。具体包括: 1.地热资源勘查登记 对探(采)矿权人申请勘查地热资源或探(采)结合建地热井,依照《矿产资源勘查区块登记管理办法》进行登记,办理地热资源勘查许可证。 2.地热储量审批 对探(采)矿权人经勘查探明可提供开发利用的地热资源可开采储量,由矿产储量审批机构依照《矿产和地下水勘探报告审批办法》进行审批,批准其可采储量及其开采范围,作为申请开发利用地热资源的依据。明确地热资源可采储量未经批准不得提供开发利用。 3.地热资源储量登记统计 依据《矿产储量登记统计管理办法》对探(采)矿权人探明的并经矿产储量审批机构批准的地热可开采储量进行登记,并对申报登记情况进行监督,建立国家统一的地热资源(储量)数据库。 4.地热资源开采登记 依据《矿产资源开采登记管理办法》对探(采)矿权人申请开采地热资源的地区范围、开采深度、开采水量进行审定,办理开采许可证。 5.地热资源开发监督管理 对地热资源的开采量、开采中的水质、水位、水温、水量动态,及开采引起的环境地质问题,如地热水位下降速度和幅度、地面沉降、环境污染等进行监督管理,依据《矿产资源补偿费征收管理规定》征收地热资源补偿费。

河北省地热资源管理条例

省地热资源管理条例 (2006年9月28日省第十届人民代表大会常务委员会第 二十三次会议通过) 第一条为加强地热资源管理,依法勘查开采,综合利用和保护地热资源,根据《中华人民国矿产资源法》等有关法律、行政法规的规定,结合本省实际,制定本条例。 第二条在本省行政区域勘查、开采利用和保护地热资源,必须遵守本条例。 第三条本条例所称地热资源,是指由地质作用形成,蕴藏在地壳部或者溢出地表,达到国家规定的25℃以上温度,以水和岩石等为载体的热能资源。 第四条地热资源属于国家所有,不因其所依附的土地所有权、使用权的不同而改变。勘查、开采地热资源,必须依法取得探矿权、采矿权。 开采利用地热资源应当依法缴纳资源税和地热矿产资源补偿费。地热矿产资源补偿费的征收标准和使用管理办法由省人民政府制定。 第五条勘查和开发利用地热资源,应当坚持统一规划、科学勘查、合理布局、分层开采、综合利用和保护环境的原则

第六条县级以上人民政府地质矿产行政主管部门负责本行政区域地热资源的统一管理工作。 县级以上人民政府其他有关部门按照各自的职责分工,协助同级人民政府地质矿产行政主管部门实施地热资源的管理工作。 第七条省人民政府地质矿产行政主管部门负责组织编制全省地热资源勘查利用开发规划,经省人民政府批准后实施。 县级以上人民政府地质矿产行政主管部门应当根据上一级地热资源勘查利用开发规划,组织编制本行政区域的地热资源勘查利用开发规划,经上一级人民政府地质矿产行政主管部门审查同意后,报同级人民政府批准实施。 涉及两个设区市以上行政区域的县级地热资源勘查利用开发规划,经省人民政府地质矿产行政主管部门审查同意后,报同级人民政府批准实施。 地热资源勘查利用开发规划经批准后,由同级人民政府地质矿产行政主管部门向社会公告,不得变更;确需变更的,应当报原批准机关批准。 第八条勘查地热资源,勘查单位应当根据地热田的埋藏条件、资源特点及热储层特征,依照国家《地热资源勘查规》,合理确定勘查阶段,组织施工,编写地质勘查报告,并按规定汇交勘查成果资料,进行矿产资源储量登记。

干热岩若干基础知识

干热岩若干基础知识 胡经国 1、地热 地热是来自地球内部核裂变产生的一种能量资源。地球上火山喷发出的熔岩温度高达1200~1300℃。天然温泉的温度大多在60℃以上,有的甚至高达100 ~140℃。这说明,地球是一个庞大的热库,蕴藏着巨大的热能。这种热量渗出地表,于是就形成了地热。地热能是一种清洁、可再生能源,其开发前景十分广阔。 2、地热能 地热能(Geothermal Energy)是从地球内部抽取的天然热能,这种能量来自地球内部的熔岩,并以热力形式存在,是导致火山爆发和地震的能量。 地球内部的温度高达7000℃,而在80~100公英里的深度处,温度会降至650~1200℃。透过地下水的流动和熔岩涌至离地面1~5公里的地壳,热力得以被转送至较接近地面的地方。高温的熔岩将附近的地下水加热,这些加热了的水最终会渗出地面。运用地热能最简单和最合乎成本效益的方法,就是直接取用这些热源,并抽取其能量。 3、熔岩 熔岩(Lava)是指已经熔化的岩石。它以高温液体呈现,常见于火山口或地壳裂缝,一般温度为700~1200℃。虽然熔岩的黏度是水的10万倍,但是它还是能流动到数公里以外,冷却成为火山岩。 熔岩是指从地下深处喷出地表的岩浆,也用来表示熔岩冷却后形成的岩石。熔岩在熔融状态下的流动性,随二氧化硅的增加而减弱。基性熔岩粘度小,易于流动;而酸性熔岩则不易流动。由于熔岩化学成分的不同,或火山环境的差异,因而熔岩有多种表现形式。 4、岩浆 岩浆(Magma)是指形成于地壳和上地幔深处、富含挥发成分、主要成分为硅酸盐的高温粘稠熔融物质。 岩浆是地下深处熔融或部分熔融的岩石。喷出地表的岩浆称为熔岩(Lava)。由喷出地表的岩浆冷凝而成的岩石称为喷出岩(Extrusive Rocks);由侵入地壳中的的岩浆冷凝而成的岩石称为侵入岩(Intrusive Rocks)。 火山喷发时不但有蒸汽、石块、晶屑(矿物结晶碎屑)和熔岩团块从火山口喷出,而且还有炽热粘稠的熔融物质自火山口喷出或溢出。前者称为挥发分(Volatile Component)和火山碎屑物质(V olcanic Lastic Material),后者称为熔岩流(L ava Flow)。 4、地球圈层构造

干热岩及其开发利用(1)

干热岩及其开发利用(1) 胡经国 一、寻找新能源——干热岩 1、人类积极寻找新能源 为了解决能源短缺问题世界各国都在积极寻找新能源。人们因地制宜,在地势平坦的地区建设核电站;在沿海城市推进潮汐发电;在偏远山区架设风力发电机;在阳光充足的地方安装一片片太阳能电池板实施光伏发电,等等。这些新型能源大家似乎已经耳熟能详。但是实际上,在地球深处还隐藏着一种巨大的能源。它存在于那些不起眼的岩石之中。这种利用岩石中的热能发电的技术被称为干热岩发电。 中国从1993年起就从能源净出口国变成了净进口国。也就是说,中国国内能源产出已经供不应求,从此走上了从别的国家进口能源的不归路。 2、干热岩发电技术的提出 人类在目睹了火山喷发的巨大能量之后,就一直在寻找开发这种古老而巨大的能量的方法。经过多年的寻寻觅觅,人们终于找到了一种利用干热岩发电的技术。它是在1970年由美国人莫顿和史密斯提出;但是,它的提出并没有引起多少人的注意。甚至到了科学技术迅猛发展的2018年,它的潜在价值也没有被很好地发掘。 3、石化和常规清洁能源的局限性 随着日本地震引发福岛核电站事故,核电发展在全球降温,而采用化石能源也越来越受到碳减排的制约。发展清洁能源成为各国加快发展的关键。在中国,随着国民经济高速发展,目前碳排放量已居世界首位。继续增大碳排放量必然受到西方大国的反制。因此,发展清洁能源是为中国经济高速发展提供能源保障的必由之路。目前,虽然太阳能、风能、水能都是清洁能源,但是水能经过几十年持续开发,继续发展潜力有限;而风能、光能的高成本仍是制约其进一步发展的关键。在这种形势下,开发地热资源成为一种相对经济、可行的途径。在地热能中,干热岩是一种分布最为广泛、热储量最大的一类能源载体。 随着人类对能源需求的不断增长,全世界的人们越来越担心传统矿物能源大量使用带来的资源枯竭问题和对环境的污染问题,并开始关注可再生且无污染的能源,如太阳能、风能、水能等。但是,这些可再生能源的开发利用受诸如气候等外界环境制约,不能稳定生产。尤其是资源丰富的水力发电,不仅受降雨量变化影响,而且还对流域生态环境产生不同程度的破坏。因此,各国科学家都在不断探索,努力寻找各种不受外界环境影响、又对环境破坏和污染很小的新能源。发达国家试验研究表明,利用资源极为丰富的干热岩发电,几乎不受外界环境影响,几乎不对人类环境产生污染和破坏。而且干热岩这种能源取之不尽、用之不竭,被证明是对人类十分友好的未来洁净新能源。目前,国

沥青路面就地热再生技术应用现状分析

文章编号:1005-0574-(2011)02-0049-03 沥青路面就地热再生技术应用现状分析 满都拉,银花,信志刚,张树文 (内蒙古大学交通学院,内蒙古呼和浩特010070) 摘要:沥青路面就地热再生技术是一种新的路面养护技术。文章从就地热再生技术的原理出发,分析了就地热再生技术的特点和适用条件,以及判断是否适合就地热再生应注意的问题,比较了就地热再生与传统工艺的优势和差别,介绍了就地热再生技术在国内外的应用现状。 关键词:沥青路面;就地热再生技术;应用现状分析 中图分类号:U414.7+5文献标识码:A Abstract:In-place hot recycling technology is a new pavement maintenance technology.The paper analyzes the character-istics and applicable conditions based on the theory,and some problems needing attention in judging if suitable for hot in-place recycling technology,then compares the superiorities and differences of this technology with traditional technology,.Finally intro-duces its application status at home and abroad. Key words:asphalt pavement;in-place hot recycling technology;analysis of application status 我国公路及城市道路路面中的绝大多数是沥青路面。随着节能减排、资源循环利用、环境保护的日益迫切,道路建筑材料价格上涨、交通流量日益增大,如何环保、安全、经济、高效地修复沥青路面已经成为当前重要的课题。沥青路面就地热再生(HIR)工艺是对旧沥青路面就地加热、翻松、拌和、摊铺、压实,一次性将旧沥青路面翻新成型的施工方法[1]。按工程需要来添加新集料、新沥青、再生剂和新HMA,以提高现有道路性能,HIR可处理的道路破损通常有松散、坑槽、泛油、摩擦系数降低、车辙、波浪、推挤、滑移,纵向、横向和反射裂缝,膨胀、壅包、凹陷和沉降引起的行驶质量差等。本文结合工程实例,研究和和分析HIR技术应用现状仅供同行参考和借鉴。 1沥青路面的维修方式[2] 1.1传统维修方式 将破损的沥青路面用铣刨机冷铣刨,经清扫、喷洒黏结油,然后用全新的沥青混合料铺筑路面。 1.2再生维修方式 1.2.1集中再生 ①集中冷再生:将破损的沥青路面用铣刨机冷铣刨,经破碎、筛分,然后运至工厂,用冷再生设备进行集中冷再生。 ②集中热再生:将破损的沥青路面用铣刨机冷铣刨,经破碎、筛分,然后将可利用的合格骨料运至工厂,用热再生剂进行集中再生。 1.2.2就地再生 ①就地冷再生:利用就地冷再生机组在现场就地将破损的沥青路面铣刨、喷洒黏结剂,经搅拌、摊铺、压实成型。 ②就地热再生:利用就地热再生机组在现场将破损的沥青路面就地加热、翻松,添加再生剂、新沥青混合料或沥青,经搅拌、摊铺、压实成型。 2就地热再生的类型与工程机组 沥青路面就地热再生技术,依据旧路面损坏程度通常使用整形型﹑复拌型﹑加铺型的三种技术方法[3]。 就地热再生机组目前国内常用的为两大类,热风循环加热方式(燃料为柴油)、红外线辐射加热方式(燃料为炳烷)。国内目前共有20套就地热再生机组。图1所示燃料为柴油的热风循环加热方式,图2所示燃料为炳烷的红外线加热方式。 3就地热再生工艺[4] ①对旧路面进行烘干和加热(采用热辐射和红外预热器)。 ②耙松加热软化后的沥青路面(气压或液压齿耙,耙松深度20 40mm)。

相关文档
最新文档