聚合度为6_8的壳寡糖的制备

聚合度为6_8的壳寡糖的制备
聚合度为6_8的壳寡糖的制备

壳寡糖的新用途的制作流程

本申请属于农业领域,公开了壳寡糖在防治番茄幼苗潜叶蝇的新用途。壳寡糖原材料来自于虾蟹壳,来源天然环保,采用先进的生物酶解法制备,加工工艺绿色、安全,壳寡糖分子量低,水溶性好,易被生物体吸收。同时壳寡糖在促进有益微生物的生长,提高植株抗逆性和对多种细菌、真菌、病毒等产生免疫杀死作用方面均具有重要意义。试验表明在番茄育苗中,采用叶面喷施壳寡糖溶液时,一定程度上可以缓解虫害,减少番茄幼苗病株数。由于壳寡糖较高的水溶性与安全性,对操作者的技术要求较低,且不会对生物体造成伤害,是一种绿色环保、安全有效的农业制剂。 权利要求书 1.壳寡糖在防治番茄幼苗潜叶蝇的用途。 2.根据权利要求1所述的用途,所述壳寡糖分子量为1000-3000Da。 3.根据权利要求1所述的用途,所述壳寡糖浓度为25-150mg/L。 4.根据权利要求3所述的用途,所述壳寡糖浓度为100mg/L。 5.根据权利要求1所述的用途,所述壳寡糖作用于番茄幼苗的时期为子叶展平至五到六片叶。 6.一种防治番茄幼苗潜叶蝇的方法,在番茄幼苗子叶展平后,将壳寡糖混合液通过叶片喷施方式作用于番茄幼苗,每盘幼苗壳寡糖混合液的用量为1/3L/d。 7.根据权利要求6所述的方法,所述壳寡糖混合液为壳寡糖水溶液或壳寡糖溶于水溶性的溶剂制得的溶液。 8.根据权利要求7所述的方法,所述壳寡糖混合液中壳寡糖浓度为25-150mg/L,壳寡糖分子

量为1000-3000Da。 技术说明书 壳寡糖的新用途 技术领域 本技术属于农业领域,具体涉及壳寡糖的新用途,尤其是涉及壳寡糖在防治番茄幼苗潜叶蝇的用途。 背景技术 潜叶蝇是蔬菜生产中常见的虫害,以幼虫潜入叶片内取食叶肉,在叶面留下不规则线形形状。高温高湿条件下易引发潜叶蝇虫害,夏季为虫害高峰期。在番茄幼苗生长过程中,在2-7叶时易受潜叶蝇虫害,且受害严重时,潜痕密布,叶片发黄脱落,严重影响其叶片光合作用,不利于幼苗生长,进而影响蔬菜的生长,而后期也会影响其产量和品质。 目前生产中对于潜叶蝇的防治方法主要有以下几点:1、及时清除田间、田边杂草和蔬菜老叶、脚叶,减少虫源;2、大棚内茄果类蔬菜可悬挂黄板进行诱杀成虫,以减少虫源基数; 3、化学防治,选择持效期长的吡蚜酮、噻虫嗪、吡虫啉、阿维菌素及其复配制剂等药剂叶面喷雾防治。由于潜叶蝇传播蔓延快,易产生抗药性,因此在进行化学防治时,必须一次只能施用一种药剂且需轮换交替用药。目前生产中,化学药剂一般会选用21%灭杀毙乳油2500倍液、10%灭百可1300倍液、2.5%敌杀死乳油2500倍液、阿维菌素、20%速灭杀丁乳油2800倍液等等,此类药物均具有较高的毒性,持效期长,因此进行农药操作时需做好严格的防护措施,以免对操作者皮肤和呼吸道等造成损伤。此类药物与其他农药混用时其注意事项各有不同,且番茄幼苗在2~7片叶时,叶片较小,极易受到药害,对药物的选择和用量的需

酰氯的制备方法

酰氯是一种重要的羧酸衍生物,在有机合成、药物合成等方面都有着重要的应用,主要可以发生水解、醇解、氨(胺)解、与有机金属试剂反应、还原反应、α氢卤化等多种反应。酰氯是最活泼的酰基化试剂,极限结构的共振杂化体。 这种共振效应稳定了整个分子,也加强了羰基碳原子与离去基团的键。共振效应是一种稳定效应,它依赖于成键原子轨道的交盖,酰氯受这种共振的影响可能是最小的,因为这种共振需要碳原子的2p轨道与氯原子的3p轨道交盖,这两种轨道的大小不同,它们之间的交盖不大,对Cl 来说,结构(Ⅱ)的贡献不大,酰氯由于共振影响而受到的稳定作用是最小的,因此,酰氯是最活泼的酰基化试剂。在一些羧酸不能进行或进行非常缓慢的反应中将羧酸制成酰氯使反应活性和产率大大提高。 目前,制备酰氯的方法最常用的SOCl2,三氯化磷,五氯化磷,三光气等,本文对几种方法进行论述。 1二氯亚砜法 1.1二氯亚砜在酰氯制备中的应用 脂肪酸(包括不饱和脂肪酸)芳香酸,有机磺酸和取代酸(如氨基酸和卤代酸等)在催化剂存在下均能与氯化亚砜生成酰氯,催化剂通常使用N,N-二甲基甲酰胺(DMF)、N,N-二甲基苯胺和吡啶等。反应过程中氯化亚砜一般先与催化剂结合,然后再与羧酸反应生成酰氯。 (1)三甲基乙酸在己内酰胺催化下与氯化亚砜反应生成三甲基乙酰氯,产率96%。 (CH3)3CCOOH→(SOCl2己内酰胺)→(CH3)3COCl (2)对(间)苯二甲氯化亚砜酸和氯化亚砜反应制得对(间)苯二甲酰氯。 这两种产品主要用于有机合成,是目前广泛使用的增塑剂对苯二甲酸二异辛脂(DOTP)和邻苯二甲酸二异辛酯的合成原料。 (3)邻氯苯甲酸和氯化亚砜反应生成邻氯苯甲酰氯。 该产品主要用于有机合成以及医药,染料中间体的合成。 (4)用丁(庚、辛、癸)酸和氯化亚砜反应制得丁(庚、辛、癸)酰氯,用十六碳酸和氯化亚砜反应制得十六碳酰氯,这4种产品常用于医药中间体的合成。 CH3(CH2)n COOH→(SOCl2)→CH3(CH2)n COCl n=4-20 (5)硬脂酸和氯化亚砜反应制得的硬脂酸酰氯可用于合成护肤品,双硬脂酸曲酸脂和制备造纸工业的中性施胶剂——烷基烯酮二聚体(AKD)。 (6)有机磺酸在催化剂存在下与氯化亚砜反应一般生成磺酰氯也可由有机磺酸钠直接与氯化亚砜反应生成磺酰氯。 1.2氯化亚砜在制备酰氯中的优、缺点 利用氯化亚砜制备酰氯反应条件温和,在室温或稍加热即可反应。产物除酰氯外其他均为气体,往往不需提纯即可应用,纯度好,产率高。如果所生成酰氯的沸点与氯化亚砜的沸点相近,与氯化亚砜不宜分离;另外此方法氯化亚砜用量大,生产成本高,且设备腐蚀严重。 2三氯化磷法 (1)丙酸与三氯化磷反应生成丙酰氯,反应式如 下: CH3CH2COOH→(PCl3)→CH3CH2COCl 丙酰氨主要用于合成抗癫痫药甲妥因、利胆醇、抗肾上腺素药甲氧胺盐酸盐,在有机合成中用作丙酰化试剂。 (2)月桂酸与三氯化磷反应生成月桂酰氯,反应如下: 3C11H23COOH+PCl3→3C11H23COCl+H3PO3 本品用于合成过氧化十二酰,月桂酰基多缩氨基酸钠。 (3)油酸与三氯化磷反应制得油酰氯,反应如下: CH3(CH2)7(CH2)7COOH PCl3CH3(CH2)7(CH2)7COCl >C=<→>C=C< H H NaOH H H 本品主要用于有机合成中间体,用它可以制得净洗剂LS(C25H40NnaO5S),204洗涤剂等。 用三氯化磷制备酰氯时,适用于制备低沸点酰氯,因反应中生成的亚磷酸不易挥发,可方便蒸出酰氯。

壳寡糖制备方法综述

壳寡糖制备方法研究进展 邓培昌*胡杰珍侯庆华黄来珍 (广东海洋大学海洋与气象学院, 湛江524088) 摘要:水产品加工行业副产的大量虾蟹壳不能得到充分高值利用,造成资源浪费、环境污染。壳寡糖作为虾蟹壳的高值衍生物,具有高的生理活性,广阔的应用空间。壳聚糖降解是由虾蟹壳制备壳寡糖的关键环节。开发环保的、经济的、易于工业化的壳聚糖降解技术是突破壳寡糖制备瓶颈的主要方向。壳聚糖降解的基础研究是开发壳寡糖新生产方法的根本。关键词:壳聚糖,壳寡糖,电化学,降解 Research Progress on Preparation of Chitooligosaccharides Deng Peichang*Hu Jiezhen Hou qinghua Huang laizhen ( College of Ocean and Meteorology, Ocean University of Guangdong, Zhanjiang 524088) Abstract The shrimp and crab shell, which is byproduct in Aquatic Products Processing Industry, is too plentiful to take full advantage. Abandoning the shrimp and crab shell is wasting of resources and environment pollution. Chitooligosaccharides (COSs), which are the high value-added derivatives of shrimp and crab shell, are of great interest since they are thought to have several interesting bioactivities and applications. The depolymerization of high molecular weight chitosans is critical process to get COSs. The development of chitosans degradation technology, which is environmentally-friendly, economical and suitable for industrialization, is a breakthrough of the bottleneck of COSs production. Key words Chitosan, Chitooligosaccharides, Electrochemistry, Degradation 壳寡糖也叫壳聚寡糖,也称几丁寡糖,学名β-1, 4-寡糖-葡萄糖胺,是壳聚糖降解而得的高端衍生物,是含有氨基的低聚糖。壳寡糖的化学结构与植物纤维非常相似,被称为可食性动物纤维素,它是多糖中唯一带正电荷的小分子物质,并具有稳定的三维结构,特殊的生理活性。壳寡糖在医药、保健品、化妆品、农药、饲料添加剂等方面具有广阔的应用前景,被称为生命的“第六要素”。 部分发达国家非常重视壳寡糖的制备、性能与应用研究。在二十世纪九十年代,日本政府开始推动壳聚糖应用,随着壳寡糖制备的技术进步,现在壳寡糖的应用已经得到普及。1995年,欧美已经批准了壳聚糖在药物方面的利用。我国也于1996年成立了专项研究甲壳素系列的课题组(中国科学院天然产物与糖研究组)。因此,如何有效的通过一系列物理和化学或生物的方法制备壳寡糖,日益受到各国科学家的关注。 壳聚糖的降解方法可以分为化学法、物理法、酶法几大类: 1.化学法 化学降解法是指通过化学反应使壳聚糖降解。它简便易行,但降解产物相对分子质量较难控制,相对分子质量分布较宽,污染较重。目前,通过化学法对壳聚糖进行降解主要分为酸法和氧化法。 1.1 酸降解法 壳聚糖易被稀酸催化发生苷键断裂而降解。酸降解机理是糖分子中的苷原子氧接受质子而形成了质子化的苷键,从而削弱C - O键,进而发生断裂,同时形成碳阳离子的中间体,该中间体在水存在下生成游离的糖,其反应历程为:

薄膜的材料及制备工艺

薄膜混合集成电路的制作工艺 中心议题:多晶硅薄膜的制备 摘要:本文主要介绍了多晶硅薄膜制备工艺,阐述了具体的工艺流程,从低压化学气相沉积(LPCVD),准分子激光晶化(ELA),固相晶化(SPC)快速热退火(RTA),等离子体增强化学反应气相沉积(PECVD等,进行详细说明。 关键词:低压化学气相沉积(LPCVD);准分子激光晶化(ELA); 快速热退火(RTA)等离子体增强化学反应气相沉积(PECVD) 引言 多晶硅薄膜材料同时具有单晶硅材料的高迁移率及非晶硅材料的可大面积、低成本制备的优点。因此,对于多晶硅薄膜材料的研究越来越引起人们的关注,多晶硅薄膜的制备工艺可分为两大类:一类是高温工艺,制备过程中温度高于600℃,衬底使用昂贵的石英,但制备工艺较简单。另一类是低温工艺,整个加工工艺温度低于600℃,可用廉价玻璃作衬底,因此可以大面积制作,但是制备工艺较复杂。 1薄膜集成电路的概述

在同一个基片上用蒸发、溅射、电镀等薄膜工艺制成无源网路,并组装上分立微型元件、器件,外加封装而成的混合集成电路。所装的分立微型元件、器件,可以是微元件、半导体芯片或单片集成电路。 2物理气相沉积-蒸发 物质的热蒸发利用物质高温下的蒸发现象,可制备各种薄膜材料。与溅射法相比,蒸发法显著特点之一是在较高的真空度条件下,不仅蒸发出来的物质原子或分子具有较长的平均自由程,可以直接沉积到衬底表面上,且可确保所制备的薄膜具有较高纯度。 3 等离子体辅助化学气相沉积--PECVD

传统的CVD技术依赖于较高的衬底温度实现气相物质间的化学反应与薄膜沉积。PECVD在低压化学气相沉积进行的同时,利用辉光放电等离子体对沉积过程施加影响。促进反应、降低温度。 降低温度避免薄膜与衬底间不必要的扩散与化学反应;避免薄膜或衬底材料结构变化与性能恶化;避免薄膜与衬底中出现较大的热应力等。 4低压化学气相沉积(LPCVD)

壳寡糖科普

甲壳素、壳聚糖和壳寡糖的由来: 甲壳素广泛存在于低等植物菌类、藻类细胞,虾、蟹、昆虫的外壳和软骨,高等植物的细胞壁中。人类最早利用甲壳资源始于中国著名的《本草纲目》中所记载:蟹壳有破瘀消积的功能。 " 蟹 " 字本身即指:解毒的虫类。 1811年,法国学者布拉诺首先在蘑菇中发现了甲壳素。1991年美欧医学科技界营养食品研究机构宣布甲壳素类物质为继脂肪、蛋白质、糖、矿物质、维生素等生命要素之外的第六生命要素,轰动一时。日本则率先将甲壳素类物质经临床实践后以保健食品投放市场,并成为日本厚生省(相当于我国卫生部)唯一准许宣传疗效的机能性保健食品;同时日本政府也投入了巨资予以开发和市场推广,其销售量也占日本保健食品的首位,并在短短的30年后使日本跃居世界第一长寿国! 甲壳素、壳聚糖、壳寡糖都称为甲壳素类物质。甲壳素不溶于水、碱、一般的酸和有机溶剂,只溶于部分浓酸,依靠人体胃肠道中的甲壳素酶、溶菌酶等的作用少部分分解,因此其吸收率较低,服用量较大,产生的服用反应也高达70%以上。对甲壳素进行化学处理,脱掉其中的乙酰基,就变成了壳聚糖,壳聚糖已经可以溶于稀酸,比甲壳素进了一步。但是壳聚糖还是大分子,仍然不溶于水,把壳聚糖降解为小分子,就是壳寡糖。壳寡糖可以直接溶于水,因此吸收率大为增加,服用量和服用后反应大为减少。 为什么称壳寡糖是生命第六要素 壳寡糖的最终代谢产物——葡萄糖胺和乙酰葡萄糖胺是人体必须的两种物质。如缺少该物质,人体的自身免疫功能就会下降,导致高血压、心脑血管疾病、癌症等现代疑难病。人在幼儿时可以在细胞内合成这两种物质,成年以后就必须从食物中摄取。 十九世纪70年代,科学家在对细胞的营养学、结构学和功能学研究过程中发现由于工业化生产、农药化肥的大量使用、大棚技术、无土栽培技术等大量的使用,甲壳素类的物质在人类的食物链中消失了,人体从食物中得不到及时弥补,必须人为的添加和补充。 而壳寡糖在人体内会分解产生这两种物质。因此,医学界将壳寡糖称为继脂肪、蛋白质、糖、矿物质、维生素之后保持体质呈碱性的要素,所以被称为第六生命要素。科学家指出,人们应该象摄取前五种物质一样,每天摄取适量的壳寡糖。 为什么说壳寡糖是长寿因素 科学研究发现,甲壳类生物的生命抗病能力大大超越了脊椎类动物,含有甲壳素的昆虫、龟贝类、虾蟹类等动物,能在极其恶劣的环境下生存繁殖,且生命力旺盛。但人类和鱼类等脊椎类动物生存适应能力较差,只要水质稍有污染,气候环境改变,生命就要受威胁。甲壳类生物和脊椎类生物巨大的生存抗逆差异引起了科家们浓厚兴趣。后经研究证实、其抗逆差异在于这些动物的体内含有壳寡糖物质。 多吃虾、蟹能摄取壳寡糖吗? 不能。因为在自然状态下,甲壳素的性质非常稳定,而且分子量非常大(在100万以上),不能够被人体吸收。在正常情况下,也不易被分解,只有通过高科

磷酰氯合成方法研究进展_刘波

133 磷酰氯合成方法研究进展 刘 波1,王 博2 (1.环境保护部西北核与辐射安全监督站,甘肃兰州 730020; 2. 海南大学化工学院,海南海口 570228) 摘要:磷酰氯类化合物是一类重要的化学中间体,用途十分广泛。就近年来合成磷酰氯方法的进展 情况而言,寻找一种经济、环境友好、容易操作的合成工艺仍是未来的研究方向的。 关键词:磷酰氯;合成;进展 磷酰氯类化合物是一类重要的化学中间体,具有十分广 泛的用途,比如在杀虫剂、抗生素、杀真菌剂、延缓剂、润 滑剂、阻燃剂等的合成中有着非常重要的用途。同时磷酰氯 也是合成各种生物活性的化合物如氨基磷酸酯、膦酸盐、烯 醇磷酸酯、联胺磷酸酯的关键中间体。下面就磷酰氯类化合 物近年来的合成方法做一些总结。 1 酰化试剂与磷酸酯类化合物反应 1.1 氯化亚砜做为酰化试剂制备磷酰氯 常温下使用氯化亚砜和亚磷酸三乙酯或亚磷酸二乙酯 进行反应生成磷酰氯,如(图1)所示。 图1 磷酸酯与氯化亚砜的反应 1.2 氯气作为酰化试剂 Mueller, Eugen等 [1]在此基础上用环己烷做催化剂,室 温下反应得到磷酰氯,收率在80%左右,同时生成加成产物 (图2a)。2006年施介华等 [2]在室温下用氯气反应得到相应 的磷酰氯,收率为93%左右(图2b)。 图2 磷酸酯与氯化亚砜进行反应 1.3 氯代尿酸类作为酰化试剂 2005年,Acharya, J.,王博等[3]用三氯异氰尿酸和亚磷 酸二烷基酯类高效率地合成磷酰氯。后来,Shakya,P. D. 等[4]报道了一篇关于酰氯合成的方法的研究论文,在该论文 中同样采用氯代尿酸类化合物作为酰化试剂(图3)。 图3 氯代尿酸类化合物与磷酸酯反应 1.4 磺酰氯类化合物做催化作用下氯气做酰化试剂 用磺酰氯类化合无做催化剂的磷酰化反应不常见,且该 反应在-78℃进行反应,条件苛刻,收率不高(图4)。 图4 烯烃和磺酰氯催化下氯气与三磷酸酯反应 1.5 四氯化碳做为酰化试剂参与的磷酰化反应 四氯化碳和亚磷酸二乙酯或亚磷酸三乙酯在无催化剂 的情况下反应直接制备磷酰氯的反应(图5a)。同样在缚酸 剂三乙胺的存在下,有无催化剂都能进行反应得到磷酰氯, 该反应较无三乙胺存在的情况下更彻底(图5b)。 图5 四氯化碳参与的磷酰化反应 2010年第12期 2010年12月 化学工程与装备 Chemical Engineering & Equipment

概述壳寡糖的制备方法_郑瀚

2012年第31期(总第46期) 科技视界 Science &Technology Vision SCIENCE &TECHNOLOGY VISION 科技视界S 壳寡糖,壳聚糖的水解产物,是将壳聚糖作为原料,通过生物技术降解产生的,它的功效有是壳聚糖的数十倍。主要是由于壳寡糖不仅拥有易吸收、水溶性好等许多优点,且还有许多功能,如抗细菌、真菌、保水保湿、抗癌及调节机体免疫能力等,在许多的领域都具有广阔的应用前景和巨大的发展潜力,如农业、食品、生物医药、化妆品等,所以现今学者研究的热点之一就是制备壳寡糖的方法[1]。壳寡糖在目前的制备方法主要是分为酶解法和酸解法两种,而通过酸解法获得的产品,其得率比较低,降解产物的聚合度比较小,通常是以二聚物或者三聚物为主,而且生产过程中使用的强酸对环境会造成了较大污染,反应条件也较苛刻;而酶解法则以产率较高、易与控制且反应条件比较温和、所得低聚物的聚合度适中及产物的安全性比较好等优点而受到人们的广泛关注。所以当前生产功能性壳寡糖的首选途径是通过用壳聚糖酶来对壳聚糖进行降解[2-3]。同时,通过用壳聚糖酶降解壳聚糖也成为了研究甲壳素工业的最前沿。 制备壳寡糖的方法: 目前,主要是通过对壳聚糖的降解来获得壳寡糖。主要可分为化学法、酶解法和物理法等制备方法。 1化学法 过氧化氢、过硼酸钠氧化降解法,酸解法等是降解壳聚糖的主要化学方法。 1.1氧化降解法 氧化降解法是一种目前使用较多的降解壳聚糖的方法。氧化降解法中的过氧化氢氧化法已被用作壳寡糖的生产方法,这种方法在许多的文献中都有出现。1.2酸水解法 壳寡糖是通过将壳聚糖在HF 、H 2SO 4、HCl 和HNO 2等酸性试剂的作用下进行剧烈的降解反应得到的,其中,壳寡糖的工业化生产主要依赖HCl 降解法。酸水解法中的反应条件比较苛刻,经常和高温、高压有关,所以整个过程较难控制,并且酸水解法产物的分子量分布比较宽,也很难控制其水解程度,较难对产物进行分离和纯化,产量较低,选择性偏差,而且使用大量的化学试剂会腐蚀设备以及污染环境。 2酶解法 使用反应条件较为温和的方法———酶法来降解壳聚糖,在其整个降解过程中不加入其它的反应试剂,不会发生其它的一些副反应,容易控制其降解的过程和控制降解产物的相对分子质量分布,通过酶法降解壳寡糖的得率比较高、对环境的影响和污染比较小,所以使用酶法降解是一种比较好的降解方法。酶降解法分为两种:专一性酶降解法和非专一性酶降解法。至今,已经有37种不同的水解酶(例如糖苷酶、蛋白酶、脂肪酶等)被人们所发现,它们对壳聚糖均表现出较好的降解效果。 2.1专一性酶降解法 专一性底物是壳聚糖的壳聚糖酶被称为专一性水解酶,包括有溶菌酶、壳聚糖酶和甲壳素酶等,通过高选择性地切断壳聚糖中的β-1,4-糖苷键从而使壳聚糖水解。较温和的反应条件以及不需使用大量 的试剂,使壳寡糖进行大规模的生产成为了可能,此种壳寡糖制备方法是比较理想的。 2.2非专一性酶降解法 目前专一性酶的来源有限,很大部分都是从真菌细胞中获得的,大批量的获取受到限制。而且由于专一性酶的价格比较昂贵,实现商品化有很大的难度,所以寻找非专一性酶来降解壳聚糖就变得非常重要。在目前,已经被人们发现能够用来降解壳聚糖的非专一性酶有脂肪酶、蛋白酶、多糖酶等30多种,而其中效果最好的是一些多糖酶,如半纤维素酶、纤维素酶、果胶酶等。 然而用非专一性酶降解法制备壳寡糖也有有一定的缺陷。在用非专一性的水解酶降解壳聚糖到了一定的程度之后,不论酶量再怎样增加也很难提高其水解程度,造成了水解程度有限,而且水解产物较为复杂,分离比较不容易,如果要进行工业化生产对酶的需求量会非常大,成本也会随之增高。 3物理法 物理法是通过将壳聚糖分子内的化学键在辐射过程中发生断裂而降解,有微波辐射,电磁波辐射,超声波辐射等降解方法,其中研究比较多的是超声波降解法。但降解机理限制了物理法降解制备壳寡糖,壳聚糖的聚合链在降解过程中会随意发生断裂,从而使得产物的平均分子量分布得太宽,很难得到分子量40000以下的产品,而且被需要的聚合度在6~8的壳寡糖含量不高,从而大量浪费了原料,物理法的应用受到很大的限制。 丁盈红等学者通过使用微波辐射,以及过氧化氢非均相来降解壳聚糖。并且通过正交试验法将其反应条件进行优化[4]。对比下发现物理降解法的操作比酶法和化学法简单,且具有较好地可控性。所以如果将其他的降解方法与这些物理方法结合起来一起使用,取得的效果一定会更好。 4糖转移法 目前对糖转移法,即化学合成法的研究已经取得了较大的进展。但步骤较为复杂,因为在其合成的过程中遇到了基团保护和基团脱去等过程,通过在酶反应的基础之上利用酶来作用低聚合度的寡糖,使其的糖链得以延长,从而成为具有较高聚合度的寡糖。【参考文献】 [1]Moon JS,Kim HK,Koo HC,et al.The antibacterial and immunostimulative effect of chitosan -oligosaccharides against infection by Staphylococcus aureus isolated from bovine mastitis [J].Appl Microbiol Biotechnol,2007,l 75:989-998.[2]曾嘉,郑连英.几丁质固定化壳聚糖酶的研究[J].食品科学,2001,22:21-24.[3]Adachi W,Sakihama Y,Shimizu S,et al.Crystal structure of family GH -8chitosanase with subclass II specificity from Bacillus sp K17[J].J Mol Biol,2004,343:785-795. [4]丁盈红,李若琦,伍锟贤.微波辐射快速制备水溶性壳聚糖[J].中国生化药物杂志,2002,23(3):132-133. [责任编辑:王迎迎] 概述壳寡糖的制备方法 郑瀚杨兰花刘亚丽 (义乌出入境检验检疫局浙江义乌 322000) 【摘要】壳寡糖具有独特的生理活性和功能性质,在多个领域具有广泛用途,壳寡糖的制备主要是通过对壳聚糖的降解获得的,其主要的制备方法有化学法、酶解法和物理法。而酶降解法通常优于化学降解法,它是在较为温和的反应条件下进行的,相对于其他的两种制备方法,酶降解法以其不需要加入大量的反应试剂,对环境污染小,产率高,反应容易控制及所得的低聚物适中等优点而成为了进行壳聚糖降解的最首选途径。 【关键词】壳寡糖;制备;化学法;酶解法;物理法;降解理论争鸣 309

壳寡糖简介

壳寡糖简介(一位教授的信,实际效果不知) 1寡聚糖对植物的生长调节作用 长期以来由于认为糖在生物有机体的作用远在核酸及蛋白质之下,故其功能一直未得到应有的重视。近年来,发现生物体内绝大多数蛋白质表面都连有数目不等的寡糖链(一般将少于12个糖基的糖链称为寡糖,多于12个糖基者称为多糖),这些寡糖在许多生命过程中都具有重要的功能,如参与蛋白质的折叠、维系空间结构、介导特异的识别过程(细胞识别和分子识别);作为某些重要生物大分子的保护性储存库(某些生长因子与寡糖结合能免受非特异的水解从而延长其寿命);引导胞内某些特异蛋白(酶)的靶向定位等等。现已发现,不仅与蛋白质结合的寡糖具有广泛的生物学效应,游离的寡聚糖本身在许多生命过程中也都有重要的生物学效应,某些寡聚糖与激素相似,它们依赖于糖链结构的不同调控着植物的生长、发育以及对逆境的防御等重要生理过程。 寡聚糖作为植物免疫激活因子的基础研究始于20世纪60年代,Ayers等于1976年发现细胞壁的寡糖片段能诱导植物植保素(Phytoalexin)合成。Bishop于19 81年发现番茄病原菌分泌的多聚半乳糖醛酸酶(PG)消化果胶多糖得到的片段,可诱导蛋白酶抑制剂的合成与积累。以后又发现寡糖可以诱导乙烯、甲壳素酶、葡聚糖酶、富含羟脯氨酸糖蛋白等的产生。1985年Albersheim首次提出了寡糖素(Oligosaccharins)这个新概念和新领域,并认为寡聚糖具有调控植物生长、发育、繁殖、防病和抗病等方面的功能,能够刺激植物的免疫系统反应,每种活性寡聚糖可发出调节特定功能的信息,激活防御反应和调控植物生长,产生具有抗病害的活性物质,抑制病害的形成。特别是不同来源的寡聚糖可针对不同的病原菌,从而可开发针对各类病害的系列寡聚糖农药,解决基因工程遗传育种也很难解决的病原菌生态变异小种的问题。这些寡聚糖分子在很低浓度(nmol/L)下,可作为一种信号分子调控植物的生长发育和植物抵抗逆境(虫害、病原菌入侵、生理逆境)的防卫反应。把这些有生物活性的一类寡糖分子统称为寡糖素。第一个寡糖素即发现于真菌细胞中,具有活化被子植物的防卫反应的功能。不久,在高等植物细胞内也发现了能引起类似防卫反应的寡糖素,这些来源于植物的寡糖素除具有激发子(Elicitor)效应能引起防卫相关反应,某些激发子可以是寡糖素、诱导植物产生的抗病抗虫化合物(植物抗毒素、酚类等)和相关蛋白(蛋白酶抑制剂、苯丙氨酸解氨酶等),除参与植物的防卫反应外,还具有调控植物生长发育的功能,如促进或抑制豌豆茎切断的伸长生长,抑制生长素促进的烟草外植体生根,多聚半乳糖醛酸酶(PG)激发番茄中乙烯的产生,从而促进果实成熟。 目前已知的寡糖素大多是一些细胞和真菌细胞壁结构多糖的降解产物中有活性的寡糖组分,如真菌b-寡葡聚糖(Fungal oligo-glucan)、木葡聚糖类寡糖(Xylogl ucaonderived oligosaccharide)、果胶类寡糖(Oligosaccharide of pectin)、b-寡木聚糖(Oligo-b-xylan)、壳寡糖(Chito-oligosaccharide)、某些糖蛋白(N-Linked glycoprotein)上寡糖链以及寡糖肽类等都是具有生物活性的寡糖素。 2壳寡糖的来源及基本物理化学性质 壳寡糖是水溶性的壳聚糖降解产物,又称为水溶性壳聚糖,壳聚糖(chitosan)是由甲壳素衍生而来的。甲壳素(chitin)又叫甲壳质或者几丁质,它广泛存在于微生物、酵母、蘑菇的细胞壁中,昆虫的表皮中,乌贼、贝壳等软体动物的骨骼内。尤其是虾、螃蟹等甲壳类的水生动物的甲壳中含有丰富的甲壳素(约1/4~ 1/3)。有虾蟹壳经过酸碱处理可得到甲壳素。甲壳素在自然界的合成量仅次于纤维素,是地球上第二大再生资源,每年其生物合成量约为100亿吨。 甲壳素是法国人Braconnot于1811年首次描述的,从那以后有关甲壳素的一些基础研究便逐渐开展起来,而壳聚糖是在1859年被Rouget发现的,自1950年以来有关甲壳素/壳聚糖的研究和开发便逐渐成为化学和生物领域的一个热点,并一直持续升温到现在。甲壳素的化学名称为聚β-(1,4)-2-乙酰氨基-2-脱氧-D-葡萄糖,甲壳素脱乙酰化产物为壳聚糖。它们的化学结构式如图1.2。

壳寡糖的酶法制备和分离技术可行性实施报告

2008年度新苗人才计划项目

项目名称:壳寡糖的酶法制备和分离技术的研究 一、立项背景及意义 壳寡糖(Chitooligosaccharide),又名甲壳低聚糖,是由氨基葡萄糖通过β-1,4-糖苷键连接而成的聚合度约为2-20的低聚糖,其分子量低于5000,具有稳定的三维结构。壳寡糖可运用壳聚糖经过生物酶技术降解制得。 壳聚糖广泛存在于自然界的虾壳、蟹壳和真菌中,虽然有特殊的生物活性,但由于其分子量大、水溶性差,在人体不易被吸收而使其应用受到限制。作为一种生物技术产品,壳寡糖几乎包括了所有壳聚糖的所有优点,它具有良好的生物

相容性和生物降解性、亲水性、吸附性、生物学活性等多种理化特征以及天然、高效、毒副作用少、抗药性不显著、性能多样等特点。科学研究表明,壳寡糖的功能作用和生物活性比起壳聚糖将提高数十倍、应用领域更加广泛、人体吸收率近100%(壳聚糖吸收率6.48%),而且增加了促进钙吸收的新的功能作用,具有较高的科技含量和附加值,发达国家称其为“软黄金”。 壳寡糖具有三调(免疫调节、调节pH值、调节荷尔蒙)、三降(降血脂、降血糖、降血压)、三排(排胆固醇、排重金属离子、排毒素)、三抑(抑制癌细胞、抑制癌细胞转移、抑制癌毒素)等功能,同时,还具有抗自由基、防辐射、抗炎、止血以及促进伤口愈合等功能。壳寡糖及其衍生产品可广泛应用于医药、保健、食品、日化、农业等领域。在医药保健领域具有提高免疫、活化细胞、调节血糖血脂血压胆固醇、预防治疗癌症、强化肝功、促进钙吸收、增殖肠道有益菌等功能;在食品饮料领域是一种良好的健康食品添加剂,可增殖乳酸菌、双歧杆菌等人体有益菌100倍以上;在日化领域具有营养皮肤、抑菌、保湿等功能,性能优于传统的透明质酸等产品;在农业领域可激活植物免疫系统和酶系活性,能促进植物生长、提高作物产量和品质、增强抗病力、增殖生物菌肥有益菌群等,具有药肥双效功能,被誉为“不是农药的农药,不是化肥的化肥”,市场前景极其广阔。 目前壳寡糖产品的年需求量在6000吨以上。在精细化工领域,由于壳寡糖的绿色天然的特性符合世界日化产品的发展趋势,含天然活性物质的化妆品顺应回归自然、科学美容的消费趋势,欧洲现已有60多个与壳寡糖相关的化妆品品牌,年需求壳寡糖1500吨。我国化妆品年销售额从1982年的2亿元人民币发展到2001年的400亿元,居亚洲第二位。在生物医药领域,从中国产业发展研究中心统计可知, 2005年我国医药生物技术工业总产值将达到400亿-500亿元。在保健食品领域,韩国于1996年即批准壳寡糖为功能性保健食品,我国现在已有许多保健品及药品等年需求壳寡糖上百吨的保健食品生产厂家,国许多医药保健品公司正在申报壳寡糖保健食品文号,预计年需求量将以高于30%的速度递增。在农林畜牧领域,因壳寡糖具有良好的抗病虫害功能,且有安全、微量、高效、成本低等优势,可使水果、蔬菜、粮食增产10%-30%,因而可以应用于生物农药产品,部分替代化学农药。目前我国农业病虫害共2000余种,受灾面积数10亿亩。因此壳寡糖在农林畜牧上的应用对我国的农业可持续发展具有重要意义,以壳寡糖为基础的生物农药将有广阔的发展空间。科技部已将“壳寡糖新产品的开发应用”列为国家“九五”攻关计划项目和“十五”招投标项目,要求建立数条年产500吨以上的壳寡糖生产线,到2015年总产值可达1100亿-1300亿元,从而满足国市场的需求。壳寡糖的级别不同,售价差额较大。农业专用壳寡糖市场价为400元/公斤;食品级壳寡糖市场价为600元/公斤;而化妆品级壳寡糖市场价为150元/公斤。随着壳寡糖应用围的不断扩大,加之作为一种性能优异的基础原料,市场需求量将呈稳步上升趋势。同时,壳寡糖作为一种中间原料,出口市场稳定。

苯甲酰氯的合成方法大全综述

苯甲酰氯的合成方法 摘要叙述了苯甲酰氯的物理性质和化学性质,介绍了实验室中合成苯甲酰氯和工业生产苯甲酰氯的方法,探讨了苯甲酸与三氯苄在三氯化铁催化剂作用下反应制备苯甲酰氯时影响苯甲酰氯产率的主要因素, 确定了最适宜的反应条件,即:苯甲酸与三氯苄配比以1:1为最佳,反应温度控制在110℃左右时为宜,使用三氯化铁为催化剂苯甲酰氯的产率最高,催化剂的用量以0.25 % 为宜,反应时间以60分钟为最好。 关键词苯甲酰氯;合成;苯甲酸 Synthesis Methods of Benzoyl Chloride Abstract Describes the physical and chemical properties of benzoyl chloride, introduced the methods of laboratory synthesis of benzoyl chloride and industrial production of benzoyl chloride, discussed the main factors effecting benzoyl chloride production in reaction preparation of benzoyl chloride of benzoic acid and benzyl trichloride under the action of catalyst of ferric chloride, determined the optimum reaction conditions, that is:benzoic acid and benzyl trichloride ratio of 1:1 is the best, reaction temperature control at 110 degrees Celsius is appropriate, the rate of benzoyl chloride is highest when using ferric chloride as catalyst, the appropriate amount of catalyst is 0.25 %, the reaction time is 60minutes for the best. Keywords Benzoyl chloride; Synthesis; Benzoic acid 1 前言 苯甲酰氯是重要的有机合成中间体,广泛地应用于农药、医药、香料和助剂等的合成中。苯甲酰氯还是重要的苯甲酰化和苄基化试剂。苯甲酰氯主要用于生产过氧化苯甲酰、二苯酮类化合物、苯甲酸苄酯等重要化工原料。 2 苯甲酰氯的物理性质 苯甲酰氯是一种无色透明液体。有强烈的刺激气味。熔点- 1. 0 ℃,沸点197. 2 ℃,相对密度 1. 2120 (20 ℃)。苯甲酰氯能够燃烧,遇水、氨水或乙醇逐渐分解成苯甲酸、苯甲酰胺或苯甲酸乙酯和盐酸。 3苯甲酰氯的化学性质 苯甲酰氯较脂肪族酰氯稳定,但由于其中含有较活泼的氯,故决定了其化学活泼性很强,主要用作苯甲酰化剂。苯甲酰氯可以发生水解作用、还原反应、胺化反应、酯化反应、缩合反应、氯化反应等化学反应。 4苯甲酰氯的实验室合成法 目前常用的合成苯甲酰氯的方法主要有以下几种:

壳寡糖产业化可行性报告

国家“九五”攻关科技成果(96-C03-01-01) 壳寡糖产业化可行性报告 中国科学院大连化学物理研究所 天然产物与糖工程课题组 2001年7月

壳寡糖产业化可行性报告 第一部分:项目背景及进展 该课题是国家科技部“九五”攻关项目,于2000年8月通过由中国科学院组织的专家鉴定,该项工艺是首次利用酶工程、生化反应分离耦合技术和纳米滤膜浓缩和纯化技术制备低聚氨基葡萄糖,经查新,国内外未见报道。首次开发出低聚氨基葡萄糖保健食品和生物农药,同时研制开发的奥利奇善胶囊获得卫生部保健食品证书,中科6号(好普)生物农药获农业部农药检定所新农药登记证书。并率先实现了低聚氨基葡萄糖生物农药的产业化及在植物病害防治方面的应用,达到了国际领先水平。(意见详见成果鉴定证书)。 (一)项目的意义和必要性 由于我国保护知识产权法律的制定与实施,以及加入WTO日趋临近,研制创新药物是十分迫切的任务,需要下大力气研究开发具有我国自主知识产权的新型药物。开发治疗重大疾病的药物,关键在于发现具有生物活性的化合物或优秀的先导化合物,然后进行结构改造和优化,选择适宜的加工技术和产业化工程,进而开发出创新药物。我国具有丰富的生物资源和天然药物宝库,从生物资源中寻找新型先导化合物和创制新药,利用生物加工技术开发和利用我国的生物资源,从而促进生物来源药物生产的高技术化。 继基因工程、蛋白质工程之后,糖工程已成为最引人注目的生物技术新领域。近年来的研究表明,无论是在基本的生命过程中,如受精、发生、发育、分化、神经系统、免疫系统恒态维持方面,还是在疾病的发生、发展中,如炎症及自身免疫疾病、老化、癌细胞异常增生及转移、病原菌感染等过程中,都涉及寡糖链的参与。以寡糖片段干扰疾病的发生、发展以及致病菌的侵染,将是从病理上的根治与预防。因此,通过多糖降解、化学合成、转化及分子修饰等手段寻找具有生理活性的天然寡糖药物已成为国际上寡糖药物开发的热点,利用该技术开发寡糖类新型药物对人类健康意义重大。 地球上两大生物群体,即细胞壁中具有甲壳质的生物和具有纤维素的生物,具有甲壳质的生物进化为菌类、节足动物,具有纤维素的生物则进化为植物和脊椎动物。两大生物群体彼此互相攻击、防卫,又相互利用、依存,以维持自己的生命,形成食物链。在一个多世纪前就发现了甲壳质,但它的优异功能只是在近40年,特别是近十年才被人们逐步认识,已形成了一门新兴学科—甲壳质化学。 几丁质又名甲壳质,存在于昆虫、甲壳类动物外骨骼和真菌细胞壁及一些绿藻中,它是由

薄膜制备方法

薄膜制备方法 1.物理气相沉积法(PVD):真空蒸镀、离子镀、溅射镀膜 2.化学气相沉积法(CVD):热CVD、等离子CVD、有机金属CVD、金属CVD。 一、真空蒸镀即真空蒸发镀膜,就是制备薄膜最一般的方法。这种方法就是把装有基片的真空室抽成真空,使气体压强达到10ˉ2Pa以下,然后加热镀料,使其原子或者分子从表面气化逸出,形成蒸汽流,入射到温度较低的基片表面,凝结形成固态薄膜。其设备主要由真空镀膜室与真空抽气系统两大部分组成。 保证真空环境的原因有①防止在高温下因空气分子与蒸发源发生反应,生成化合物而使蒸发源劣化。②防止因蒸发物质的分子在镀膜室内与空气分子碰撞而阻碍蒸发分子直接到达基片表面,以及在途中生成化合物或由于蒸发分子间的相互碰撞而在到达基片前就凝聚等③在基片上形成薄膜的过程中,防止空气分子作为杂质混入膜内或者在薄膜中形成化合物。 蒸发镀根据蒸发源的类别有几种: ⑴、电阻加热蒸发源。通常适用于熔点低于1500℃的镀料。对于蒸发源的要求为a、熔点高 b、饱与蒸气压低 c、化学性质稳定,在高温下不与蒸发材料发生化学反应 d、具有良好的耐热性,功率密度变化小。 ⑵、电子束蒸发源。热电子由灯丝发射后,被电场加速,获得动能轰击处于阳极的蒸发材料上,使蒸发材料加热气化,而实现蒸发镀膜。特别适合制作高熔点薄膜材料与高纯薄膜材料。优点有a、电子束轰击热源的束流密度高,能获得远比电阻加热源更大的能量密度,可以使高熔点(可高达3000℃以上)的材料蒸发,并且有较高的蒸发速率。b、镀料置于冷水铜坩埚内,避免容器材料的蒸发,以及容器材料与镀料之间的反应,这对于提高镀膜的纯度极为重要。c、热量可直接加到蒸发材料的表面,减少热量损失。 ⑶、高频感应蒸发源。将装有蒸发材料的坩埚放在高频螺旋线圈的中央,使蒸发材料在高频电磁场的感应下产生强大的涡流损失与磁滞损失(铁磁体),从而将镀料金属加热蒸发。常用于大量蒸发高纯度金属。 分子束外延技术(molecular beam epitaxy,MBE)。外延就是一种制备单晶薄膜的新技术,它就是在适当的衬底与合适条件下,沿衬底材料晶轴方向逐层生长新单晶薄膜的方法。外延薄膜与衬底属于同一物质的称“同质外延”,两者不同的称为“异质外延”。 10—Pa的超真空条件下,将薄膜诸组分元素的分子束流,在严格监控之下,直接喷MBE就是在8 射到衬底表面。其中未被基片捕获的分子,及时被真空系统抽走,保证到达衬底表面的总就是新分子束。这样,到达衬底的各元素分子不受环境气氛的影响,仅由蒸发系统的几何形状与蒸发源温度决定。 二、离子镀就是在真空条件下,利用气体放电使气体或被蒸发物质离化,在气体离子或被蒸发物质离子轰击作用的同时,把蒸发物或其反应物蒸镀在基片上。 常用的几种离子镀: (1)直流放电离子镀。蒸发源:采用电阻加热或电子束加热; 充入气体: 充入Ar或充入少量反应气体; 离化方式:被镀基体为阴极,利用高电压直流辉光放电离子加速方式:在数百伏至数千伏的电压下加速,离化与离子加速一起进行。 (2)空心阴极放电离子镀(HCD,hollow cathode discharge )。等离子束作为蒸发源,可充入Ar、其她惰性气体或反应气体;利用低压大电流的电子束碰撞离化, 0至数百伏的加速电压。离化与离子加速独立操作。 (3)射频放电离子镀。电阻加热或电子束加热,真空,Ar,其她惰性气体或反应气体; 利用射频等离子体放电离化, 0至数千伏的加速电压,离化与离子加速独立操作。 (4)低压等离子体离子镀。电子束加热,惰性气体,反应气体。等离子体离化, DC或AC

壳寡糖的功效与作用

现在市场上充斥着各种各样的壳寡糖保健产品,如果选择合适自己的壳寡糖保健品大家可能一头雾水,不知道它的功效到底如何,是否有广告宣传的那么神效,下面我们一起来了解下什么是壳寡糖。 壳寡糖也叫壳聚寡糖,也称几丁寡糖,学名β-1,4- 寡糖-葡萄糖胺,它是将壳聚糖经特殊的生物酶技术处理而得到的一种全新的产品,水溶性较好、功能作用大、生物活性高的低分子量产品。它具有壳聚糖所没有的较高溶解度和容易被生物体吸收等诸多独特的功能,其作用为壳聚糖的14倍。它是自然界中唯一带正电荷阳离子碱性氨基低聚糖,是动物性纤维素。研究证明:壳寡糖具有提高免疫,抑制癌肿细胞生长,促进肝脾抗体形成,促进钙及矿物质的吸收,增殖双歧杆菌、乳酸菌等人体有益菌群,降血脂、降血压、降血糖、调节胆固醇,减肥,预防成人疾病等功能,可应用于医药、功能性食品等领域。 壳寡糖可明显消除人体氧负离子自由基,活化机体细胞,延缓衰老,抑制皮肤表面有害菌滋生,保湿性能优异,是日化领域的基础原料。它不但具备水溶性,使用方便,而且抑制腐败菌性能效果显著,兼备多种功能作用,是性能优良的天然食品防腐保鲜剂。

壳寡糖应用领域非常广泛: 1.医药领域 使伤口免受细菌的感染,而且还可以渗透空气和水分,促进伤口愈合。被生物体内的溶菌酶 降解生成天然的代谢物,具有无毒、能被生物体完全吸收的特点,因此用它作药物缓释剂具 有较大的优越性。杜绝癌细胞的养分供应,使其分裂减少,制约癌细胞的分裂条件;减少癌 细胞代谢产生的酸性废弃物,从另一方面改善癌细胞周围的酸性环境,创造一个癌细胞很难 生存和分裂转移的环境条件;减少癌细胞向周围释放的各种酶(溶脂酶、水解酶、蛋白酶等);中和肿瘤周围的酸性物质,激活人体中有抗癌作用的免疫细胞,起到配合化疗、改善病症、 减轻痛苦、延长生命等作用。 2.食品领域 乳品:作为肠道益生菌(如双岐杆菌)的活化因子,增进钙及矿物质的吸收。 调味品:作为天然防腐产品替代苯甲酸钠等化学防腐剂。 饮料:应用在减肥瘦身、排毒养颜、免疫调节等功能性饮料中。 果蔬:进行涂膜保鲜,其膜层具有通透性、阻水性,同时具有抗菌防腐的功效。 3.农业领域 壳寡糖改变土壤菌群,促进有益微生物的生长,壳寡糖还可诱导植物的抗病性,对多种真菌、细菌和病毒产生免疫和杀灭作用,对小麦花叶病、棉花黄萎病、水稻稻瘟病、番茄晚疫 病等病害具有良好的防治作用,可以开发为生物农药、生长调节剂和肥料等。壳寡糖可有效 提高水果和蔬菜产量,防治病虫害,增殖土壤和生物菌肥的有益菌,被誉为不是农药的农药、不是化肥的化肥,壳寡糖的这种药肥双效的特殊作用决定了它在农业领域的广泛应用。现在 已经颁布农用壳寡糖的标准,在农业上它叫甲壳寡聚糖。 4.日用化工领域 壳寡糖具有明显的保湿,活化机体细胞,阻止皮肤粗糙和老化,抑制皮肤表面有害菌滋生、 抑菌抗皮肤病和吸收紫外线功能等功效,可以应用在保湿、抗皱、防晒等类型的护肤品中;

相关文档
最新文档