冻干工艺培训教材第八章、药品冷冻干燥工艺的放大

冻干工艺培训教材第八章、药品冷冻干燥工艺的放大
冻干工艺培训教材第八章、药品冷冻干燥工艺的放大

第八章药品冷冻干燥工艺的放大

在生产冻干制剂的新产品之前,为了以合适的冻干条件获得良好的冻干制品,一般要进行试验制作。在试验机上对冻结温度、冻结时间、冷却速度、第一阶段干燥期的搁板温度控制程序、箱体压力控制值、第一阶段干燥时间、第二阶段干燥期的搁板升温速度、板层加热温度、箱体压力、第二阶段干燥时间进行试验,同时也对冻干制品的品质、溶解性、稳定性、冻干时间的优化等进行试验研究。

在将试验机上试验得到的冻干条件放大到生产装置上的时候,能否直接地将试验制造的冻干程序往生产装置移行。几乎所有的放大实验研究结果都表明,在同样的搁板温度控制程序下,生产装置的冻干时间要延长。因此,在往生产装置放大时,如何对试验时的冻干条件、冻干程序进行修正,已成为冻干制剂的技术人员非常关心的课题之一。

第一节中间试验放大的问题点

将试验机上试验得到的干燥程序放大到生产装置时,有各种各样的问题,在试验机与生产装置之间本身就存在着内在的差异及性能上的差异。

一、装置基本性能的差异

基本性能主要是:搁板温度性能(板层冷却速度、最低温度、升温速度、最高温度、板层控制温度)、冷凝器性能(捕水量、最低温度、冷却系统、冷凝器温度的控制)、真空性能(抽气速度、极限真空、漏率)、真空控制方式(节流控制、掺气控制)。

二、试验机与生产装置传热上的差异

药瓶制剂升华热量的供给,是通过下搁板面往药瓶底面的传热以及从箱体壁面和上搁板面的辐射传热进行的。无疑前者是处于支配地位,但后者也是热源。例如SUS 制的箱体内将药瓶叉排配置在搁板上,在板层温度-5o C干燥的情况下,与辐射热量不易传到中心部药瓶,相比外周部药瓶的干燥速度将增大30%程度。

关于板层的传热均匀性问题,正在探求增加搁板内的导热流体的流量流速,改善流路,提高搁板、托盘、药瓶底面的平面性等对策。另一方面,从箱体壁面的辐射传热量与以下诸因素相关:

A.搁板的辐射率、箱体壁的辐射率

B.搁板表面、箱体壁面、药瓶之间的辐射角系数

C.箱体壁面温度

因此,试验机与生产装置的传热差异表现在以下方面:

A.各板层的搁板温度均匀性的差异

B.搁板控温精度差异

C.从箱体壁面传到药瓶的辐射热量的差异

特别是,试验机传到板层上药瓶的辐射热量与生产装置有相当差异。

三、压力温度的校正以及温度传感器的测点位置

在进行中试放大时,有必要对各装置的板层温度控制的传感器位置进行确认。热传导型真空计的感度,水蒸气与空气有数10%不同,试验机大部分装有皮拉尼真空计,而新设置的生产装置,几乎都装有电容式绝对压力真空计。

另外,在冻结和干燥过程中,试验机与生产装置在时间上也产生差异。

(1)生产装置,搁板升温时间比试验机要慢,产生加热延迟。

(2)生产装置的溶液调制及冷却时间要比试验机长得多,最后放到板层上的药瓶品温比最初放进去的要高,会产生冻结上的差异。

(3)生产装置药瓶搬入箱内的时间长,在搁板表面产生显著的结露(霜),药瓶底面与搁板表面之间发生冻结,使得热接触得到改善,造成了冻结上的差异。

第二节瓶药传热及升华速度的理论解析

一、药瓶传热量

在干燥过程中,特别是在升华干燥期,生产装置与试验机的干燥速度的差异是由于传到搁板上配置药瓶热量不同所引起的。

搁板中心部的药瓶,平均来说其周围侧面被同温度的药瓶所包围,热量主要从底面传往制品,其中仅少量从上搁板通过辐射传热。但是,搁板周边的药瓶,却受到从板层端部的空余面(未放置药瓶的部分)和箱体壁面的传热等影响。

左:中心部药瓶,右:端部药瓶

1主要是导热,与底面形状及真空压力相关

2导热与辐射

2′玻璃壁-->冻结部-->升华面

2″内部空间-->干燥层-->升华面

2* [辐射](端部药瓶追加传热)

3[主要是导热,与邻接药瓶数有关]

4[导热与辐射] 4*[辐射]

5 端部药瓶-->与邻接药瓶[主要是导热]

图8-1端部及中心部药瓶的传热路径的概念图

传到搁板上各药瓶的热量由以下各项构成:

1、从下搁板传到药瓶的热量

Q

':从下搁板传到药瓶的底面、辐射传热以及间隙气体导热(主要是导热)

b

:从未放置药瓶的下搁板周边部、传到与周围接触少于6个瓶子的端部药瓶的Q

b

侧面、辐射传热及气体导热(主要是导热)

平行无限平面间的气体导热是与面间隔δ和气体平均自由程L的比δ/L相关,与气体的压力P成反比。

对于水蒸气,由气体导热所产生的换热系数可用下式表示:

K=λ/(δ+2.12L) kcal/h m2℃

λ:气体导热率: L=0.029/p m;箱体压力表p(Torr) 从下搁板传到药瓶底面的热量

Q b =KA

b

(T

h

-T

f

) kcal/h

从下搁板周边部传到端部药瓶侧面的额外热量由下式近似表示(1)、辐射传热

Q'

br =4.9A

rεh

ε

νX12[(T h/100)4-(T f/100)4] kcal/h

εh:搁板表面的辐射率;εν:药瓶的辐射率

X 12 :辐射角系数; A

r:

药瓶的投影侧面积

(2)、气体导热

Q'bg=∫λg(T h-T f)/(πr/2+2.12L)?A

Q

b

=Q'br+Q'bg

2、从上搁板传到药瓶的热量

Q

t

:从上搁板通过辐射传热及气体导热直接传到药瓶的上部

Q

t

':从上搁板的辐射热由箱体壁面反射后传到药瓶上部及端部药瓶侧面、辐射热直接传到药瓶上部的热量

Q tr =4.9Aνε

h

εν[(T h/100)4-(T f/100)4] kcal/h

由气体导热传到药瓶上部的热量:

Qtg=λg A c(T

h

-tν)/H

3、从箱体壁面传到药瓶的热量

Qr:从壁面辐射传到端部药瓶侧面的热量

Qr`:从壁面直接传到药瓶上部的辐射热

Qc:由气体导热从箱体壁面传到端部药瓶的热量

Qr=4.9 A

r ε

w

ε

νX vw[(T w/100)

4-(T

m

/100)4] kcal/h

X

vw

:端部药瓶侧部与壁面间的辐射角系数。

Qc=A hλg(T

w -T

m

)/d Kcal/h

d:从壁面到端部药瓶之间的距离

二、升华速度

将传到药瓶的热量与干燥层的水蒸气移动过程结合在一起,可计算出升华干燥速度。由热流式θm=1/Q m=r/Q h

r:升华潜热; Q

h

:传到药瓶的热量

水蒸气流θ

m =ρ

m

S/(Ps*-Po)

Qm=Aρ

ice

?ds/dθ

升华速度θ=Aρ

ice ?θ

m

∫ds

第三节将试验机的冻干结果往生产装置上放大工艺

一、放大时诸影响因素

试验机与生产装置之间的差别是:从箱体壁面传到药瓶的热量的差异影响甚大。其传热量与箱体壁温度、药瓶与壁之间的辐射角系数、壁与端部药瓶侧面之间的距离相关。而且各个药瓶的传热量与箱体真空压力有关,因此,将试验机的试验结果放大到生产装置机时,必须考虑以下因素:

(1)箱体壁温T

W ;(2)搁板温度T

h

;(3)箱体真空压力Po; (4)搁板、箱体壁、药

瓶之间的几何关系。

二、传热量与诸因素之间的关系

传到板层上药瓶的热量,虽然依装置的不同而不一样,但是一般的特征可叙述如下。

1、管是试验机还是生产装置,从箱体壁面传到板层端部药瓶侧部的热量比板层中心部药瓶多得多,并且从下搁板的空余面往端部药瓶侧面有追加传热量,因此,中心部药瓶的升华干燥时间约为端部药瓶的2倍。

2、对于试验冻干机,由箱体壁面传热到中心部药瓶的热量比生产机要多,同样的搁板温度程序,则生产机的板层中心部药瓶的干燥时间要延长。

3、箱体壁温,对于壁面传到端部药瓶侧面以及中心药瓶上部的热量影响很大,随着箱体壁温的降低,壁面传热到药瓶的热量则大为减少。

4、随着搁板温度的降低,从下搁板传到药瓶底部的热量减少,箱体壁的传热则增大。

5、箱体真空压,对于从下搁板传到药瓶底部的热量产生影响。一旦增大箱体真空压

力,就会增大下搁板与药瓶底面之间的间隙内气体导热,增大传热量。

6、另一方面箱体真空也对干燥层内的水蒸气移动产生影响,真空压的增大使得升华面温度增高。

由于各参数之间的关系复杂,需要对各个干燥条件进行个别的理论解析。

三、中试放大工艺的实验研究

搁板加热温度T

以及箱体真空压Po对试验冻干机,生产冻干机的干燥时间究竟

h

有多大程度的影响,干燥条件不同时,壁面传到端部药瓶、中心部药瓶的热量发生怎样变化,为此,进行了中试放大实验研究。

试验冻干机: Trio-Ao4型搁板面积: 0.4m2

小型生产冻干机: RLC-402BS 型搁板面积: 2.3m2

试验材料为: Lactose 10%水溶液共熔点温度 -32℃

Mannitol 10%水溶液共熔点温度 -10℃

西林瓶: 29.5Φ装置: 4ml

制品温度测定:端部药瓶1根, 中心部药瓶1根, 热电偶插入药瓶之中.

真空计:电容式绝对真空计

真空压力控制:试验机为掺气控制,小型生产机为节流调节控制.

实验干燥条件与第一阶段干燥时间的测定结果如下表所示:

表8-1 试验机的干燥条件以及升华干燥时间的测定

表8-2 生产装置干燥条件以及升华干燥时间的测定

表8-3 生产机与试验机升华干燥时间θ的比较

从试验机与小型生产机的药瓶冻干试验,可以得出以下结论:

(1)对于共熔点温度很低的Lactose水溶液,由于升华干燥期的搁板加热温度为

-20℃较低,生产机与试验冻干机同样,中心部药瓶的干燥时间约为端部药瓶的2倍,但是,对于共熔点温度较高的Mannitol水溶液,搁板加热温度为0℃,由于升华温度较高,中心部药瓶的干燥时间约为端部药瓶的1.5倍,已经判明搁板温度越低,箱体壁(门)面传到药瓶侧面的增加.

(2)对于Lactose水溶液,试验1的箱体真空压力控制值P为0.1Torr,试验2为0.05Torr,在搁板加热温度一定的条件下,0.05Torr的实验2则升华干燥时间延长了,而且,当真空压力为0.1Torr时,生产机的中心部药瓶干燥时间为试验冻干机的1.14倍,但在高真空(0.05Torr)的情况下,生产机的中心药瓶的干燥时间则变得相当长,达到试验冻干机的1.2倍.

=0℃的Mannitol水溶液的冻干,端部药瓶与中心部药瓶,

(3)对于搁板加热温度T

h

生产机的干燥时间为试验机的1.25倍。

四、生产装置放大方法

作为药瓶制剂的冻干试验制造放大到生产装置的方法。有必要以试验的冻干条件为基础,对搁板上药瓶的传热以及从升华面通过干燥层往箱体内流动的水蒸气移动进行理论解析,将试验机的干燥程序予以修正,放大到生产装置上,其具体步骤如下:1、药液试验机制造的冻干条件及结果分析

(1) 对试验机的搁板尺寸、箱体尺寸、是带底的托盘还是抽底式托盘进行确认。

(2) 预冻工程:搁板冷却速度,药液的冻结速度,冻结温度,予冻时间。

(3) 升华干燥:初期抽气时间,板层加热温度,升温速度,升华期制品温度的变化。升华期箱体内真空(是否控制),控制方式(是节流调节控制,还是掺气控制)、真空仪器(是皮拉尼还是绝对压力真空计)、升华干燥时间、试验时箱体壁温。

(4) 第二阶段干燥:搁板加热温度,箱体真空,冷凝器温度,第二阶段干燥时间。

(5) 冻干曲线的分析:将升华干燥时的制品温度与制品共熔点温度进行比较,从记录的冻干曲线,对端部药瓶,中心部药瓶的搁板与制品的温度差与干燥时间的积ΔT﹡θ进行计算。

(6) 对试验机的端部药瓶,中心部药瓶的传热及水蒸气移动进行理论解析。

(7) 根据理论解析及试验结果对干燥层的水蒸气流动阻力系数进行推定。

2、放大到生产装置上

(1) 对生产装置的搁板尺寸、箱体尺寸等予以确认。

(2)将生产装置的基本性能与试验机进行比较。若生产装置的搁板冷却速度比试验机快,则生产装置的药液冻结速度要快,冰结晶的大小配列产生差异,干燥层的水蒸气流动阻力要增大,对升华速度产生影响。

(3) 对生产装置的辐射传热的角系数进行计算,并与试验机比较。

(4)预备冻结工程:将冻结速度,冻结时间设定与试验机相同,并考虑到空气对流对冻结工程的影响。

(5)升华干燥阶段:设定箱体真空以及搁板温度程序,对干燥速度进行理论解析,对端部、中心部药瓶的传热量以及干燥层水蒸气流动阻力进行理论计算,以求出升华面温度及升华干燥时间。

(6)第二阶段干燥:将搁板加热温度设定与试验机相同,箱体真空尽可能与试验

机一致,并控制冷凝器温度。

3、产装置真空压力控制值的选定

在往生产装置放大时,箱体真空压力控制值的选定必须考虑以下因素。

(1) 产品的崩解温度

值必须减小,由于干燥层随着制品的共熔点温度的降低,升华面的水蒸汽压力P

S

有压力差,则箱体的真空压力必须控制在更小的值。在升华干燥期、升华面温度应比崩解温度低于2~5℃。

(2) 制品干燥层的水蒸气流动阻力

干燥多孔层内的蒸汽流动阻力与溶液的浓度、药瓶灌装量、冻结时的冰晶体配列

的10~30%。

形式相关。箱体真空压力选定为升华面水蒸气压力为P

S

(3) 与试验机的真空压力控制值同样设定期

如果试验机的真空计为皮拉尼真空计,则需将皮拉尼真空计的计数换算成真实值,从而生产机的电容式真空计以真空值作为箱体真空压力控制值。

4、生产机的搁板温度程序的设定

生产机的搁板温度程序的设定有以下2种方法。

(1) 与试验机的搁板加热温度相同设定,延长升华干燥时间。

对于生产用冻干机,传热到中心部药瓶的热量比试验机少,干燥速度减慢。如果不加长升华干燥的时间,生产冻干机的中心部药瓶的第一阶段干燥时间在未冻结的状态下,就进入第二阶段干燥,将搁板温度升温,会发生制品底部局部崩解,导致制品报废。

(2) 与试验机的干燥时间同等

将生产冻干机的搁板加热温度设定为比试验机稍高的温度,以达到与试验冻干机的同等干燥,但是要进行理论上的解析。

第四章 冻干机工艺的一般原则和标准操作规程

第四章冻干工艺的一般原则和标准操作规程 第一节冻干工艺的一般原则 制品的冻干过程是一个较为复杂的工艺过程。它不仅要求该过程严格遵守制品的冻干工艺曲线,而且要求所使用的冻干设备也同时能够满足它的要求。本章节对冻干工艺的一般过程提出一些指导性原则,仅供操作人员在使用的过程中,结合自身制品的特性进行参考。 冷冻干燥过程共分三个过程,即预冻结过程、升华干燥(第一阶段干燥)过程、解析干燥(第二阶段干燥)过程。 一、预冻结过程 预冻是冷冻干燥的第一步,在预冻结过程中,预冻速率、预冻温度和预冻时间是影响后面过程的主要因素。若预冻没有冻好,产品冻结不实,在进入第一阶段升华干燥时,产品可能出现“沸腾”现象而引起喷瓶,或冻干后制品表面凹凸不平,影响外观;如果冷的过低,则不仅浪费了能源和时间。而且对某些产品还会降低存活率。因此预冻之前应确定以上三个数据。 1、预冻速率 预冻速率的快慢,对制品冻结中晶粒的大小、活菌的存活率和升华的速率均有影响。一般来说,慢冻晶粒大,产品外观粗糙,不容易损伤活菌,但升华速度快;而速冻则与此相反。 因此,需要选择一个合理的冷却速度,以得到较高的存活率,较好的物理性状和溶解度,且利于干燥过程中的升华。 2、预冻温度 预冻温度必须低于制品的共晶点温度,根据预冻的方法不同而略有差异,一般来说,搁板温度应低于制品共晶点5~10℃。各种制品的共晶点温度是不同的,同一制品而不同浓度的制品的共晶点温度也会有所不同。需要进行严格的测试才能得到。 3、预冻时间 预冻所需的时间要根据不同的具体条件来确定。总的原则是,应使制品的各部分完全冻牢。 通常冻干箱的搁板从室温25℃降到-40℃约1.5小时。在达到预冻温度后再保持1~2小时,确保整箱全部制品完全冻结。预冻时间仅是个经验值,根据冻干机不同,总装量不同,物品与搁板之间接触不同,预冻的时间会有差异。具体预冻时间可由实验测得。 二、升华干燥过程 在升华干燥阶段要考虑三方面的因素:产品中的温度分布,升华时的温度限制,升华速率。1、产品中温度分布 产品中冰的升华是在升华界面处进行,升华时所需的热量由加热设备(通过搁板)提供。

冻干工艺的选择

冻干工艺的选择 理想的冻干针剂外观应是饱满、洁白、细腻、疏松多孔的固体。在具体的大规模生产中,由于工艺技术参数复杂,设备的操作在一定范围内有灵活性,因而得到的针剂外观常常不尽如人意,往往会出现起泡、分层、表面不平整和变色等情况,从而造成极大的经济损失。 1辅料的选择 药液中,除了药物本身以外,往往加入一定量的赋形剂、稳定剂等辅料,如甘露醇、白蛋白、右旋糖配、磷酸盐等,以改善产品的外观和稳定性。这些辅料种类的选择影响了药液的热工特性,决定了药液的冻结过冷度和崩解温度Tc. 1.1对过冷度的影响: 在冷冻阶段,药液在冰晶析出以前要承受一定程度的过冷状态(约低于冰点5~10摄氏度。当冰核出现时,持续的过冷状态将导致药液中的冰晶极其迅速地生长,在瞬间扩展到整个物质团块,成核进一步扩散,从而形成一个理想的冻结结构:活性物质有规律地散布于整个产品中,并出现高度精细的微小多孔结构,整个结构有规则并且均一。如果辅料选取不当,得不到持续的过冷状态.将导致由于冻结速度太慢而在冻品的表面形成一玻璃化的非晶形结构,整个冻品的结构不再均一。而在升华的过程中,由于表面玻璃化的非晶性结构的存在,将使水蒸汽向上流动逸出的阻力增加,升华受阻。其产品往往会在表面或多或少地有一层薄膜或外壳。 1.2对崩解温度的影响: 在升华阶段,温度升高到一定数值,药液中的结晶将会降低刚度,变得有粘性并引起崩解,封闭了冰晶向上升华的微孔,妨碍并阻止了升华的进行。由于升华速率减慢,补偿由于升华而引起冷却的热量过剩,产品开始解冻,出现泥状物。其产品疏松多孔的结构不再存在而成泥状,且复水困难。这一崩解现象开始的温度即称为崩解温度Tc,Tc取决于药液中各种物料的性质,与浓度无关。因此,在选择辅料时,应使药液混合物有较高的崩解温度,避免在较低的温度下发生崩解而影响产品的质量。显然,应尽可能选择崩解温度高的辅料,例如选择崩解温度为一2~一4℃的甘露醇,要比崩解温度为一40℃的山梨醇有利于冻干。 可见,辅料的选择对针剂的外观具有极其重要的作用。 2冻结速度 一般来说,冻结速度的快慢对冻品和产品有一定的影响,相对比较而

冷冻干燥工艺流程及其应用-

冷冻干燥工艺流程及其应用-

冷冻干燥工艺流程及其应用

目录 冷冻干燥工艺的原理及特点………………… 真空冷冻干燥机组成………………………… 冷冻干燥工艺……………………………………食品冷冻干燥技术的运用…………………… 冻干食品的特点…………………………………我国食品冻干技术面临的问题……………… 冷冻干燥工艺的应用前景…………………… 结论…………………………………………………参考文献……………………………………………

冷冻干燥工艺流程及其应用 1冷冻干燥工艺的原理及特点 1.1冷冻干燥工艺原理 冷冻干燥就是把含有大量水分的物质,预先进行降温冻结成固体。然后在真空的条件下使水蒸汽直接从固体中升华出来,而物质本身留在冻结的冰架子中,从而使得干燥制品不失原有的固体骨架结构,保持物料原有的形态,且制品复水性极好。然后在适当的温度和真空度下进行冰晶升华干燥,等升华结束后再进行解吸干燥,除去部分结合水,从而获得干燥的产品的技术。冷冻干燥过程可分为制品准备、预冻、一次干燥(升华干燥)、二次干燥(解吸干燥)、和密封保存五个步骤。利用冷冻干燥目的是为了贮存潮湿的物质,通常是含有微生物组织的水溶液,或不含微生物组织的水溶液。产品在冻结之后置于一个低水气压下,这时包含冰的升华,直接由固态在不发生熔化的情况下变成汽态。与其他干燥方式相比避免了化学、物理和酶的变化,从而确保了制品物性在保存时不易改变。实际需要的低水汽压是靠真空的状况下达到的。

图1:水的平衡相图 1.2冷冻干燥工艺存在的优缺点 1.2.1冷冻干燥工艺的优点 (1)冷冻干燥的过程中样品的结构不会被破坏,因为固体成分被在其位置上的坚冰支持着,在冰升华时会留下孔隙在干燥的剩余物质里。这样就保留了产品的生物和化学结构及其活性的完整性; (2)蛋白多肽类药物在高温下容易变性,造成干燥后生物活性的降低;冷冻干燥的过程是在低温状态下进行的,工艺过程对组分的破坏程度小,热畸变极其微弱,对不耐热药物特别是蛋白质多肽类药品非常适合[1]; (3)冷冻干燥的药剂为液体,定量分装比粉剂或片剂精度高;用无菌水溶液调配且通过除菌过滤、灌装,杂质微粒小、无污染。制品为多孔结构,质地疏松,较脆,复水性能好,重复再溶解迅速完全,便于

冷冻干燥工艺流程及其应用.doc

冷冻干燥工艺流程及其

应 用 目录冷干燥工的原理及特点??????? 真空冷干燥机成?????????? 冷干燥工?????????????? 食品冷干燥技的运用???????? 干食品的特点????????????? 我国食品干技面的?????? 冷干燥工的用前景???????? ??????????????????? 参考文献?????????????????

冷冻干燥工艺流程及其应用 1冷冻干燥工艺的原理及特点 1.1 冷冻干燥工艺原理 冷冻干燥就是把含有大量水分的物质,预先进行降温冻结成固体。然后在真空的条件下使水蒸汽直接从固体中升华出来,而物质本身留在冻结的冰架子中,从而使得干燥制品不失原有的固体骨架结构,保持物料原有的形态 ,且制品复水性极好。然后在适当的温度和真空度下 进行冰晶升华干燥,等升华结束后再进行解吸干燥,除去部分结合水,从而获得干燥的产品的技术。冷冻干燥过程可分为制品准备、预冻、一次干燥(升华干燥)、二次干燥(解吸干燥)、和密封保存五个步骤。利用冷冻干燥目的是为了贮存潮湿的物质,通常是含有微生物组织的

水溶液,或不含微生物组织的水溶液。产品在冻结之后置于一个低水气压下 ,这时包含冰的升华 ,直接由固态在不发生熔化的情况下变成汽态。与其他干燥方式相比避免了化学、物理和酶的变化,从而确保了 制品物性在保存时不易改变。实际需要的低水汽压是靠真空的状况下 达到的。 1:水的平衡相图图 1.2 冷冻干燥工艺存在的优缺点 1.2.1 冷冻干燥工艺的优点 (1)冷冻干燥的过程中样品的结构不会被破坏 ,因为固体成分被在其位置上的坚冰支持着 ,在冰升华时会留下孔隙在干燥的剩余物质里。这样就保留了产品的生物和化学结构及其活性的完整性 ; (2)蛋白多肽类药物在高温下容易变性 ,造成干燥后生物活性的降低 ;冷冻干燥的过程是在低温状态下进行的,工艺过程对组分的破坏程度

药物冻干工艺的设计和优化原理_蔡紫阳

235《求医问药》下半月刊Seek Medical And Ask The Medicine2012 年第 10 卷第 12 期 冻干是冷冻干燥的简称,冻干的药物大多呈现出多孔形状,可以进行长时间的贮存,而且容易重新吸收水分和恢复活性。所以,冷冻干燥技术被普遍应用在口服速溶药物、固体蛋白质药物和药物包埋剂脂质体的制备。20世纪的八九十年代,科学技术的快速发展与人民群众对健康保障需求的增多促进了药物冷冻干燥技术的迅猛发展,并且在药物冻干工艺以及药物冻干损伤和保护机理等方面取得了一定的成绩。然而,药物冻干技术是一门交叉学科,需要综合生物学、药学、真空、制冷等相关知识,所以依然存在许多亟待解决的问题。 1 冻干理论相关概述 1.1 定义 冻干是冷冻干燥的简称,它是一个稳定化的物质干燥过程。在该过程中,溶剂先结晶,在产品中形成一定的结构,然后靠升华和解析作用将溶剂的量减少至不足以维持生物生长和化学反应的程度。 1.2 优点 冻干能够使药物保持原有的理化性质和生理活性,且有效成分损失极少。此外,冻干制剂特有的疏松多孔结构,可以使药物易于复水而恢复活性,而且冻干制剂含水量低,易长期稳定保存。所以冻结干燥是最柔和的干燥方法。 1.3 冻干需要的条件 通常,产品冻干需要三个条件:①产品完全固化温度在设备容许的范围;②产品的崩解温度在设备容许的范围;③水的结晶度大于0.5。 1.4 冻干技术的应用 冻干技术被广泛应用于以下领域:微生物的冷冻干燥;食品冷冻干燥;药品冷冻干燥;人细胞的冻干。 2 药物冷冻干燥原理及特点 2.1 原理 药物冷冻干燥,是指先在低温下冻结药品溶液,接着在真空条件下进行升华和干燥以除去冰晶,升华结束后进行解析干燥以除去部分结合水的方法。药物冷冻干燥的过程主要分为五个步骤:准备药品、预冻、升华(一次)干燥、解析(二次)干燥、密封保存。依照上述步骤冻干后的药品,可以在室温下长期进行避光贮存,需要使用的时候,添加合适的溶剂复溶后,便可恢复到冻干前的状态。 2.2 特点 药物的冷冻干燥法与其它干燥方法相比,具有其突出的特点与优点:①在冻结前进行药液分装,且药液剂量准确;②低温下干燥能够保留被干燥药品中的热敏物质;③低压下干燥能够确保干燥药品不易氧化与变质,还能抑制某些细菌的活力和灭菌;④被干燥药品在冻结时形成了“骨架”,干燥之后能够保持原形和原来的颜色,而且形成了多孔结构;⑤复水性很好,冻干药品能够进行快速吸水而恢复冻干前的状态;⑥脱水彻底,适合长期保存与长途运输。尽管药品冻干有着如上的这些优点,然而该技术存在着干燥时间长、干燥速率低、干燥设备投资大、干燥过程能耗高等缺点。3 药物冻干工艺及优化 药品在冷冻干燥的过程中会产生许多应力,这严重影响了冻干药品的药性,所以合理设计药品的冷冻干燥过程,对于提高冻干药品的质量、减少冻干损伤和优化冻干工艺有重要意义。 3.1 冻结研究 (1)配方的影响:配方中固体的含量会对冻结和干燥过程产生影响。倘若固体含量小于2%,会导致冻干药物结构的机械性能不稳定。特别是在干燥过程中,药物微粒无法在基质上粘贴,而逸出的水蒸气会将微粒带到瓶塞上甚至真空室中。 (2)冻结方式:不同的冻结方式所产生的冰晶的大小与形态也不相同,而且后继的干燥速率与冻干药品质量也不同。按照冻结机理,冻结方式分为两种:定向结晶与全域过冷结晶。①定向结晶,是指在过冷状态下将一小部分药液进行冻结的方式。瓶子底部使用干冰冷却,而溶液则用湿冰冷却,以便晶核的形成,再将瓶子放于-50℃的搁板上进行冻结。②全域过冷结晶,是指在相同或相近的过冷度下将全部药液进行冻结的方式,其中冰晶成核温度与冻结速率是主要的参数。 (3)退火:退火,是指首先对冻结药品升温至共熔温度以下,然后进行一段时间的保温,最后再把温度降低至冻结温度的过程。升华干燥之前要增加退火步骤,原因有以下三个:①强化结晶。②提高非晶相的Tg。③改变冰晶的大小与形态分布,从而提高干燥效率。 3.2 干燥 药物冻干的干燥过程分为升华干燥与解析干燥两个阶段。升华干燥是除去自由水,而解析干燥是除去部分结合水。药物冻干过程的大部分能耗是在干燥过程产生的,所以使用有效手段来提高干燥速率显得十分重要。当前,提高干燥速率的方法主要有:控制搁板和药品温度、冷阱温度和真空度三种。 (1)控制药品温度:包括控制冻结层与已干层的温度。冻结层温度控制以最低共熔点为上限,温度愈高愈好;已干层温度控制要确保物料不变性或者已干层结构不发生崩塌,尽量使用较高温度。搁板温度控制的标准是要满足药品温度的控制。 (2)控制冷阱温度:药品与冷阱间的温差是冻干过程中进行水升华的驱动力。由于药品温度不能高于共熔温度,且受加热方式限制,所以冷阱温度越低越好。为提高经济性,升华干燥过程的冷阱温度至少比药品温度低于20℃;解析干燥过程中,对于要求残余水分很低的配方,冷阱温度应该更低。 (3)控制真空度:通常情况下,压力对冻干过程的影响包括两方面:①压力越高,已干层导热系数越高,升华界面的对流作用越大,所以升华水汽越快,也就是冻干速率越大。②通过已干层到外部的水汽逸出速度在界面和表面之间产生的压力差,即升华界面温度所对应的饱和压力与干燥室的真空度之差相关。压差大则利于水汽逸出,压差越小则逸出越慢,干燥速率也越小。经验表明:升华阶段的真空度在10至30Pa,有利于传递热量和升华的进行。 药物在冻干过程中会产生多种干燥与冻结应力而发生不同程度的变性,冻干技术本身也存在着干燥时间长、干燥速率低、干燥设备投资大、干燥过程能耗高等缺点。所以,为了药物稳定性与经济性的提高,需要进一步研究药物在冻干过程中的损伤与保护机理。同时,利用先进的真空设备以及制冷控制方法,研发价格低且性能好的冻干机,不断优化冻干工艺。 4 结束语 药物的冷冻干燥能够减少药物的失活或变性,从而降低制药过程中的各种损失。冷冻干燥技术的这个特点使其得到了广泛的应用。但是,冻干技术的造价很高,这便需要药剂研发人员大力开发研究出高效率和低损耗的技术与方法。总的来说,本研究的目标是通过改革与优化冻干技术来提高药物的实用效率,从而更好地为人们的健康提供有力的保障。 参考文献 [1]刘旖旎,陈雨.对药品冷冻干燥技术工艺的研究.黑龙江科技信息,2007(8). [2]马洪滨.对药品冷冻干燥技术工艺的研究.民营科技,2008(10).[3]万军,黄华.制剂药品的冻干原理和技术.黑龙江科技信息,2009(8).[4]陈光明.蛋白质药品冷冻干燥技术研究进展.制冷空调与电力机械,2003(2). [5]姚明春.药品冷冻干燥技术的研究.中国医药导报,2007(36). 药物冻干工艺的设计和优化原理 蔡紫阳 (江苏正大天晴药业研究院 江苏 连云港 220006) 【摘要】 本文首先对冻干的相关原理做了概述,然后介绍了药物冷冻干燥的原理与特点,最后探讨了药物冻干的工艺及其优化,以供有关人士参考。 【关键词】 药物冻干;工艺;设计;优化 【中图分类号】R917【文献标识码】B【文章编号】1672-2523(2012)12-0235-01

冷冻干燥工艺处理步骤及其应用

冻干燥工艺流程及其应

目录冷冻干燥工艺的原理及特点…………………真空冷冻干燥机组成…………………………冷冻干燥工艺……………………………………食品冷冻干燥技术的运用……………………冻干食品的特点…………………………………我国食品冻干技术面临的问题………………冷冻干燥工艺的应用前景……………………结论…………………………………………………参考文献……………………………………………

冷冻干燥工艺流程及其应用 1冷冻干燥工艺的原理及特点 1.1冷冻干燥工艺原理 冷冻干燥就是把含有大量水分的物质,预先进行降温冻结成固体。然后在真空的条件下使水蒸汽直接从固体中升华出来,而物质本身留在冻结的冰架子中,从而使得干燥制品不失原有的固体骨架结构,保持

物料原有的形态,且制品复水性极好。然后在适当的温度和真空度下进行冰晶升华干燥,等升华结束后再进行解吸干燥,除去部分结合水,从而获得干燥的产品的技术。冷冻干燥过程可分为制品准备、预冻、一次干燥(升华干燥)、二次干燥(解吸干燥)、和密封保存五个步骤。利用冷冻干燥目的是为了贮存潮湿的物质,通常是含有微生物组织的水溶液,或不含微生物组织的水溶液。产品在冻结之后置于一个低水气压下,这时包含冰的升华,直接由固态在不发生熔化的情况下变成汽态。与其他干燥方式相比避免了化学、物理和酶的变化,从而确保了制品物性在保存时不易改变。实际需要的低水汽压是靠真空的状况下达到的。 图1:水的平衡相图 1.2冷冻干燥工艺存在的优缺点

1.2.1冷冻干燥工艺的优点 (1)冷冻干燥的过程中样品的结构不会被破坏,因为固体成分被在其位置上的坚冰支持着,在冰升华时会留下孔隙在干燥的剩余物质里。这样就保留了产品的生物和化学结构及其活性的完整性; (2)蛋白多肽类药物在高温下容易变性,造成干燥后生物活性的降低;冷冻干燥的过程是在低温状态下进行的,工艺过程对组分的破坏程度小,热畸变极其微弱,对不耐热药物特别是蛋白质多肽类药品非常适合[1]; (3)冷冻干燥的药剂为液体,定量分装比粉剂或片剂精度高;用无菌水溶液调配且通过除菌过滤、灌装,杂质微粒小、无污染。制品为多孔结构,质地疏松,较脆,复水性能好,重复再溶解迅速完全,便于临床使用; (4)冻结物干燥前后形状及体积不变化;干燥后真空密封或充氮密封,消除了氧化组分的氧化作用。 1.2.2冷冻干燥工艺的缺点 (1)设备造价高,干燥速率低,能耗高。 (2)工艺时间长(典型的干燥过程周期需要20小时左右)。 (3)生产成本高,能耗大。 (4)生物活性物质采用冻干制剂主要是为了保持活性,但配料选择不合理,工艺操作不合理,冻干设备选择不适当都可能在冻干制剂制备过程中失活,导致产品前功尽弃,这是生产冻干制剂的关键,需进行基础研究和针对特定产品反复试验。

冻干工艺DOC

注射用利福霉素钠0.25g(北京星昊) 冷冻与干燥 1 、制冷:使板层温度降低至-45℃以下,保持1~3小时,产品温度 达-35℃以下后,再转后箱制冷-45℃以下,开启真空系统至15pa 以下。 2、升华:冻干的板层温度加控制。 冻干完毕后,通入除菌空气至真空度在0.01~0.05MPa时,停止充气,再启动冻干机的自动压塞装置,使胶塞完全压紧为止。然后从下而上逐盘出箱,送至轧盖岗位。 3、冻干结束的条件为: ①真空度≤4pa;②真空度在稳定状态下保持2小时。

注射用盐酸左氧氟沙星(0.1g;0.2g;0.3g)(广州丽珠) 冷冻与干燥 1、制冷:使板层温度降低至-45℃以下,保持1~3小时,产品温度 达-35℃以下后,再转后箱制冷-45℃以下,开启真空系统至15pa 以下。 2、升华:冻干的板层温度按控制。 冻干完毕后,通入除菌空气至真空度在0.01~0.05MPa时,停止充气,再启动冻干机的自动压塞装置,使胶塞完全压紧为止。然后从下而上逐盘出箱,送至轧盖岗位。 3、冻干结束的条件为: ①真空度≤4pa;②真空度在稳定状态下保持2小时。

注射用盐酸克林霉素(0.3g;0.45g;0.6g;0.9g)(北京四环科宝)冷冻与干燥 1、制冷:使板层温度降低至-45℃以下,保持1~3小时,产品温度达-35℃以下后,再转后箱制冷-45℃以下,开启真空系统至15pa以下。 其中第4段为缓慢均匀升温。 冻干完毕后,通入除菌空气至真空度在0.01~0.05MPa时,停止充气,再启动冻干机的自动压塞装置,使胶塞完全压紧为止。然后从下而上逐盘出箱,送至轧盖岗位。 3、冻干结束的条件为: ①真空度≤4pa;②真空度在稳定状态下保持2小时

果蔬冻干工艺与技术

果蔬真空冷冻干燥工艺与技术 由于冻干食品避免了传统脱水技术方法带来的变色、变味、营养成分损失大、复水性差等缺陷,具有保持原食品形、色、香、味、营养不变、复水性好、重量轻、可常温贮藏等优点。因此,冻干食品在国际市场的价格是热风干燥食品4~6倍,是速冻食品7~8倍。它在登山、航海、探险、军队野战等特殊场合中具有不可替代的地位,也是宇航员在太空中的主要食品。 冻干食品在一些发达工业国家已经达到相当高的普及水平,美国、日本冻干食品的比重已达到40%以上。椐有关部门统计,目前,美国每年消费冻干食品500万t,日本160万t,法国150万t,其他国家也很可观。日本每年约需花1000亿日圆进口冻干食品,香港、新加坡和南韩每年进口冻干食品达500亿日元。日本、美国及欧洲等每年约需冻干大蒜粉6000t,可见冻干食品的国际市场之大。 随着我国经济的可持续发展和人民生活水平的不断提高,人们对食品质量的要求越来越高,特别是对高质量的婴幼儿食品和保健食品的需求量急剧增加。另外,我国旅游、探险、航海事业必将有大的发展,同时高档餐饮业的迅速崛起、人们生活节奏的加快,都对方便即食食品的需求量越来越大。因此,发展冻干食品具有广阔的国际、国内市场。 5.7.2冻干食品生产的基本原理 与其它干燥方法一样,要维持升华干燥的不断进行,必须满足两个基本条件,即热量的不断供给和生成蒸汽的不断排除。在开始阶段,如果物料温度相对较高,升华所需要的潜热可取自物料本身的显热。但随着升华的进行,物料温度很快就降到与干燥室蒸汽分压相平衡的温度,此时,若没有外界供热,升华干燥便停止进行。在外界供热的情况下,升华所生成的蒸汽如果不及时排除,蒸汽分压就会升高,物料温度也随之升高,当达到物料的冻结点时,物料中的冰晶就会融化,冷冻干燥也就无法进行了。 供给热量的过程是一个传热过程,排除蒸汽的过程是一个传质的过程,因此,升华干燥过程实质上是一个传热、传质同时进行的过程。自然界中所发生的任何过程都有驱动力,升华干燥中的传热驱动力为热源与升华界面之间的温差,而传质驱动力为升华界面与蒸汽捕集器(或冷阱)之间的蒸汽分压差。温差愈大,传热速率愈快;蒸汽分压差愈大,传质(即蒸汽排除)速率愈快。 冻干时,既要保持产品的优良品质,又要取得较快的干燥速率。升华所需要的潜热必须由热源通过外界传热过程传送到被干燥物料的表面,然后再通过内部传热过程传送到物料内冰升华的实际发生处。所产生的水蒸气必须通过内部传质过程到达物料的表面,再通过外部传质过程转移到蒸汽捕集器(冷阱)中。任何一个过程或几个过程一起都可能成为干燥过程的“瓶颈”,它取决于冻干设备的设计、操作条件以及被干燥物料的特征。只有同时提高传热、传质效率,增加单位体积冻干物料的表面积,才能取得更快的干燥速率。 在冰晶的升华过程中,每升华1g冰晶约需吸收2822.4J的热量,假如没有热量来源,冰晶升华时将会从制品中吸热,亦即通过降低制品的温度来维持升华所必须的热能,当制品的温度降低后,其冰晶饱和蒸汽压亦降低,当降低到与环境中绝对压力相等时,升华亦即停止,因此,冻干过程中,必须给制品施加热能,但是,要在真空环境中传输热能,也不是一件容易的事情,为此,人们设计出下列种种加热方式: ①接触传热方式这是一种最简单的加热方法,在干燥室内设置可加热的多层搁板,上面放置装有被干燥食品的干燥盘。利用干燥盘与搁板接触传导加热。在这种情况下。加热搁板与干燥盘,干燥盘与干燥食品间不能完全良好地接触,因此利用这中方法进行加热时,干燥时间多少较其它方法长些,但其优点是干燥是构造简单,并可充分利用空间。 ②复式加热方式接触传导仅加热食品的一面,而在本法中被干燥的食品两面都与加热板接触,因此传热良好而可缩短干燥时间,所采用的方式将被干燥食品在与加热板接触前,先以金属网状铝板夹住,以打开升华时水蒸汽的通道并减少其阻力,然后用液压加上搁板,使之与网状铝板接触,此法优点是可缩

冷冻干燥工艺流程及其应用-.

冷冻干燥工艺流程及其应用

目录 冷冻干燥工艺的原理及特点………………… 真空冷冻干燥机组成………………………… 冷冻干燥工艺……………………………………食品冷冻干燥技术的运用…………………… 冻干食品的特点…………………………………我国食品冻干技术面临的问题……………… 冷冻干燥工艺的应用前景…………………… 结论…………………………………………………参考文献……………………………………………

冷冻干燥工艺流程及其应用 1冷冻干燥工艺的原理及特点 1.1冷冻干燥工艺原理 冷冻干燥就是把含有大量水分的物质,预先进行降温冻结成固体。然后在真空的条件下使水蒸汽直接从固体中升华出来,而物质本身留在冻结的冰架子中,从而使得干燥制品不失原有的固体骨架结构,保持物料原有的形态,且制品复水性极好。然后在适当的温度和真空度下进行冰晶升华干燥,等升华结束后再进行解吸干燥,除去部分结合水,从而获得干燥的产品的技术。冷冻干燥过程可分为制品准备、预冻、一次干燥(升华干燥)、二次干燥(解吸干燥)、和密封保存五个步骤。利用冷冻干燥目的是为了贮存潮湿的物质,通常是含有微生物组织的水溶液,或不含微生物组织的水溶液。产品在冻结之后置于一个低水气压下,这时包含冰的升华,直接由固态在不发生熔化的情况下变成汽态。与其他干燥方式相比避免了化学、物理和酶的变化,从而确保了制品物性在保存时不易改变。实际需要的低水汽压是靠真空的状况下达到的。

图1:水的平衡相图 1.2冷冻干燥工艺存在的优缺点 1.2.1冷冻干燥工艺的优点 (1)冷冻干燥的过程中样品的结构不会被破坏,因为固体成分被在其位置上的坚冰支持着,在冰升华时会留下孔隙在干燥的剩余物质里。这样就保留了产品的生物和化学结构及其活性的完整性; (2)蛋白多肽类药物在高温下容易变性,造成干燥后生物活性的降低;冷冻干燥的过程是在低温状态下进行的,工艺过程对组分的破坏程度小,热畸变极其微弱,对不耐热药物特别是蛋白质多肽类药品非常适合[1]; (3)冷冻干燥的药剂为液体,定量分装比粉剂或片剂精度高;用无菌水溶液调配且通过除菌过滤、灌装,杂质微粒小、无污染。制品为多孔结构,质地疏松,较脆,复水性能好,重复再溶解迅速完全,便于临床

冷冻干燥技术

绪论 冷冻干燥是将含水物质,先冻结成固态,而后使其中的水分从固态升华成气态,以除去水分而保存物质的方法。 这种干燥方法与通常的晒干、烘干、煮干、喷雾干燥及真空干燥相比有许多突出的优点,如: (1)它是在低温下干燥,不使蛋白质、微生物之类产生变性或失去生物活力。这对于那些热敏性物质,如疫苗、菌类、毒种、血液制品等的干燥保存特别适用。 (2)由于是低温干燥,使物质中的挥发性成分和受热变性的营养成分损失很小,是化学制品、药品和食品的优质干燥方法。 (3)在低温干燥过程中,微生物的生长和酶的作用几乎无法进行,能最好地保持物质原来的性状。 (4)干燥后体积、形状基本不变,物质呈海棉状,无干缩;复水时,与水的接触面大,能迅速还原成原来的性状。 (5)因系真空下干燥,氧气极少,使易氧化的物质得到了保护。 (6)能除去物质中95~99%的水分,制品的保存期长。 总之,冷冻干燥是一种优质的干燥方法。但是它需要比较昂贵的专用设备,干燥过程中的耗能较大,因此加工成本高,目前主要应用在以下一些方面: (1)生物制品、药品方面:如抗菌素、抗毒素、诊断用品和疫苗等。 (2)微生物和藻类方面:如酵母、酵素、原生物、微细藻类等。 (3)生物标本、活组织方面:如制作各种动植物标本,干燥保存用于动物异种移植或同种移植的皮层、角膜、骨骼、主动脉、心瓣膜等边缘组织。 (4)制作用于光学显微镜、电子扫描和投射显微镜的小组织片。 (5)食品的干燥:如咖啡、茶叶、鱼肉蛋类、海藻、水果、蔬菜、调料、豆腐、方便食品等。 (6)高级营养品及中草药方面:如蜂王浆、蜂蜜、花粉、中草药制剂等。 (7)其他:如化工中的催化剂,冻干后可提高催化效率5-20倍;将植物叶子、土壤冻干后保存,用以研究土壤、肥料、气候对植物生长的影响及生长因子的作用;潮湿的木制文物、淹坏的书籍 稿件等用冻干法干燥,能最大限度的保持原状等。 冷冻干燥能保存食物很早就为人们所知。古代北欧的海盗利用干寒空气的自然条件来干燥和保存食物,就是其中一列。但是,将冷冻干燥作为科学技术还是近百年来的事。1890年啊特曼(Altmann)在制作标本时,为了防止标本中的物质在有机溶剂中溶解,造成不可逆损失,改变过去用有机溶剂脱水的方法,采用冷冻干燥法冻干各种器官和组织。他的工作确立了生物标本系统的冻干程序,这是冻干在制作生物标本中的最早应用。 1909年谢盖尔(Shackell)将冻干引入细菌学和血清学领域。他采用了盐水预冻,在真空状态下,用硫酸做吸水剂,对补体、抗毒素、狂犬病毒等进行冻干,其设备虽十分简陋,但却是后世先进冻干机的雏形。 1912年卡瑞尔(Carrel)首先提出用冻干技术为外科移植保存组织。 1935年第一台商用冻干机问世。1940年冻干人血浆开始投入市场。第二次世界大战中,由于需要大量的冻干人血浆和青霉素,因而冻干在医药、血液制品等方面的应用得到迅速的发展。艾尔塞(Elser)、沸烙斯道夫(Flosdorf)、格雷夫斯(Greaves)和他们的同事们,一方面进行冻干基础理论的研究,一方面进行装置大型化、现代化的改进,使冻干技术从实验室阶段向工业生产和产品商品化发展。战后,冻干法又迅速扩展到各种疫苗、药品等领域。 1930年沸烙斯道夫进行了食品冻干的试验,1949年他在著作中展望了冻干在食品和其他疏松材料方面应用的前景。二次世界大战后,英国食品部在啊伯丁(Aberdeen)的试验工厂也进行了食品冻干的研究。他们在综合了当时的一些研究成果的基础上,于1961年公布了试验成果,证明冻干法用于食品加工是一种能获得优质食品的方法。随后在美、日、英、加等国相继建立起冻干食品的工厂,到1965年全球已有食品冻干工厂50多家,后来随着越南战争的需要,美国军需定货增多,加之冻干工艺的改进,生产成本的降低,在日、美等国食品冻干的发展就更为迅速。现在冻干食品除在宇宙航行、军队、登山、航海、探险等特殊

冷冻干燥技术

冷冻干燥技术 公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

绪论 冷冻干燥是将含水物质,先冻结成固态,而后使其中的水分从固态升华成气态,以除去水分而保存物质的方法。 这种干燥方法与通常的晒干、烘干、煮干、喷雾干燥及真空干燥相比有许多突出的优点,如: (1)它是在低温下干燥,不使蛋白质、微生物之类产生变性或失去生物活力。这对于那些热敏性物质,如疫苗、菌类、毒种、血液制品等的干燥保存特别适用。 (2)由于是低温干燥,使物质中的挥发性成分和受热变性的营养成分损失很小,是化学制品、药品和食品的优质干燥方法。 (3)在低温干燥过程中,微生物的生长和酶的作用几乎无法进行,能最好地保持物质原来的性状。 (4)干燥后体积、形状基本不变,物质呈海棉状,无干缩;复水时,与水的接触面大,能迅速还原成原来的性状。 (5)因系真空下干燥,氧气极少,使易氧化的物质得到了保护。 (6)能除去物质中95~99%的水分,制品的保存期长。 总之,冷冻干燥是一种优质的干燥方法。但是它需要比较昂贵的专用设备,干燥过程中的耗能较大,因此加工成本高,目前主要应用在以下一些方面: (1)生物制品、药品方面:如抗菌素、抗毒素、诊断用品和疫苗等。 (2)微生物和藻类方面:如酵母、酵素、原生物、微细藻类等。 (3)生物标本、活组织方面:如制作各种动植物标本,干燥保存用于动物异种移植或同种移植的皮层、角膜、骨骼、主动脉、心瓣膜等边缘组织。 (4)制作用于光学显微镜、电子扫描和投射显微镜的小组织片。 (5)食品的干燥:如咖啡、茶叶、鱼肉蛋类、海藻、水果、蔬菜、调料、豆腐、方便食品等。 (6)高级营养品及中草药方面:如蜂王浆、蜂蜜、花粉、中草药制剂等。 (7)其他:如化工中的催化剂,冻干后可提高催化效率5-20倍;将植物叶子、土壤冻干后保存,用以研究土壤、肥料、气候对植物生长的影响及生长因子的作用;潮湿的木制文物、淹坏的 书籍稿件等用冻干法干燥,能最大限度的保持原状等。 冷冻干燥能保存食物很早就为人们所知。古代北欧的海盗利用干寒空气的自然条件来干燥和保存食物,就是其中一列。但是,将冷冻干燥作为科学技术还是近百年来的事。1890年啊特曼(Altmann)在制作标本时,为了防止标本中的物质在有机溶剂中溶解,造成不可逆损失,改变过去用有机溶剂脱水的方法,采用冷冻干燥法冻干各种器官和组织。他的工作确立了生物标本系统的冻干程序,这是冻干在制作生物标本中的最早应用。 1909年谢盖尔(Shackell)将冻干引入细菌学和血清学领域。他采用了盐水预冻,在真空状态下,用硫酸做吸水剂,对补体、抗毒素、狂犬病毒等进行冻干,其设备虽十分简陋,但却是后世先进冻干机的雏形。 1912年卡瑞尔(Carrel)首先提出用冻干技术为外科移植保存组织。 1935年第一台商用冻干机问世。1940年冻干人血浆开始投入市场。第二次世界大战中,由于需要大量的冻干人血浆和青霉素,因而冻干在医药、血液制品等方面的应用得到迅速的发展。艾尔塞(Elser)、沸烙斯道夫(Flosdorf)、格雷夫斯(Greaves)和他们的同事们,一方面进行冻干基础理论的研究,一方面进行装置大型化、现代化的改进,使冻干技术从实验室阶段向工业生产和产品商品化发展。战后,冻干法又迅速扩展到各种疫苗、药品等领域。 1930年沸烙斯道夫进行了食品冻干的试验,1949年他在着作中展望了冻干在食品和其他疏松材料方面应用的前景。二次世界大战后,英国食品部在啊伯丁(Aberdeen)的试验工厂也进行了食品冻干的研究。他们在综合了当时的一些研究成果的基础上,于1961年公布了试验成果,证明冻干法用于食品加工是一种能获得优质食品的方法。随后在美、日、英、加等国相继建立起冻干食品的工厂,到1965年全球

冻干工艺原理

冻干工艺原理 第一节冷冻干燥的原理 一、冻干的概念、目的及应用 冷冻干燥就是把含有大量水分的物质,预先进行降温冻结成固体。然后在真空的条件下使水蒸汽直接从固体中升华出来,而物质本身留在冻结的冰架子中,从而使得干燥制品不失原有的固体骨架结构,保持物料原有的形态,且制品复水性极好。 利用冷冻干燥目的是为了贮存潮湿的物质,通常是含有微生物组织的水溶液,或不含微生物组织的水溶液。产品在冻结之后置于一个低水气压下,这时包含冰的升华,直接由固态在不发生熔化的情况下变成汽态。与其他干燥方式相比避免了化学、物理和酶的变化,从而确保了制品物性在保存时不易改变。实际需要的低水汽压是靠真空的状况下达到的。 真空冷冻干燥技术主要应用于: (1)热稳定性差的生物制品,生化类制品,血液制品,基因工程类制品等药物冻干; (2)为保持生物组织结构和活性,外科手术用的皮层、骨骼、角膜、心瓣膜等生物组 织的处理; (3)以保持食物色、香、味和营养成分以及能迅速复水的咖啡、调料、肉类、海产品、 果蔬的冻干; (4)在微胶囊制备、药品控释材料等方面的应用。以保持生鲜物质不变性的人参、蜂 皇浆、龟鳖等保健品及中草药制剂的加工; (5)超微细粉末功能材料如:光导纤维、超导材料、微波介质材料、磁粉以及能加速 反应工程的催化剂的处理等。 二、冷冻干燥的原理及优点 1、水的状态平衡图 物质有固、液、汽三态,物质的状态与其温度和压力有关。图1-1示出水(H2O)的状态平衡图。图中OA、OB、OC三条曲线分别表示冰和水、水和水蒸汽、冰和水蒸汽两相共存时其压力和温度之间的关系。分别称为溶化线、沸腾线和升华线。此三条曲线将图面分为Ⅰ、Ⅱ、Ⅲ三个区域,分别称为固相区、液相区和气相区。箭头1、2、3分别表示冰溶化成水,水汽化成水蒸汽和冰升华成水蒸汽的过程。曲线OB的顶端有一点K,其温度为374℃,称为临界点。若水蒸汽的温度高于其临界温度374℃时,无论怎样加大压力,水蒸汽也不能变成水。三曲线的交点O,为固、液、汽三相其存的状态,称为三相点,其温度为0.01℃,压力为610Pa。在三相点以下,不存在液相。 若将冰面的压力保持低于610Pa,且给冰加热,冰就会不经液相直接变成汽相,这一过程称为升华。 真空冷冻干燥是先将湿料冻结到共晶点温度以下,使水分变成固态的冰,然后在较高的真空度下,使冰直接升华为水蒸气,再用真空系统中的水汽凝结器将水蒸气冷凝,从而获得干燥制品的技术。干燥过程是水的物态变化和移动的过程。这种变化和移动发生在低温低压下。因此,真空冷冻干燥的基本原理就是低温低压下传质传热的机理。 2、冷冻干燥的优点 冷冻干燥与常规的晒干、烘干、煮干、喷雾干燥及真空干燥相比,有许多突出的

冷冻干燥的奥秘:冻干过程

来源于:上海亿倍实业有限公司 冷冻干燥的奥秘:冻干过程 冷冻干燥机(冻干机)由制冷系统、真空系统、加热系统、电器仪表控制系统所组成。主要部件为干燥箱、凝结器、冷冻机组、真空泵、加热/冷却装置等。冷冻干燥简称冻干,就是将含水物质,先冻结成固态,而后使其中的水分从固态升华成气态,以除去水分而保存物质的方法。冻干机起源于19世纪20年代的真空冷冻干燥技术经历了几十年的起伏和徘徊后,在最后的20年中取得了长足进展。进入21世纪,真空冻干技术凭借其它干燥方法无法比拟的优点,越来越受到人们的青睐,除了在医药、生物制品、食品、血液制品、活性物质领域得到广泛应用外,其应用规模和领域还在不断扩大中。为此,真空冷冻干燥必将成为21世纪的重要应用技术。 作为一般概念来讲,冻干技术实际上已经有几百年的历史了。古代的秘鲁印加人将安第斯山脉的峰顶作为天然的食物保存处。在高海拔下,温度和气压都极低,这种防止食物变质的方法与现代冷冻干燥机和冰箱冻结室如出一辙。这是低科技含量的冻干法之一。 冻干技术的基本原理是升华——从固态直接转化成气态。跟蒸发一样,升华也是当一个分子吸收了足够的能量后,从周围的分子中脱离开来的过程。如果水分子获得了使之脱离的足够能量,同时周围的环境又不容许液态水存在,那么水就会由固态(冰)升华为气态(水蒸气)。 某种物质会处于什么状态(固态、液态或者气态)主要由两个因素决定:热量和大气压。只有当温度和压强在特定范围内时,一种物质才会处于某一特定状态。如果这些条件不能满足,这种物质就不会以该状态存在。 这就是冷冻干燥机的原理。典型的冷冻干燥机由冷冻干燥仓(带有与加热部件相连的多个架子)、与制冷压缩机相连的制冷线圈和真空泵三部分组成。 可以知道,如果温度在海平面冰点(0摄氏度)和海平面沸点(100摄氏度)之间,水在海平面(压强为1个标准大气压)状态下就为液态。但是如果温度超过了0摄氏度,而大气压低于 0.06个标准大气压(A TM),则温度足以让冰融化,但是却没有足够的压强使之转化成液态水。因此,它转化成了气态。 对大部分机器来说,您都要趁需要保存的原料未冷冻时将其置于架子上。将冷冻干燥仓密封,并开始冻干过程,这时机器将启动压缩机来降低仓内温度。之后原料会冻成固体,此时水依然存在,但在分子层面上它已经与周围的所有物质分开了。 接下来,机器会启动真空泵,将空气排出冷冻干燥仓,使仓内压强低于0.06个标准大气压。加热部件向架子输送很少的热量,以使冰改变状态。由于压强很低,冰就直接转化成了水蒸气。水蒸气从冷冻干燥仓中跑出,途经冷冻线圈。水蒸气在冷冻线圈上凝结成固态的冰,就像在寒冷的天气里水凝结成霜一样。

冻干工艺开发的具体方法及优化放大的思路

冻干工艺开发的具体方法及优化放大的思路 冷冻真空干燥是制剂药品常用的一种干燥方法,简称冻干。冷冻干燥是保持物质不致腐败变质的方法之一。干燥的方法有很多,比如晒干、煮干、烘干、喷雾干燥以及真空干燥。但这些方法都是在0℃以上或更高的温度下进行的。干燥的产品一般是体积缩小;质地变硬;有些物质发生了氧化;一些易挥发的成分会损失掉;一些热敏性的物质,如维生素、蛋白质会发生变性;微生物失去生物活力;干燥后的物质不易溶解在水中。 因此,干燥后的产品与干燥前相比在性状上有很大的差别。 而冷冻干燥不同于以上的干燥方法,产品的干燥基本上在0℃以下的温度进行,即在产品冻结状态下进行的。直到后期,为进一步降低产品的残余水份,才让产品的温度升高到0℃以上,但通常不超过40℃。制剂药品的冷冻干燥就是把液态的药品预先降温冻结成固体。然后在真空条件下使冻结的水分以水蒸气的形态从固体中升华出来,而药品的有效成分剩留在冻结时的冰架子中,因此制剂药品干燥后的体积不变、疏松多孔。冰在升华时要吸收热量,从而引起冻结药品制剂本身温度的下降,导致升华速度的减慢,为了增加升华的速度,缩短干燥时间,就必须对药品进行适当的加热。整个干燥是在较低的温度下进行的。制剂药品的冻干工艺有以下的优点: (1)液体药剂加工方便,简化了无菌作业的过程,冻干过程是在低温下进行,因此对许多热敏性的物质特别适用。如生物药剂中的活性蛋白质、微生物之类的制剂,不会在冻干过程中发生变性或失去生物的活性。因此在冻干技术在医药上得到广泛的应用。 (2)在低温干燥过程中,制剂药品中一些挥发性成份损失很小。 (3)在冷冻干燥过程中,微生物的生长和活性酶的作用无法进行,因此保持原来的性状,提高了干粉的稳定性。 (4)由于在冻结状态下进行干燥,因此制剂药品的体积几乎不发生变化,保持了原来的结构,不会发生浓缩现象。

冻干蔬菜的加工工艺及条件

1概述 真空冷冻干燥技术是一项高新加工技术,被认为是生产高品质脱水食品的最好加工方法。其原理是在真空状态下,利用升华原理,使预先冻结的物料中的水分不经过冰的融化直接以冰态升华为水蒸汽被除去,从而使物料干燥,称为真空冷冻干燥,简称冻干。用此方法生产的食品称冻干食品。 ⑴冻干食品的优点主要有:①保持食品组织结构、营养成分和风味物质基本不变,特别是生理活性成分保留率最高,这是某些功能性食品采用冻干食品为基料的主要原因。②外观不干裂,不收缩,维持食品原有的外形和色泽;③产品无表面硬化,组织呈多孔海绵状,因此复水性能好,食用方便,浸泡即可复原,从而决定了它在即食方便食品中的地位;④重量轻,耐保藏,对环境温度没有特别的要求,在避光和抽真空充氮包装时,常温条件下可保持2年左右,其贮存、销售等经常性费用远远低于冷冻食品。 ⑵冻干食品的缺点冻干食品的生产需要一整套高真空设备和低温制冷设备,因此,设备的投资费用较大。此外,为了防止物料中冰晶的融化,升华温度不宜太高。更主要的是,真空状态下多孔性物料的导热系数低,传热速率低,致使本来温度就不高的冰晶升华速率变得更低,所以,冷冻干燥的时间一般较长。在如此长的时间内,设备一方面要不停地制冷,另一方面要不停地供热,还要不停地抽真空,致使设备的操作费用较高。所有这些,导致了冻干食品的生产成本较高,大大地限制了冻干食品的发展。这也一直是科学工作者致力于研究的课题。 ⑶国内外冻干食品发展概况真空冷冻干燥技术早期用于生物体的脱水,第二次世界大战后才用于食品工业。经过几十年的发展,技术日渐成熟,设备日趋完善。70年代以来,随着人们对方便食品的要求日益增多,使冻干食品市场日趋扩大,冻干食品在发达工业国家已相当流行,成为国际贸易的大宗食品。以日本为例,97年日本国内冻干食品的产量为7000t,同年日本还向美国、台湾进口此类食品5000多t,目前欧州有冻干食品生产企业近100家,美国有80多家,日本有40多家,年产量达几万t,品种近100种,包括蔬菜、水果、速溶固体饮料、肉类、水产品等。主要用途是方便食品配菜、婴儿食品、方便主食品,特种场合需要等,中国则以汤料配伍为主。 我国在50年代引进真空冷冻干燥技术,引用于医药及生物制品。60年代末到70年代中期,广东、北京、上海、大连等地相继建起了冻干食品生产基地。但后来由于形势的原因以及当时的冻干产品成本高缺乏市场而相继停产或拆除。到了80年代后期,一些外商看中了中国丰富的原料市场,开始在大陆投资设厂。到了90年代,随着商品经济的发展和人民生活水平的提高,市场冻干食品的需求越来越大,特别是外商为打开中国市场,纷纷提供设备贷款以及包销部分产品,促使一些食品企业大胆引进国外设备建厂,而国内一些厂家亦争先恐后推出国产冻干设备,一时间,冻干食品行业呈现一派兴旺和蓬勃发展的景象。但真正有经济效益的企业并不多,相当企业由于未经充分论证后即仓促建线生产,在原料供应、销售市场、工艺技术等均不占优势的情况下,只好暂时停产以观市场,昂贵的进口设备闲置或部分闲置,实在令人惋惜。更有个别企业花巨资购买(国产)或引进的是低劣冻干设备,产量低、品质差,根本不能进行商业化生产。 目前,江苏、浙江、湖南、湖北、河南、陕西、新疆、福建等地又相继建成了一批冻干食品

相关文档
最新文档