分子遗传学常用词汇(中文翻译)

分子遗传学常用词汇(中文翻译)
分子遗传学常用词汇(中文翻译)

分子遗传学常用词汇(中文翻译)

腺嘌呤Adenine(A):一种碱基,和胸腺嘧啶T结合成碱基对。

等位基因(Alleles):同一个基因座位上的多种表现形式。一般控制同一个性状,比如眼睛的颜色等。

氨基酸(Amino Acid):共有20种氨基酸组成了生物体中所有的蛋白质。蛋白质的氨基酸序列和由遗传密码决定。

扩增(Amplification):对某种特定DN**段拷贝数目增加的方法,有体内扩增和体外扩增两种。(参见克隆和PCR技术)

克隆矩阵(Arrayed Library):一些重要的重组体的克隆(以噬菌粒,Y AC或者其他作载体),这些重组体放在试管中,排成一个二维矩阵。这种克隆矩阵有很多应用,比如筛选特定的基因和片段,以及物理图谱绘制等。从每种克隆得到的遗传连锁信息和物理图谱信息都输入到关系数据库中。

自显影技术(Autoradiography):使用X光片来显示使用放射性元素标记的DN**段的位置,常用在使用凝胶将DN**段按照片段大小分离之后,显示各个DN**段的位置。

常染色体(Autosome):和性别决定无关的染色体。人是双倍体动物,每个体细胞中都含有46条染色体,其中22对是常染色体,一对是性染色体(XX或者XY)。

噬菌体(Bacteriophage):参见phage

碱基对(Base Pair,bp):两个碱基(A和T,或者C和G)之间靠氢键结合在一起,形成一个碱基对。DNA的两条链就是靠碱基对之间的氢键连接在一起,形成双螺旋结构。

碱基序列(Base sequence):DNA分子中碱基的排列顺序。

碱基序列分析(Base Sequence Analysis):分析出DNA分子中碱基序列的方法(这种方法有时能够全自动化)

cDNA:参见互补DNA

厘摩(cM):一种度量重组概率的单位。在生殖细胞形成的减数分裂过程中,常常会发生同源染色体之间的交叉现象,如果两个标记之间发生交叉的概率为1%,那么它们之间的距离就定义为1cM。对人类来说,1cM大致相当于1Mbp。

着丝点(Centromere):在细胞的有丝分裂过程中,从细胞的两端发出纺锤丝,连接在染色体的着丝点上,将染色体拉向细胞的两级。

染色体(Chromosome):细胞核中能够自我复制的部分,包含承载遗传信息的DNA分子。原核生物中只有一个呈环状的染色体;而真核生物中一般包含多个染色体,每条染色体都由

DNA和蛋白质构成。

克隆库(Clone Bank):参见基因组文库(genomic library)。

克隆(名词,Clones):从同一个亲代细胞形成的一组细胞。

克隆(动词,Cloning):形成大量子细胞的无性繁殖过程,这些子细胞和亲代细胞完全相同,这个过程称为克隆。

克隆载体(Cloning V ector):通常采用从病毒、质粒或高等生物细胞中获取的DNA作为克隆载体,在载体上插入合适大小的外源DN**段,并注意不能破坏载体的自我复制性质。将重组后的载体引入到宿主细胞中,并在宿主细胞中大量繁殖。常见的载体有质粒,噬菌粒,酵母人工染色体。

互补DNA(cDNA):以信使RNA为模板合成的DNA,常常采用互补DNA的一条链作为绘制物理图谱时的探针。

互补序列(Complementary sequence):以一条核苷酸链为模板,根据碱基互补规则形成的互补链,称为该模板的互补序列。

保守序列(Conserved Sequence ):指DNA分子中的一个核苷酸片段或者蛋白质中的氨基酸片段,它们在进化过程中基本保持不变。

邻接图谱(Contig Map):邻接图谱描述覆盖了整个染色体的小片段的顺序关系,这些小片段相互邻接,两个片段通过有重叠部分推断出两者相互邻接。

邻接片段(Contigs):染色体片段的克隆,两个片段通过有重叠部分推断出两者相互邻接

噬菌粒(Cosmid):人工构造的含有Lambda抗菌素的cos基因的克隆载体。噬菌粒能够引入到???Lambda抗菌素微粒中,然后注入到大肠杆菌中去,这样我们就可以将长达45kb 的DN**段引入到宿主细菌的质粒载体中。

交叉(Crossing over):在减数分裂时,来自父本的染色体和来自母本的染色体有时会发生断裂,然后交换断裂部分重新组合成新的染色体,这种交叉常常会导致等位基因的交换。

胞嘧啶(Cytosine):碱基的一种,和鸟嘌呤结合成碱基对C-G。

双倍体(Diploid):一整套遗传物质中包含成对的染色体,一条来自父本,一条来自母本。大多数动物的细胞(配子细胞除外)都含有双倍体的染色体。

脱氧核糖核酸DNA:编码遗传信息的大分子。DNA是一种双链结构,两条链之间通过碱基对之间的氢键相互连接。相互配对的核苷酸之间有着严密的规则,因此我们能够通过一条链的顺序推断出另一条链的顺序。

DNA复制(replication):以现有DNA的一条链为模板合成一条新的链。在人类和其他真核生物细胞中,DNA的复制在细胞核中进行。

DNA序列(sequence):DN**段、基因、染色体、基因组中的碱基排列顺序。

结构域(Domain):蛋白质中一个有着特定功能的独立单元。多个结构域共同构成蛋白质的功能。

双螺旋(Double Helix):DNA的两条链互相缠绕在一起,形成一种双螺旋结构。

大肠杆菌(E Coli):细菌的一种。遗传学家对大肠杆菌研究得比较透彻,大肠杆菌的染色体比较小,通常没有致病性,易于培养。

电泳技术(Electrophoresis):分离大分子的一种方法,能够从一堆混杂在一起的DNA或者蛋白质中依据各个片段的大小将它们分开。一般在介质两端加电压,介质一端设有小槽,槽内放有待分离的大分子溶液,在电场的作用下,大分子会从一端向另一端运动,但是由于自身的大小或分子量的不同,它们的泳动速度是不同的,因此我们可以根据它们的位置将它们分离开来。常用的介质有琼脂糖和聚丙稀酰胺。

内切核酸酶(Endonuclease):内切核酸酶能够在核酸底物的某个内部切点上切开。

酶(Enzyme):一种特殊的具有催化作用的蛋白质,它能够加快生化反应的速度,但是不改变反应的方向和产物。

真核生物(Eukaryote):细胞或生物自身有细胞膜包被,有结构独立的细胞核,以及发育完全的细胞器。除了病毒、细菌和蓝藻绿藻外,绝大多数生物都是真核生物。

外显子(Exons):基因中有编码蛋白质功能的部分。

外切酶(Exonclease):外切酶从DN**段的自由端开始酶切。

荧光原位杂交(FISH:fluorescence in situ hybridization):荧光原位杂交方法是一种物理图谱绘制方法,使用荧光素标记探针,以检测探针和分裂中期的染色体或分裂间期的染色质的杂交。

流式细胞术:根据细胞或者染色体的光吸收性和光发射性对材料进行分析的方法。

配子(Gamete):成熟的雄性或雌性生殖细胞(精子或卵子),只有单倍体的染色体。

基因(Gene):遗传的基本结构和功能单位。基因是特定染色体上特定位置的一段核苷酸片段,能够编码特定功能的蛋白质。

基因表达(Gene Expression):基因编码的信息转化为细胞结构并在细胞中行使功能的过程。包括转录成信使RNA接着翻译成蛋白质的基因,以及转录成RNA但是不翻译成蛋白质的

基因。

基因家族(Gene Families):一组关系紧密,表达产物相似的基因。

基因图谱(Gene Mapping):在一个DNA分子上决定基因的顺序及其相互间的距离。包括遗传图谱和物理图谱。

基因产物(Gene Product):基因表达过程中形成的RNA或蛋白质。基因表达产物的多少常用来衡量一个基因的表达活性,如果一个基因的表达产物异常减少的话,这种基因产物的数量异常常常预示着疾病基因的存在。

遗传密码(Genetic Code):信使RNA上每三个一组的核苷酸序列,决定了蛋白质肽链上的一个氨基酸。DNA上的碱基序列控制形成信使RNA上的核苷酸序列,进而决定了蛋白质肽链上的氨基酸序列。

遗传学(genetics):研究特定性状的遗传行为的科学。

基因组(Genome):一种生物所有染色体上的遗传物质,称为基因组,基因组的大小常常采用碱基对的数目来表示。

基因组计划(Genome Project):基因组计划的目标是绘制基因组的图谱,对基因组进行测序。

基因组文库(Genomic Library):对某个染色体,制备随机产生的、相互之间有重叠部分的片段的克隆。

鸟嘌呤(Guanine):碱基的一种,和胞嘧啶以氢键连接形成碱基对C-G.

单倍体(Haploid):单倍体细胞中只有一套染色体(是体细胞中的染色体数目的一半),比如动物的精子和卵子、植物的卵细胞和花粉都是单倍体细胞。

杂和体(Heterozygosity):同源染色体的某个位点上有不同的等位基因,这个细胞就称为杂和体。

Homeobox:很多基因中都会发现一些共同的碱基序列。对果蝇和人类的研究都发现了Homeobox的存在。在果蝇中存在一种Homeobox, 它能界定哪些基因在何时表达。。

同源性(Homologies):指同种类不同个体或者不同种类个体之间的,染色体或者蛋白质序列的相似性

同源染色体(Homologous Chromosome):一对染色体,分别来自父本和母本,染色体上有着相同的线性基因序列。

基因治疗(Human Gene Therapy):直接在细胞中引入正常的DNA以治疗遗传疾病的方法。

人类基因组行动计划:是自1986年美国能源部

领导的项目的总称。包括(1):建立某个染色体的DN**段的顺序(2)开发分析基因图谱和测序的算法(3)开发DNA检测和分析的新设备。现在的名称是人类基因组计划。而整个美国的有关工作则称为人类基因组项目,由美国能源部和国立卫生研究院共同领导。

杂交(Hybridization):两段互补的DNA单链,或者一段DNA单链和一段RNA依照碱基互补规则形成一条双链的过程。

生物信息学(Informatics):使用计算机和统计方法作为工具,管理从试验中得到的大量信息。生物信息学包括:数据库搜索的快速算法,对DNA的分析方法,从DNA序列来预测蛋白质的序列和结构。

原位杂交(in situ hybridization):使用DNA或者RNA探针来检测与其互补的另一条链在细菌或其他真核细胞中的位置。

分裂间期(interphase):整个细胞周期中的一部分,在这个期间细胞完成染色体中DNA的复制和相关蛋白质的合成,染色体呈现出染色质的形态即长的细丝状。

内含子(Introns):基因中除了外显子,剩余的DNA序列就构成了内含子,内含子被转录成RNA,但是接着就被剪切掉,因此内含子不编码蛋白质。

体外(in vitro):在一个活体生物之外。比如DNA的体外复制,它不使用将外源DNA引入到宿主细胞内进行大量繁殖的方法。

染色体组型(Karyotype):描述一个生物体内所有染色体的大小、形状和数量信息的图象。这种组型技术可用来寻找染色体歧变同特定疾病的关系,比如:染色体数目的异常增加、形状发生异常变化等。

文库(library):从某条染色体上制取的DN**段未经排序的克隆集合,克隆之间的顺序关系可以通过物理图谱来显示。

连锁关系(Linkage):两个标记之间的邻接关系。如果两个标记间距离比较近的话,那么在减数分裂发生交叉,两个标记被分离的概率就比较小。

连锁图谱(Linkage Map):染色体上两个遗传位点之间相对位置的关系。两个位点之间的距离依据它们共同遗传的概率来确定。

定位(Localize):确定一个基因或者标记在染色体上的原始位置。

位点(Locus:Loci as pl):染色体上一个基因或者标记的位置。位点有时特指DNA上有表达功能的部分。

酶切图谱(Macrorestriction Map):描述限制性内切酶的酶切点的位置和距离信息的图谱。

标记(Marker):染色体上一个可以被识别的区域(比如限制性内切酶的酶切点,基因的位置等)。标记的遗传能够被检测出来。标记可以是染色体上有表达功能的部分(比如基因),也可以是没有编码蛋白质功能但遗传特性能够被检测出来的部分。

减数分裂(Meiosis):精母细胞或卵母细胞的染色体只复制一次,但是两次连续的分裂,最终产生4个子细胞,每个子细胞的染色体数目减半。

信使RNA(MessengerRNA):携带遗传信息,在蛋白质合成时充当模板的RNA。

四分体时期(Metaphase):在有丝分裂和无丝分裂过程中,每条染色体经过复制都形成两条姐妹染色单体,这样两条同源染色体就包含4条染色单体,它们在纺锤丝的牵引下,排列在赤道板上。此时最适宜对染色体进行观察。

有丝分

Mult裂(Mitosis):细胞的一种繁殖方式,每个细胞都形成和亲代细胞两个完全相同的子细胞。iplexing:一种同时采用多种样品的测序方法,能够大大提高测序速度。

突变(Mutation):DNA序列上任一种可以被遗传的变易。

核苷酸(Nucleotide):DNA和RNA的基本组成部分,通常包含一分子核糖,一分子磷酸和一分子碱基。多个核苷酸通过磷酸二酯键连接成一条链状。

细胞核(Nucleos):真核细胞中的一种细胞器,内含遗传物质。

癌基因(Oncogene):一种能够导致癌症的基因。许多致癌基因都直接或间接地控制细胞的成长速度。

噬菌体(phage):一种以细菌为宿主细胞的病毒。

物理图谱(Physics Map):物理图谱描绘DNA上可以识别的标记的位置和相互之间的距离(以碱基对的数目为衡量单位),这些可以识别的标记包括限制性内切酶的酶切位点,基因等。物理图谱不考虑两个标记共同遗传的概率等信息。对于人类基因组来说,最粗的物理图谱是染色体的条带染色模式,最精细的图谱是测出DNA的完整碱基序列。

质粒(Plasmid):质粒是细菌的染色体外能够自我复制的环状DNA分子。它能够和细胞核中的染色体明显地区别开来,而且并不是细胞生存的必要物质。一些质粒适宜于引入到宿主细胞中去,并利用宿主细胞的DNA大量繁殖,因此我们常常采用质粒作为外源DNA的载体,外源DNA借助于质粒在宿主细胞中大量繁殖。

多基因病(Polygenic Disorder):有多个基因位点共同决定的遗传病(如心脏病、糖尿病、一些癌症等)。这类疾病的遗传由多个基因位点共同控制,因而比单基因病的遗传更为复杂。

多聚酶链式反应(PCR):一种体外扩增DNA的方法。PCR使用一种耐热的多聚酶,以及两个含有20个碱基的单链引物。经过高温变性将模板DNA分离成两条链,低温退火使得引物和一条模板单链结合,然后是中温延伸,反应液的游离核苷酸紧接着引物从5‘端到3’端合成一条互补的新链。而新合成的DNA又可以继续进行上述循环,因此DNA的数目不断倍增。

多聚酶(Polymerase):多聚酶具有催化作用,能够加快游离的核苷酸和DNA模板结合形成新链的反应速度。

多态性(Polymorphism):多个个体之间DNA的差异称为多态性。DNA变异概率超过1%的变异,比较适宜作为绘制连接图谱的证据。

引物(Primer):预先制备的比较短的核苷酸链,在新链合成过程中作为引物,游离的核苷酸在引物之后按顺序和模板上的碱基结合,形成新链。

原核生物(Prokaryote):原核生物没有细胞膜,结构清晰的核以及其他细胞器。细菌是原核生物。

探针(Probe):是一条DNA单链或者一条RNA链,具有特定的序列,并且使用放射性元素或者免疫特性物质进行标记。探针和克隆库中的某条互补片段结合成一条双链结构,我们可以借助于探针的检测来获知与其互补的链的位置。

启动子(Promoter):DNA上的一个特定位点,RNA聚合酶在此和DNA结合,并由此开始转录过程。

蛋白质(Protein):一种由一条或者多条肽链构成的大分子。每条肽链上核苷酸的顺序是由基因外显子部分的碱基序列决定的。蛋白质是细胞、组织和器官的重要组成部分,每种蛋白质都具有特定的功能。酶、抗体和激素等都是蛋白质。

嘌呤(Purine):一种含氮的单环结构物。是核苷酸的重要组成部分,有腺嘌呤A和鸟嘌呤G两种。

嘧啶(Pyrimidine):一种含氮的双环结构,是核苷酸的重要组成部分。分为胞嘧啶C,胸腺嘧啶T和尿嘧啶U三种。

重组克隆(Recombinant Clone):将不同来源的DN**段合成在一个DNA分子中,这种技术称为重组,得到的分子为重组克隆。

DNA重组技术(Recombinant DNA Technology):在细胞体外将两个DN**段连接成一个DNA 分子的技术。在适宜的条件下,一个重组DNA分子能够被引入到宿主细胞中并在宿主细胞中大量繁殖。

调控序列(regulatory regions and sequence):一段控制基因表达的DN**段。

限制性内切酶(Restriction enzyme,endonuclease):这种酶能够识别出DNA上特定的碱基序列,并在这个位点将DNA酶切。细菌中有400中限制性内切酶,能够识别出100中DNA 序列。

酶切位点(Restriction Enzyme cutting site):DNA上一段碱基的特定序列,限制性内切酶能够识别出这个序列并在此将DNA酶切成两段。

限制性长度多态性(Restriction fragment length polymorphsm):从不同个体制备的DNA,使用同一种限制性内切酶酶切,切得的片段长度各不相同。酶切片段的长度可以作为物理图谱或者连接图谱中的标记子。通常是在酶切位点处发生突变而引发的。

核糖核酸RNA(Ribonucleic acid):从细胞的细胞核和细胞质部分分离出来的化学物质。在蛋白质合成和其他生化反应中起着重要作用,RNA的结构和DNA的结构类似,都是有核苷酸按照一定顺序排列成的长链。RNA可以分为信使RNA、转运RNA、核糖体RNA以及其他类型的RNA。

核糖体RNA(Ribonsomal RNA rRNA):存在于核糖体中的RNA。

核糖体(Ribonsome):细胞质中含有rRNA和相关蛋白质的细胞器,是蛋白质的合成场所。

序列位置标签(Sequence Tagged Site, STS):一段短的DNA序列(200-500个碱基对),这种序列在染色体上只出现一次,其位置和碱基顺序都是已知的。在PCR反应中可以检测处STS来,STS适宜于作为人类基因组的一种地标,据此可以判定DNA的方向和特定序列的相对位置。ETS是cDNA上的STS。

性染色体(Sex Chromosome):在人类细胞中是X或者Y染色体,性染色体决定了个体的性别。雌性细胞中含有两个X染色体,而雄性细胞中含有1个X染色体和1个Y染色体。

鸟枪法(Shotgun method):使用基因组中的随机产生的片段作为模板进行克隆的方法。

单基因病(Single Gene Disorder):一个基因的等位基因之间发生了突变造成的疾病。

体细胞(Somatic Cells):个体中除了生殖细胞及其母细胞之外的细胞,都是体细胞。

串联重复序列(Tandem repeat sequences):在染色体上一段序列的多次重复,称为串联重复序列。常用来作为物理图谱中的标记子。

端粒(Telomere):是染色体的末端部分,这一特殊结构区域对于线型染色体的结构和稳定起重要作用。

转录(Transcription):以某一DNA链为模板,按照碱基互补原则形成一条新的RNA链的过程,是基因表达的第一步。

转运RNA(tRNA):转运RNA具有特殊的结构,其一端包含3个特定的核苷酸序列,能和

信使RNA上的密码子按照碱基配对原则进行结合。另一端则带有一个氨基酸。因此转运RNA能够同细胞质中游离的氨基酸结合并运到核糖体上,核糖体按mRNA上的遗传信息将氨基酸装配成蛋白质。

转化(Transformation):将外源DNA整合到某一细胞基因组中的过程。。

翻译(Translation):mRNA上携带的遗传信息指导蛋白质的合成过程,称为翻译。

病毒(Virus):一种不具备细胞结构的生物体。只能寄生在宿主细胞中才能生存。病毒一般包含核酸以及外壳蛋白,有些动物的病毒的外面也偶尔覆盖一层细胞膜。病毒进入宿主细胞之后,利用宿主的合成机制复制出大量的后代。。

酵母菌人工合成染色体(Y east Artificial Chromosome):一种能够克隆长达400Kb的DN**段的载体,含有酵母细胞中必需的端粒、着丝点和复制起始序列。

高级分子遗传学复习提纲

高级分子遗传学复习题 1、概念解释: PDT 噬菌体展示技术(phage displayed technology,PDT)是将外源蛋白或多肽与噬菌体外壳蛋白融合,展示在噬菌体表面并保持特定的空间构象,利用特异性亲和作用以筛选特异性蛋白或多肽的一项新技术。该技术将基因型与表型、分子结合活性与噬菌体的可扩增性结合在一起,是一种高效的筛选新技术。目前已成功应用于抗原表位分析,单抗筛选,蛋白质功能拮抗多肽或模拟多肽的确定等。 DNA shuffling 将不同品系具有不同突变位点的基因(1~6kb)或同一家族的基因混合,用DNase I酶切构成随机DNA 片段库(Pool)。用此库样品为模板、以小分子引物进行PCR扩增,一些随机模板得到扩增,由于片段间存在同源性,在退火过程中常出现模板转换(switch),从而有可能出现集多种突变点于一个基因上的DNA分子,可从多种多样的重组分子中筛选出有用基因。 卫星RNA(satellite RNA) 类病毒(viroids)和拟病毒(virusoids)中类病毒是有侵染性并能独立作用的RNA分子,没有任何蛋白质外壳。拟病毒在构成上与类病毒类似,但是被植物病毒包装,与一个病毒基因组包被在一起。拟病毒不能独立复制,需要病毒帮助其复制。有时拟病毒又称为卫星RNA(satellite RNA)。 交换固定(crossover fixation) 指某一基因簇中的突变通过不等交换趋向扩展到整个基因簇的现象。结果突变的基因要么被淘汰,要么占据全部原来相同基因的位置。 分子伴侣(chaperone) 一种能诱导靶蛋白质形成特定构象使其正确组装的蛋白质。 空转反应(idling reaction) 当空载tRNA进入A位点时,核糖体产生pppGpp 和ppGpp, 诱发应急型反应。 AARS:(氨酰-tRNA合成酶) 催化氨基酸和tRNA2‘或3’-OH共价连接的酶。根据氨基酸序列,可将AARS分为I、II型两组。I 型:Arg、Gln、Glu、Ile、Leu、Trp、Tyr、Val、Cys-RS,其余为II型。I 型RS含有HIGH签名序列(His-Ile-Gly-His)和KMSKS(Lys-Met-Ser-Lys-Ser)序列,使AA结合在3'A的2'-OH上,可以在2'、3'之间移动。II型RS无签名序列,而有3个保守基序。 RNAi/RNAq(RNA干扰、RNA压制) 转录后基因沉默广泛存在于各种生物中,在植物中被称为转录后基因沉默(PTGS),在动物中被称为RNA 干扰(RNA interference, RNAi),在真菌中则被称为RNA压制(RNA quelling,RNAq)。尽管叫法不同,但都具有相似机制,都启动一种特殊的RNA降解过程。 酸性面条(negative noodle)

最新分子遗传学考试复习题

分子遗传学考试复习 题

《分子遗传学》考试复习题 一、选择题 1、DNA分子超螺旋盘绕组蛋白八聚体( A )圈 A、1.75 B、2 C、2.75 D、3 2、在真核生物基因表达调控中,( B )调控元件能促进转录的速率。 A、衰减子 B、增强子 C、repressor D、TATA box 3、原核生物RNA聚合酶识别的启动子位于(A ) A、转录起始点上游 B、转录起始点下游 C、转录终点下游 D、无一定位置 4、植物雄性不育与下列( B )有关 A、叶绿体 B、线粒体 C、核糖体 D、高尔基体 5、染色体的某一部位增加了自身的某一区段的染色体结构变异称为( D )。 A、缺失 B、易位 C、倒位 D、重复 6、合成多肽链的第一个氨基酸是由起始密码子决定的。细菌的起始密码子一般 为(B)。 A、 ATG B、AUG C、UAA D、UGA 7、真核生物蛋白质合成的的起始密码子是( D )。 A、 ATG B、UGA C、UAA D、AUG 8、下列哪些密码子不是终止密码子( A ) A、 AUG B、UAA C、UAG D、UGA 9、人的ABO血型受一组复等位基因IA、IB、i控制,IA和IB对i都是显性,IA与IB为共显性。一对夫妻血型均为AB型,则其所生子女的血型不可能是( A )。√ A. O型 B. A型 C. B型 D. AB型 10、通常把一个二倍体生物配子所具有的染色体称为该物种的( B )。√ A. 一个同源组 B. 一个染色体组 C. 一对同源染色体 D. 一个单价体 11、某双链DNA分子中,A占15%,那么C的含量为(C) A、15% B、25% C、35% D、45%

遗传学期末复习题

遗传学复习题 一、名词解释 1、前导链与后随链:DNA复制的两条新链中,有一条链是沿5′→ 3′方向连续合成的,合成的速度相对较快,故称为前导链;另一条则是沿5′→ 3′方向先合成一些比较短的片段,然后再由连接酶将它们连接起来,其合成是不连续的,合成的速度相对较慢,故称为后随链。 2、转录的模板链:DNA转录中作为转录模板的DNA一条链称为模板链,另外一条则称为非模板链。 3、密码子与反密码子:mRNA上的每3个相邻碱基组成一个密码子,也称为三联体密码,一个密码子决定一种氨基酸。翻译过程中负责转运氨基酸的tRNA 的分子结构中具有三个与密码子相配对的碱基组成的反密码子。 4、简并:一种氨基酸可由一个以上密码子决定的现象称为简并。 5、基因家族:真核生物的有些来源相同、DNA序列相似、所编码的蛋白质具有互相关联的功能的基因,这样的一组基因称为“基因家族”。 6、重叠基因:有的噬菌体存在不同基因共用一部分DNA序列的现象,具有这种共用序列的基因称为重叠基因。 7、单交换与双交换:两对基因之间距离较小,这个区段只能发生一个交换,即为单交换。当基因间距离比较大时,同一个性母细胞可能在这个区段发生两个交换,即称为发生双交换。 8、干扰与符合系数:一个单交换的发生影响了另一个单交换的发生,这种现象称为干扰。干扰程度的大小通常用符合系数或并发系数表示。 9、超亲遗传:是指在数量性状的遗传中,F2及以后的分离世代群体中,出现超越双亲性状的新表型值的现象。

10、狭义遗传率:是加性方差在表现型方差中的百分数。 11、亲缘系数:两个个体都带有同一祖先某一特定等位基因的概率。 12、纯系:纯系是指一个群体中只存在一种基因型,并且这种基因型是纯合的。自花授粉的一个植株的自交后代可得到纯系。 13、细胞质遗传:真核细胞中的线粒体、叶绿体中也存在DNA,它所组成的基因也能决定生物某些性状的表现和遗传。这类遗传现象,称为细胞质遗传。 14、细胞质基因组:分布于细胞质的全部DNA序列。 15、表观遗传变异:是指DNA序列不发生变化但基因表达却发生了可遗传的变化,最终导致表型的改变,即基因型未发生变化而表型发生了可遗传的变化。 16、质核互作雄性不育:由细胞质基因和核基因相互作用控制的雄性不育类型,简称质核型雄性不育,又称为胞质不育型。 17、孢子体不育:雄性不育的花粉育性受母体的基因型(孢子体基因型)控制,与花粉(配子体)本身的基因无关。花粉败育发生在孢子体阶段。 18、配子体不育:是指花粉育性直接由雄配子体(花粉)本身的基因决定,花粉败育发生在雄配子阶段。 19、基因频率:一个群体里,A基因在A、a基因总数中的比率,称为A的基因频率。一个群体里,a基因在A、a基因总数中的比率,称为a的基因频率。 20、基因型频率:就是指具有特定基因型的个体数,占群体全部基因型个体总数的比率,也是特定基因型在群体中出现的概率。 21、随机交配:是指在一个有性繁殖的生物群体中,任何一个雌性或雄性个体与任何一个相反性别的个体交配的概率都相同。 22、基因突变:也称点突变,是DNA分子结构上微小的改变,它是由于碱

分子遗传学复习题

分子遗传学复习题 名词解释: DNA甲基化(DNA methylation):是指由DNA甲基化转移酶介导,催化甲基基团从S-腺苷甲硫氨酸向胞嘧啶的C-5位点转移的过程。 ENCODE计划(The Encyclopedia of DNA Elements Project):即“DNA元件百科全书计划”,简称ENCODE 计划,是在完成人类基因组全序列测定后的2003年9月由美国国立人类基因组研究所(National Human Genome Research Institute,NHGRI)组织的又一个重大的国际合作计划,其目的是解码基因组的蓝图,鉴定人类基因组中已知的和还不知功能的多个物种的保守序列等在内的所有功能元件。ENCODE计划的实施分为3个阶段:试点阶段( a pilot phase)、技术发展阶段(a technology development phase)和生产阶段(a producttion phase)。 gRNA (guide RNA):既指导”RNA(gRNA,guide RNA),能通过正常的碱基配对途径,或通过G—U配对方式与mRNA上的互补序列配对,指导编辑的进行。 GT--AG规律(GT-AG rule):真核生物所有编码蛋白质的结构基因,其RNA前体在内含子和外显子交界处有两个较短的保守序列,内含子的左端均为GT,右端均为AG,此规律称GT-AG规律。 miRNA:即小RNA,长度为22nt左右,5′端为磷酸基团、3′端为羟基。miRNA广泛存在于真核生物中,不具有开放阅读框架,不编码蛋白质,其基因的转录产物是发夹状结构,在RNaseⅢ酶切后以双链形式存在,是近几年在真核生物中发现的一类具有调控功能的非编码 RNA,它们主要参与基因转录后水平的调控。 RNA编辑(RNA editing) :是指通过碱基修饰、核苷酸插入或删除以及核苷酸替换等方式改变RNA的碱基序列的转录后修饰方式。 RNA诱导的沉默复合体(RNA Induced Silencing Complex,RISC):与siRNA结合后可识别并切断mRNA。 RNA指导的DNA甲基化(RNA Directed DNA Methylation RDDM):活性RISC进入核内,指导基因发生DNA的甲基化。 密码子摆动假说(wobble hypothesis):密码子的第1,2位核苷酸(5’→3’)与反密码子的第2,3核苷酸正常配对;密码子的的第3位与反密码子的第1位配对并不严谨,当反密码子的第1位为U时可识别密码子第3位的A或G,而G则可识别U或C,I(次黄嘌呤)可识别U或C或A。 比较基因组学(comparative genomics):是一门通过运用数理理论和相应计算机程序,对不同物种的基因组进行比较分析来研究基因组大小和基因数量、基因排列顺序、编码序列与非编码序列的长度、数量及特征以及物种进化关系等生物学问题的学科。 表观遗传变异(epigenetic variation):基因的碱基序列未发生改变,而是由于DNA甲基化,组蛋白的乙酰化和RNA编辑等修饰导致基因活性发生了变化,使基因决定的表型发生变化,且可遗传少数世代,但这种变化是可逆的。 超基因家族(supergene family):是DNA序列相似,但功能不一定相关的若干个单拷贝基因或若干组基因家族的总称。 沉默子(silencer):一种转录负调控元件,当其结合特异蛋白因子时,对基因转录起阻遏作用。特点很象增强子,但不增强转录,而是减弱转录,故称负增强子。 代谢组学(metabolomics):是对某一生物或细胞在一特定生理时期内所有低分子量代谢产物同时进行定性和定量分析的一门新学科。 端粒(telomere):是由独特的DNA序列及相关蛋白质组成的线性真核染色体的末端结构,它具有防止末端基因降解、染色体末端间的粘连和稳定染色体末端及其精确复制等功能。 反向遗传学(reverse genetics):是从改变某个感兴趣的基因或蛋白质入手,然后去寻找相关的表型变化。 反转座子(retroposon)或“反转录转座子(retrotransposon)”:先转录为RNA再反转录成DNA 而进行转座的遗传元件。 核酶(ribozyme):具有催化活性的RNA, 即化学本质是核糖核酸(RNA), 却具有酶的催化功能。核酶的作用底物可以是不同的分子, 有些作用底物就是同一RNA分子中的某些部位。 核心启动子(core promoter):是指在体外测定到的由RNA polⅡ进行精确转录起始所要求的最低限度的一套DNA序列元件。 化学基因组学(chemogenomics):它是作为后基因组时代的新技术,是联系基因组和新药研究的桥梁和纽带。它指的是使用对确定的靶标蛋白高度专一的小分子

分子生物学复习资料终结版

1 绪论 1.1 分子生物学的基本概念 ①分子生物学---广义:在分子水平上研究生命现象,或用分子的术语描述生物现象的学科。 狭义:核酸与蛋白质水平上研究基因的复制,基因的表达(包括RNA转录、蛋白质翻译),基因表达的调控以及基因的突变与交换的分子机 制。 ②序列假说:核酸片段的特异性,完全由其碱基序列决定,而且这种序列是一种蛋白质氨 基酸的密码 ③中心法则:DNA的遗传信息经RNA一旦进入蛋白质,也就不可能再行输出。 ④三大原则:Ⅰ、构成生物大分子的单体是相同的; Ⅱ、生物大分子单体的排列决定了不同生物性状的差异和个体特征; Ⅲ、所有生物遗传信息表达的中心法则是相同的 ⑤分子生物学是研究细胞内大分子的结构、功能和相互作用特点和规律,并通过这些规律认识生命现象的一门科学。 1.2 分子生物学的发展简史 ①细胞学说: (1)以下3点是必修一上的内容: a细胞是一个有机体,一切动植物都由细胞发育而来,并由细胞和细胞产物所组成。 b细胞是一个相对独立的单位,既有它自己的生命,又对与其他细胞共同组成的整体的生命起作用。 c新细胞可以从老细胞中产生。 (2)以下7点是百度到的内容: a.细胞是有机体,一切动植物都是由单细胞发育而来,并由细胞和细胞产物所构成; b.所有细胞在结构和组成上基本相似; c.新细胞是由已存在的细胞分裂而来; d. 生物的疾病是因为其细胞机能失常; e. 细胞是生物体结构和功能的基本单位; f 生物体是通过细胞的活动来反映其功能的; g. 细胞是一个相对独立的单位,既有他自己的生命,又对于其他细胞共同组成的整体的生命起作用。 ②正向遗传学:在不知道基因化学本质的前提下,仅依靠表型突变体在世代间的传递规律来研究基因的特征和染色体上的位置,描述基因突变和染色体的改变,分析它们对生物形态和生理特征所产生的效应。 ③反向遗传学:通过转基因办法来确定某一基因的功能。 ④George Beadle和Edward Tatum提出“一个基因一个酶”假说 Avery围绕肺炎链球菌的成就第一个动摇了“基因是蛋白质”的理念,为“DNA是遗传物质”的理论建立奠定了基础 Chargaff 法则:A+C=T+G Nirenberg在一周内破解了第一个遗传密码:UUU——苯丙氨酸 Jacob和Monod发现乳糖操纵子模型 Pardee,Jacob,Monod命名的“Pa-Ja-Mo”实验结果证明:基因通过一种RNA严格地控制着蛋白质的合成。这种RNA被命名为“信使RNA”

遗传学期末复习资料汇总

遗传学期末复习资料 一、名词解释 1.隐性上位:在两对互作的基因中,其中一对隐性基因对另一对基因起上位性作用。 2.转换: 3.易位:是指两个或两个以上非同源染色体之间发生的染色体片段转移的一种染色体结构变异类型。 4.性反转:是指生物个体从一种性别特征转变为另一种性别特征的性别转变现象。 5.连锁遗传:是指同一染色体上的某些基因以及它们所控制的性状结合在一起传递的现象。 6.母性影响:是指子代某一性状的表型不受本身基因型的支配,而由母体的核基因型决定,导致子代的表型与母体基因型相同的现象。 7.相引相:一亲本的两对等位基因均为显性,另一亲本的两对等位基因均为隐性,这样的杂交组合称为相引相。 8.表现度:是指杂合体在不同的遗传背景和环境因素的影响下,个体间基因表达的变化程度。 9.中断杂交技术:是指根据供体基因进入受体细胞的顺序和时间绘制连锁图的技术。 10.两点测交:两点测交是测定基因间距离的基本方法。它是以两个基因为基本单位,通过一次杂交和一次测交的试验结果来计算两个基因间的重组值,从而对基因进行定位的方法。 11.转导:是指以噬菌体为媒介,将遗传信息从一个细菌(供体)转移到另一个细菌(受体)的过程。 12.同源染色体:是指一对形态、大小、结构、功能和来源都相同的染色体。在二倍体生物中,每对同源染色体的两个成员一个来自父方,另一个来自母方。 13.复等位基因:是指在群体中,同源染色体的相同座位上存在的三个或三个以上的等位基因。这种现象叫复等位现象。 14.三点测交:三点测交是基因定位的常用方法,它只通过一次杂交和一次测交,就可以同时确定三个基因在染色体上的顺序和位置。 15.母系遗传(细胞质遗传):是指由细胞质中的基因所决定的遗传现象和遗传规律。也称为核外遗传或非孟德尔遗传。 16.转化:细菌细胞从周围介质中吸收来自另一不同基因型细胞的DNA,并将此外源DNA片段通过重组整合到自己的染色体组中,而使它的基因型和表现型发生变化的现象。 17.不完全显性:是指具有一对相对性状差异的两个纯合亲本杂交后,F1表现双亲性状的中间类型的现象。 18.伴性遗传:是指性染色体上的基因所控制的某些性状总是伴随性别而遗传的现象,又称性连锁。一般特指X或Z 染色体上基因的遗传。 19.倒位:是指一个染色体上同时出现两处断裂,断裂后中间的染色体片段扭转180°重新连接起来而使该片段上基因的线性排列顺序同原顺序相反的一种染色体结构变异类型。 20.广义遗传率(力):是指遗传型方差占表型方差的百分比,可作为杂种后代进行选择的一个指标。 21.杂种优势:是指两个遗传组成不同的亲本杂交产生的杂种F1在生长势、生活力、繁殖力、抗逆性、产量和品质等方面优越于双亲的现象。杂种优势所涉及的性状大多为数量性状。 22.XY型性别决定:是指雄性个体含有两条异形的性染色体XY的性别决定方式。 23.不完全连锁:是指杂种个体的连锁基因在配子形成过程中同源染色体非姊妹染色单体之间发生互换的遗传现象。 24.完全显性:是指具有一对相对性状差异的两个纯合亲本杂交后,F1只表现出其中一个亲本的性状,而另一个亲本的性状没有得到表现的现象。 25.真实遗传:子代性状与亲代性状相同的遗传方式。 26.接合:是指通过供体细菌细胞与受体细菌细胞之间的直接接触而发生的单向遗传物质转移的过程。

分子遗传学要点整理

Chapter 1: Genomes, Transcriptomes and Proteomes 1. 概述 基因组(Genome):指生物的整套染色体所含有的全部DNA或RNA 序列。基因组是地球上每一物种具有的生物学信息的存储库。 基因组学(Genomics):指研究生物的整个基因组,涉及基因组作图、测序和功能分析的一门学科。 基因组所包含的生物信息的利用需要酶及其他参与基因组表达过程中一系列复杂生化反应的蛋白质的协同活性。 基因组表达的最初产物是转录组,即那些含有细胞在特定时间所需生物信息、编码蛋白质的基因衍生而来的RNA分子的集合。转录组由转录过程来维持。 基因组表达的第二个产物是蛋白质组,即细胞中那些决定细胞能够进行生化反应的所有蛋白质组分。这是通过翻译过程来完成的。 2.1 Genes are made of DNA 奥地利神父孟德尔1865年根据7个碗豆性状的实验提出了遗传因子假说,认为每个性状由遗传因子控制,并提出了遗传因子的分离与自由组合两大遗传规律。 证明基因由核酸 (DNA或RNA) 组成的3个著名实验: ①肺炎双球菌的转化试验;DNA是遗传物质 ②噬菌体感染实验;只有DNA是联系亲代和子代的物质 ③烟草花叶病毒的感染实验。RNA也是遗传物质 2.2 The structure of DNA A. Nucleotides and polynucleotides B. The model of double helix DNA 晶体X射线衍射图谱?为揭示DNA分子的二级结构提供了重要实验证据 a. Watson and Crick (1953) 提出的 DNA双螺旋结构模型: "?DNA分子通常以右手双螺旋形式存在,两条核苷酸链反向平行,且互为互补链。 "?戊糖-磷酸骨架在分子的外铡,在分子表面形成大沟和小沟,碱基堆积于螺旋内部。 "?碱基间通过氢键相互连接,A 和T 以2个氢键配对, G和C 以3个氢键配对。"?螺旋中相邻碱基间相隔0.34nm ,每10个碱基对螺旋上升一圈,螺距为 3.4nm ,直径为2.37 nm 。 b. DNA双螺旋结构的稳定力: ??碱基间形成的氢键/ ??相邻碱基间的疏水堆积力/ ??碱基相互作用的范德华力 尽管氢键使得双链中的碱基间的配对具有特异性(只有互补的两条链之间才能形成DNA双链),但其对于双螺旋的总体上的稳定性并无太大贡献。 核酸分子的稳定性的根源在于碱基对之间的疏水堆积力。作为芳香族化合物,

分子遗传学复习题及答案-

分子遗传学复习题 1.名词解释: DNA甲基化(DNA methylation):是指由DNA甲基化转移酶介导,催化甲基基团从S-腺苷甲硫氨酸向胞嘧啶的C-5位点转移的过程。 ENCODE计划(The Encyclopedia of DNA Elements Project):即“DNA元件百科全书计划”,简称ENCODE计划,是在完成人类基因组全序列测定后的2003年9月由美国国立人类基因组研究所(National Human Genome Research Institute,NHGRI)组织的又一个重大的国际合作计划,其目的是解码基因组的蓝图,鉴定人类基因组中已知的和还不知功能的多个物种的保守序列等在内的所有功能元件。ENCODE计划的实施分为3个阶段:试点阶段(a pilot phase)、技术发展阶段(a technology development phase)和生产阶段(a producttion phase)。 gRNA (guide RNA):既指导”RNA(gRNA,guide RNA),能通过正常的碱基配对途径,或通过G—U配对方式与mRNA上的互补序列配对,指导编辑的进行。 GT--AG规律(GT-AG rule):真核生物所有编码蛋白质的结构基因,其RNA前体在内含子和外显子交界处有两个较短的保守序列,内含子的左端均为GT,右端均为AG,此规律称GT-AG规律。 miRNA:即小RNA,长度为22nt左右,5′端为磷酸基团、3′端为羟基。miRNA广泛存在于真核生物中,不具有开放阅读框架,不编码蛋白质,其基因的转录产物是发夹状结构,在RNaseⅢ酶切后以双链形式存在,是近几年在真核生物中发现的一类具有调控功能的非编码RNA,它们主要参与基因转录后水平的调控。 RNA编辑(RNA editing) :是指通过碱基修饰、核苷酸插入或删除以及核苷酸替换等方式改变RNA的碱基序列的转录后修饰方式。 RNA诱导的沉默复合体(RNA Induced Silencing Complex,RISC):与siRNA结合后可识别并切断mRNA。 RNA指导的DNA甲基化(RNA Directed DNA Methylation RDDM):活性RISC进入核内,指导基因发生DNA的甲基化。 密码子摆动假说(wobble hypothesis):密码子的第1,2位核苷酸(5’→3’)与反密码子的第2,3核苷酸正常配对;密码子的的第3位与反密码子的第1位配对并不严谨,当反密码子的第1位为U时可识别密码子第3位的A或G,而G则可识别U或C,I(次黄嘌呤)可识别U或C或A。 比较基因组学(comparative genomics):是一门通过运用数理理论和相应计算机程序,对不同物种的基因组进行比较分析来研究基因组大小和基因数量、基因排列顺序、编码序列与非编码序列的长度、数量及特征以及物种进化关系等生物学问题的学科。 表观遗传变异(epigenetic variation):基因的碱基序列未发生改变,而是由于DNA甲基化,组蛋白的乙酰化和RNA编辑等修饰导致基因活性发生了变化,使基因决定的表型发生变化,且可遗传少数世代,但这种变化是可逆的。 超基因家族(supergene family):是DNA序列相似,但功能不一定相关的若干个单拷贝基因或若干组基因家族的总称。 沉默子(silencer):一种转录负调控元件,当其结合特异蛋白因子时,对基因转录起阻遏作用。特点很象增强子,但不增强转录,而是减弱转录,故称负增强子。 代谢组学(metabolomics):是对某一生物或细胞在一特定生理时期内所有低分子量代谢产物同时进行定性和定量分析的一门新学科。 端粒(telomere):是由独特的DNA序列及相关蛋白质组成的线性真核染色体的末端结构,它具有防止末端基因降解、染色体末端间的粘连和稳定染色体末端及其精确复制等功能。

浙江大学 研究生 期末考试 分子生物学复习题

分子生物学复习题 一、柯越海教授(导论、基因组与基因组变异、分子生物学与模式动物) 1、Central dogma中心法则 Gene--One enzyme(polypeptide)hypothesis一基因一个酶(多肽)假说: 2、One Gene Beadle和Tatum利用红色面包霉不同类型营养缺陷型突变株,发现营养缺陷和基因突变直接相关,每一种基因突变只阻断某一生化反应,而每一种生化反应都特异性依赖一种酶的催化,从而提出一个基因一个酶假说。 但有些酶由多条肽链聚合才有活性,一条多肽链也可以是多种酶的组成成分。在一个基因一个酶假说基础上产生了一个基因一条多肽链假说,认为一个基因决定一条多肽链的结构。一个基因一条多肽链假说具有普遍意义。 3、Translational medicine转化医学: 转化医学是一种医学研究,试图在基础研究和临床治疗之间建立更直接的关系,把生物医学的研究成果转化为有前景的新型诊断试验、治疗及药物。 加速从循证医学到可持续解决方案的进程,进而解决公众健康问题。 4、Robertsonian translocation罗伯逊易位: 常见人类染色体结构异常,又称着丝粒融合,一种特殊类型的交互易位。两个端部着丝粒染色体在着丝粒处发生断裂,一条染色体的长臂与另一条染色体的短臂发生交换,形成一条大染色体和一条由两个短臂重接而成的小染色体,后者在减数分裂过程中丢失。 短臂携带的遗传信息少,丢失并不影响易位携带者的表型及智力,但其后代有患唐氏综合症的风险。 5、Genome基因组: 生物体所携带的全部遗传信息。即单倍体细胞中全套染色体为一个基因组,或是单倍体细胞中全部基因为一个基因组。 6、Histone组蛋白: 组蛋白是真核生物染色体的基本结构蛋白,是一类保守的小分子碱性蛋白质,富含带正电碱性氨基酸,能够同DNA中带负电磷酸基团相互作用,有五种类型:H2A、H2B、H3、H4、H1。组蛋白H2A、H2B、H3、H4各两分子组成蛋白八聚体,外绕DNA形成核小体,H1独立于核小体外,结合在连接相邻两个核小体的DNA分子上。 7、Chromosome染色体: 细胞内具有遗传性质的物体,是遗传信息载体,是高度螺旋化的染色质,易被碱性染料染成深色。由DNA、蛋白质和少量RNA组成。 8、Polymorphisms多态性: 生物群体内存在和等位基因相关的若干种表现型,是单一基因座等位基因变异性在群体水平的体现。MHC(主要组织相容性复合体)是人类多态性最为丰富的基因系统。 9、Linkage disequilibrium连锁不平衡: 不同座位上等位基因连锁状态的描述,指这些等位基因在同一条染色体上出现的频率大于随机组合的预期值。导致连锁不平衡的原因包括:遗传漂变、突变、选择、基因转换、群体混合等。 10、Genetic marker遗传标记:

分子遗传学重点讲义资料

1.分子遗传学:是研究遗传信息大分子的结构和功能的科学。它依据物理、化学的原理来解 释生命遗传现象,并在分子水平上研究遗传机制及遗传物质对代谢过程的调控。 2. 分子遗传学研究对象:从基因到表型的一切细胞内与遗变异有关的分子事件。不仅仅包括中心法则中从DNA到蛋白质的过程。 分子遗传学研究内容:遗传信息大分子在生命系统中的储存、复制、表达及调控过程。 分子遗传学研究目标:明确遗传信息大分子对生物表型形成的作用机制。 第二章基因 1.从遗传学史的角度看,基因概念大致分以下几个阶段: 泛基因(或前基因)→孟德尔(遗传因子) →摩尔根(基因):基因是功能单位(决定性状),基因是突变单位(基因是突变的最小结构),交换单位(交换的最小结构)三位一体的组合。 →顺反子:在一个等位基因内部发生两个以上位点的突变,如两个突变位点位于同一染色体上,为顺式结构,生物个体表现为野生型;突变位点分别位于两个同源染色体上,为反式结构,生物个体表现为突变型。即其顺式和反式结构的表型效应是不同的。一个具有顺反效应的DNA片段就是一个顺反子,代表一个基因。(或者具有顺反效应的DNA片段就是一个基因) (基因内部这些不同位点之间还可以发生交换和重组:一个基因不是一个突变单位,也不是一个重组单位) →操纵子:基因是一个转录单位,是一个以不同来源的外显子为构件的嵌合体,处于沉默的DNA介质(内含子)中 →现代基因 2.鉴定基因的5个标准 1)基因具有开放性阅读框ORF。 2)基因往往具有一定的序列特征。 3)基因序列具有一定的保守特性。 4)基因能够进行转录。 5)通过基因失活产生的功能改变鉴定基因。(能排除假基因的干扰) 3.蛋白质基因:能够自我复制的蛋白质病毒因子。 朊病毒:一类不含核酸而仅由蛋白质构成的可自我复制并具有感染性的因子。 4.基因组印记(genomic imprinting):由于一些可遗传的修饰作用(如DNA、组蛋白甲基化作用)控制着亲本中某个单一的等位印记基因活性,从而导致个体在发育上的功能差异,使个体具有不同的性状特征。 5.印记基因(imprinted gene):表达特性取决于它们是在父源染色体上还是在母源染色体上的等位基因。 6.组蛋白上的共价键修饰:包括甲基化、乙酰化、磷酸化等在组蛋白上以组合形式。这些修饰的组合能改变染色质的结构,进而影响基因的表达。属于一种表观遗传学现象(epigenetics )。 7.组蛋白密码含义: 1)组蛋白末端不同的修饰作用将诱导与染色质相连蛋白之间的相互亲和力。 2)一个核小体中同一末端的修饰可能是相互依赖的,产生不同组合。 3)染色质高级结构的不同性质极大地依赖于具有不同修饰的核小体共价修饰的局部浓度和

细胞和分子细胞遗传学技术

细胞和分子细胞遗传学技术 发表时间:2012-08-10T08:14:01.827Z 来源:《中外健康文摘》2012年第19期供稿作者:张亚丽[导读] 经典的细胞遗传学技术是指通过制备染色体标本,分析染色体数目和结构改变与人类疾病之间的关系。张亚丽(黑龙江省森工总医院 150040)【中图分类号】R394.2【文献标识码】A【文章编号】1672-5085(2012)19-0151-02 经典的细胞遗传学技术是指通过制备染色体标本,分析染色体数目和结构改变与人类疾病之间的关系。近代分子生物学技术与细胞遗传学技术相结合,形成了细胞和分子遗传学技术。其中比较成熟、具有实用价值的技术是:①荧光原位杂交;②比较基因组杂交。 1 人外周血淋巴细胞染色体检测技术 人外周血淋巴细胞染色体检测属于经典的细胞遗传学技术。用作染色体分析的标本包括外周血、脐带血、羊水、胎盘绒毛组织和肿瘤组织等。外周血是应用最多的材料。其他组织样本染色体制备方法与制备人外周血淋巴细胞的方法基本类同,只是标本的处理和培养条件有所调整。 1.1 基本原理 体外培养的外周血淋巴细胞,在植物凝集素(PHA)的刺激下转化成为能进行有丝分裂的淋巴母细胞;在秋水仙素(纺锤体抑制剂)作用下,淋巴母细胞有丝分裂停滞,从而获得处于有丝分裂中期的淋巴细胞染色体标本。 1.2 基本操作程序 (1)取血3ml(空针用0.1~0.2ml肝素抗凝)。 (2)用7号针头向每瓶培养液(内装有5ml培养液)接种血液标本15~16滴,摇匀后,静置于37℃的隔水式恒温培养箱中培养72h。 (3)终止培养前3h,用7号针头向培养瓶中加入秋水仙素3滴(浓度为20μg/ml)并混匀。 (4)按以下程序制片。 ①收集细胞:由培养瓶中吸取培养物10ml置于离心管中,离,l~,10min(1 500~2 000r/min)离心后,弃上清液,留下沉淀物。 ②低渗处理沉淀物:向沉淀物中加入已预温(37℃)的KCI(0.075mol/L)8ml,充分吹打,以使细胞分散,并将离心管置于37℃水浴中20~30min。 ③固定沉淀物:向每只离心管中加入新鲜配制的甲醇一冰醋酸(3:1)固定液1~2ml(预固定),轻轻混匀后离心10min(2 500r/min),去上清液,留沉淀物;向每只离心管中再加上述固定液8ml,轻轻混匀后静置30min以上,离心10min(2500r/min);然后,再重复固定、离心1次。 ④制作标本片:尽量弃去离心管中的上清液,用吸管轻轻吹打其中的沉淀物,再加入6~7滴新鲜的固定液并混匀,然后,将该沉淀物滴加于已经预冷的载玻片上(预冷载玻片:将清洁载玻片放在盛有蒸馏水的小搪瓷盆中置于4℃冰箱中数小时以上);将标本片晾干后,置于75℃烤箱中烘烤2.5h,然后自然冷却,也可将标本片吹干后用火焰烘干。 ⑤标本片染色:用Giemsa染液(以pH7.4的磷酸缓冲液配制,1.10)染色10min,自来水冲净并晾干。 ⑥显微镜观察:低倍镜下,选择标本片中染色体分散好、无细胞质背景、处于中期核分裂的培养细胞;然后,在高倍镜、油镜下观察染色体形态,进行计数、分组和性别鉴定;拍摄照片以进行正确的核型分析,并将典型图片存档。可根据需要进行染色体的Q显带、G显带、C显带、R显带和T显带。 1.3 注意事项 PHA是体外细胞培养成败的关键因素,其应用浓度应根据各批号PHA的效价作适当调整。秋水仙素的浓度和作用时间影响标本的分析。浓度低或作用时间短,会使标本中的分裂细胞减少;浓度高或作用时间长,会使染色体过于缩短,以致形态特征模糊。采血和接种培养时,不要加入过多肝素,肝素过多可抑制淋巴细胞转化。显带检测,以存放3d左右的标本片效果较好。观察G显带时,检材要用胰酶液消化。消化液的配制和消化条件的控制要认真探索,以获得最佳结果。 2 荧光原位杂交技术(FISH) 2.1 基本原理 2.1.1 原位杂交是用标记了已知序列的核苷酸片段作为探针,通过核酸杂交,直接在组织切片(冷冻切片或石蜡切片)、细胞涂片、染色体制备标本或培养细胞爬片上,检测或定位某一特定的目的DNA或目的RNA的存在。 2.1.2 FISH是以荧光素标记已知序列的核苷酸片段(探针),通过检测荧光来定性和定位目的核酸片段,具有敏感、快速、能同时显示多种颜色等优点,不但能显示中期核分裂象的染色体,还能检测间期细胞核的DNA。 (1)FISH的直接法:以荧光素直接标记DNA探针,特异性强,方法简便。随着荧光标记技术的改进,直接法的敏感性不断提高,是目前常用的方法。 (2)FISH的间接法:以非荧光素标记物标记DNA探针,再桥连一个荧光标记抗体。 2.2 基本方法 2.2.1 探针和试剂。用于FISH的探针有不同类型。已有商品化的探针用于 FISH。avidin-FITC、anti-avidin和PI等检测试剂均可购得。 2.2.2 原位杂交。杂交前标本和探针应经变性处理。 2.2.3 检测。杂交后的标本除去封胶,置2×SSC中洗去盖片。经多步骤漂洗后依次在亲和素一荧光素、抗亲和素抗体和亲和素一荧光素中各孵育20min(生物素标记探针),其间及其后各用1×PBD洗3次,每次2min。若用直接法FISH进行检测,后续免疫结合反应可省略,最后应加抗荧光衰变剂和DNA复染剂后封片。 2.3 注意事项 实验室必须优化FISH操作过程的各项条件。整个杂交和杂交后检测过程要始终保持标本片的湿润,以防载玻片干燥后引起非特异性染色。复染时要避光。根据荧光染料的不同选择相关的荧光显微镜滤色片。 3 比较基因组杂交(CGH)

生命科学导论复习题以及答案

复习题 一.名词解释 五界分类系统: 它是由美国生物学家魏泰克(R.H.Whittaker,1924—1980)在1969年提出的。魏泰克在已区分了植物与动物、原核生物与真核生物的基础上,又根据真菌与植物在营养方式和结构上的差异,把生物界分成了原核生物界、原生生物界、真菌界、植物界和动物界五界 基因组:单倍体细胞中包括编码序列和非编码序列在内的全部DNA分子 病毒:病毒由核酸芯子和蛋白质衣壳组成,核酸芯子为DNA或RNA分子。不是真正的生物。无细胞结构,只能依靠宿主细胞进行复制。分为细菌病毒和真核细胞病毒两大类 类病毒:是一类仅由裸露的RNA组成的颗粒,类病毒与病毒不同的是,类病毒没有蛋白质外壳,为单链环状或线性RNA分子。 遗传漂变:是指当一个族群中的生物个体的数量较少时,下一代的个体容易因为有的个体没有产生后代,或是有的等位基因没有传给后代,而和上一代有不同的等位基因频率。一个等位基因可能(在经过一个以上的世代后)因此在这个族群中消失,或固定成为唯一的等位基因。这种现象就叫“遗传漂变”。 协同进化:协同进化是指两个相互作用的物种在进化过程中发展的相互适应的共同进化,是一个物种由于另一种物种影响而发生遗传进化的进化类型。 生物发生律:生物发生律也叫重演律,1866年德国人海克尔(E. Haeckel)在《普通形态学》中提出“生物发展史可以分为两个相互密切联系的部分,即个体发育和系统发展,也就是个体的发育历史和由同一起源所产生的生物群的发展历史,个体发育史是系统发展史的简单而迅速的重演”。 系统树:根据古生物学、比较形态学、分子生物学等知识按亲缘关系将所有的生物门类排列成一个树形图。 HIV病毒:人类免疫缺陷病毒,是一种逆转录病毒,含两个单链RNA分子侵染哺乳动物的T细胞和其他杀伤细胞,使寄主的免疫能力丧失 分子生物学中心法则: 是指遗传信息从DNA传递给RNA,再从RNA传递给蛋白质,即完成遗传信息的转录和翻译的过程。也可以从DNA传递给DNA,即完成DNA的复制过程。细胞学说:1细胞是有机体,一切动植物由细胞发育而来,并由细胞和细胞产物构成。2细胞作为一个相对独立的基本单位,自身既有生命,又能与其他细胞协调结合构成生命整体,按照共同规律发育有共同生命进程。3新细胞可以由老细胞产生。 物种:物种是生物分类学的基本单位。物种是互交繁殖的相同生物形成的自然群体,与其他相似群体在生殖上相互隔离,并在自然界占据一定的生态位。 趋同进化:不同的生物,在条件相同的环境中,在同样选择压的作用下,有可能产生功能相同或十分相似的形态结构,以适应相同的条件。 同源器官:指不同生物的某些器官在基本结构、各部分和生物体的相互关系以及胚胎发育的过程彼此相同,但在外形上有时并不相似,功能上也有差别。 生态系统:指在一定空间内,生物成分和非生物成分通过物质循环和能量流动相互作用、相互依存而构成的一个生态学功能单位。 食物网:在生态系统中的生物成分之间通过能量传递关系存在着一种错综复杂的普遍联系,这种联系象是一个无形的网把所有生物都包括在内,使它们彼此之间都有着某种直接或间接的关系,这就是食物网的概念 生物多样性:生物多样性是指在一定时间和一定地区所有生物(动物、植物、微生物)物种及其遗传变异和生态系统的复杂性总称。它包括遗传(基因)多样性、物种多样性、生态系统多样性和景观生物多样性四个层次。

分子遗传学考试资料

RNA 的3种剪接方式 内含子从mRNA前体中移走的过程称为RNA剪接。 RNA 的3种剪接方式分别是: 自我剪接内含子(Ⅰ型和Ⅱ型):能够自发地进行剪接,分为Ⅰ型内含子和Ⅱ型内含子两个亚类。Ⅰ型内含子:四膜虫35S rRNA前体的剪接反应是Ⅰ型的典型代表,特点是需要鸟苷 参与;Ⅱ型内含子:不需要鸟苷参与,而由其自身结构决定,特点是形成套索内含子。 蛋白质(酶)参与剪接的内含子(tRNA):主要在tRNA前体中发现。tRNA前体在内切酶作 用下,把发夹形的内含子切除,然后在连接酶的作用下,连接形成成熟的tRNA。 糖核蛋白体(snRNP)参与剪接的内含子:存在于绝大多数真核细胞的蛋白质基因中。在 真核生物的细胞核中,含有大量的小分子RNA,在天然状态下,以核糖核蛋白粒子形式存在,称为snRNP。参与剪接反应的snRNP至少有5种:U1、U2、U5和U4/U6。 U1结合于内含子的5’端; U2结合到内含子的分支点上; U5结合到内含子的3’端,U4/U6结合于U5; U1和U2结合,形成套索RNA结构; U4释放,内含子左侧切断,5’外显子作为独立片段释放; 内含子的3’剪接点切断,形成套索内含子,游离出来; 5’外显子和3’外显子连接形成成熟mRNA。 RNA编辑 一种依赖于特异编辑酶对基因编码的mRNA进行重新修饰的过程,包括对核苷酸进行添加、删除或修饰,从而可能改变了开放阅读框,产生了新的终止密码子或起始密码子,翻译出 氨基酸序列不同的多种蛋白质。 分为两类:一是单碱基的突变;二是碱基的缺失和添加。如U插入/删除;C→U替换;A →I替换;C插入;G插入。 机制: RNA编辑是由3’-5’方向进行,gRNA-Ⅰ的5’端与前体mRNA的未编辑的mRNA的一小段 锚定序列互补,形成短的(10-15bp)锚定双螺旋;

分子遗传学作业

分子遗传学作业 利用分子遗传学方法举例说明一般分子生物实验遗传研究的基本操作流程 教师:张老师

利用分子遗传学方法举例说明一般分子生物实验遗传研究的基本操作流程 一,分子遗传学 分子遗传学(molecular genetics)是指在分子水平上研究基因的结构与功能,以及遗传信息传递的学科。包括DNA的复制、RNA 的复制和转录、翻译以及其调控等。主要由正向遗传与反向遗传构成。其中正向遗传是指通过生物个体或细胞的基因组的自发突变或人工诱变,寻找相关的表型或性状改变,然后从这些特定性状变化的个体或细胞中找到对应的突变基因,并揭示其功能。例如遗传病基因的克隆。反向遗传学是指人们首先是改变某个特定的基因或蛋白质,然后再去寻找有关的表型变化。例如基因剔除技术或转基因研究。简单地说,正向遗传学是从表型变化研究基因变化,反向遗传学则是从基因变化研究表型变化。 二,突变体的筛选 简单的说是指通过特定选择性培养基(抗穗发芽培养基)培养植株然后选择出抗穗发芽突变体植株,让其继续生长繁殖,收取种子的过程。 三,遗传分析 简单的说是指将上述与筛选得到的抗穗发芽植株进行农艺性状的调查(株高,小穗数调查等)然后进行数据的处理级关联分析。 四,遗传群体的构建 简单的说是选取上诉抗穗发芽材料和一个极为相反的材料也就是极端材料杂交得到F1,然后将其自交得到F2群体即分离群体,或者让其自交5-6代得到高代群体即近等基因系群体。 五,遗传图谱的构建

简单的说利用一定的杂交方法(如;早期单倍体杂交发,表形分 析法,细胞学分析法)和分子生物学分析法(如,RFLP、AFLP、RAPD、STS、SNP、EST、SSR标记方法等)将基因定位在定的特定的 染色体区段上的过程。 六,图位克隆 图位克隆(Map - based cloning) 又称定位克隆(positional cloning) 1986 年首先由剑桥大学的Alan coulson 提出,用该方法 分离基因是根据目的基因在染色体上的位置进行的,无需预先知道基 因的DNA顺序,也无需预先知道其表达产物的有关信息,但应有以下 两方面的基本情况:一是有一个根据目的基因的有无建立起来的遗传 分离群体,如F、DH、BC、RI 等。二是开展以下几项工作:1) 首先 找到与目标基因紧密连锁的分子标记;2)用遗传作图和物理作图将目 标基因定位在染色体的特定位置;3) 构建含有大插入片段的基因组 文库(BAC库或YAC);4)以与目标基因连锁的分子标记为探针筛选基 因组文库;5) 用获得阳性克隆构建目的基因区域的跨叠群;6) 通过 染色体步行、登陆或跳跃获得含有目标基因的大片段克隆;7) 通过 亚克隆获得含有目的基因的小片段克隆;8) 通过遗传转化和功能互 补验证最终确定目标基因的碱基序列。其原理是根据功能基因在基 因组中都有相对稳定的基因座,再利用分子标记技术对目的基因进 行精确定位的基础上,用与目的基因紧密连锁的分子标记筛选DNA 文库,从而构建目的基因区域的物理图谱,再利用此物理图谱通过 染色体步移逐步逼近目的基因或通过染色体登陆的方法,最终克隆 目的基因并通过遗传转化实验可以研究目的基因的功能。 七,基因功能的分析 简单的说是借助于生物信息学的方法(如BLAST,GOFigure等)、生物学实验手段的方法(如:基因失活是功能分析的主要手段,转 座子突变库的构建,内含子的归巢突变,基因的超表达用于基因功 能的检测。反义RNA功能和人工合成构建反义RNA等。)和某些特 殊方法(如:噬菌体展示,酵母双杂交,开放阅读框序列标签等)用 已知功能的基因找出未知功能基因的分析方法。

相关文档
最新文档