石脑油脱芳技术研究进展

石脑油脱芳技术研究进展
石脑油脱芳技术研究进展

第41卷第5期2013年3月广州化工

Guangzhou Chemical Industry Vol.41No.5March.2013

石脑油脱芳技术研究进展

肖坤良,唐晓东,李晶晶,温晓红,谯

(西南石油大学化学化工学院,四川

成都610500)

要:对近年来国内外芳烃分离技术研究进行了综述,分析了各芳烃分离技术的原理、特点和发展现状,探讨了吸附分

离、加氢精制和芳烃抽提未来的研究重点和发展方向。鉴于目前工业上脱芳工艺的不足,介绍了作者开发的一种新型芳烃抽提溶剂,具有操作条件温和、脱芳效果好和原料适用范围宽等优点,采用N 2气提回收芳烃,节能效果明显。芳烃分离组合工艺因其原料适应性强和操作灵活,成为芳烃分离领域的一项潜在技术。

关键词:石脑油;脱芳;吸附;加氢;芳烃抽提;组合工艺中图分类号:TE624

文献标识码:A

文章编号:1001-9677(2013)05-0055-03

作者简介:肖坤良(1987-),女,西南石油大学在读硕士研究生,研究方向为石油与天然气加工。

Research Advances in Aromatics Removal Technology of Naphtha

XIAO Kun -liang ,TANG Xiao -dong ,LI Jing -jing ,WEN Xiao -hong ,QIAO Qin

(College of Chemistry and Chemical Engineering ,Southwest Petroleum University ,Sichuan Chengdu 610500,China )Abstract :Research advances in separation technologies of aromatics were reviewed.The principles ,characteristics and development of aromatics removal technologies were analyzed ,such as adsorption ,hydrogenation ,extraction and complexation extraction.Future research focus and developing direction of each aromatics -separation technology were dis-cussed.Considering the disadvantage of existing industrial aromatics -separation processes ,a new complex solvent used for aromatics extraction was introduced.The complex solvent had many advantages such as wild operating condition ,high efficiency for removing aromatics ,and wide range of application for https://www.360docs.net/doc/eb1271246.html,ing nitrogen as stripping gas in process of aro-matics recovery can save energy https://www.360docs.net/doc/eb1271246.html,bination process would be a potential technology in the field of aromatics separation ,for its good adaptation to feedstock and operational flexibility.

Key words :naphtha ;aromatics removal ;adsorption ;hydrogenation ;aromatics extraction ;combined process

石脑油是生产溶剂油、裂解乙烯、重整芳烃的主要原料,目前约有90%的芳烃和10% 30%的车用汽油来自石脑油的催

化重整、54%的乙烯来自石脑油的裂解

[1-2]

。石脑油作为乙烯裂解原料时,其中的芳烃不易裂解,致使乙烯裂解炉结焦,缩短了乙烯装置运行周期,增加了乙烯成本;同时,一些石油烃类溶剂油也因芳烃含量超标而限制了其应用范围。芳烃又是重要的石油化工基础原料,其中BTX (苯、甲苯、二甲苯)更是一级基本有机原料。因此,脱除石脑油中的芳烃并加以回收是优化乙烯裂解原料,提高芳烃产量的一项重要内容。

1吸附分离

吸附分离一般不改变被分离物质的理化性质,且吸附剂易于性能调节和制备,成为国内外研究热点。分子筛具有较大的比表面积、规整的孔道结构、良好的机械强度和稳定性以及对极性分子有很大亲和力等优点,成为制备芳烃吸附剂的首选。

Yang 等[3]指出,苯的π轨道与过渡金属空轨道或未充满的外层轨道重叠形成σ键,键能比传统吸附剂的范德华力要大,因此将基于π-络合的吸附剂用于芳烃分离,可以取得更好的脱芳效果,其中Ag -Y 型分子筛与苯的作用力最强,吸附

热最大。Takahashi 等[4]

将基于π-络合的芳烃选择性吸附剂用

于苯/环己烷混合物的分离,发现SiO 2负载PdCl 2或AgNO 3制得的吸附剂对苯表现出较高的平衡吸附量,当PdCl 2负载量为0.88g /g 时,苯与环己烷的平衡吸附比率达到3.2。Owayai 等[5]

采用X 型分子筛对C 8 C 24的液体石蜡进行脱芳操作,液态下进行,操作温度<120?,芳烃含量可降至<0.01%。解吸剂选用甲醇、乙醇、丙醇或丙二醇等醇类物质,解吸完成

后,采用正己烷、正庚烷或异辛烷冲洗床层。Schreiner 等[6]

则采用NaX 或MgY 作吸附剂,甲苯作脱附剂,操

作温度100 150?。操作时,原料从上往下流动进行吸附,WHSV (重时空速)为0.75 2.0h -1,脱附的物流方向则相反,

采用低空速的从下往上方式,脱附剂WHSV 为0.3 1.5h -1

国内在20世纪90年代,对分子筛吸附分离芳烃的研究也

比较活跃,关于溶剂油脱芳的文章较多,但所见报道[7-9]

大都采用13X 型分子筛作为吸附剂,只是脱附剂的选用略有不同。

吸附分离芳烃的工业化技术一直被美国UOP 公司和法国IFP 公司所垄断,直到国产吸附剂RAX -2000A 在齐鲁石化芳烃装置试验成功,才打破国外垄断格局。近年来未见新的工业化报道。究其原因,主要是:(1)吸附剂的吸附容量低;(2)吸附剂选择性低,含硫化合物也会在吸附剂上吸附;(3)吸附剂床层再生频繁,工艺复杂。因此,要实现吸附剂的工业化,除

56广州化工2013年3月提高吸附剂的吸附容量和选择性外,探索更为简单高效的吸附

剂再生方法,简化吸附剂再生工艺也是提高吸附分离效率,降

低分离过程能耗的有效手段。

2加氢精制

加氢精制是在一定温度和氢压,催化剂存在的条件下,使

芳烃加氢饱和甚至开环,从而降低油品中芳烃含量的一种方

法。芳烃加氢催化剂的研究是加氢精制技术研究的核心内容,

国内外使用的芳烃加氢催化剂主要分为两类:一类是以Pt、Pd

等为代表的贵金属催化剂,多以金属单质状态使用;另一类是

以W、Ni为代表的非贵金属催化剂,多是几种搭配使用,常以

氧化态或硫化态形式存在。

2.1贵金属催化剂的研究

贵金属催化剂比传统硫化物催化剂的加氢性能优越,但它

易被砷、酸性硫等物质毒化而失活,导致催化剂使用周期短,

再生频繁,因而在研制贵金属催化剂时通常都会兼顾其抗硫性

能。近年来,国内外对贵金属加氢脱芳烃催化剂及其抗硫性进

行了大量研究。

Guillon等[10]对Pt-Ge/Al

2O

3

和Pt-Pd/Al2O3催化体系的

加氢活性进行研究,发现Ge的加入降低了芳烃的加氢速率,Pd的加入则增加了催化剂的加氢活性。Xia等[11]将非贵金属引入Pd/Y催化剂,发现Cr和W的加入提高了催化剂的抗硫性,而La、Mn、Mo和Ag的加入则使催化剂的抗硫性能更差。Venezia等[12]将Au加入负载型Pd催化剂,结果表明Au的引入增强了催化剂的抗硫性能。

Jeong等[13]制备的Pt-Pd/(Al-MMS)加氢催化剂,在300?、5.0MPa、剂油比5%(ω)的条件下,可将石脑油裂化渣油(C+9和PGO)中的芳烃含量从73.2%和100%分别降至30%和26%以下。德国南方化学公司[14]开发的ASAT加氢催化剂在压力62bar、氢油体积比712、液时空速1.0h-1的条件下,可使预处理后的LCO中芳烃含量从42.5%降至3.3%,硫含量从380μg/g降至10μg/g以下,含氮化合物全部被脱除。

2.2非贵金属催化剂的研究

非贵金属催化剂加氢活性相对较低,但价格低廉,对砷等杂质敏感性较弱,国内对此研究较多。朱金玲等[15]制备了以W-Ni为活性组分的加氢脱芳催化剂ARO-1。在压力8.0MPa、氢油比500、空速1.0h-1的工艺条件下,该催化剂的脱芳率为58.0%,脱硫率97.8%,脱氮率99.8%。张亮等[16]合成了以HY-SBA-15复合分子筛为载体,Ni-W为活性组分的加氢脱芳催化剂,HY分子筛含量10%时,该催化剂加氢活性最高,在320?、6.0MPa、氢油体积比600、空速2.0h-1的条件下,模型化合物中95.1%的芳烃被加氢饱和。石油化工科学研究院[17]开发的RN-10B柴油深度脱硫脱芳烃催化剂,以Ni-W为活性组分,具有高脱硫、脱芳烃活性及低床层压降的优点。采用RN-10B催化剂在中试装置上处理两种不同原料柴油,精制柴油脱硫率均>99.4%,脱氮率>99.8%,总芳烃脱除率>44.2%,可生产出满足欧Ⅲ柴油排放标准的清洁柴油。

虽然加氢精制技术具有芳烃脱除率高、可脱硫脱氮及增加柴油十六烷值等优点,但也存在着如下缺点:(1)芳烃化合物被饱和,降低了油品辛烷值。(2)芳烃无法回收。(3)操作条件苛刻、耗氢量大和能耗高。提高催化剂的加氢活性和耐硫性能,是减少催化剂用量和延长催化剂寿命的有效手段。当催化剂耐硫性能足够好时,即可减少原料深度脱硫过程,操作费用将大幅降低。由此可见,提高催化剂的加氢活性和耐硫性能,仍是未来几年芳烃加氢催化剂的研究重点。

3芳烃抽提

作为工业上分离重整油和裂解汽油中芳烃的主要手段,芳烃抽提按工艺原理可以分为液-液萃取和抽提蒸馏,无论采用哪种工艺,溶剂的选择都至关重要。单一溶剂的溶解性与选择性往往相互制约,导致溶剂富液中非芳烃含量高,抽余油或芳烃产品中溶剂含量高,因此,人们逐渐把目光转移到了复合溶剂的研究上。美国GTC公司开发的Techtiv-100混合溶剂,主要成分是环丁砜,采取抽提蒸馏技术,与传统液-液抽提工艺相比,只需两台分离塔,因而投资费用减少约25%,能耗降低15%。韩国LG-Caltex Oil公司采用GTC工艺建成了世界上最大的单系列芳烃抽提装置,我国大连石化新建的105?104t/a 芳烃抽提装置也采用该复合溶剂[18]。Mahmoudi等[19]将环丁砜和2-丙醇-环丁砜复合溶剂分别用于石脑油窄馏分脱芳。实验结果表明,40?时复合溶剂对苯的脱除效果始终优于环丁砜纯溶剂,当剂油比为4.0时,环丁砜和复合溶剂可将石脑油中的苯含量分别降至0.812%和0.618%。

马祖健[20]介绍了一种芳烃抽提溶剂-1,3-二氰基丁烷(简称DCB)。实验采用芳烃含量37.6%的重整油为原料,27?连续逆流抽提出绝大部分甲苯和二甲苯时,DCB的用量分别只有环丁砜用量的75%和63%。Gaile等[21]采用萃取-共沸精馏组合工艺分离重整石脑油馏分中的C6 C9芳烃,环丁砜为萃取剂,乙醇为共沸剂。当环丁砜和乙醇与进料的质量比分别为1.88和0.032时,萃余液收率65.4%,其中苯含量1.07%,苯、甲苯、C

8

和C9芳烃收率分别为89.3%、76.9%、69%和24%。

目前,工业化芳烃抽提工艺大都适于芳烃含量较高的原料,对于芳烃含量<20%的芳烃/烷烃混合物,这些工艺在经济上不再具有优势。针对这一问题,笔者对低芳烃石脑油进行了脱芳实验研究,开发了一种新型萃取剂RAH-1。RAH-1与低芳烃石脑油在30 50?条件下进行逆流接触萃取,脱芳后的RAH-1富液经石脑油轻馏分反萃取得以再生,在50

60?条件下对石脑油轻馏分进行N

2

气提蒸馏回收芳烃。整个操作过程均在低温下进行,可利用炼油厂80 90?的低位热源,从而大幅降低了过程能耗。采用该工艺对芳烃含量为8.15%的200?前的直馏石脑油进行脱芳操作,在40?、剂油比1.0和15级萃取条件下,可将石脑油芳烃含量降至0.49%,脱芳石脑油收率为88.4%,芳烃产品纯度为95.7%。

芳烃抽提具有脱芳效率高、芳烃可回收和操作条件较温和等优点,但对原料适应性差。因此,芳烃抽提未来的研究重点除了提高芳烃分离效率、简化工艺流程和降低能耗外,如何提高抽提工艺对原料的适应性,也是一个急需解决的问题。

4其他脱芳技术

芳烃化合物还可通过磺化、络合和膜分离等方法加以脱除。磺化法因制得的产品质量、收率低,酸渣难处理,近年较少采用;络合法操作条件温和、脱芳效率高,但需进一步解决络合剂再生问题;膜分离法分离过程无相变、能耗低、效率高,但膜的分离性能和稳定性还有待提高。

以上脱芳技术的不足促进了脱芳组合工艺的发展。茂名石油化工公司[22]开发了新型的磺化-氧化工艺,利用磺化剂和氧化剂的协同效应,对轻质石油馏分进行深度加工精制,可将馏

第41卷第5期肖坤良等:石脑油脱芳技术研究进展57

程80 120?溶剂油中芳烃含量从2.6%降至0.6%,精制溶剂油收率达到92%。法国石油研究院[23]研发了一套用于生产高纯度对二甲苯的吸附分离工艺(Eluxyl工艺),该工艺除单一型吸附分离工艺外,还设计了一种吸附-结晶组合工艺,生产的对二甲苯纯度高达99.9%。扬子石化[24]采用环丁砜抽提蒸馏-液液抽提组合工艺,对原有芳烃抽提装置进行扩建改造。改造后,与传统液液抽提改造方案相比,能耗降低了15% 24%,苯和甲苯产品中非芳烃含量分别小于40和1000μg/g,收率分别达到99.9%和99.1%。

芳烃分离组合工艺既可根据原料性质选择不同的优化加工方案,又可根据产品质量要求或规格选择不同的工艺流程进行组合,具有原料适应性强、操作灵活、分离效率高、能耗低等优点,具有进一步开发利用的前景。

5结语

随着原油品质的劣化,以及环保法规对燃油标准的要求不断提高,馏分油脱芳是优化乙烯裂解原料和生产清洁燃油的必经过程。吸附分离要着重提高吸附剂的选择性和吸附容量;加氢精制需提高芳烃加氢催化剂的加氢活性和耐硫性能;芳烃抽提研究的重点是扩大现有抽提工艺的适用范围,开发新型抽提溶剂和低能耗的芳烃抽提工艺;芳烃分离组合工艺原料适应性强、操作灵活,将其用于低芳烃石脑油脱芳,有望解决传统芳烃分离技术能耗高、经济效益低的问题,具有进一步开发的潜力。

参考文献

[1]杨宝贵.石脑油加工流程问题的探讨[J].炼油技术与工程,2004,34(10):10-14.

[2]张婧元,孔凡贵,贺德福,等.乙烯裂解原料生产现状[J].化工中间体,2007(8):31-34.

[3]Yang,Ralph H M,Arturo Y,et al.Selective sorbents for purification of hydrocarbons:US,7094333[P].2006-08-22.

[4]Takahashi A,F H Yang,R T Yang.Aromatics/Aliphatics separation by adsorption:New sorbents for selective aromatics adsorption by pi-

complexation.Ind.Eng.Chem.Res.,2000,39:3856-3867.

[5]Owaysi,Fathi A A,Rasheed S.Process for purification of liquid paraf-fins:US,4567315[P].1986-01-28.

[6]Schreiner,James L B,Robert A D,et al.Purification of a hydrocarbon feedstock using a zeolite adsorbent:US,5220099[P].1993-06-15.[7]王云方,朱洪亮,徐经茂,等.6#溶剂油脱芳精制吸附剂再生技术[J].石油大学学报,1996,20(4):87-90.[8]王云方,徐经茂,朱洪亮,等.120号溶剂油吸附法脱芳烃精制技术的研究[J].石油炼制与化工,1996,27(6):32-36.

[9]王耀斌,张文慧,陈兴銮.胜利石脑油液相吸附脱芳烃研究[J].石油大学学报,1995,19(1):81-86.

[10]Guillon E,Lynch J,Uzio D.Characterisation of bimetallic platinum systems:application to the reduction of aromatics in presence of sulfur [J].Catal.Today,2001,65(2-4):201-208.

[11]G F Xia,L J Hu,H Nie.Sulfur-resistant bimetallic noble metal cata-lysts for aromatic hydrogenation of diesel fuel.Shiyou Xuebao,2001,17

(1):25-29.

[12]A M Venezia,V La Parola,B Pawelec.Hydrogenation of aromatics o-ver Au-Pd/SiO2-Al2O3catalysts;support acidity effect[J].Applied

Catalysis A,2004,264(1):43-51.

[13]Kwang-eun Jeong,Soon-yong Jeong.Aromatic reduction of residue oil of naphtha cracking over bimetallic pt-pd catalysts supported on

mesoporous molecular sieve[J].Res.Chem.Intermed.,2008,34(8):

693-701.

[14]Ernst O.Koehler.Zeolite catalysts reduce the aromatics surplus in re-finery and petrochemical stream[J].World Petroleum Congress,2002.[15]朱金玲,王甫村,田然,等.ARO-1催化柴油加氢脱芳催化剂的开发[J].科技导报,2007,25(15):31-34.

[16]张亮,沈健,李会鹏,等.Ni-W/HY-SBA-15催化剂的加氢脱芳烃性能研究[J].石油炼制与化工,2009,40(6):37-41.

[17]刘学芬,聂红,张乐,等.RN-10B柴油加氢脱硫脱芳烃催化剂的研制与工业应用[J].石油炼制与化工,2004,35(7):1-5.

[18]张守运.Techtiv-100溶剂在大连石化芳烃抽提装置的应用[J].中外能源,2009,14(11):83-86.

[19]Jafar M,Mohammad N L.Korean J.Extraction of benzene from a nar-row cut of naphtha via liquid-liquid extraction using pure sulfolane and

2-propanol-sulfolane-mixed solvents[J].Chem.Eng.,2010,27

(1):214-217.

[20]马祖健.一种用于分离芳烃的新溶剂[J].金山油化纤,1994(2):70-74.

[21]A A Gaile,G D Zalishehevskii,N N Gafar.Removal of aromatic hydro-carbons from naphtha.Combined extraction-extractive-azeotropic dis-tillation process[J].Chemistry and Technology of Fuels and Oils,2004,40(4):215-221.

[22]王家华,麦启文,覃小夫,等.一种精细化学品石油溶剂精制工艺方法:中国,CN1112154A[P],1995-11-22.

[23]Inst Francais Du Petrol.Process and apparatus for the separation of p-xylene in C8aromatic hydrocarbonswith a simulatedmovingbed absorp-tion and a crystallization:US,5284992[P],1994-02-08.

[24]王净依,田龙胜,唐文成,等.环丁砜抽提蒸馏-液液抽提组合工艺的工业应用[J].石油炼制与化工,2002,33(6):

檵檵檵檵檵檵檵檵檵檵檵檵檵檵檵檵檵檵檵檵檵檵檵檵檵檵檵檵檵檵檵檵檵檵檵檵檵檵檵檵檵檵檵檵檵檵檵檵檵

19-22.

(上接第54页)

[10]张兴元.用离子交换法从酸沉母液中回收钼[J].中国钼业,1997,21(4):23-25.

[11]刘敏婕,马全智,李辉.离子交换法综合处理钼酸铵生产废水的研究[J].中国钼业,2006,30(3):27-29.[12]姬涛,金奇庭,郭新超,等.钼酸铵生产酸洗废水的治理[J].工业用水与废水,2007,38(4):12-14.

石脑油芳构化操作规程

芳构化操作规程 第一章概述 第一节本装置生产任务及特点 随着我国淘汰70#汽油、2000年全面实现汽油无铅化进程的加快,对于加工流程简单的炼油厂,如何解决低辛烷值汽油组份的深加工问题必将成为技术改造的重点。 轻烃芳构化技术是近十年来发展起来的一种新的石油化工工艺技术,其特点是利用非贵金属改性的沸石催化剂将低分子烃类直接转化为苯、甲苯、二甲苯等轻质芳烃。与目前炼油厂采用的催化重整工艺相比,该技术具有以下几种特征:(1)使用的沸石催化剂具有一定的抗硫、抗氮能力,原料不需要深度精制。(2)其芳烃准备产率不受到原料芳烃潜含量限制。(3)低压、非临氢操作,其操作费用低,基本建设投资少,因而,芳构化技术的开发应用即将成为继催化重整技术以后的又一项生产石油芳烃或高辛烷值汽油组份的新工艺。 多年来,中国石化集团公司洛阳石化工程公司炼制研究所在轻烃芳构化生产芳烃或高辛烷值汽油等方面作了大量的研究开发工作,形成了自己的专有技术,并拥有两项发明专利(ZL93102129.4)。由洛阳石化工程公司炼制研究所等单位共同研究开发的劣质汽油芳构化改质技术已于1998年1月通过了中国石化集团公司(原中国石化总公司)组织的技术鉴定。该技术利用专有催化剂,将诸如焦化汽油、直馏汽油、油田凝析油、重整拔头油、重整抽余油、裂解汽油等轻烃转化为芳烃,用于生产芳烃或高辛烷值汽油。 1998年8月,以直馏汽油为原料的1.0×104t/a芳构化改质工业示范装置在沈阳新民蜡化学品实验厂投入运行。该装置的运转结果达到了预期的目的(即液化石油气+汽油≥90%(wt);汽油ROM≥90),证实芳构化改质技术的可靠和可行性,具备了工业应用的条件。

污水生物脱氮技术研究现状

污水生物脱氮技术研究现状 摘要:概述了传统生物脱氮技术原理及传统的生物脱氮技术,分析了传统生物脱氮工艺的不足,并介绍了同时硝化反硝化、短程硝化反硝化、厌氧氨氧化等几种生物脱氮新技术的机理、特点和研究现状。最后对生物脱氮技术的今后的发展趋势进行了展望及建议,指出高效、低能耗的可持续脱氮工艺是污水处理的发展方向。 关键词:生物处理;生物脱氮;短程硝化反硝化;同步硝化反硝化;厌氧氨氧化Research Status of Biological Removal of Nitrogen from Wastewater Abstract:Summarizes the conventional biodenitrification technology principle and conventional biological removal of nitrogen technology, analyzes the deficiencies of conventional biological removal of nitrogen, and introduces nitration denitrification, shortcut nitrification and denitrification anaerobic ammonium oxidation ,and the features, the mechanism and the current research status of the several biological new technologies,. Finally have a outlook and Suggestions of the new technologies , points out that high efficiency, low energy consumption is the development direction of removal of nitrogen in sewage treatment. Keywords:biological disposal;nitrogen removal;shortcut nitrification;Simultaneous nitrification and denitrifieation;anaerobic ammonium

脱汞综述

脱汞技术综述 摘要:中国式全球范围内汞污染最为严重的地区之一,汞在烟气及大气中的存在方式有三种:元素态汞(Hg0),氧化态汞(Hg+、Hg2+)可颗粒态汞(Hg(p)),汞的存在形式影响其去除效率,本文综述了各种汞的去除方法,详细介绍了燃烧后脱汞的方法及研究现状。 关键词:脱汞;颗粒态汞;氧化态汞;元素态汞; 1.前言 汞是煤中一种痕量元素,在煤燃烧过程中会排入大气,对环境、人体产生极大的危害。有关汞对环境及人体的影响有相当多的文献记载,燃煤锅炉作为造成环境汞污染的主要人为排放源,已经在世界范围引起广泛关注。世界范围内煤中汞含量一般在0.012-0.33mg/kg,平均汞含量约为0.13mg/kg,我国煤中汞的平均含量为0.22mg/kg,我国是一个产煤大国。 2.1汞在煤中的存在形式 煤中汞的存在形式是影响汞排放的重要因素。对于煤中汞的存在形式,许多学者都进行了研究。煤中汞的形态可分为无机汞和有机汞,煤在地质化学中被归为亲硫元素,因而煤中汞主要存在于黄铁矿(FeS2)和朱砂(HgS)中,煤中的汞主要存在于无机矿物质中。 2.2汞在烟气中的存在形式 汞脱除的有效性取决于汞的形态分布,目前认为,在煤燃烧烟气中,汞存在3中基本形态:元素态汞(Hg0),氧化态汞(Hg+、Hg2+)可颗粒态汞(Hg(p))。Hg+烟气及大气中极不稳定,极易转化为二价汞,而Hg2+易溶于水可以被湿式烟气脱硫装置脱除,Hg(p)可以通过常规的污染物控制设备去除,所以氧化态及颗粒态汞比较容易被去除。由于Hg0的高挥发性及在水中的难溶性,在大气中的平均停留时间长达半年至两年,现有的烟气净化设备很难将其去除。因此,燃煤烟气脱汞的关键就是Hg0的脱除。 1.燃烧过程的脱汞 目前燃煤烟气脱汞技术主要分为燃烧前脱汞、燃烧后脱汞以及燃烧后尾部烟气脱汞,其中燃烧后脱汞技术的研究最为广泛。 3.1燃烧前脱汞 燃烧前脱汞属于对源的控制,大大减少了汞进入燃烧过程的量,主要包括洗煤和热解技术。洗煤技术是一种简单而低成本的降低汞排放的方法,采用先进的物理化学洗煤技术,汞的脱除率可达64.5%。目前,发达国家的原煤入洗率已经达40%~100%,而我国只有22%[1],因此,我国应尽快提高原煤入洗率。热解法脱汞则是利用汞的高挥发性,在不损失碳素的温度条件下,使烟煤温和热解把汞挥发出来。比较这两种工艺,洗煤脱汞工艺相对成熟,热解脱汞工艺尚处于实验室研究阶段,有待进一步研究。 3.2燃烧中脱汞 关于燃烧中脱汞技术的研究很少,但针对其他污染物采用的一些燃烧控制技术队汞的除具有积极的作用。主要包括:流化床燃烧、低氮燃烧和炉膛喷入吸附剂法。

新型生物脱氮工艺

新型生物脱氮工艺 摘要介绍六种新型生物脱氮工艺的基本原理和研究现状。随后介绍新型生物脱氮工艺 的原理和特征及工艺的发展前景。 关键词SHARON工艺;ANAMMOX工艺;SHARON-ANAMMOX组合工艺;OLAND 工艺;CANON工艺; 随着现代工业的不断发展、化肥的普遍应用及大量生活污水的排放,废水中的氮污染日益严重。各种水体富营养污染事件频繁爆发,破坏了水体原有的生态平衡,严重污染了周围环境。我国作为水资源十分短缺的国家,严格控制脱氮污水的超标排放是十分必要的。对于氮素污染的治理,国内外常见的工程技术有空气吹脱法、选择性离子交换法、折点氯化法、磷酸铵镁沉淀法、生物脱氮法等。其中,生物脱氮法使用范围广,投资及运转成本低,操作简单,无二次污染,处理后的废水易达标排放,已成为脱氮常用处理方法。 1 传统生物脱氮工艺 传统生物脱氮一般包括硝化和反硝化两个阶段,分别由硝化菌和反硝化菌完成。硝化反应是由一类化能自养好样的硝化细菌完成,主要包括两个步骤:第1步称为亚硝化过程,由亚硝酸菌将氨态氮转化为亚硝酸盐;第2步称为硝化过程,由硝酸菌将亚硝酸盐进一步氧化为硝酸盐。 反硝化作用是在厌氧或缺氧条件下反硝化菌把硝酸盐转化为氮气排除。该转化过程有许多中间产物,如HNO2、NO2和N2O。反硝化菌多数是兼性厌氧菌,在无分子态氮存在 的环境下,利用硝酸盐作为电子受体,有机物作为碳源和电子供体提供能量并被转化为CO2、H2O。 传统生物脱氮工艺在废水脱氮方面起到了一定的作用,但任存在以下问题[1]: (1)在低温冬季硝化菌群增殖速度慢且难以维持较高的生物浓度。造成系统总水力停留时间(HRT)长,有机负荷较低,增加了基建投资和运行费用。 (2)硝化过程是在有氧条件下完成的,需要大量的能耗; (3)反硝化过程需要一定的有机物,废水中的COD经过曝气有一大部分被去除,因此反硝化时往往要另外加入碳源; (4)系统为维持较高生物浓度及获得良好的脱氮效果,必须同时进行污泥回流和硝化液回流,增加了动力消耗及运行费用; (5)抗冲击能力弱,高浓度氨氮和亚硝酸盐进水会抑制硝化菌的生长;

芳构化反应机理

芳构化反应机理

芳构化活性越低;在同碳数下,烯烃比烷烃更容易生成正碳离子,因而其活性较高;另外,异构烷烃因可以生成相对稳定的叔碳正碳离子,因此其芳构化活性高于正构烷烃。当用烯烃含量较低的FCC装置产的C4液化气制芳烃时,由于原料中烷烃含量高,活化时需要发生更多的裂解或脱氢反应,因此,虽然此后的烯烃低聚、环化反应为强放热,但整个芳构化反应会表现为净吸热。另一方面,当用烯烃含量较高的原料,如裂解抽余碳四或裂解碳五为原料生产芳烃时,由于这些烯烃可以直接通过吸附变成正碳离子,进而发生低聚、环化反应生成芳烃前体,减少了裂解或脱氢反应生成正碳离子环节,所以整个芳构化反应会表现为净放热反应。 同催化重整反应相比,芳构化反应相对节能,而重整反应耗能较大。这主要是因为:重整反应采用C6-C8烷烃为原料,主要发生脱氢反应,因此只有吸热过程;虽然芳构化技术中的芳烃前体也必须通过脱氢反应才能生成芳烃(吸热),但是芳构化技术中采用的轻烃原料一般含有相当一部分烯烃,因此总体上脱氢反应比重整工艺减少。其次,由于轻烃分子在生成芳烃时必须经过低聚和环化反应,而这些反应是强放热反应。因此,同重整反应相比,芳构化反应吸热程度低,而且其中一些放热反应所放出的热量可抵消另外一些吸热反应所吸收的热量(吸热和放热的平衡点根据原料性质不同而不同)。 值得注意的是,虽然烯烃和二烯烃容易芳构化,但对于进入反应器的芳构化原料中的烯烃和二烯烃含量还是要做适当限制。这是因为,烯烃浓度过高时容易在设备及催化剂表面发生聚合,缩短催化剂单程操作周期。二烯烃的危害甚于单烯烃。在实际生产中,一方面要通过原料控制二烯烃的含量,同时要注意保持足够的芳构化干气循环。另外,轻烃中的水分、含氧化合物和氮也是催化剂的毒物,应该加以严格控制。水分和含氧化合物反应生成的水分能够钝化催化剂上的酸性活性中心,缩短催化剂的寿命;而碱性氮则能中和破坏酸性中心,缩短催化剂单程操作周期及催化剂寿命。 不同烃分子生成正碳离子的途径及其相对难易

轻烃芳构化技术及应用

轻烃芳构化技术及应用 近几年来,随着石油资源的日益减少,将丰富廉价的轻烃,转变为高附加值的苯、甲苯、二甲苯(BTX)的研究已成为当今重要的研究课题和热点问题。 轻烃芳构化是近年来发展起来的一种生产芳烃的新工艺,用于生产芳烃或高辛烷值汽油的调和组分。轻烃芳构化基本机理是低碳烯烃在固体酸表面活化成正碳离子,然后转化为低碳烯烃中间物种,再低度共聚生成六碳至九碳烯烃等低聚物。低聚物再通过环化、异构化和脱氢等反应步骤生成芳烃。 轻烃芳构化技术主要为非临氢,有两种工艺路线。 一种是芳烃型芳构化工艺路线,原料可以为轻烯烃和碳3以上烷烃,包括炼厂气、液化气、混合C4、裂解C5、油田轻烃等。主要产物是以三苯为主的芳烃(液相产品芳烃含量98%以上),反应温度较高(高于500℃),不仅可以转化碳四中的烯烃,同时碳四烷烃也可以得到转化,缺点是会产生较多的干气(15%左右)。 另一种是汽油型芳构化工艺路线,以高辛烷值汽油调合组分作为目的产物,原料可以为直馏汽油、加氢焦化汽油、轻石脑油、混合碳四、液化石油气等,反应温度较低(一般300-450℃),干气产量较低(低于2%),所得汽油辛烷值较高(RON 85-93或更高)。 国外在上世纪八十年代开始低碳烃的芳构化技术研究,陆续开发出以LPG为原料的移动床芳构化Cyclar工艺(UOP/BP)、采用固定床的M2-Forming工艺(Mobil)和Aroforming工艺(IFP)等轻烃芳构化技术。 20世纪80年代初,国内开始对轻烃芳构化催化剂进行探索。华东理工大学和山西煤化所分别对金属改性的ZSM - 5 沸石用于轻烃芳构化进行研究;抚研院以富含丁烯的C4 馏分、丙烷及混合C3 为原料,在改性的HZSM- 5沸石催化剂上

燃煤火电机组烟气脱汞工艺中卤族元素的影响

燃煤火电机组烟气脱汞工艺中卤族元素的影响 陶叶 (中国电力工程顾问集团公司,北京市 100120) Impact of Halogen on mercury removal in coal-fired power plant TAO Ye (China Power Engineering Consulting Corporation,Beijing 100120,China) ABSTRACT: Control of Mercury pollution from coal-fired power plant flue gas is receiving worldwide attention, and mercury removal technologies have been applied in some U.S. power plant. The tests in these power plants have found that halogen, especially bromine, can significantly affect the mercury removal efficiency. This paper focused on the influence of halogen, the content of bromine in coal, and the mercury removal process by using bromine. On the basis, this paper proposed a technical route for mercury pollution control in Chinese power plant. KEY WORDS: coal-fired power plant;mercury removal from flue gas;bromine;activated carbon injection;multi-pollutant removal; 摘要:燃煤火电机组烟气汞污染控制正受到全球广泛关注,烟气脱汞工艺在美国部分电厂已有成功应用。电厂测试结果发现卤族元素,特别是溴元素,对烟气脱汞的效率具有显著影响。本文重点从卤族元素的影响、煤中卤族元素的含量,以及溴应用于脱汞的工艺流程等方面进行了研究和分析。在此基础上,提出了一条适合我国国情的燃煤火电机组汞污染控制的技术路线。 关键词:燃煤火电机组;烟气脱汞;溴;活性炭喷射法;协同脱除 0 引言 我国高度重视燃煤火电机组大气汞污染控制工作,环境保护部已部署在五大电力集团开展燃煤电厂大气汞污染控制试点工作,拟在16个电厂建设烟气脱汞示范项目。目前已经确定了进行试点的电厂,各发电集团大力开展相关研究工作,即将进行电厂汞排放量的在线测试。在我国最新版《火电厂大气污染物排放标准》(二次征求意见稿)中也首次明确提出了要限制大气汞污染的排放,并对各类型电厂的汞排放限制都定为0.03mg/m3。未来几年,在我国部分高汞烟气及褐煤机组电厂将有望安装烟气脱汞工艺。 根据美国电厂烟气脱汞工艺运行情况来看,卤族元素,特别是溴元素,对烟气脱汞效率有显著的影响。因此,本文将重点从卤族元素的影响、煤中卤族元素的含量,以及溴应用于烟气脱汞的工艺流程等方面进行研究和分析。 1 卤素对烟气汞脱除的影响 煤中(和烟气中)的氯含量越高越有利于汞的氧化过程,这已成为国内外研究界的共识。图1总结了美国环保总署的信息收集部门(US EPA ICR)[1]以及其他研究人员[2]对美国具有代表性的电厂进行测试的结果。从图中可以看出,随煤中氯含量的增加,烟气中元素汞明显减少,即大量元素汞向氧化态和颗粒态转化。除现场测量外,许多小型试验台的试验结果也证明了氯能促进汞的氧化,并随之提高汞的脱除效率。

生物脱氮新技术研究进展_周少奇

第1卷第6期2000年12月   环境污染治理技术与设备 T echniques and Equipment fo r Enviro nmental Pollutio n Co ntrol   V ol.1,N o.6 Dec.,2000生物脱氮新技术研究进展① 周少奇 周吉林 (华南理工大学环境科学与工程系,广州510640) 摘 要 本文对短程硝化反硝化、同时硝化反硝化及厌氧氨氧化等生物脱氮新技术的研究和开发 进展进行了简单的综述和讨论,并指出了这些新技术的特点和研究开发应用的前景。 关键词:生物脱氮 短程硝化反硝化 同时硝化反硝化 厌氧氨氧化 脱氮处理是废水处理中的重要环节之一。废水中氮的去除方法有物理法、化学法和生物法三种,而生物法脱氮又被公认为是一种经济、有效和最有发展前途的方法之一。目前,废水的脱氮处理大多采用生物法。废水生物脱氮技术经过几十年的发展,无论是在理论认识上还是在工程实践方面,都取得了很大的进步。 传统生物脱氮途径一般包括硝化和反硝化两个阶段,硝化和反硝化反应分别由硝化菌和反硝化菌作用完成,由于对环境条件的要求不同,这两个过程不能同时发生,而只能序列式进行,即硝化反应发生在好氧条件下,反硝化反应发生在缺氧或厌氧条件下。由此而发展起来的生物脱氮工艺大多将缺氧区与好氧区分开,形成分级硝化反硝化工艺,以便硝化与反硝化能够独立地进行。1932年,Wuhrmann利用内源反硝化建立了后置反硝化工艺(post-denitrification),Ludzack和Ettinger于1962年提出了前置反硝化工艺(pre-denitrificatio n),1973年Barnard结合前面两种工艺又提出了A/O工艺,以及后又出现了各种改进工艺如Bardenpho、Phoredox(A2/O)、UC T、JBH、AAA工艺等,这些都是典型的传统硝化反硝化工艺[1]。 然而,生物脱氮技术的新发展却突破了传统理论的认识。近年来的许多研究表明[2~12]:硝化反应不仅由自养菌完成,某些异养菌也可以进行硝化作用;反硝化不只在厌氧条件下进行,某些细菌也可在好氧条件下进行反硝化;而且,许多好氧反硝化菌同时也是异养硝化菌(如Thiosphaera pantotropha菌),并能把NH4+氧化成NO2-后直接进行反硝化反应。生物脱氮技术在概念和工艺上的新发展主要有:短程(或简捷)硝化反硝化(shortcut nitrification-denitrification)、同时硝化反硝化(simultaneous nitrification-denitrifi-cation-SND)和厌氧氨氧化(Anaerobic Ammonium Oxidation-ANAMMOX)。 ①广东省重点科技攻关项目、广东省自然科学基金项目(980598)、广州市重点科技攻关项目资助

燃煤烟气汞污染控制技术

燃煤烟气汞污染控制技术 3 田立辉 李彩亭 曾光明 高 招 罗 瑶 (湖南大学环境科学与工程学院,湖南长沙410082) 摘要 介绍了燃煤电站汞的排放状况,论述烟气中汞的存在形式以及影响其存在形式的因素。介绍当前燃煤电站汞排放控制技术的研究进展,并对各种烟气脱汞技术的特点和净化效率进行对比。最后对烟气脱汞技术的研究趋势进行了展望,提出了适合于我国国情的研究方向。 关键词 燃煤烟气 汞的存在形式 影响因素 烟气脱汞技术 3教育部科学技术研究重点项目(105126);湖南省自然科学基金项目(03JJ Y 2002);新世纪人才支持计划项目(NECT 20420769)。 0 引言 煤作为一次性能源的主要利用方式是燃烧,其燃烧产物会对环境造成严重的破坏。煤燃烧过程中生成的污染物除S O 2、NO x 和C O 2以外,还有各种形态的汞。汞及其化合物可通过呼吸道、皮肤和消化道等不同途径侵入人体,造成神经性中毒和深部组织病变,而且汞毒性具有积累性,往往需几年或十几年才有表现,所以燃煤过程中的汞污染控制问题越来越受到重视 [122] 。在我国煤炭是主要燃料能源,据统计2003年 我国燃煤电站汞排放量达到8618t ,废渣汞排放量为28194t [3] 。可以预见,防止燃煤汞污染是21世纪电 力工业最重要的环保课题之一。1 烟气中汞的存在形式及其影响因素111 汞的存在形式 烟气中汞的存在形式主要包括3种[4] :单质汞 (Hg 0),化合态汞(Hg +和Hg 2+)和颗粒态汞。通常而言,化合态汞易溶于水可被湿法洗涤系统所捕获而脱除 [5] ,颗粒态汞可以通过除尘器除去,所以这2种形 态的汞相对比较容易除去。而单质汞容易在大气中通过长距离的大气运输,其在大气中的平均停留时间可达半年至两年,是最难控制的形态之一。因此,对单质汞污染的控制成了当前研究的重点和难点。112 影响烟气中汞存在形式的因素 烟气中汞的存在形式对汞的脱除效率有重要影响。影响烟气中汞存在状态的主要因素包括烟气温度、烟气气氛和烟气成分等。 (1)烟气温度及烟气气氛的影响。刘迎晖[6]等人研究发现汞在氧化性气氛下,当温度>800K 时单 质汞是主要存在形式;温度<600K 时氯化汞是主要形态;在600~1000K 有少量的氧化汞生成;在温度>400K 的还原性气氛中99%的汞以单质汞的形式存在。 (2)烟气成分的影响。燃烧后烟气中含有的微 量成分对元素汞的氧化有重要影响,Laudal D L [7] 等人对不同气体组分存在条件下汞的氧化进行了研究,给出了不同气体存在时氧化态汞与元素汞的比例,见表1。 表1 不同气体组分存在条件下汞的形态分布[7] 气体组分 氧化态汞Π% 元素汞Π% Cl 2 84181512飞灰 1109910HCl 0139917S O 2 0179913飞灰、Cl 2、S O 228157115飞灰、HCl 、S O 2 1139817NO ΠNO 2 2119719飞灰、NO ΠNO 2、Cl 278152115飞灰、NO ΠNO 2、S O 2 37116219S O 2、NO ΠNO 2、HCl 0119917飞灰、HCl 、S O 2、NO ΠNO 2、Cl 2 4617 5317 2 烟气脱汞技术 汞排放控制技术的研究目前主要集中在3个方面:燃烧前脱汞、燃烧中脱汞和燃烧后脱汞,其中燃烧后脱汞即烟气脱汞是目前研究的重点。烟气脱汞的方法主要有吸附剂法和化学氧化法。211 吸附剂法21111 活性炭法 在烟气中喷入活性炭是研究最为集中且最为成 8 4环 境 工 程 2008年10月第26卷第5期

芳构化反应机理

2.2 工艺原理及特点 液化气芳构化装置的目的是将来自界区的碳四组分其它适宜的原料在DLP催化剂的作用下,通过芳构化反应转化为含有苯、甲苯及二甲苯的混合芳烃,同时生成含有氢气、甲烷及碳二至碳五馏分的气相。然后通过一系列的分离,最终产出符合标准的混合芳烃、轻芳烃及重芳烃,同时副产低烯烃的液化气及少量的干气。 C4液化气等低碳烃在芳构化催化剂中进行芳构化反应的过程较为复杂,以烷烃为例一般要经过脱氢、齐聚、环化及芳构化等过程最终才能生成芳烃,而烯烃的转化则没有脱氢的过程。上述过程中,烷烃脱氢的过程为吸热过程,而齐聚、环化及芳构化过程为放热的过程,所以烷烃的芳构化生成芳烃的能耗要比烯烃的芳构化过程要高。在低温条件下生产轻芳烃汽油组分时,齐聚、环化及芳构化的反应为主导反应,所以是一个强的放热反应。 2.2.1 工艺原理 反应机理 液化石油气等轻烃的芳构化机理十分复杂。一般认为,轻烃在分子筛的酸中心上芳构化反应时经历下列步骤:a)通过在酸中心上发生化学吸附生成正碳离子得到活化; b)正碳离子进一步脱氢和裂解生成乙烯、丙烯、丁烯和戊烯。这些小烯烃是芳烃分子的建筑单元。该步反应属于吸热反应;c)小烯烃分子在B酸中心上低聚(二聚、三聚)生 成C 6-C 8 烯烃,后者再通过异构化和环化生成芳烃前体(带6元环的前体)。该步反应属 于强放热反应;d)芳烃前体在L酸中心上通过脱氢生成苯、甲苯和C 8 等芳烃。这步反应属于吸热反应。在上述反应中,原料在酸中心上生成正碳离子的步骤最为关键,它决定了芳构化反应的活性和选择性。 C 3-C 8 之间的轻烃分子都可以在催化剂的酸中心上通过脱氢和裂解生成乙烯、丙烯、 丁烯和戊烯。当反应温度和催化剂的酸度相同时,从不同碳数的轻烃原料出发,可以得到具有同样热力学平衡分布的乙烯、丙烯、丁烯和戊烯。由于基本建筑单元的种类和浓度分布相近,所以从不同碳数的轻烃原料出发都可以得到苯、甲苯和C 8 等芳烃产物,并且原料对芳烃产物的分布影响不大。但是,若两种芳构化原料的碳数不同(如C3、C4、C5、C6、C7、C8)、结构不同(如直链烃、支链烃和环烷烃)和碳-碳键饱和程度不同(如烷烃、单烯烃、二烯烃),则其芳构化的活性、热效应和芳烃产率会有一定差别。一般来说,碳数越小的原料在酸中心上生成正碳离子越困难,其芳构化活性越低;在同

工艺知识芳构化

工艺知识芳构化 工艺知识 装置概况: 1、轻油芳构化装置,产品较重终馏点较高 2、装置改造,利用稳定塔再上溶剂油装置生产溶剂油 3、由于分离溶剂油的可操作性,改为利用溶剂油装置对轻油芳构化原料进行预处理脱除重组分---拔精粗200# 4、正值经济危机之际,原料油涨价而汽油降价,进行液化气芳构化流程改造,再利用溶剂油装置脱轻柴 5、为了更加容易控制反应器床层温度进行反应器改造,并更换R101B/D催化剂为液化气芳构化的专用催化剂 为了更加容易,期间进行的小流程改造不断;大家也看到了,改造的地方也比较多,都是为了操作稳定容易减少劳动强度与损耗,希望大家在以后的操作生产中能提出更好的流程改造方案。 1、富压机中间冷却器退油 2、溶剂油装置的脱丁烷塔顶放空至罐区 3、V110放空改至液化气外送线 4、吸收塔干气调节阀前改至液化气外送至液化气产品罐给罐区补压,调节阀后补压;由于液化气芳构化的催化剂不同,分阀前阀后补压 5、烧焦再生的补风线加调节阀控制补风量,补风管线加粗防冻 6、再生系统加放空调节阀改造,空压机入口加调节阀 7、P301、P302外送合在一起;P303外送与P305合在一起,P304外送与P306合在一起 8、仪表风分净化风与非净化风两条线,烧焦用非净化风 9、V101加放空调节阀 10、V106向V101压油流程 11、脱色塔进料的分布器堵,改用脱己烷塔当脱色塔使用 液化气芳构化的理论知识: 用富含烯烃(丁烯)的液化气作为原料,在反应器进行液化气芳构化 轻油芳构化的主要反应是:裂化、齐聚、环化、脱氢 液化气芳构化的主要反应为:叠合反应(属齐聚反应)此反应为强放热反应,所以反应器床层温度是温升而不是温降,有效地控制床层温度是重点;还进行环化、脱氢反应。 叠合反应是指两个或者两个以上的烯烃分子生成一个高分子量的烯烃的过程。 原料中烯烃含量越高,反应放出的温度越多,床层温度越高,反应周期缩短。 液化气芳构化的影响因素: 1、原料组成对芳构化反应的影响 随着原料中烯烃含量的增加,液体收率和芳烃增加,干气产率下降。 丁烯比丙烯更易发生芳构化反应。同等烯烃总含量的原料中,丁烯含量越高,其中液体产物收率越高,干气产率越低。同时,丁烷较丙烷更易发生芳构化反应。 液化气芳构化生成的芳烃中以轻质芳烃为主,但芳烃的具体分布有一定的差别,其中苯含量变化较大。主要表现为,苯含量随着原料中丁烯含量的升高而降低,相应的二甲苯的含量随着丁烯行

石脑油的分类

石脑油 石脑油又叫化工轻油,是以原油或其他原料加工生产的用于化工原料的轻质油。由于石脑油是炼化企业一次、二次加工能力的副产物,而没有单独用于生产石脑油的装置,因此,石脑油作为混合物,其产品的指标复杂多样。通常情况下,根据制取石脑油的工艺以及装置,将石脑油分为以下四类: 1、直馏石脑油 常减压蒸馏装置可以从原油中分离出各种沸点范围的产品和二次加工装置 原料。 常压塔能生产的产品有:塔顶生产汽油组分,重整原料、石脑油;常一线出喷气燃料(航空煤油)、灯用煤油、溶剂油、乙烯裂解原料;长二线出轻柴油、裂解原料;常三线出重柴油、润滑油和基础油;常压塔底出常渣。 减压塔能生产如下产品:减一线出重柴油、乙烯裂解原料;减二线可出乙烯裂解原料;减压各侧线油视原油性质和使用要求而可作为催化裂化原料、加氢裂化原料、润滑油基础油原料和石蜡的原料;减压渣油可作为延迟焦化、溶剂脱沥青、氧化沥青和减粘裂化的原料,以及燃料油的调合组分。 常减压装置生产的多为直馏石脑油,由于进口原油使用权的不断放开,直馏石脑油的市场份额将会增加。由于各家所产直馏石脑油指标不同,因此调油、切割溶剂油以及个别下游重整装置均可采用。 2、焦化石脑油 延迟焦化是重质油如重油、减压渣油、裂化渣油甚至土沥青等在高温条件下进行裂解和缩合反应,生成焦化、焦化柴油、焦化蜡油和焦化气体和焦炭。 延迟焦化装置产出的石脑油称为焦化石脑油,由于延迟焦化中很少有异构化、芳构化等反应,所以焦化石脑油中异构烷烃及芳烃含量相应较低,而硫、氮等杂质含量要高许多,与直馏石脑油相比,焦化石脑油芳烃潜含量含量较低。目前焦化石脑油为了达到重整原料要求都需要加氢精制或者预加氢。

燃煤电厂烟气脱汞技术综述

燃煤电厂脱汞新技术介绍 (1) 摘要: (1) 关键词:燃煤脱汞技术 (1) 1、汞在煤中的存在形态和危害 (1) 2、烟气中汞的形态分布 (1) 3、燃煤电厂脱汞技术研究现状 (2) 3.1 燃烧前脱汞 (2) 3.2 燃烧中脱汞 (2) 3.3 燃烧后脱汞 (2) 4、利用现有的烟气控制设备脱汞 (3) 4.1 烟气循环流化床反应器 (3) 4.2 除尘设备 (4) 4.3 脱硫设施 (4) 5、化学沉淀法脱汞 (5) 5.1 碘化钾溶液洗涤法 (5) 5.2 氯化法 (6) 5.3硫化钠法 (6) 5.4化学氧化法脱汞 (6) 6、其他方法脱汞 (6) 6.1紫外线照射烟气脱汞技术 (6) 6.2光催化氧化技术 (7) 7、结论 (7) 参考文献 (8)

燃煤电厂脱汞新技术介绍 摘要: 在世界范围内,由于人类活动造成的汞排放占汞排放总量的10%~30%。燃煤电厂汞的排放占主要地位。目前,在现有排放标准的基础上,现行的控制技术已基本解决了烟尘、SOx 和NOx的排放问题,相应的大气污染物控制设备也得到广泛应用。相比较而言,由于烟气中的汞排放浓度一般只有10 μg/m3左右,汞的危害与控制技术研究一度遭到忽视。2010年我国原煤消耗31.8亿吨,是2000年的2.41倍,其中电煤消耗18亿吨。由于煤炭是中国的主要一次性能源,而在煤炭利用过程中,会有大量的汞被释放到大气中。因此,研究燃煤电厂汞污染问题显得十分重要。 关键词:燃煤脱汞技术 1、汞在煤中的存在形态和危害 对于煤中汞的存在形式,许多学者都进行了研究。Finkelman在煤中发现了含汞的硫化物和硒化物,Ca-hill和Shiley发现煤中方铅矿含汞,Dvornikov还提出煤中汞主要以辰砂、金属汞和有机汞化合物形式存在。煤在地质化学中被归为亲硫元素,因而煤中汞主要存在于黄铁矿(FeS2)和朱砂(HgS)中,煤中的汞主要存在于无机矿物质中。我国储煤中汞的分布不均,而且煤种、产地不同,汞的含量差别也很大,大约在0.308~l5.9mg/kg之间,其中,褐煤中汞的含量通常较少。煤中汞的存在形态可分为无机汞、有机汞,其中无机汞由于其较强的亲硫特性而主要分布在黄铁矿中。 人体对汞具有一定的解毒和排毒能力,微量的汞在人体内不致引起危害。汞毒可分为金属汞、无机汞和有机汞三种。金属汞、无机汞化合物对人体威胁较小,有机汞化合物的毒性最大。金属汞和无机汞损伤肝脏和肾脏,但一般不在身体内长时间停留而形成累积性中毒。金属汞蒸气有高度的扩散性和较大的脂溶性,侵入呼吸道后可被肺泡吸收的量很高并可经血液运至全身,在器官内被氧化而对人体造成损害。有机汞不仅毒性高,能伤害大脑,而且比较稳定,在人体停留的时间长,所以即使剂量很少也可累积致毒。环境中的汞可被微生物作用转化为有机态,并被生物富集,再通过食物链进入人体,危害巨大。 图1燃煤汞排放的迁移过程 2、烟气中汞的形态分布 煤燃烧过程中,大部分的汞随着烟气排入大气,小部分残留在底灰和熔渣中。烟气中汞主要以元素汞(Hg0)、化合态态汞(Hg+和Hg2+)和颗粒态汞(HgP)三种形态存在。在通常的炉

化工毕业设计 轻烃芳构化

克拉玛依职业技术学院 毕业设计 题目;指导教师; 班级;精化1131 姓名;完成日期;2014/5/5 克拉玛依职业技术学院制时间;2014/5/5

石油化学工程系 目录 1前言 (1) 2轻烃芳构化技术概况 (2) 3 GAP工艺技术 (3) 3.1 GAP-I工艺技术及其工业应用 (4) 3.2 GAP-II工艺 (9) 3.2.1 GAP-II工艺流程和特点 (9) 3.2.2 原料及芳构化催化剂的性质 (9) 3.2.3 GAP-II工艺主要工艺条件 (10) 3.2.4 GAP-II工艺产品分布和产品性质 (11) 3.2.5 GAP-II工艺装置的总投资 (12) 3.2.6 芳构化改质装置的加工费用 (12) 3.3 GAP-III工艺 (13) 3.3.1 GAP-III工艺流程和特点 (13) 3.3.2 GAP-III工艺主要工艺条件 (13) 3.3.3 GAP-III工艺产品分布及产品性质 (14) 3.3.4 GAP-III工艺的装置总投资 (15) 3.3.5 GAP-III工艺的加工费用 (15) 3.4 GAP工艺应用小结 (16) 4 GTA工艺及其工业应用 (17) 4.1 GTA-I工艺 (17) 4.1.1原料及催化剂的性质 (17) 4.1.2工艺流程 (17) 4.1.3主要工艺参数 (18)

4.1.4 产品分布及产品性质 (18) 4.1.5 GTA-I工艺的装置总投资 (19) 4.1.6 装置加工费用 (20) 4.2 GTA-II工艺及其工业应用 (20) 4.2.1 原料性质 (20) 4.2.2 GTA-II工艺流程 (21) 4.2.3主要工艺参数 (22) 4.2.4产品分布及产品性质 (22) 4.2.5 GTA-II工艺的装置总投资 (23) 4.2.6 GTA-II工艺的装置加工费用 (23) 4.3 GTA工艺小结 (24) 5 结论 (24)

三种生物脱氮工艺研究现状

2016 年春季学期研究生课程考核 (读书报告、研究报告)考核科目:专业新技术 学生所在院 :市政环境工程学院 (系) 学生所在学科: 学生姓名:左左 学号: 学生类别:工学硕士 考核结果阅卷人 三种生物脱氮工艺研究现状 一、前沿

氮是造成水体富营养化的一种主要污染物质,尤其是当水体有机性污染物降低到一定标准之后。为了维护生态环境,保障人体健康,国家的污水排放标准逐步严格,对氮的去除也有了更高的要求。因此,研究具有高效脱氮功能的工艺越来越重要。 传统的生物脱氮理论[1]包括硝化和反硝化两个过程,分别由自养型硝化菌和异氧型反硝化菌完成。其生物脱氮原理为: 氨化反应是在氨化菌作用下,有机氮被分解转化为氨态氮,这一过程称为氨化过程,氨化过程很容易进行;硝化反应由好氧自养型微生物完成,在有氧状态下,亚硝化菌利用无机碳为碳源将NH4+氧化成NO2-,然后硝化菌再将NO2-氧化成NO3-的过程。反硝化反应是在缺氧状态下,反硝化菌将亚硝酸盐氮、硝酸盐氮还原成气态氮 (N2 )的过程。反硝化菌为异养型微生物,多属于兼性细菌,在缺氧状态时,利用硝酸盐中的氧作为电子受体,以有机物 (污水中的 BOD 成分)作为电子供体,提供能量并被氧化稳定。具体流程图如下: 传统生物脱氮途径 近十多年来,许多国家加强了对生物脱氮的研究,并在理论和技术上都取得了重大突破。其中主要包括短程硝化反硝化,厌氧氨氧化和同步硝化反硝化等,以及它们的组合工艺[2]。这些新的理论研究表明: ①硝化反应不仅由自养菌完成,某些异养菌也可以进行硝化作用; ②反硝化不只在厌氧条件下进行,某些细菌可在好氧或缺氧条件下完成反硝化; ③许多好氧反硝化菌同时也是异养硝化菌,并能把NH4+氧化成NO2-后,直接进行反硝化反应。 二、研究现状 1、短程硝化反硝化 短程硝化反硝化[3]是将氨氮氧化控制在亚硝化阶段,然后进行反硝化,省去了传统生物脱氮中将亚硝酸盐氧化成硝酸盐,再还原成亚硝酸盐两个环节。因此,该技术具有很多优点: 可节省约25%氧供应量,降低能耗; 可节省反硝化所需的碳源,在C/N 一定的情况下,提高TN的去

水处理生物脱氮除磷工艺

生物脱氮除磷工艺 第一节 概述 一、营养元素的危害 氮素物质对水体环境和人类都具有很大的危害,主要表现在以下几个方面: 氨氮会消耗水体中的溶解氧; 氨氮会与氯反应生成氯胺或氮气,增加氯的用量; 含氮化合物对人和其它生物有毒害作用:① 氨氮对鱼类有毒害作用;② NO 3- 和NO 2-可被转化为亚硝胺——一种“三致”物质;③ 水中NO 3-高,可导致婴儿患变性血色蛋白症——“Bluebaby ”; 加速水体的“富营养化”过程;所谓“富营养化”就是指水中的藻类大量繁殖而引起水质恶化,其主要因子是N 和P (尤其是P );解决的办法主要就是要严格控制污染源,降低排入水环境的废水中的N 、P 含量;对于城市废水来说,利用传统的活性污泥法进行处理,对N 的去除率一般只有40%左右,对磷的去除率一般只有20~30%。 二、脱氮的物化法 1、氨氮的吹脱法: -++?+OH NH O H NH 423 2 2每 3 采用斜发沸石作为除氨的离子交换体。 出水 折点加氯法脱氯工艺流程

1、铝盐除磷 4343AlPO PO Al →++ + 一般用Al 2(SO 4)3,聚氯化铝(PAC )和铝酸钠(NaAlO 2) 2、铁盐除磷:FePO 4 Fe(OH)3 一般用FeCl 2、FeSO 4 或 FeCl 3 Fe 2(SO 4)3 3、石灰混凝除磷 O H PO OH Ca HPO OH Ca 23452423))((345+→++--+ 向含磷的废水中投加石灰,由于形成OH -,污水的pH 值上升,磷与Ca 2+反应,生成羟磷灰石。 第二节 生物脱氮工艺与技术 一、活性污泥法脱氮传统工艺 1、Barth 提出的三级活性污泥法流程: 第一级曝气池的功能:① 碳化——去除BOD 5、COD ;② 氨化——使有机氮转化为氨氮; 第二级是硝化曝气池,投碱以维持pH 值; 第三级为反硝化反应器,可投加甲醇作为外加碳源或引入原废水。 该工艺流程的优点是氨化、硝化、反硝化分别在各自的反应器中进行,反应速率较快且较彻底;但七缺点是处理设备多,造价高,运行管理较为复杂。 2、两级活性污泥法脱氮工艺 与前一工艺相比,该工艺是将其中的前两级曝气池合并成一个曝气池,使废水在其中同时实现碳化、氨化和硝化反应,因此只是在形式上减少了一个曝气池,并无本质上的改变。 二、缺氧——好氧活性污泥法脱氮系统(A —O 工艺)

芳构化反应系统工艺流程

芳构化反应系统工艺流程-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

芳构化反应系统工艺流程 混合碳四液化汽和石脑油是在KCIA-Ⅱ分子筛催化剂的作用下,经过碳四烯烃的叠合、脱氢环化、脱氢芳构化及烷烃的裂解等系列催化反应,生成混合芳烃,及副产品液化汽和干气。反应是强放热反应。 1)工艺流程及说明: A.加热反应部分 加热反应单元包括原料-产物换热器、加热炉、反应器、等单元设备操作。由MTBE或罐区来的原料C4和石脑油分别进入原料缓冲罐(V202、V201)。原料C4经泵P202提升后,经计量控制,一线送至原料-产物换热器E201,另一线送至产物-注冷料换热器E202;石脑油经泵P201提升后经计量控制,与一线原料C4混合送至原料-产物换热器E201。混合原料分别经原料-产物换热器E201、E203、加热炉F201加热至280-390℃后由反应器R201顶部进入反应器。部分原料液化气(或贫稀液化气)经产物-注冷料换热器E202加热汽化后,经计量控制分两线由反应器R201中部两催化剂床层之间注入反应器,以便于调节反应床层温度。反应产物由反应器R201底部采出分别经原料-产物换热器E203、(E-202)、E201换热后进入产物气液分离罐V203,罐底部凝液经泵P203提升后计量控制后进入稳定塔;罐顶分离出的气相经产物空冷器AC201、产物水冷器E204冷却至40℃后进入产物凝液分离罐V204,罐顶部采出为不凝气,进入吸收解吸塔T201中部塔板,底部采出液相,经泵P204提升后进入吸收解吸塔中部塔板。 B.催化剂再生部分 反应进行一段时间后,随着反应器R201中催化剂表面结焦的增加,催化剂表面活性降低,当检测到产品质量不能满足要求时,需将反应器R201切换出反应系统进行催化剂烧焦再生处理。催化剂再生采用氮气和空气作为再生气体,并控制再生气体中的氧含量,以防止反应催化剂床层再生烧焦超温破坏催化剂。烧焦前,首先启动再生循环气体压缩机C201,将氮气引至压缩机C201入口处,并经压缩机C201升压至1.0MPa、换热器E201、E203与循环再生气换热后进入再生循环气冷却器E216冷却后进入再生循环气液分离罐V207,罐底分离出循环气带出的油滴,并间歇排出,罐顶为循环气,引至压缩机C201入口增压循环,以逐步将反映其中的油气带出。当反应器中残留的油气满足安全要求,且反应器进口循环再生气的温度达到烧焦需要的温度时,开始从压缩机

城市污水厌氧氨氧化生物脱氮研究进展

城市污水城市污水厌氧氨氧化厌氧氨氧化厌氧氨氧化生物脱氮研究进展生物脱氮研究进展 唐崇俭,郑 平 (浙江大学 环境工程系,浙江 杭州 310029) 摘 要:厌氧氨氧化菌可在厌氧条件下以亚硝酸盐为电子受体将氨氧化为氮气,是目前废水生物脱氮的研究热 点之一。小试的研究表明,该工艺的容积负荷可高达125kg N/(m 3 ·d)。城市污水处理厂污泥厌氧消化液以及城市 生活垃圾填埋场渗滤液都含有高氨氮浓度以及低有机物浓度,十分适合采用厌氧氨氧化工艺进行处理。目前,生 产性厌氧氨氧化工艺已在荷兰、丹麦和日本等国成功应用于这两类废水的脱氮处理,最大容积氮去除速率高达 9.5kg N/(m 3·d),显示了该工艺诱人的工程应用前景。本文分析了世界上第一个生产性厌氧氨氧化工艺处理城市 污水厂污泥厌氧消化液的运行情况,论述了厌氧氨氧化工艺在城市污水处理中面临的问题。结合课题组内的研究 结果,提出了一种新型的菌种流加式厌氧氨氧化工艺,并探讨了其在城市污水处理中的作用。 关键关键词词:厌氧氨氧化;城市污水;生物脱氮;工程应用 Application of Anammox Process in Municipal Wastewater Treatment Tang Chongjian, Zheng Ping (Department of Environmental Engineering, Zhejiang University, Hangzhou 310029, China ) Abstract : Under anoxic condition, anaerobic ammonium-oxidizing (Anammox) bacteria can oxidize ammonium to nitrogen gas using nitrite as electron acceptor. It becomes a topic issue on biological nitrogen removal from ammonium-rich wastewater due to some promising advantages such as low operational cost and super high volumetric loading rate. As reported, the nitrogen loading rate reached up to 125 kg N/(m 3·d). Characterized by high ammonium concentration and relatively low biodegradable organic content, the sludge digester liquor from the municipal wastewater treatment plant and the landfill leachate are demonstrated to be very suitable for application of Anammox process to realize high-rate nitrogen removal. The full-scale application of Anammox process has already been applied for nitrogen removal from sludge digester liquor and landfill leachate in The Netherlands, Japan and Denmark with the maximum nitrogen removal rate as high as 9.5 kg N/(m 3·d). Thus, the operation of the first full-scale Anammox reactor treating municipal sludge digester liquor was introduced, and the problems during the application of Anammox process in municipal wastewater treatment were discussed. An innovative Anammox process with sequential biocatalyst addition (SBA-Anammox process) was proposed to overcome the drawbacks and accelerate the application of Anammox process in municipal wastewater nitrogen removal.

相关文档
最新文档