H.265视频编码标准简介

H.265视频编码标准简介
H.265视频编码标准简介

H.265

H.265是ITU-T VCEG正在规划中的视频编码标准,期望在2008-2010期间推出。其目标是给音视频服务提供更好的视频编码方法。音视频服务包括会话式和非会话式音视频服务。其中会话式音视频服务包括视频会议和可视电话,非会话式音视频服务包括流媒体、广播、文档下载、媒体存储/播放和数字摄像机。

H.265标准围绕着现有的视频编码标准H.264,保留原来的某些技术,同时对一些相关的技术加以改进。新技术使用先进的技术用以改善码流、编码质量、延时和算法复杂度之间的关系,达到最优化设置。视频编码标准的发展会更加适应各种类型的网络,比如,internet、LAN、Mobile、ISDN、GSTN、H.222.0、NGN等网络。具

体的研究内容包括:提高压缩效率、提高鲁棒性和错误恢复能力、减少实时的时延、减少信道获取时间和随机接入时延、降低复杂度等。

传输码率要求和图像解析度

H.263可以1.3~1.8Mbps的传输速度实现标准清晰度广播级数字电视(符合CCIR601、CCIR656标准要求的720*576);而H264由于算法优化,可以低于1Mbps 的速度实现标清数字图像传送;H265相比h264进步更为明显,可以实现利用

1~2Mbps的传输速度传送720P(分辨率1280*720)普通高清音视频传送。

H.265会有哪些进展?

在运动预测方面,下一代算法可能不再沿袭“宏块”的画面分割方法,而可能采用面向对象的方法,直接辨别画面中的运动主体。在变换方面,下一代算法可能不再沿袭基于付立叶变换的算法族,有很多文章在讨论,其中提请大家注意所谓的“超完备变换”,主要特点是:其MxN的变换矩阵中,M大于N,甚至远大于N,变换后得到的向量虽然比较大,但其中的0元素很多,经过后面的熵编码压缩后,就能得到压缩率较高的信息流。

关于运算量,H.26?的压缩效率比MPEG-2提高了1倍多,其代价是计算量提高了至少4倍,导致高清编码需要100GOPS的峰值计算能力。尽管如此,仍有可能使用目前的主流IC工艺和普通设计技术,设计出达到上述能力的专用硬件电路,且使其批量生产成本维持在原有水平。5年(或许更久)以后,新的技术被接受为标准,其压缩效率应该比H.26?至少提高1倍,估计对于计算量的需求仍然会增加4倍以上。随着半导体技术的快速进步,相信届时实现新技术的专用芯片的批量生产成本应该不会有显著提高。因此,500GOPS,或许是新一代技术对于计算能力的需求上限。H.265具体简介

ZPAV (H.265) 是音视频压缩解压协议,非常不同于H264/MPEG4,ZPAV (H.265) 的基本算法是小波,多级树集合群,广义小波,数学形态小波,...... ZPAV

(H.265) 基本算法:1,图象与声音分解与合成:小波;2,图象与声音前处理:小波子带零交叉降噪,目标纹理处理,语音处理;3,速率控制:小波子带熵速率控制;4,量化与反量化:小波子带熵量化与反量化;5,低频分量和高频分量的降维:小波子带邻域交叉降维;6,运动矢量和量化表的分解与合成:广义小波;7,位面编码:数学形态小波,多级树集合群,嵌入零树,位面降维;8,位流编码:算术编码,熵编码;9,运动估计:宏块最优决策,运动矢量预测;A,运动搜索:钻石,大钻石,小钻石,方形;B,图象与声音后处理:低通滤波,断点重构,宏块平滑;C,误码纠错:矢量仿真,帧间仿真。ZPAV (H.265) 基本指标:1,平均MIPS为100M ;2,图象约50 ~~~ 10K Kbits/秒;(25或30帧/秒,CIF,D1,HD)3,声音约 4 ~~~ 256 Kbits/秒;(采样率8 ~~~ 44.1 K,单双通道)4,实时运行在DM6?XX(TI),pnxNNNN(PHILIPS),BT878(X86),SAA7130(X86),NETWORK(X86) 等平台上。ZPAV (H.265) 实现语言:1,C,MASM(MMX,SSE(X86));2,DSP_ASM(DM6?XX(TI),pnxNNNN(PHILIPS));3,verilog(在开发中)。

一简介

ZPAV 是以小波, 降维, 剪切零树, 运动估计, 算术编码等等算法为理论基础

的音视频编码解码协议, 具有压缩率高, 比特率低而稳定, 应用领域广, 发展潜力大, 延拓性能好, 复杂度适中, 易于集成电路实现等等特点, 是理想的信源编码解

码协议.

1.1 基本指标:

二需求

1需求

只有ZPAV能解决3G等超低上行带宽的无线网, 超大尺寸的高清, 超大尺寸的海量数据的三维视觉等等领域信源编码带宽"瓶颈"难题, ZPAV 将是上述领域的庞

大的市场唯一选择.

2 预测

随着3G等无线网和电视的更新换代,将有数十亿个可视手机和高清用户, 将有数十亿颗芯片需求.如果芯片单价为50元人民币,年销售200万颗的总价为1亿元,不足二千万元的投资也不算很大.

三论证

1 优势

除ZPAV以外, H264是性能最好的. H264 是以离散余弦, 可变宏块, 运动估计, 算术编码等等算法为理论基础的视频编码解码协议, 具有压缩率低, 比特率高而

晃动, 应用领域狭小, 发展潜力甚微, 延拓性差, 复杂度高, 兼容性差等等特点, 是将"退市"的信源编码解码协议.

ZPAV远远超过H264. 前者的理论压缩率是16000倍, 而后者的只有400倍(几乎静止的序列图像等等特例除外), 是后者的40倍, 比特率是后者的几十分之一. 前者的编码能力主要依赖小波的整体聚能能力和分解级数,很少依赖运动估计,而后者的编码能力主要依赖可变宏块和运动估计.运动估计的性能受图像运动剧烈度影响,在图像剧烈运动时,运动估计的性能急剧下降,后者的比特率会因此增大异常,因而前者的

比特率低而稳定,后者的比特率高而好几倍地晃动,后者的带宽成了很多应用的"瓶颈", 形成庞大的"空白市场", 这个千载难逢的大市场正是前者的大舞台.后者的压缩率接

近了理论压缩率,提高的希望渺茫,离散余弦等算法历经数十年也没有什么长进,因而

后者发展潜力甚小甚微. 社会要进步,科学要发展,蓬勃发展的前者取代主要靠资金靠垄断来维持的后者,也是大势所趋,历史必然.

2 前途

ZPAV的压缩率远不及理论压缩率, 需要多年求证性能更高的小波来更新换代;机器视觉和三维视觉等领域核心算法是小波, ZPAV可以凭借小波的信号分析和处理能力延拓自身, 延拓到上述领域,发展前途不可估量.

3 必要性

3G等无线应用需要低功耗, 高清应用和未来应用需要高处理能力, PC和DSP 的ZPAV 软件版本不能满足上述要求, 这就是ZPAV 要做成芯片的主要原因.

4可行性

ZPAV通过了理论论证, 通过了C仿真和测试, 通过了PC和DSP版本的应用测试和考验, ZPAV体系结构和数据结构合理, 复杂度适中, 而且主要集中在的经过多年论证优化的小波, 剪切零树, 算术编码, 运动估计和后处理等等主要算法简洁, 而且没有浮点运算, 易于集成电路实现.

四研发

1 研发计划

2.1 设计计划

2.2 实现计划

2.3 芯片实现计划

视频压缩编码方法简介—AVI

视频压缩编码方法简介—AVI AVI(Audio Video Interleave)是一种音频视像交插记录的数字视频文件格式。1992年初Microsoft公司推出了AVI技术及其应用软件VFW(Video for Windows)。在AVI文件中,运动图像和伴音数据是以交织的方式存储,并独立于硬件设备。这种按交替方式组织音频和视像数据的方式可使得读取视频数据流时能更有效地从存储媒介得到连续的信息。构成一个AVI文件的主要参数包括视像参数、伴音参数和压缩参数等: 1、视像参数 (1)、视窗尺寸(Video size):根据不同的应用要求,AVI的视窗大小或分辨率可按4:3的比例或随意调整:大到全屏640×480,小到160×120甚至更低。窗口越大,视频文件的数据量越大。 (2)、帧率(Frames per second):帧率也可以调整,而且与数据量成正比。不同的帧率会产生不同的画面连续效果。 2、伴音参数:在AVI文件中,视像和伴音是分别存储的,因此可以把一段视频中的视像与另一段视频中的伴音组合在一起。AVI 文件与WAV文件密切相关,因为WAV文件是AVI文件中伴音信号的来源。伴音的基本参数也即WAV文件格式的参数,除此以外,AVI文件还包括与音频有关的其他参数: (1)、视像与伴音的交织参数(Interlace Audio Every X Frames)AVI格式中每X帧交织存储的音频信号,也即伴音和视像交替的频率X是可调参数,X的最小值是一帧,即每个视频帧与音频数据交织组织,这是CD-ROM上使用的默认值。交织参数越小,回放AVI文件时

读到内存中的数据流越少,回放越容易连续。因此,如果AVI文件的存储平台的数据传输率较大,则交错参数可设置得高一些。当AVI文件存储在硬盘上时,也即从硬盘上读AVI文件进行播放时,可以使用大一些的交织频率,如几帧,甚至1秒。 (2)、同步控制(Synchronization) 在AVI文件中,视像和伴音是同步得很好的。但在MPC中回放AVI文件时则有可能出现视像和伴音不同步的现象。 (3)、压缩参数:在采集原始模拟视频时可以用不压缩的方式,这样可以获得最优秀的图像质量。编辑后应根据应用环境环择合适的压缩参数。 3、 AVI数字视频的特点 (1)、提供无硬件视频回放功能:AVI格式和VFW软件虽然是为当前的MPC设计的,但它也可以不断提高以适应MPC的发展。根据AVI格式的参数,其视窗的大小和帧率可以根据播放环境的硬件能力和处理速度进行调整。在低档MPC机上或在网络上播放时,VFW的视窗可以很小,色彩数和帧率可以很低;而在Pentium级系统上,对于64K色、320×240的压缩视频数据可实现每秒25帧的回放速率。这样,VFW就可以适用于不同的硬件平台,使用户可以在普通的MPC上进行数字视频信息的编辑和重放,而不需要昂贵的专门硬件设备。 (2)、实现同步控制和实时播放:通过同步控制参数,AVI可以通过自调整来适应重放环境,如果MPC的处理能力不够高,而AVI文件的数据率又较大,在WINDOWS环境下播放该AVI文件时,播放器可

常见的几种高清视频编码格式

高清视频的编码格式有五种,即H.264、MPEG-4、MPEG-2、WMA-HD以及VC-1。事实上,现在网络上流传的高清视频主要以两类文件的方式存在:一类是经过MPEG-2标准压缩,以tp和ts为后缀的视频流文件;一类是经过WMV-HD(Windows Media Video High Definition)标准压缩过的wmv文件,还有少数文件后缀为avi或mpg,其性质与wmv是一样的。真正效果好的高清视频更多地以H.264与VC-1这两种主流的编码格式流传。 H.264编码 H.264编码高清视频 H.264是由国际电信联盟(iTU-T)所制定的新一代的视频压缩格式。H.264 最具价值的部分是更高的数据压缩比,在同等的图像质量,H.264的数据压缩比能比当前DVD系统中使用的 MPEG-2高2~3倍,比MPEG-4高1.5~2倍。正因为如此,经过H.264压缩的视频数据,在网络传输过程中所需要的带宽更少,也更加经济。在 MPEG-2需要6Mbps的传输速率匹配时,H.264只需要1Mbps~2Mbps 的传输速率,目前H.264已经获得DVD Forum与Blu-ray Disc Association采纳,成为新一代HD DVD的标准,不过H.264解码算法更复杂,计算要求比WMA-HD 还要高。 从ATI的Radeon X1000系列显卡、NVIDIA的GeForce 6/7系列显卡开始,它们均加入对H.264硬解码的支持。与MPEG-4一样,经过H.264压缩的视频文件一般也是采用avi 作为其后缀名,同样不容易辨认,只能通过解码器来自己识别。 总的来说,常见的几种高清视频编码格式的特点是能够以更低的码率得到更高的画质,相同效果的MPEG2与H.264影片做比较,后者在容量上仅需前者的一半左右。这也就意味着,H.264不仅能够节省HDTV的存储空间,而且还可以

视频文件格式和视频编码方式区别

目前网上的各种视频格式可以说是泛滥成灾,加上各个PMP(Portable Media Player,便携式媒体播放器)生产厂家的对自己产品在功能方面的炒作,使得很多人对视频格式的名称都是一头的雾水。 经常有些童鞋问我类似下面的问题。 A问我说:“我的MP4分明写着能播放AVI吗?为什么这一个AVI文件就播放不了?” B问:“我的MP4支持Mpeg-4啊,为什么Mp4文件不能播放呢?” 好的,下面我从最基本的概念给大家解释一下,顺便回答这两个问题 首先大家要清楚两个概念,视频文件格式和视频编码方式。 视频文件格式一般情况下从视频文件的后缀名就能看出来,比如AVI,Mp4,3gp,mov,rmvb等等。这些格式又叫做容器格式(container format),顾名思义就是用来装东西的,你可以把它想象成为一个便当盒,或者野餐篮(兄弟,你没吃早饭吧)。 通常我们从网上下载的电影都是有声音的(废话,难道你只看默片!众人扔香蕉皮),所以容器格式中一般至少包含有两个数据流(stream),一个视频流,一个音频流,就好比是一个便当盒里装着的配菜和米饭。 视频编码方式则是指容器格式中视频流数据的压缩编码方式,例如Mpeg-4,,,等等。而视频数据采用了何种编码方式是无法单单从文件格式的后缀上看出来的。就是说你无法从一个盖着盖子的便当盒外面看出里面装了什么配菜。 如果你想播放一个视频文件,第一步你的播放器(不论是软件的还是硬件的)要能够解析相应的容器格式,这一步也叫做解复用(demux),第二步你的播放器要能够解码其中所包含视频流和音频流。这样影片才能播放出来。 打个不太恰当的比方,播放器好比你雇用的一个试菜员,由他来品尝便当(视频文件),然后告诉你便当里装了什么东西。(没天理阿!我想自己吃,好的当然可以,0x00 00 01 B6 05 FF 36 1A 50 …… ……,俄~) 所以试菜员首先要懂得如何打开便当盒,还要知道吃的出来便当盒里装了什么配菜,这样你才能获得你想要的信息。 回过头来看前面的两个问题,用以上的比喻翻译一下。 问题A,我的试菜员能打开AVI这种便当的,为什么我不能知道里面装了什么? 回答很简单,虽然他能够打开便当,但是吃不出里面的东西是什么。理论上没有一个播放器能够播放所有的AVI格式的电影,因为你不知道我会往里面放什么配菜。 问题B,我的试菜员吃过Mpeg-4这种牛排阿,为什么不能打开Mp4这种便当盒呢? 这个问题通过翻译之后看起来已经不是问题了,Mpeg-4是视频编码方式,而Mp4是容器格式,两者本来就不是一个范畴里的东西。 好了下面简单介绍一下流行的视频格式。 AVI是音频视频交错(Audio Video Interleaved)的英文缩写,它是Microsoft公司开发的一种数字音频与视频文件格式,允许视频和音频交错在一起同步播放。 AVI文件的格式是公开并且免费的,大量的视频爱好者在使用这种文件格式。很多PMP 唯一能支持的格式就是AVI格式,一般的PMP都带有可以转换其他格式视频成为AVI格式的软件。 AVI文件采用的是RIFF(Resource Interchange File Format,资源互换文件格式)文件结构,RIFF是Microsoft公司定义的一种用于管理windows环境中多媒体数据的文件格

视频编码标准汇总及比较

视频编码标准汇总及比较 MPEG-1 类型:Audio&Video 制定者:MPEG(Moving Picture Expert Group) 所需频宽:2Mbps 特性:对动作不激烈的视频信号可获得较好的图像质量,但当动作激烈时,图像就会产生马赛克现象。它没有定义用于额外数据流进行编对码的格式,因此这种技术不能广泛推广。它主要用于家用VCD,它需要的存储空间比较大。 优点:对动作不激烈的视频信号可获得较好的图像质量。 缺点:当动作激烈时,图像就会产生马赛克现象。它没有定义用于额外数据流进行编对码的格式,因此这种技术不能广泛推广。 应用领域:Mixer 版权方式:Free 备注:MPEG-1即俗称的VCD。MPEG是ISO/IEC JTC1 1988年成立的运动图像专家组(Moving Picture Expert Group)的简称,负责数字视频、音频和其他媒体的压缩、解压缩、处理和表示等国际技术标准的制定工作。MPEG-1制定于1992年,它是将视频数据压缩成1~2Mb/s的标准数据流。对于清晰度为352×288的彩色画面,采用25帧/秒,压缩比为50:1时,实时录像一个小时,经计算可知需存储空间为600MB左右,若是8路图像以每天录像10小时,每月30天算,则要求硬盘存储容量为1440GB,则显然是不能被接受的。 --------------------------------------------------------------------------------------------- MPEG-2

类型:Audio&Video 制定者:MPEG(Moving Picture Expert Group) 所需频宽:视频上4.3Mbps,音频上最低的采样率为16kHz 特性:编码码率从每秒3兆比特~100兆比特,是广播级质量的图像压缩标准,并具有CD 级的音质。MPEG-2的音频编码可提供左、右、中及两个环绕声道,以及一个加重低音声道,和多达7个伴音声道。作为MPEG-1的兼容性扩展,MPEG-2支持隔行扫描视频格式和其它先进功能,可广泛应用在各种速率和各种分辨率的场合。但是MPEG-2标准数据量依然很大,不便存放和传输。 优点:MPEG-2的音频编码可提供左、右、中及两个环绕声道,以及一个加重低音声道,和多达7个伴音声道,具有CD级的音质。可提供一个较广的范围改变压缩比,以适应不同画面质量、存储容量以及带宽的要求。支持隔行扫描视频格式和其它先进功能,可广泛应用在各种速率和各种分辨率的场合。 缺点:压缩比较低,数据量依然很大,不便存放和传输,如用于网络方面则需要较高的网络带宽,因此不太适合用于Internet和VOD点播方面。 应用领域:Mixer 版税方式:按个收取(最初的收费对象为解码设备和编码设备,中国DVD制造商每生产一台DVD需要交纳专利费16.5美元。向解码设备和编码设备收取的专利授权费每台2.5美元) 备注:MPEG-2是其颁布的(活动图像及声音编码)国际标准之一,制定于1994年,是为高级工业标准的图像质量以及更高的传输率而设计,为了力争获得更高的分辨率 (720×486),提供广播级视频和CD级的音频,它是高质量视频音频编码标准。在常规电视的数字化、高清晰电视HDTV、视频点播VOD,交互式电视等各个领域中都是核心的技术之一。由于MPEG-2在设计时的巧妙处理,使得大多数MPEG-2解码器也可播放MPEG-1格式的数据,如VCD。MPEG-2的音频编码可提供左、右、中及两个环绕声道,以及一个加重低音声道,和多达7个伴音声道。我们平时所说的DVD就是采用MPEG-2编码压缩,所以可有8种语言的配音。除了作为DVD的指定标准外,MPEG-2的应用前景非常的广阔,

视频编码的基本原理及基本框架

视频编码的基本原理及基本框架 视频图像数据有极强的相关性,也就是说有大量的冗余信息。其中冗余信息可分为空域冗余信息和时域冗余信息。压缩技术就是将数据中的冗余信息去掉(去除数据之间的相关性),压缩技术包含帧内图像数据压缩技术、帧间图像数据压缩技术和熵编码压缩技术。 去时域冗余信息 使用帧间编码技术可去除时域冗余信息,它包括以下三部分: -运动补偿 运动补偿是通过先前的局部图像来预测、补偿当前的局部图像,它是减少帧序列冗余信息的有效方法。 -运动表示 不同区域的图像需要使用不同的运动矢量来描述运动信息。运动矢量通过熵编码进行压缩。-运动估计 运动估计是从视频序列中抽取运动信息的一整套技术。 注:通用的压缩标准都使用基于块的运动估计和运动补偿 去空域冗余信息 主要使用帧内编码技术和熵编码技术: -变换编码 帧内图像和预测差分信号都有很高的空域冗余信息。变换编码将空域信号变换到另一正交矢量空间,使其相关性下降,数据冗余度减小。 -量化编码 经过变换编码后,产生一批变换系数,对这些系数进行量化,使编码器的输出达到一定的位率。这一过程导致精度的降低。

熵编码是无损编码。它对变换、量化后得到的系数和运动信息,进行进一步的压缩。 视频编码的基本框架 H.261 H.261标准是为ISDN设计,主要针对实时编码和解码设计,压缩和解压缩的信号延时不超过150ms,码率px64kbps(p=1~30)。 H.261标准主要采用运动补偿的帧间预测、DCT变换、自适应量化、熵编码等压缩技术。只有I帧和P帧,没有B帧,运动估计精度只精确到像素级。支持两种图像扫描格式:QCIF 和CIF。 H.263 H.263标准是甚低码率的图像编码国际标准,它一方面以H.261为基础,以混合编码为核心,其基本原理框图和H.261十分相似,原始数据和码流组织也相似;另一方面,H.263也吸收了MPEG等其它一些国际标准中有效、合理的部分,如:半像素精度的运动估计、PB帧预测等,使它性能优于H.261。 H.263使用的位率可小于64Kb/s,且传输比特率可不固定(变码率)。H.263支持多种分辨率:SQCIF(128x96)、QCIF、CIF、4CIF、16CIF。 与H.261和H.263相关的国际标准 与H.261有关的国际标准 H.320:窄带可视电话系统和终端设备; H.221:视听电信业务中64~1 920Kb/s信道的帧结构; H.230:视听系统的帧同步控制和指示信号; H.242:使用直到2Mb/s数字信道的视听终端的系统。 与H.263有关的国际标准 H.324:甚低码率多媒体通信终端设备; H.223:甚低码率多媒体通信复合协议; H.245:多媒体通信控制协议; G.723.1.1:传输速率为5.3Kb/s和6.3Kb/s的语音编码器。 JPEG 国际标准化组织于1986年成立了JPEG(Joint Photographic Expert Group)联合图片专家小组,主要致力于制定连续色调、多级灰度、静态图像的数字图像压缩编码标准。常用的基于离散余弦变换(DCT)的编码方法,是JPEG算法的核心内容。

视频压缩编码方法简介—AVI

视频压缩编码方法简介—A V I A VI(Audio Video Interleave)是一种音频视像交插记录的数字视频文件格式。1992年初Microsoft公司推出了A VI技术及其应用软件VFW(Video for Windows)。在A VI文件中,运动图像和伴音数据是以交织的方式存储,并独立于硬件设备。这种按交替方式组织音频和视像数据的方式可使得读取视频数据流时能更有效地从存储媒介得到连续的信息。构成一个A VI文件的主要参数包括视像参数、伴音参数和压缩参数等。 1.视像参数 (1)视窗尺寸(Video size)。根据不同的应用要求,A VI的视窗大小或分辨率可按4:3的比例或随意调整,大到全屏640×480,小到160×120甚至更低。窗口越大,视频文件的数据量越大。 (2)帧率(Frames per second)。帧率也可以调整,而且与数据量成正比。不同的帧率会产生不同的画面连续效果。 2.伴音参数。在A VI文件中,视像和伴音是分别存储的,因此可以把一段视频中的视像与另一段视频中的伴音组合在一起。A VI文件与WA V文件密切相关,因为WA V文件是A VI文件中伴音信号的来源。伴音的基本参数也即WA V文件格式的参数,除此以外,A VI文件还包括与音频有关的其他参数。 (1)视像与伴音的交织参数(Interlace Audio Every X Frames)。A VI格式中每X帧交织存储的音频信号,也即伴音和视像交替的频率X是可调参数,X的最小值是一帧,即每个视频帧与音频数据交织组织,这是CD-ROM上使用的默认值。交织参数越小,回放A VI文件时读到内存中的数据流越少,回放越容易连续。因此,如果A VI文件的存储平台的数据传输率较大,则交错参数可设置得高一些。当A VI文件存储在硬盘上时,也即从硬盘上读A VI文件进行播放时,可以使用大一些的交织频率,如几帧,甚至1秒。 (2)同步控制(Synchronization)。在A VI文件中,视像和伴音是同步得很好的。但在MPC中回放A VI文件时则有可能出现视像和伴音不同步的现象。 (3)压缩参数。在采集原始模拟视频时可以用不压缩的方式,这样可以获得最优秀的图像质量。编辑后应根据应用环境选择合适的压缩参数。 3.A VI数字视频的特点 (1)提供无硬件视频回放功能。A VI格式和VFW软件虽然是为当前的MPC设计的,但它也可以不断提高以适应MPC的发展。根据A VI格式的参数,其视窗的大小和帧率可以根据播放环境的硬件能力和处理速度进行调整。在低档MPC机上或在网络上播放时,VFW的视窗可以很小,色彩数和帧率可以很低;而在Pentium级系统上,对于64K色、320×240的压缩视频数据可实现每秒25帧的回放速率。这样,VFW就可以适用于不同的硬件平台,使用户可以在普通的MPC上进行数字视频信息的编辑和重放,而不需要昂贵的专门硬件设备。 (2)实现同步控制和实时播放。通过同步控制参数,A VI可以通过自调整来适应重放环境,如果MPC 的处理能力不够高,而A VI文件的数据率又较大,在WINDOWS环境下播放该A VI文件时,播放器可以通过丢掉某些帧,调整A VI的实际播放数据率来达到视频、音频同步的效果。 (3)可以高效地播放存储在硬盘和光盘上的A VI文件。由于A VI数据的交叉存储,VFW播放A VI数据时只需占用有限的内存空间,因为播放程序可以一边读取硬盘或光盘上的视频数据一边播放,而无需预先把容量很大的视频数据加载到内存中。在播放A VI视频数据时,只需在指定的时间内访问少量的视频图像和部分音频数据。这种方式不仅可以提高系统的工作效率,同时也可以实现迅速地加载和快速地启动播放程序,减少播放A VI视频数据时用户的等待时间。 (4)提供了开放的A VI数字视频文件结构。A VI文件结构不仅解决了音频和视频的同步问题,而且具有通用和开放的特点。它可以在任何Windows环境下工作,而且还具有扩展环境的功能。用户可以开发自己的A VI视频文件,在Windows环境下可随时调用。 (5)A VI文件可以再编辑。A VI一般采用帧内有损压缩,可以用一般的视频编辑软件如Adobe Premiere 或MediaStudio进行再编辑和处理。

音频、视频压缩有哪些技术标准

音频、视频压缩有哪些技术标准? 视频压缩技术有:MPEG-4、H263、H263+、H264等 MPEG-4视频编码技术介绍 MPEG是“Moving Picture Experts Group”的简称,在它之前的标准叫做JPEG,即“Joint Photographic Experts Group”。当人们用到常见的“.jpg”格式时,实际上正在使用JPEG的标准。JPEG规范了现代视频压缩的基础,而MPEG把JPEG 标准扩展到了运动图象。 MPEG-4视频编码标准支持MPEG-1、MPEG-2中的大多数功能,它包含了H.263的核心设计,并增加了优先特性和各种各样创造性的新特性。它提供不同的视频标准源格式、码率、帧频下矩形图像的有效编码,同时也支持基于内容的图像编码。采纳了基于对象(Object-Based)的编码、基于模型(Model-based)的编码等第二代编码技术是MPEG-4标准的主要特征。 MPEG4与MPEG1、MPEG2的比较 从上表可以看出,MPEG1和MPEG2主要应用于固定媒体,比如 VCD 和 DVD ,而对于网络传输,MPEG4具有无可比拟的优势。 H.263/H.263+/H.264视频编码技术介绍 1.H.263视频编码标准 1.H.263是最早用于低码率视频编码的ITU-T标准,随后出现的第二 版(H.263+)及H.263++增加了许多选项,使其具有更广泛的适用性。 H.263是ITU-T为低于64kb/s的窄带通信信道制定的视频编码标准。 它是在H.261基础上发展起来的,其标准输入图像格式可以是

S-QCIF、QCIF、CIF、4CIF或者16CIF的彩色4∶2∶0亚取样图像。 H.263与H.261相比采用了半象素的运动补偿,并增加了4种有效的 压缩编码模式。 2.H.263+视频压缩标准 1.ITU-T在H.263发布后又修订发布了H.263标准的版本2,非正式 地命名为H.263+标准。它在保证原H.263标准核心句法和语义不变 的基础上,增加了若干选项以提高压缩效率或改善某方面的功能。原 H.263标准限制了其应用的图像输入格式,仅允许5种视频源格式。 H.263+标准允许更大范围的图像输入格式,自定义图像的尺寸,从而 拓宽了标准使用的范围,使之可以处理基于视窗的计算机图像、更高 帧频的图像序列及宽屏图像。为提高压缩效率,H.263+采用先进的帧 内编码模式;增强的PB-帧模式改进了H.263的不足,增强了帧间预 测的效果;去块效应滤波器不仅提高了压缩效率,而且提供重建图像 的主观质量。为适应网络传输,H.263+增加了时间分级、信噪比和空 间分级,对在噪声信道和存在大量包丢失的网络中传送视频信号很有 意义;另外,片结构模式、参考帧选择模式增强了视频传输的抗误码 能力。 3.H.264视频压缩标准 1.H.264是由ISO/IEC与ITU-T组成的联合视频组(JVT)制定的新一 代视频压缩编码标准。对信道时延的适应性较强,既可工作于低时延 模式以满足实时业务,如会议电视等;又可工作于无时延限制的场合, 如视频存储等。 2.提高网络适应性,采用“网络友好”的结构和语法,加强对误码和 丢包的处理,提高解码器的差错恢复能力。 3.在编/解码器中采用复杂度可分级设计,在图像质量和编码处理之 间可分级,以适应不同复杂度的应用。 4.相对于先期的视频压缩标准,H.264引入了很多先进的技术,包括 4×4整数变换、空域内的帧内预测、1/4象素精度的运动估计、多参 考帧与多种大小块的帧间预测技术等。新技术带来了较高的压缩比, 同时大大提高了算法的复杂度。 G.7xx系列典型语音压缩标准介绍 G.7xx 是一组 ITU-T 标准,用于视频压缩和解压过程。它主要用于电话方面。在电话学中,有两个主要的算法,分别定义在 mu-law 算法(美国使用)和 a-law 算法(欧洲及世界其他国家使用),两者都是对数关系,但对于计算机的处理来说,后者的设计更为简单。 国际电信联盟G系列典型语音压缩标准的参数比较:

视频编解码芯片

芯片厂商如何改变视频监控行业(1) 随着中国安防市场近年来的迅速增长,芯片市场也随之得到了强劲发展。安防行业的需求逐渐明确,芯片厂家开始关注并主动去推广安防这个潜力巨大的市场。安防行业的发展吸引了越来越多的芯片厂商加入,成为继工业自动化、消费电子、电话机等领域之后一个新的利润角逐场。 然而,表象背后,是否会续写PC电脑行业的悲哀,频频受制于英特尔?“狼来了”的口号是否会在安防行业响起?值得我们欣慰的是,安防行业产品种类繁多,应用情况又各不相同,这也就决定了芯片厂商还没有能力“一手遮天”。 未来,将会有越来越多的芯片厂商将目光投向SoC芯片,致力于提高集成度,引入先进工艺,降低系统成本,改善系统性能以增强市场竞争力。为下游用户带来更多价值,从而推动产业向更深、更广的范围发展。 目前,中国已成为全球最大的安防市场。中国安防产值从十年前两百多亿元增长到目前的两千亿元,安防各类产品、系统、解决方案的应用层出不穷,安防市场出现难得的“百花齐放”的景象。然而,繁华背后却隐藏着些许担忧。核心技术的缺失,阻碍了中国安防技术源动力的蓬勃发展,成为中国安防市场向高端科技领域进军的掣肘。那么,是谁在禁锢着安防技术?谁又在影响和改变着安防呢?毋庸置疑,芯片决定着安防技术的级别。 随着“平安城市”、“北京奥运”等重大项目的带动,中国视频监控市场呈现迅猛发展的态势,以年均40%的速度傲视整个安防市场。视频监控市场需求的不断增长,除了引起安防监控设备厂商的关注,同样也引起了视频监控核心器件——芯片生产商的广泛关注。作为安防产品的上游核心客户,芯片厂商“跺一跺脚”就会直接影响着安防设备生产商们的生死存亡。TI、NXP、ADI、Techwell等一大批国际半导体企业将目光投向中国安防市场,量身打造一些符合中国安防市场使用的芯片,对推动中国安防市场的蓬勃发展起到了一定积极的作用。另外,像中国台湾和中国大陆的一些芯片商也纷纷拿出“看家本领”,进一步推动了中国安防市场的发展。海思、中星微、升迈、映佳等纷纷涉足视频监控处理芯片领域。 芯片厂商发力视频监控市场 1999年,恩智浦PNX1300芯片在中国推广并得到应用之后,2003年,TI推出通用数字媒体处理器TMS320DM642,正式进军中国数字视频监控领域。2006年左右,海思作为全球率先推出H.264 SoC监控专用芯片的半导体公司,在綷-历了三年多的调研和研发之后,进入到大家的视野之中。几乎在同一时间,台湾升迈开始整合ARMcore,兼容FA526CPU 和MPEG4/MJPEGcodec及多项外围IP,为数字监控量身打造视频编解码芯片SoC。 基于国内蓬勃发展的监控形势,海思自2006年在全球推出首款针对安防应用的H.264 SoC开始,至今已綷-发展到了第三代SoC芯片,已成为国内领先的视频监控解决方案供应商。海思半导体有限公司成立于2004年10月,前身是建于1991年的华为集成电路设计中心。作为领先的本土芯片提供商,海思的产品线覆盖无线网络、固定网络、数字媒体等领域的芯片及解决方案,并成功应用于全球100多个国家和地区。 在中国芯片业发展的历史上,有这样一家公司为历史所铭记,它的名字叫“中星微电子有限公司”。这家承担了国家战略项目——“星光中国芯工程”的企业,致力于数字多媒体芯片的开发、设计和产业化。中星微电子从2006年开始投入IP视频监控系统的研发和设计,在网络摄像机专用芯片、终端以及运营级网络视频监控平台等方面持续投入,并取得了一系列的成果。目前,中星微依靠多媒体芯片、视频编解码、智能、网络产品开发的技术积累,提供多媒体处理芯片、高清网络摄像机、硬件视频智能分析终端、视频监控统一媒体平台四大视频监控组件,并在此基础上提供视频监控应用解决方案。 有专家指出,安防用的芯片具有几个显著特点:一是长时间不间断工作,二是多视频的

视频压缩编码标准H.264详解

视频压缩编码标准H.264详解 ——新疆大学2006级工硕郭新军 JVT(Joint Video Team,视频联合工作组)于2001年12月在泰国Pattaya 成立。它由ITU-T和ISO两个国际标准化组织的有关视频编码的专家联合组成。JVT的工作目标是制定一个新的视频编码标准,以实现视频的高压缩比、高图像质量、良好的网络适应性等目标。目前JVT的工作已被ITU-T接纳,新的视频压缩编码标准称为H.264标准,该标准也被ISO接纳,称为AVC(Advanced Video Coding)标准,是MPEG-4的第10部分。 H.264标准可分为三档: 基本档次(其简单版本,应用面广); 主要档次(采用了多项提高图像质量和增加压缩比的技术措施,可用于SDTV、HDTV和DVD等); 扩展档次(可用于各种网络的视频流传输)。 H.264不仅比H.263和MPEG-4节约了50%的码率,而且对网络传输具有更好的支持功能。它引入了面向IP包的编码机制,有利于网络中的分组传输,支持网络中视频的流媒体传输。H.264具有较强的抗误码特性,可适应丢包率高、干扰严重的无线信道中的视频传输。H.264支持不同网络资源下的分级编码传输,从而获得平稳的图像质量。H.264能适应于不同网络中的视频传输,网络亲和性好。 一、H.264视频压缩系统 H.264标准压缩系统由视频编码层(VCL)和网络提取层(Network Abstraction Layer,NAL)两部分组成。VCL中包括VCL编码器与VCL解码器,主要功能是视频数据压缩编码和解码,它包括运动补偿、变换编码、熵编码等压缩单元。NAL则用于为VCL提供一个与网络无关的统一接口,它负责对视频数据

新一代视频编码技术---H.265HEVC高效视频编码技术

新一代视频编码技术--- H.265/HEVC高效视频编码技术 音视频信息包含图像、语音、文字等各种信息,是人与人之间沟通的重要媒介,因此以音视频为核心的视频会议、视频指挥、视频监控、可视电话等各种音视频系统成为现代各个行业和领域信息化建设领域的重点。然而,高清晰的实时图像数据量巨大,以图像分辨率为1920X1080,颜色取样深度为24bit,每秒帧数为60帧的实时高清视频为例,未经压缩处理的图像通过网络传输每秒的流量将达到355.957MB。 为了实现在有限带宽下传输如此高数据量的视频图像,音视频应用系统通过使用编码设备将图像进行压缩编码大幅降低数据量后再通过网络传输,目前这些编码设备主要采用H.264编码技术。H.264又称MPEG-4part10,由VCEG和MPEG联合组成的JVT (JointVideoTeam)于2003年3月正式发布,经过十余年的发展,H.264已被业内的厂商广泛的采纳和使用。 H.264采用帧内、帧间预测技术,高精度、多模式的位移估计,整数变换编码以及先进的量化处理和滤波处理,在同等保真条件下,大幅提高了编码效率。但是,H.264也存在一定的局限性,例如,由于图像分辨率的大大增加,单个宏块所表示的图像内容信息大大减少,H.264所采用的4×4或8×8宏块经过整数变换后,低频系数相似程度也大大提高,出现大量冗余,导致H.264编码对高清视频的压缩效率明显降低,而目前720P,1080P高清图像已经成为音视频应用系统的主流,未来图像分辨率将达到4K(4096 x 2160)、8K(8192×4320),H.264已经无法满足用户对高清视频图像传输的需求。 新一代视频编码技术---H.265/HEVC高效视频编码技术的出现为解决这问题提供了手段。 H.265/HEVC在现有的主流视频编码标准H.264上保留了一些较为成熟的技术和继承其现有的优势,同时采用了基于四叉树结构的编码分割、预测编码技术等先进的编码技术,视频压缩效率将比H.264提高大约一半,可以轻松实现在低带宽下实现1080P图像的传输,同时支持4K、8K高清图像的传输。业内厂商纷纷开展了H.265/HEVC编码产品的研发和应用,例如武汉兴图新科已率先实现H.265/HEVC编码器的规模化应用,推出支持HDSDI 、DVI、HDMI 等各种视频制式的H.265/HEVC高清编码器,该型号的编码器在同等图像质量下,图像数据量只有MPEG2的1/16,MPEG4的1/6,H.264的1/2,同时实现在高达25%丢包率的不稳定网络环境下稳定传输。随着用户对高清和超高清视频的需求,基于H.265/HEVC标准的编码器将得到广泛的应用。

高效视频编码标准中的关键技术概述

本栏目责任编辑:唐一东 多媒体技术及其应用高效视频编码标准中的关键技术概述 张玢 (渭南师范学院数学与信息科学学院网络工程技术中心,陕西渭南714000) 摘要:高效视频编码标准(High Efficiency Video Coding)是视频压缩领域继H.264/AVC 之后的又一重大突破,主要面向高 清电视(HDTV )以及视频编解码系统,文章从HEVC 基本体系出发,较全面地介绍了HEVC 在编码结构、自适应样点补 偿、自适应环路滤波以及并行化设计方面采用的关键技术。 关键词:视频编码;H.265/HEVC ;变换结构 中图分类号:TP391文献标识码:A 文章编号:1009-3044(2013)18-4316-03 Research on Core Techniques in the High Efficiency Video Coding ZHANG Bin (Center of Network Engineering Technology,College of Mathematics and Information Science,Weinan Normal University, Weinan 714000,China ) Abstract:As the successor to H.264/AVC,the High Efficiency Video Coding standard targets at next-generation HDTV dis? plays and video compression systems.The encode architectures and some of the key technologies used in the new model are in? troduced in this paper.Those key technologies involve with code structure,sample adaptive offset,adaptive loop filter and paral? lel structure. Key words:video coding;H.265/HEVC;transforming structure 国际电联(ITU)已正式批准通过了高效视频编码标准H.265/HEVC(High Efficiency Video Coding),性能比H.264压缩标准有了很大的改善。H.265/HEVC 标准对压缩技术进行了改进,旨在有限带宽下传输更高质量的网络视频,H.265标准也同时支持超高清视频:4K (4096×2160)和8K(8192×4320)。可以说,H.265标准让网络视频跟上了显示屏“高分辨率化”的脚步。1HEVC 编码架构 视频编码压缩的基本原理,是充分利用时间、空间的相关性,尽可能的去除冗余信息。目前通常采用混合视频编码框架,即按照相关原则将一帧数据划分为若干块,通过预测、变换、量化、熵编码等一系列算法来实现视频压缩。 与H.264/AVC 相似,H.265/HEVC 的编码架构主要包含:帧内预测、帧间预测、转换、量化、去区块滤波器、熵编码等模块,但与H.264基于宏块不同,HEVC 整体被分为了三个基本单位:编码单位(CU ,coding unit )、预测单位(PU ,predict unit)和转换单位(TU ,transform unit)。2HEVC 使用的优势技术 H.265/HEVC 标准在之前压缩标准的基础上进行了技术改进,有以下基本算法:图像与声音分解与合成、图像与声音前处理、小波子带熵速率控制、小波子带熵量化与反量化、小波子带邻域交叉降维等,这些算法虽然复杂,但将压缩效率提升了一倍以上,该标准具体有以下几个方面的优势技术。1)编码结构灵活与H.264的4×4和8×8变换块相比,H.265/HEVC 引入了更大的宏块类型,扩充到16×16、32×32甚至于64×64的变换和量化算法,目的在于减少高清数字视频的宏块个数,描述宏块内容的参数信息也相对减少,以便于高分辨率视频的压缩。 为了提高视频的编码压缩效率,H.265/HEVC 提出了超大尺寸四叉树编码结构,该编码结构更加灵活,并使用CU ,PU 和TU 3个概念来描述整个编码过程。 收稿日期:2013-06-03 基金项目:渭南师范学院研究生专项基金项目(12YKZ048) 作者简介:张玢(1986-),女,陕西渭南人,教师,硕士研究生,主要从事嵌入式开发研究。 4316

视频压缩编码标准H.264详解

视频压缩编码标准H.264详解

视频压缩编码标准H.264详解 ——新疆大学2006级工硕郭新军 JVT(Joint Video Team,视频联合工作组)于2001年12月在泰国Pattaya 成立。它由ITU-T和ISO两个国际标准化组织的有关视频编码的专家联合组成。JVT的工作目标是制定一个新的视频编码标准,以实现视频的高压缩比、高图像质量、良好的网络适应性等目标。目前JVT的工作已被ITU-T接纳,新的视频压缩编码标准称为H.264标准,该标准也被ISO接纳,称为AVC(Advanced Video Coding)标准,是MPEG-4的第10部分。 H.264标准可分为三档: 基本档次(其简单版本,应用面广); 主要档次(采用了多项提高图像质量和增加压缩比的技术措施,可用于SDTV、HDTV和DVD等); 扩展档次(可用于各种网络的视频流传输)。 H.264不仅比H.263和MPEG-4节约了50%的码率,而且对网络传输具有更好的支持功能。它引入了面向IP包的编码机制,有利于网络中的分组传输,支持网络中视频的流媒体传输。H.264具有较强的抗误码特性,可适应丢包率高、干扰严重的无线信道中的视频传输。H.264支持不同网络资源下的分级编码传输,从而获得平稳的图像质量。H.264能适应于不同网络中的视频传输,网络亲和性好。 一、H.264视频压缩系统 H.264标准压缩系统由视频编码层(VCL)和网络提取层(Network Abstraction Layer,NAL)两部分组成。VCL中包括VCL编码器与VCL解码器,主要功能是视频数据压缩编码和解码,它包括运动补偿、变换编码、熵编码等压缩单元。NAL则用于为VCL提供一个与网络无关的统一接口,它负责对视频数

H.265视频编码标准简介

H.265 H.265是ITU-T VCEG正在规划中的视频编码标准,期望在2008-2010期间推出。其目标是给音视频服务提供更好的视频编码方法。音视频服务包括会话式和非会话式音视频服务。其中会话式音视频服务包括视频会议和可视电话,非会话式音视频服务包括流媒体、广播、文档下载、媒体存储/播放和数字摄像机。 H.265标准围绕着现有的视频编码标准H.264,保留原来的某些技术,同时对一些相关的技术加以改进。新技术使用先进的技术用以改善码流、编码质量、延时和算法复杂度之间的关系,达到最优化设置。视频编码标准的发展会更加适应各种类型的网络,比如,internet、LAN、Mobile、ISDN、GSTN、H.222.0、NGN等网络。具 体的研究内容包括:提高压缩效率、提高鲁棒性和错误恢复能力、减少实时的时延、减少信道获取时间和随机接入时延、降低复杂度等。 传输码率要求和图像解析度 H.263可以1.3~1.8Mbps的传输速度实现标准清晰度广播级数字电视(符合CCIR601、CCIR656标准要求的720*576);而H264由于算法优化,可以低于1Mbps 的速度实现标清数字图像传送;H265相比h264进步更为明显,可以实现利用 1~2Mbps的传输速度传送720P(分辨率1280*720)普通高清音视频传送。 H.265会有哪些进展? 在运动预测方面,下一代算法可能不再沿袭“宏块”的画面分割方法,而可能采用面向对象的方法,直接辨别画面中的运动主体。在变换方面,下一代算法可能不再沿袭基于付立叶变换的算法族,有很多文章在讨论,其中提请大家注意所谓的“超完备变换”,主要特点是:其MxN的变换矩阵中,M大于N,甚至远大于N,变换后得到的向量虽然比较大,但其中的0元素很多,经过后面的熵编码压缩后,就能得到压缩率较高的信息流。 关于运算量,H.26?的压缩效率比MPEG-2提高了1倍多,其代价是计算量提高了至少4倍,导致高清编码需要100GOPS的峰值计算能力。尽管如此,仍有可能使用目前的主流IC工艺和普通设计技术,设计出达到上述能力的专用硬件电路,且使其批量生产成本维持在原有水平。5年(或许更久)以后,新的技术被接受为标准,其压缩效率应该比H.26?至少提高1倍,估计对于计算量的需求仍然会增加4倍以上。随着半导体技术的快速进步,相信届时实现新技术的专用芯片的批量生产成本应该不会有显著提高。因此,500GOPS,或许是新一代技术对于计算能力的需求上限。H.265具体简介 ZPAV (H.265) 是音视频压缩解压协议,非常不同于H264/MPEG4,ZPAV (H.265) 的基本算法是小波,多级树集合群,广义小波,数学形态小波,...... ZPAV

常见的几种高清视频编码格式精编版

常见的几种高清视频编 码格式 公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

高清视频的编码格式有五种,即、MPEG-4、MPEG-2、WMA-HD以及VC-1。事实上,现在网络上流传的高清视频主要以两类文件的方式存在:一类是经过MPEG-2标准压缩,以tp和ts为后缀的视频流文件;一类是经过WMV- HD(Windows Media Video High Definition)标准压缩过的wmv文件,还有少数文件后缀为avi或mpg,其性质与wmv是一样的。真正效果好的高清视频更多地以与VC-1这两种主流的编码格式流传。 编码 编码高清视频 是由国际电信联盟(iTU-T)所制定的新一代的视频压缩格式。最具价值的部分是更高的数据压缩比,在同等的图像质量,的数据压缩比能比当前DVD系统中使用的 MPEG-2高2~3倍,比MPEG-4高~2倍。正因为如此,经过压缩的视频数据,在网络传输过程中所需要的带宽更少,也更加经济。在 MPEG-2需要6Mbps的传输速率匹配时,只需要1Mbps~2Mbps的传输速率,目前已经获得DVD Forum与Blu-ray Disc Association采纳,成为新一代HD DVD的标准,不过解码算法更复杂,计算要求比WMA-HD还要高。 从ATI的Radeon X1000系列显卡、NVIDIA的GeForce 6/7系列显卡开始,它们均加入对硬解码的支持。与MPEG-4一样,经过压缩的视频文件一般也是采用avi 作为其后缀名,同样不容易辨认,只能通过解码器来自己识别。 总的来说,常见的几种高清视频编码格式的特点是能够以更低的码率得到更高的画质,相同效果的MPEG2与影片做比较,后者在容量上仅需前者的一半左右。这也就意味着,不仅能够节省HDTV的存储空间,而且还可以在手机等带

视频编码全参数

视频编码参数 编码类型 编码类型为H264。 Adaptive DCT 允许使用8*8DCT。对画面质量和压缩效率都有好处。I4*4,P4*4,P8*8,B8*8:AVC标准允许使用多种DCT 块划分方式,这里就能选择允许使用的DCT块划分方式。前面的字母代表对于的帧类型,后面的数字代表块大小。本选项对画面质量和压缩效率都有好处,推荐都选上。I8*8需要ADaptive DCT打开才有效。 帧率 每秒的帧数(fps)或者说帧率表示图形处理器处理场时每秒钟能够更新的次数。高的帧率可以得到更流畅、更逼真的动画。一般来说30fps就是可以接受的,但是将性能提升至60fps则可以明显提升交互感和逼真感,但是一般来说超过75fps一般就不容易察觉到有明显的流畅度提升了。如果帧率超过屏幕刷新率只会浪费图形处理的能力,因为监视器不能以这么快的速度更新,这样超过刷新率的帧率就浪费掉了。 GOP(Group of picture) 关键帧的周期,也就是两个IDR帧之间的距离,一

个帧组的最大帧数,一般而言,每一秒视频至少需要使用 1 个关键帧。增加关键帧个数可改善质量,但是同时增加带宽和网络负载。 需要说明的是,通过提高GOP值来提高图像质量是有限度的,在遇到场景切换的情况时,H.264编码器会自动强制插入一个I帧,此时实际的GOP值被缩短了。另一方面,在一个GOP中,P、B帧是由I帧预测得到的,当I帧的图像质量比较差时,会影响到一个GOP中后续P、B帧的图像质量,直到下一个GOP开始才有可能得以恢复,所以GOP 值也不宜设置过大。 同时,由于P、B帧的复杂度大于I帧,所以过多的P、B帧会影响编码效率,使编码效率降低。另外,过长的GOP还会影响Seek操作的响应速度,由于P、B帧是由前面的I或P帧预测得到的,所以Seek操作需要直接定位,解码某一个P或B帧时,需要先解码得到本GOP内的I帧及之前的N个预测帧才可以,GOP值越长,需要解码的预测帧就越多,seek响应的时间也越长。 CABAC/CAVLC H.264/AVC标准中两种熵编码方法,CABAC叫自适应二进制算数编码,CAVLC叫前后自适应可变长度编码,这两个选项中,CAVLC是低质量的,易于解码的选项,CABAC是高质量的,难于解码的选项。

相关文档
最新文档