钢的强化机制主要有+固溶强化

钢的强化机制主要有+固溶强化
钢的强化机制主要有+固溶强化

1、钢的强化机制主要有固溶强化、位错强化、

细晶强化、沉淀强化。其中细晶强化

对钢性能的贡献是既提高强度又改善塑、韧性。

2、提高钢淬透性的作用是获得均匀的组织,

满足力学性能要求、

能采取比较缓慢的冷却方式以减少变形、开裂倾向

3、滚动轴承钢GCr15的Cr质量分数含量为

1.5%左右。滚动轴承钢中碳化物不均匀性主

要是指碳化物液析、碳化物带状、

碳化物网状。

4、选择零件材料的一般原则是满足力学性能要求

良好的工艺性能、经济性和环境协调性等其

它因素。

5、凡是扩大γ区的元素均使Fe-C相图中S、E

点向左下方移动,例Mn、Ni 等元素;

凡封闭γ区的元素使S、E点向左上方移动,

例Cr、Mo等元素(写出2个)。S点左移意味

着共析碳含量降低。

6、QT600-3是球墨铸铁,“600”表示

抗拉强度不小于600MPa,“3”表示

延伸率不小于3%

7、H68是黄铜,LY12是硬铝,QSn4-3是锡青铜

8、在非调质钢中常用微合金化元素有Ti、V 等,

这些元素的主要作用是细晶强化和沉淀强化。

9、铝合金热处理包括固溶处理和时效硬化两过程,

和钢的热处理最大的区别是没有同素异构转变。

1、高速钢有很好的红硬性,但不宜制造热锤锻模。

答案要点:高速钢虽有高的耐磨性、红硬性,但韧性比较差、在较大冲击力下抗热疲劳性能比较差,高速钢没有能满足热锤锻模服役条件所需要高韧性和良好热疲劳性能的要求。

2、在一般钢中,应严格控制杂质元素S、P的含量。

答案要点:S能形成FeS,其熔点为989℃,钢件在大于1000℃的热加工温度时FeS会熔化,所以易产生热脆;P能形成Fe3P,性质硬而脆,在冷加工时产生应力集中,易产生裂纹而形成冷脆。

3、9SiCr钢和T9钢相比,退火后硬度偏高,在淬火加热时脱碳倾向较大。

答案要点:Si是非K形成元素,能有效地强化铁素体,所以使钢在退火后硬

度偏高;Si提高碳活度,使渗碳体稳定性变差,促进了钢在加热时脱碳

倾向较大。

4、高锰钢(ZGMn13)在A cm以上温度加热后空冷得到大量的马氏体,而水冷却可得到全部奥氏体组织。

答案要点:高锰钢在A cm以上温度加热后得到了单一奥氏体组织,奥氏体中

合金度高(高C、高Mn),使钢的Ms低于室温以下。如快冷,就获得

了单一奥氏体组织,而慢冷由于中途析出了大量的K,使奥氏体的合金

度降低,Ms上升,所以空冷时发生相变,得到了大量的马氏体。

5、4Cr13含碳量(质量分数)为0.4%左右,但已是属于过共析钢。

答案要点:Cr元素使共析S点向左移动,当Cr含量达到一定程度时,S点已

左移到小于0.4%C,所以4Cr13是属于过共析钢。

6、奥氏体不锈钢1Cr18Ni9晶界腐蚀倾向比较大。

答案要点:1Cr18Ni9含C较高,又没有Ti等稳定C的强碳化物形成元素,

所以在晶界上容易析出Cr23C6,从而使晶界上产生贫Cr区,低于不锈钢

的基本成分要求,所以在晶界处的腐蚀倾向比较大。

三、问答题(40分)

1、试总结Ni元素在合金钢中的作用,并简要说明原因。(10分)

答案要点:

1)↑基体韧度→Ni↓位错运动阻力,使应力松弛;

2)稳定A,→Ni↓A1,扩大γ区,量大时,室温为A组织;

3)↑淬透性→↓ΔG,使“C”线右移,Cr-Ni复合效果更好;

4)↑回火脆性→Ni促进有害元素偏聚;

5)↓Ms,↑Ar →↓马氏体相变驱动力。

2、高速钢的热处理工艺比较复杂,试回答下列问题:(12分,每小题3分)

1)淬火加热时,为什么要预热?

2)高速钢W6Mo5Cr4V2的A C1在800℃左右,但淬火加热温度在1200~1240℃,淬火加热温度为什么这样高?

3)高速钢回火工艺一般为560℃左右,并且进行三次,为什么?

4)淬火冷却时常用分级淬火,分级淬火目的是什么?

答案要点:

1)高速钢合金量高,特别是W,钢导热性很差。预热可减少工件加热过

程中的变形开裂倾向;缩短高温保温时间,减少氧化脱碳;可准确地控制炉温稳定性。

2)因为高速钢中碳化物比较稳定,必须在高温下才能溶解。而高速钢淬火目的是获得高合金度的马氏体,在回火时才能产生有效的二次硬化效果。

3)由于高速钢中高合金度马氏体的回火稳定性非常好,在560℃左右回火,才能弥散析出特殊碳化物,产生硬化。同时在560℃左右回火,使材料的组织和性能达到了最佳状态。

一次回火使大部分的残留奥氏体发生了马氏体转变,二次回火使第一次回火时产生的淬火马氏体回火,并且使残留奥氏体更多地转变为马氏体,三次回火可将残留奥氏体控制在合适的量,并且使内应力消除得更彻底。

4)分级淬火目的:降低热应力和组织应力,尽可能地减小工件的变形与开裂。

3、从合金化角度考虑,提高钢的韧度主要有哪些途径?(8分)

答案要点:

1)加入Ti、V、W、Mo等强碳化物形成元素,细化晶粒;

2)提高回火稳定性,加入Ti、V等强碳化物形成元素和Si元素;

3)改善基体韧性,主要是加入Ni元素;

4)细化碳化物,如加入Cr、V等元素使K小、匀、圆;

5)降低或消除钢的回火脆性,主要是Mo 、W元素比较有效;(2分)

4、试从合金化原理角度分析9Mn2V钢的主要特点。(10分)

答案要点:

1)Mn↑淬透性,D油= ~30mm;

2)Mn↓↓M S,淬火后A R较多,约20~22%,使工件变形较小;

3)V能克服Mn的缺点,↓过热敏感性,且能细化晶粒;

4)含0.9%C左右,K细小均匀,但钢的硬度稍低,回火稳定性较差,宜在200℃以下回火;

5)钢中的VC使钢的磨削性能变差。

9Mn2V广泛用于各类轻载、中小型冷作模具。

金属材料的强化机理讲解

材料结构与性能读书报告--金属材料的强化机理

摘要 综合论述金属材料强化原理,基本途径,文章从宏观性能—微观组织结构—材料强化三者的相互依存关系,叙述了材料强化的本质、原理与基本途径作了论述。金属的强化可以改善零件的使用性能,提高产品的质量,充分发挥材料的性能潜力,延长工件的使用寿命,在实际应用中,有着非常重要的意义。对工程材料来说,一般是通过综合的强化效应以达到较好的综合性能。具体方法有固溶强化、形变强化、沉淀强化和弥散强化、晶界强化、位错强化、复相强化、纤维强化和相变强化等。 关键词:强化;细晶;形变;固溶;弥散;相变

Abstract In this paper a summary is made on the principle of material strengthening,basis way and new technology of heat treatment.The essence,principle and basis ways of strengthening various materials were expounded in terms of their microscope properties,microstructure and material strengthening technology.:Metal strengthening can improve the performance of parts, improve the quality of products, give full play to the properties of materials, extend the use of workpiece potential life, in practical applications, has a very important significance. A systematic discussion was made about the explantation of the potential of materials.For engineering materials, it is usually by the strengthening effect comprehensive to achieve good comprehensive performance. Specific methods have solid-solution strengthening,distortion and deposition strengthening ,he complex phase strengthening,fiber reinforced and phase change aggrandizement, etc. Keywords:strengthen; fine grain; deformation; solution; dispersion; phase transition

固溶体的强化作用

固溶体的强化作用 虽然纯金属在实际工业生产上得到了一定的应用,但是由于其强度一般都很低,如铁的抗拉强度约为200MPa,而铝的抗拉强度还不到100MPa,显然都不符合用作工业的结构材料。近年来,为了适应多方面的要求,各种新材料、新工艺不断出现,但是就目前来说,新材料的制造方法比较复杂,制备成本较高,市场应用不是特别广泛,所以,在今后很长一段时间之内,用的较多的仍然是一些传统材料。目前应用的金属材料大多数是合金,新材料的广泛应用还有一段时间。所以,对其研究仍有重大意义。 固溶体是几乎所有合金的基体相,固溶强化作为最基本的强化手段已被广泛地利用于生产中。当溶质元素的含量极少时,固溶体的性能与溶剂金属基本相同。随着溶质含量的升高,固溶体的性能将发生明显改变,其一般规律情况是:强度、硬度逐渐升高,而塑性、韧性有所下降,电阻率逐渐升高,导电性逐渐下降,磁矫顽力升高等。例如铜镍合金,其性能如图一。 通过溶入某种溶质元素形成固溶体而使金属的强度、硬度升高的现象称为固溶强化。固溶强化的产生是由于溶质原子溶入后,要引起溶剂金属的晶格产生畸变,进而使位错移动时所受到的阻力增大的缘故。固溶强化是材料的一种主要的强化途径。 实践证明,适当掌握固溶体中的溶质含量,可以在显著提高金属材料的强度、硬度的同时,使其仍然保持相当好的塑性 和韧性。例如,向铜中加入19%镍,可使 合金的σb由220MPa升高至380 - 400MPa,硬度由HB44升高至HB70,而 塑性仍然保持Ψ=50%。数据结果如图一。 若将铜通过其他途径(例如冷变形时的加 工硬化)获得同样的强化效果,其塑性将 接近完全丧失。十分明显,固溶强化是一 种极为优异的强化方式,因而在金属材料 的生产和研究中得到了极为广泛的应用,

马氏体强化机制

2012春季学期 材料力学性能课程论文 院(系)材料科学与工程 专业材料科学与工程 学生唐骜 学号 1091900101 班号 0919001

铁碳马氏体的强化机制 唐骜 1091900101 摘要:本文以铁碳马氏体的组织形貌以及马氏体转变过程为出发点,引述了马氏体的主要强韧化机制。并通过引用各学者的实验结论,得到了铁碳马氏体的强韧化机理。 关键词:马氏体,强韧化机制,高强度钢,低碳钢,时效 1. 马氏体概述 马氏体(martensite)是黑色金属材料的一种组织名称。将钢加热到一定温度(形成奥氏体)后经迅速冷却(淬火),得到的能使钢变硬、增强的一种淬火组织。 马氏体最先由德国冶金学家 Adolf Martens(1850-1914)于19世纪90年代在一种硬矿物中发现。马氏体的三维组织形态通常有片状(plate)或者板条状(lath),但是在金相观察中(二维)通常表现为针状(needle-shaped),这也是为什么在一些地方通常描述为针状的原因。马氏体的晶体结构为体心四方结构(BCT)。中高碳钢中加速冷却通常能够获得这种组织。高的强度和硬度是钢中马氏体的主要特征之一。 20世纪以来,对钢中马氏体相变的特征累积了较多的知识,又相继发现在某些纯金属和合金中也具有马氏体相变,如:Ce、Co、Hf、Hg、La、Li、Ti、Tl、Pu、V、Zr、和Ag-Cd、Ag-Zn、Au-Cd、Au-Mn、Cu-Al、Cu-Sn、Cu-Zn、In-Tl、Ti-Ni等。目前广泛地把基本特征属马氏体相变型的相变产物统称为马氏体。 2. 马氏体相变特征 马氏体转变的一般定义为:过冷奥氏体以较快的速度冷却,抑制其扩散性分解,在较低的温度下发生的无扩散型相变称为马氏体相变。 其主要特点有以下几点: (1)马氏体相变是无扩散相变。马氏体相变时没有穿越界面的原子无规行走或顺序跳跃,因而新相(马氏体)承袭了母相的化学成分、原子序态和晶体缺陷。马氏体相变时原子有规则地保持其相邻原子间的相对关系进行位移,这种位移是切变式的。原子位移的结果产生点阵应变(或形变)。这种切变位移不但使母相点阵结构改变,而且产生宏观的形状改变。 (2)产生表面相变时浮突。马氏体形状改变使先经抛光的试样表面形成浮突。马氏体形成时,与马氏体相交的表面上发生倾动,在干涉显微镜下可见到浮突的高度以及完整尖锐的边缘。 (3)新相(马氏体)和母相之间始终保持一定的位向关系。马氏体相变时在一定的母相面上形成新相马氏体,这个面称为惯习(析)面,它往往不是简单的指数面,如

固溶强化

固溶强化 目录 原理 Solid solution strengthening 融入固溶体中的溶质原子造成晶格畸变,晶格畸变增大了位错运动的阻力,使滑移难以进行,从而使合金固溶体的强度与硬度增加。这种通过融入某种溶质元素来形成固溶体而使金属强化的现象称为固溶强化。在溶质原子浓度适当时,可提高材料的强度和硬度,而其韧性和塑性却有所下降。 影响因素 (1)溶质原子的原子分数越高,强化作用也越大,特别是当原子分数很低时,强化作用更为显著。 (2)溶质原子与基体金属的原子尺寸相差越大,强化作用也越大。 (3)间隙型溶质原子比置换原子具有较大的固溶强化效果,且由于间隙原子在体心立方晶体中的点阵畸变属非对称性的,故其强化作用大于面心立方晶体的;但间隙原子的固溶度很有限,故实际强化效果也有限。 (4)溶质原子与基体金属的价电子数目相差越大,固溶强化效果越明显,即固溶体的屈服强度随和金点子浓度的增加而提高。 程度 固溶强化的程度主要取决于两个因素:1. 原始原子和添加原子之间的尺寸差别。尺寸差别越大,原始晶体结构受到的干扰就越大,位错滑移就越困难。2. 合金元素的量。加入的合金元素越多,强化效果越大。如果加入过多太大或太小的原子,就会超过溶解度。这就涉及到另一种强化机制,分散相强化。3.间隙型溶质原子比置换型原子具有更大的固溶强化效果。 4.溶质原子与基体金属的价电子数相差越大,固溶强化作用越显著。 效果 1. 屈服强度、拉伸强度和硬度都要强于纯金属 2. 绝大部分情况下,延展性低于纯金属

3. 导电性比纯金属低很多 4. 抗蠕变,或者在高温下的强度损失,通过固溶强化可以得到改善

最新(原文)细晶强化的机理及其应用

细晶强化的机理及其应用 摘要:本文讲述了细晶强化的含义及其微观机理,介绍了三种推导Hall-Petch关系式的物理模型,并说明了微量碳在钢铁材料中细晶强化时对Hall-Petch关系式中σ0和k的影响。本文还介绍了一种细晶强化金属材料的新方法-不对称挤压法。 关键词:细晶强化,Hall-Petch关系式,位错。 1 引言 通常金属是由许多晶粒组成的多晶体,晶粒的大小可以用单位体积内晶粒的数目来表示,数目越多,晶粒越细。实验表明,在常温下的细晶粒金属比粗晶粒金属有更高的强度、硬度、塑性和韧性。这是因为细晶粒受到外力发生塑性变形可分散在更多的晶粒内进行,塑性变形较均匀,应力集中较小;此外,晶粒越细,晶界面积越大,晶界越曲折,越不利于裂纹的扩展。故工业上将通过细化晶粒以提高材料强度的方法称为细晶强化。 细晶强化的关键在于晶界对位错滑移的阻滞效应。位错在多晶体中运动时,由于晶界两侧晶粒的取向不同,加之这里杂质原子较多,也增大了晶界附近的滑移阻力,因而一侧晶粒中的滑移带不能直接进入第二个晶粒,而且要满足晶界上形变的协调性,需要多个滑移系统同时动作。这同样导致位错不易穿过晶界,而是塞积在晶界处,引起了强度的增高。可见,晶界面是位错运动的障碍,因而晶粒越细小,晶界越多,位错被阻滞的地方就越多,多晶体的强度就越高,已经有大量实验和理论的研究工作证实了这一点。另外,位错在晶体中是三维分布的,位错网在滑移面上的线段可以成为位错源,在应力的作用下,此位错源不断放出位错,使晶体产生滑移。位错在运动的过程中,首先必须克服附近位错网的阻碍,当位错移动到晶界时,又必须克服晶界的障碍,才能使变形由一个晶粒转移到另一个晶粒上,使材料产生屈服。因此,材料的屈服强度取决于使位错源运动所需的力、位错网给予移动位错的阻力和晶界对位错的阻碍大小。晶粒越细小,晶界就越多,障碍也就越大,需要加大外力才能使晶体产生滑移。所以,晶粒越细小,材料的屈服强度就越大。 细化晶粒是众多材料强化方法中唯一可在提高强度的同时提高材料塑性、韧性的强化方法。其提高塑性机制为:晶粒越细,在一定体积内的晶粒数目多,则在同样塑性变形量下,变形分散在更多的晶粒内进行,变形较均匀,且每个晶粒中塞积的位错少,因应力集中引起的开裂机会较少,有可能在断裂之前承受较大的变形量。提高强度机制为:晶界增多,而晶界上的原子排列不规则,杂质和缺陷多,能量较高,阻碍位错的通过。 2 细晶强化的经典理论 一般而言,细晶试样不但强度高,而且韧性也好。所以细晶强化成为金属材料的一种重要强化方式,获得了广泛的应用。在大量试验基础上,建立了晶粒大小与金属强度的定量关系的一般表达式为: σy=σ0+kd-n (1)式中,σy为流变应力,σ0为晶格摩擦力,d为晶粒直径,k为与材料有关的参数,指数n常

钢的热处理原理及四把火

钢的热处理 钢的热处理:是将固态钢材采用适当的方式进行加热、保温和冷却以获得所需组织结构与性能的工艺。热处理不仅可用于强化钢材,提高机械零件的使用性能,而且还可以用于改善钢材的工艺性能。其共同点是:只改变内部组织结构,不改变表面形状与尺寸。 第一节钢的热处理原理 热处理的目的是改变钢的内部组织结构,以改善钢的性能,通过适当的热处理可以显著提高钢的机械性能,延长机器零件的使用寿命。热处理工艺不但可以强化金属材料、充分挖掘材料性能潜力、降低结构重量、节省和能源,而且能够提高机械产品质量、大幅度延长机器零件的使用寿命。 热处理工艺分类:(根据热处理的目的、要求和工艺方法的不同分类如下) 1、整体热处理:包括退火、正火、淬火、回火和调质; 2、表面热处理:包括表面淬火、物理和化学气相沉积等; 3、化学热处理:渗碳、渗氮、碳氮共渗等。 热处理的三阶段:加热、保温、冷却

一、钢在加热时的转变 加热的目的:使钢奥氏体化 (一)奥氏体( A)的形成 奥氏体晶核的形成以共析钢为例A1点则W c =0.0218%(体心立方晶格F)W c =6.69%(复杂斜方渗碳体)当T 上升到A c1 后W c =0.77%(面心立方的A)由此可见转变过程中必须经过C和Fe原子的扩散,必须进行铁原子的晶格改组,即发生相变,A的形成过程。在铁素体和渗碳体的相界面上形成。有两个有利条件①此相界面上成分介于铁素体和渗碳体之间②原子排列不规则,空位和位错密度高。 1、奥氏体长大由于铁素体的晶格改组和渗碳体的不断溶解,A晶核一方面不断向铁素体和渗碳体方向长大,同时自身也不断形成长大。 2、残余 Fe 3 C的溶解 A长大同时由于有部分渗碳体没有完全溶解,还需一段时间才能全溶。(F比Fe 3 C先消失) 3、奥氏体成分的均匀化残余Fe 3 C全溶后,经一段时间保温,通过碳原子的扩散,使A成分逐步均匀化。 (二)奥氏体晶粒的长大 奥氏体大小用奥氏体晶粒度来表示。分为 00,0,1,2…10等十二个等级,其中常用的1~10级,4级以下为粗晶粒,5-8级为细晶粒,8级以上为超细晶粒。 影响 A晶粒粗大因素 1、加热温度越高,保温时间愈长,奥氏体晶粒越粗大。因此,合理选择加热和保温时间。以保证获得细小均匀的奥氏体组织。(930~950℃以下加热,晶粒长大的倾向小,便于热处理) 2、A中C含量上升则晶粒长大的倾向大。

论述四种强化的强化机理强化规律及强化方法

论述四种强化的强化机理 强化规律及强化方法 The Standardization Office was revised on the afternoon of December 13, 2020

1、形变强化 形变强化:随变形程度的增加,材料的强度、硬度升高,塑性、韧性下降的现象叫形变强化或加工硬化。 机理:随塑性变形的进行,位错密度不断增加,因此位错在运动时的相互交割加剧,结果即产生固定的割阶、位错缠结等障碍,使位错运动的阻力增大,引起变形抗力增加,给继续塑性变形造成困难,从而提高金属的强度。 规律:变形程度增加,材料的强度、硬度升高,塑性、韧性下降,位错密度不断增加,根据公式Δσ=αbGρ1/2,可知强度与位错密度(ρ)的二分之一次方成正比,位错的柏氏矢量(b)越大强化效果越显著。 方法:冷变形(挤压、滚压、喷丸等)。 形变强化的实际意义(利与弊):形变强化是强化金属的有效方法,对一些不能用热处理强化的材料可以用形变强化的方法提高材料的强度,可使强度成倍的增加;是某些工件或半成品加工成形的重要因素,使金属均匀变形,使工件或半成品的成形成为可能,如冷拔钢丝、零件的冲压成形等;形变强化还可提高零件或构件在使用过程中的安全性,零件的某些部位出现应力集中或过载现象时,使该处产生塑性变形,因加工硬化使过载部位的变形停止从而提高了安全性。另一方面形变强化也给材料生产和使用带来麻烦,变形使强度升高、塑性降低,给继续变形带来困难,中间需要进行再结晶退火,增加生产成本。 2、固溶强化 随溶质原子含量的增加,固溶体的强度硬度升高,塑性韧性下降的现象称为固溶强化。强化机理:一是溶质原子的溶入,使固溶体的晶格发生畸变,对滑移面上运动的位错有阻碍作用;二是位错线上偏聚的溶质原子形成的柯氏气团对位错起钉扎作用,增加了位错运动的阻力;三是溶质原子在层错区的偏聚阻碍扩展位错的运动。所有阻止位错运动,增加位错移动阻力的因素都可使强度提高。 固溶强化规律:①在固溶体溶解度范围内,合金元素的质量分数越大,则强化作用越大;②溶质原子与溶剂原子的尺寸差越大,强化效果越显著;③形成间隙固溶体的溶质元素的强化作用大于形成置换固溶体的元素;④溶质原子与溶剂原子的价电子数差越大,则强化作用越大。 方法:合金化,即加入合金元素。 3、第二相强化 钢中第二相的形态主要有三种,即网状、片状和粒状。

材料强化基本原理

第十章材料的强韧化 第一节材料强化基本原理 结合键和原子排列方式的不同,是金属材料、陶瓷材料、高分子材料力学性能不同的根本原因。通过改变材料的内部结构可以达到控制材料性能的目的。不同种类的材料,提高其强度的机理、方法也不同。 一、金属材料的强化原理 纯金属经过适当的合金化后强度、硬度提高的现象, 称为固溶强化。其原因可归结于溶质原子和位错的交互作 用,这些作用起源于溶质引发的局部点阵畸变。固溶体可 分为无序固溶体和有序固溶体,其强化机理也不相同。 (1)无序固溶强化固溶强化的实质是溶质原子的 长程应力场和位错的交互作用导致致错运动受阻。溶质相 位错的交互作用是二者应力场之间的作用。作用的大小要 看溶质本身及溶质与基体之间的交互作用,这种作用使位 错截交成弯曲形状。如图10—l所示. 图中的A、B、C表示溶质原子强烈地钉扎了位错。 x—x',A未被钉扎的乎直位错线,被钉后呈观曲线形状。 处于位错线上的少数溶质原子与位错线的相互作用很强, 这些原子允许位错线的局部曲率远大于根据平均内应力 求出的曲率。钉扎的第一个效应就是使位错线呈曲折形 状。相对于x—x'的偏离为x在受到垂直方向的外加切应力τ作用下,由于B点位错张力的协助作用,将使ABC段位错移到AB'C,在B'处又被钉扎起来。位错之所以能够这样弯曲,其原因是因位错长度的增加而升高的弹件能被强钉扎所释放的能量抵偿旧有余,位错的弹性能反而有所降低.位错经热激活可以脱钉,因而被钉扎时相对处于低能态。在切应力τ的作用下,ABC 段移动到AB'C.ABC和AB'C是相邻的平衡位置,阻力最大在位错处于中间位置AC时产生,外加切应力要克服这样的阻力方可使位错移动。若AC≈2y,ABC比2y略大,近似地当作2y。由ABC变为AC方面要脱钉需要能量,另一方面要缩短位错长度释放能量。总共需要 式中:Eb是位错脱扎所需能量;EI为单位长度位错由于加长而升高的能量,EI与Eb相比小而略去。由ABC 变为AC,平均位移为x/2,外加切应力需要做功为τb(2y)·x/2,故

几个固溶强化合金的实例

几种以固溶强化为主要强化机制的合金 固溶强化是指合金元素固溶于基体金属中造成一定程度的晶格畸变从而使合金强度提高的现象。其原理在材料科学基础的各类教材中均有详细介绍,就不做赘述了,在此提供几种常见的固溶强化合金实例,让大家更好的了解这种强化机制,也便于将所学知识结合到材料科学的实际应用中。 1.微量Ag对铜合金性能的影响 Cu-Ag合金是典型的固溶强化型合金,在共晶温度(779℃)时银在铜中的溶解度可达8%。银分布在固溶体中,从而提高铜的强度和硬度,产生显著的固溶强化效应。一般说来,铜中加入合金元素,溶质原子溶入晶格后会引起晶体点阵畸变,这种畸变的晶格点阵对运动电子的散射作用也相应加剧。因此,固溶强化对铜的导电性和强度的效应是矛盾的。但银与可固溶于铜的其他元素不同,含银量少时,铜的电导率和热导率的下降不多,对塑性的影响也甚微,并显著提高铜的再结晶温度、蠕变强度和抗高温热低周疲劳。在相关文献中有介绍:在铜中加入0.2%-1%银后,导电率仍保持在100%IACS,形变强化后强度可达到400MPa以上:Cu-0.085%Ag经冷加工后,强度可达到420MPa,导电率为100%IACS,Cu-10%Ag经适当处理后,强度可达到1000MPa,导电率可达80%IACS。 2. 微量元素对Pt或Pt-Rh合金高温强度的影响 微量或少量元素对Pt 和Pt-Rh 合金的高温强度有明显的影响,溶质W、Mo、Ir、Ru、Os、Re 等内聚能很高,它们对Pt、Pd的强化效果很好,所有过渡族元素及Cu、Ag和Au在Pt中也有相当高的固溶度,特别是周期表中Pt附近的元素与Pt形成连续固溶体。在不甚高的温度范围内,这些元素对Pt均有不同程度的固溶强化作用。 3. V-4Cr-4Ti合金的氢致硬化 钒合金具有较强的吸氢能力,合金元素Ti能显著提高合金的吸氢量,在发生氢脆断裂的临界氢含量下,达到氢致脆性断裂之前,钒合金的氢致硬化是一种典型的固溶强化。这是因为H在合金中是非常容易扩散的,其可以与位错发生交互作用,从而提高合金的强度,并使合金的塑性降低。H引起合金的固溶强化,是使合金的晶粒强度升高。 而金属Ti是一种很好的吸气剂,在钒合金中,由于Ti对七种的间隙杂质原子

论述四种强化的强化机理、强化规律及强化方法。

1、形变强化 形变强化:随变形程度的增加,材料的强度、硬度升高,塑性、韧性下降的现象叫形变强化或加工硬化。 机理:随塑性变形的进行,位错密度不断增加,因此位错在运动时的相互交割加剧,结果即产生固定的割阶、位错缠结等障碍,使位错运动的阻力增大,引起变形抗力增加,给继续塑性变形造成困难,从而提高金属的强度。 规律:变形程度增加,材料的强度、硬度升高,塑性、韧性下降,位错密度不断增加,根据公式Δσ=αbGρ1/2,可知强度与位错密度(ρ)的二分之一次方成正比,位错的柏氏矢量(b)越大强化效果越显著。 方法:冷变形(挤压、滚压、喷丸等)。 形变强化的实际意义(利与弊):形变强化是强化金属的有效方法,对一些不能用热处理强化的材料可以用形变强化的方法提高材料的强度,可使强度成倍的增加;是某些工件或半成品加工成形的重要因素,使金属均匀变形,使工件或半成品的成形成为可能,如冷拔钢丝、零件的冲压成形等;形变强化还可提高零件或构件在使用过程中的安全性,零件的某些部位出现应力集中或过载现象时,使该处产生塑性变形,因加工硬化使过载部位的变形停止从而提高了安全性。另一方面形变强化也给材料生产和使用带来麻烦,变形使强度升高、塑性降低,给继续变形带来困难,中间需要进行再结晶退火,增加生产成本。 2、固溶强化 随溶质原子含量的增加,固溶体的强度硬度升高,塑性韧性下降的现象称为固溶强化。强化机理:一是溶质原子的溶入,使固溶体的晶格发生畸变,对滑移面上运动的位错有阻碍作用;二是位错线上偏聚的溶质原子形成的柯氏气团对位错起钉扎作用,增加了位错运动的阻力;三是溶质原子在层错区的偏聚阻碍扩展位错的运动。所有阻止位错运动,增加位错移动阻力的因素都可使强度提高。 固溶强化规律:①在固溶体溶解度范围内,合金元素的质量分数越大,则强化作用越大; ②溶质原子与溶剂原子的尺寸差越大,强化效果越显著;③形成间隙固溶体的溶质元素的强化作用大于形成置换固溶体的元素;④溶质原子与溶剂原子的价电子数差越大,则强化作用越大。 方法:合金化,即加入合金元素。 3、第二相强化 钢中第二相的形态主要有三种,即网状、片状和粒状。 ①网状特别是沿晶界析出的连续网状Fe3C,降低的钢机械性能,塑性、韧性急剧下降,强度也随之下降; ②第二相为片状分布时,片层间距越小,强度越高,塑性、韧性也越好。符合σs=σ0 +KS 0-1/2的规律,S 片层间距。

(完整word版)金属材料的强化方法_细晶强化_沉淀强化_固溶强化_第二相强化_形变强化

金属的五种强化机制及实例 1 固溶强化 (1)纯金属加入合金组元变为固溶体,其强度、硬度将升高而塑性将降低, 这个现象称为固溶强化。 (2)固溶强化的机制是: 金属材料的变形主要是依靠位错滑移完成的, 故凡是可以增大位错滑移阻力的因素都将使变形抗力增大, 从而使材料强化。合金组元溶入基体金属的晶格形成固溶体后, 不仅使晶格发生畸变, 同时使位错密度增加。畸变产生的应力场与位错周围的弹性应力场交互作用, 使合金组元的原子聚集在位错线周围形成“气团”。位错滑移时必须克服气团的钉扎作用, 带着气团一起滑移或从气团里挣脱出来, 使位错滑移所需的切应力增大。 (3)实例:表1 列出了几种普通黄铜的强度值, 它们的显微组织都是单相固溶体, 但含锌量不同, 强度有很大差异。在以固溶强化作为主要强化方法时, 应选择在基体金属中溶解度较大的组元作为合金元素, 例如在铝合金中加入铜、镁; 在镁合金中加入铝、锌; 在铜合金中加入锌、铝、锡、镍; 在钛合金中加入铝、钒等。 表1 几种普通黄铜的强度(退火状态) 对同一种固溶体, 强度随浓度增加呈曲线关系升高, 见图1。在浓度较低时, 强度升高较快, 以后渐趋平缓,大约在原子分数为50 %时达到极大值。以普通黄铜为例: H96 的含锌量为4 % , σb 为240MPa , 与纯铜相比其强度增加911 %;H90 的含锌量为10 % , σb 为260MPa , 与H96 相比强度仅提高813 %。 2 细晶强化 (1) 晶界上原子排列紊乱, 杂质富集,晶体缺陷的密度较大, 且晶界两侧晶粒的位向也不同, 所有这些因素都对位错滑移产生很大的阻碍作用, 从而使强度升高。晶粒越细小, 晶界总面积就越大, 强度越高, 这一现象称为细晶强化。 (2) 细晶强化机制:通常金属是由许多晶粒组成的多晶体,晶粒的大小可以用单位体积内晶粒的数目来表示,数目越多,晶粒越细。实验表明,在常温下的细晶粒金属比粗晶粒金属有更高的强度、硬度、塑性和韧性。这是因为细晶粒受到外力发生塑性变形可分散在更多的晶粒内进行,塑性变形较均匀,应力集中较小;此外,晶粒越细,晶界面积越大,晶界越曲折,越不利于裂纹的扩展。 (3) 实例:ZG35CrMnSi钢强化工艺 工件铸造后经过完全退火,正火,再进行亚温淬火加高温回火热处理。该工艺处理的主要好处在于提高了本工件的强度和韧性。分析如下:亚温淬火在原奥氏体晶界上形成细小的奥氏体晶粒,奥氏体面积也变大了数倍;杂质在晶界偏析较少,可以细化晶粒和减少晶界偏析;加热温度较低,晶粒长大倾向小,实际晶粒较细;淬火时,马氏体被细化,而且细小晶粒的交界面曲折多弯,可以阻挡裂纹的扩展,两相区淬火时碳化物的析出过程及碳化物的形态不同于普通淬火,可减轻回火脆性提高冲击韧度同时亚温淬火采取水冷,冷速的提高也使晶粒得到细化。所以亚温淬火在保持抗拉强度不变的情况下,可提高冲击韧度。由于亚温淬火,存在一部分未溶铁素体,可以提高材料整体的塑性。由以上分析可知,ZG35CrMnSi钢强化手段主要有细晶强化,第二相强化和位错强化。 3 形变强化 (1)随着塑性变形量的增加,金属流变强度也增加,这种现象称为形变强化。形变强化亦称为冷变形强化、加工硬化和冷作硬化。 (2) 形变强化的机理是: 冷变形后金属内部的位错密度将大大增加, 且位错相互缠结并形成胞状结构(形变亚晶) , 它们不但阻碍位错滑移, 而且使不能滑移的位错数量剧增, 从而大大增加了位错滑移的难度并使强度提高。

铝及其合金的强化机制

铝及其合金的强化机制 因为是纯铝,不能进行热处理强化,就只能靠形变强化(冷变形),强化原理为冷变形后位错密度增加,且位错相互缠绕并形成胞状结构(形变亚晶),不但能够阻碍位错滑移,而且是不能滑移的位错数量增加。 1、热处理,使纯铝发生再结晶,这个原理是细晶强化,晶粒细小,金属的强度和塑性都得到提高; 2、锻造、挤压、拉拔等工艺造成加工硬化,原理是形变强化,形变造成位错密度增大,金属强度增大,但是塑性下降; 3、采用喷丸、喷砂等工艺对铝的表面进行加工,使其表面得到强化,即表面强化,铝的强度提高,但是塑性降低,其强化原理仍然是形变强化; 4、还有一类特殊的强化,即制备很细的铝晶须,铝晶须的强化很高,达到纯铝强度的10倍左右; 5、其他强化手段如固溶强化、沉淀强化、颗粒强化等都改变了铝的成分; 铝合金的强化方式主要有以下几种: 1.固溶强化 纯铝中加入合金元素,形成铝基固溶体,造成晶格畸变,阻碍了位错的运动,起到固溶强化的作用,可使其强度提高。根据合金化的一般规律,形成无限固溶体或高浓度的固溶体型合金时,不仅能获得高的强度,而且还能获得优良的塑性与良好的压力加工性能。Al-Cu、Al -Mg、Al-Si、Al-Zn、Al-Mn等二元合金一般都能形成有限固溶体,并且均有较大的极限溶解度(见表9-2),因此具有较大的固溶强化效果。 2.时效强化 合金元素对铝的另一种强化作用是通过热处理实现的。但由于铝没有同素异构转变,所以其热处理相变与钢不同。铝合金的热处理强化,主要是由于合金元素在铝合金中有较大的固溶度,且随温度的降低而急剧减小。所以铝合金经加热到某一温度淬火后,可以得到过饱和的铝基固溶体。这种过饱和铝基固溶体放置在室温或加热到某一温度时,其强度和硬度随时间的延长而增高,但塑性、韧性则降低,这个过程称为时效。在室温下进行的时效称为自然时效,在加热条件下进行的时效称为人工时效。时效过程中使铝合金的强度、硬度增高的现象称为时效强化或时效硬化。其强化效果是依靠时效过程中所产生的时效硬化现象来实现的。3.过剩相强化 假如铝中加入合金元素的数量超过了极限溶解度,则在固溶处理加热时,就有一部分不能溶入固溶体的第二相出现,称为过剩相。在铝合金中,这些过剩相通常是硬而脆的金属间化合物。它们在合金中阻碍位错运动,使合金强化,这称为过剩相强化。在生产中经常采用这种方式来强化铸造铝合金和耐热铝合金。过剩相数量越多,分布越弥散,则强化效果越大。但过剩相太多,则会使强度和塑性都降低。过剩相成分结构越复杂,熔点越高,则高温热稳定性越好。 4.细化组织强化 许多铝合金组织都是由α固溶体和过剩相组成的。若能细化铝合金的组织,包括细化α固溶体或细化过剩相,就可使合金得到强化。 由于铸造铝合金组织比较粗大,所以实际生产中经常利用变质处理的方法来细化合金组织。变质处理是在浇注前在熔融的铝合金中加入占合金重量2~3%的变质剂(常用钠盐混合物:2/3NaF+1/3NaCl),以增加结晶核心,使组织细化。经过变质处理的铝合金可得到细小均匀的共晶体加初生α固溶体组织,从而显著地提高铝合金的强度及塑性。

钢的强化方法及机理

强化 3Cr2W8V钢属过共析钢, 原材料晶粒粗大, 碳化物偏析严重往往呈块、网、带状分布。通过改锻(三次循环调质处理), 击碎块状碳化物, 七碎粗晶粒, 并使其形成的纤维组织沿着模具轮廓呈无定向分布, 增加钢的塑性、韧性与强度。经三次高温固溶淬火, 使未锻透的内层组织中的残留块状、网状、带状碳化物和难溶的碳化物质点和合金元素充分溶解于奥氏体中, 大大增加了固溶体中的合金化程度, 大大降低了碳化物偏析对基体的切割作用。 升至淬火温度保温后出炉水冷2一3秒淬人硝盐等温, 获得强韧性高的板条弥散组织,再经二次高温回火后碳化物呈高度弥散析出, C一N硬化层有硬度较高的过渡层支承, 基体具有良好的强韧性, 使凹模具有外硬型面和内韧基体特性, 获得一顶十的高寿命。 3Cr2W8V钢可采用淬火、回火处理,渗碳、渗氮、渗硼及碳氮共渗、渗铝、渗铬及铬一铝一硅三元共渗等化学热处理,镀金属等表面强化处理来提高其高温强度、冷热疲劳抗力、耐磨性、抗腐蚀性及防粘模等性能,从而达到提高3Cr2W8V钢制模具的使用寿命的目的。 渗金属渗铬处理可显著提高模具高温耐磨性、热疲劳抗力。 真空热处理。采用真空热处理,模具表面光洁,硬度均匀,变形小,尤其适应对精度要求和表面粗糙度要求高的模具。 3Cr2W8V钢超塑形变处理与常规热处理比较,其强度和韧性同时得到提高 电火花表面强化是利用火花放电时释放的能量,将一种导电材料熔渗到工件表面,构成合金化的表面强化层,从而改善工件表面的物理及化学性能 喷丸强化是借助于硬丸粒,高速、连续锤击金属表面,使其产生强烈的冷作硬化。通过喷丸可以明显改变金属表层的应力状态、显微硬度、表层的微观形貌,从而提高模具的疲劳强度、抗冲击磨损及抗应力腐蚀 离子注入是将被注入元素的原子利用离子注入机电离成带一个正电荷的离子,经高压电场作用后,强行注入材料的表面,使其产生物理、化学性能的优化的工艺方法。可将任何元素注入任何材料中,浓度可严格控制,且不受材料固溶度的限制,强化层也不会剥落,处理温度低,易于控制,工件的基体材料不可能因温升而弱化,也不会产生变形和翘曲。离子注入可提高金属材料表面的硬度、耐磨性、耐疲劳性和耐腐蚀性。 锻热淬火+高温回火:即(锻热调质处理)将形变强化和相变强化结合, 既细化碳化物又细化马氏体所得回火索氏体不仅有良好的切削加工性, 且因较小比容而可降低最终淬火时的变形。 Crl2MoV钢经深冷处理,深冷处理可使淬火马氏体析出高度弥散的超微细碳化物,随后进行200℃低温回火后,这些超微细碳化物可转变为碳化物。未经深冷处理的马氏体,在低温周火后,仅在某些局部区域析出有少量的碳化物。 Crl2MoV采用低温化学热处理方法, 在保持Crl2MoV钢高硬度和高耐磨性的基础上,离子渗氮、气体氮碳共渗、盐浴硫氰共渗种常用的低温化学热处理渗层的粘着抗力。3种低温化学热处理渗层均有显若的抗冲击粘着作用, 其中尤以盐浴硫氰共渗最佳。Crl2MoV钢制不锈钢器皿拉伸模经气体氮碳共渗处理后, 使用寿命达3万件以上, 较常规淬火、回火处理的同类模具寿命提高10倍以上。 Crl2MoV冷作模具钢的中性盐浴渗钒处理工艺,Crl2MoV钢经中性盐浴渗钒处理可获得碳化物渗层,一、碳钒化合物,该渗层组织均匀,具有良好的连续性和致密性,厚度均匀,结构致密,具有很高的显微硬度和较高的耐磨性,表面硬度、耐磨性及抗粘着性等性能大幅度提高。二、VC在奥氏体中的溶解度比它在铁索体中的溶解度高,随着温度的降低,VC从铁索体中析出,使合金强化及晶粒细化,化合物层表现出较高的硬度。 Cr12MoV 属于高碳高铬莱氏体钢, 碳化物含量高,约占20 % ,且常呈带状或网状不均匀分布,偏析严重, 而常规热处理又很难改变碳化物偏析的状况, 严重影响了钢的力学性能与模具的使用寿命。而碳化物的形状、大小对钢的性能也有很大的影响, 尤其大块状尖角碳化物对钢基体的割裂作用比较大,往往成为疲劳断裂的策源地, 为此必须对原材料轧制钢材进行改锻,充分击碎共晶碳化物,使之 呈细小、均匀分布, 纤维组织围绕型腔或无定向分布, 从而改善钢材的横向力学性能。 锻造时对钢坯从不同方向进行多次镦粗和拉拔,并采用“二轻一重”法锻造,即坯料始锻时要轻击,防止断裂,在980~1 020 ℃中间温度可重击, 以保证击碎碳化物, Cr12MoV 钢未改锻,采用固溶双细化处理[5 ] ,即500 ℃及800 ℃左右二级预热,1 100~1 150 ℃固溶处理,淬入热油或等温淬 火,750 ℃高温回火,机加工后960 ℃加热油冷后进行最终热处理, 也可使碳化物细化、棱角圆整化,晶粒细化。 H13钢(4Cr5MoSiV1)是目前国内外广泛使用的热作模具钢。主要失效形式为热磨损(熔损)和热疲劳。这就要求表面具有高硬度、耐蚀、抗粘结等性能。H13钢常规淬火、回火后的硬度一般为42—48HRC,耐磨性十足,模具使用寿命短。鉴于模具失效大都由表面开始,从节省能源和资源,充分发挥材料性能潜力并获得特殊性能和最大经济效益出发,对H13钢模具进行表面强化处理,是综合改善模具寿命的关键。 H13钢常规处理后硬度HRC44,经激光淬火,表面硬度可达772HV(相当于62HRC)。由于得到以超细化高密度位错型马氏体为主的组织,以及激光加热后自回火过程中析出弥散碳化物,使得淬硬层硬度、抗回火稳定性、耐磨性及抗蚀性均显著提高。 低温化学热处理可以提高H13钢的抗热疲劳、耐热磨损和耐蚀性能,且工艺成本低廉,故应用广泛。常用工艺有离子渗氮、N—C 共渗(软氮化)、S—N—C共渗以及多元共渗等。比较典型的多元共渗工艺为C、N、O、S、B五元共渗。H13钢经五元共渗后,在工件表面形成硼化物、碳化物和氮化物,起到弥散强化作用,对比试验表明,硬化效果比气体渗氮和S、C、N三元共渗都好,在适当温度时保持,硬度下降平缓,红硬性、耐磨性明显提高。 盐浴复合处理技术,其中“盐浴复合”的含义是指在氮化盐浴和氧化盐浴两种盐浴中处理工件。实现了渗氮工序和氧化工序的复合;渗层组织是氮化物和氧化物的复合;性能是耐磨性和抗蚀性的复合:工艺是热处理技术和防腐技术的复合。 稀土元素在H13 热作模具钢表面强化中的应用, 重点探讨了在扩散渗入、离子注入及气相沉积等三种表面强化技术中的强化效果和作用机理。扩散渗入中, 稀土元素主要起到催渗和微合金化的作用; 离子注入中, 添加稀土元素能形成致密的氧化物, 可提高模具的抗高温氧化能力; 气相沉积中, 稀土元素的加入增强涂层的膜- 基结合强度。结果表明, 稀土元素的加入均能显著提高模具的使用寿命。 H13钢电渣重熔后成为优质钢大大降低S、P等有害杂质,提高了纯洁度组织成分均匀性、抗热裂、抗裂纹和改善了钢的横向性能。改锻双重淬火改善碳化物形貌使之呈细小匀圆分布于钢基体,提高热强性、断裂韧性、红硬性、疲劳抗力和综合力学性能。深层软氮化提高模面硬度、耐磨性、抗疲劳、抗咬合、抗粘结和抗腐蚀等性能。 以磨损失效的高速钢, 提高寿命的途径是提高表面硬度与耐磨性。 在激光相变硬化条件下,既使高速钢的表面不熔化,以不牺牲其表面粗糙度,叉使高速钢的加热温度尽可能高.以增大其固溶体的合金固溶度。在这种条件下可以高速钢的表面大大强化‘高速钢经激光相变强化处理+600"C回火处理可以充分发挥激光强化的硬化潜力高速钢经激光相变硬化后,其回火硬度和红硬性可以得到明显改善 高速工具钢刀具经深冷处理后, 碳化物的粒度和分布的均匀性都有明显的变化。这种变化是稳定的, 不可逆的, 而且是从刀具表面到内部整体上的变化, 比一般表面强化有很大的优越性。这是深冷处理后刀具耐磨性和使用寿命提高一倍的主要原因深冷处理后样品显微硬度略有降低, 这与马氏体中含碳量减少和碳化物变得更加细小弥散有关因此刀具强化不是由于硬度提高所致。 高速钢经多元共渗处理后,钢的形成了表面强化层。强化层主要以氧化物、硫化物和氮化物、硼化物为主,由表面氧化疏松层、次表面致密化合物层和扩散过渡层组成。相对于原始材料,强化层硬度显著提高,从而提高了材料干摩擦条件下的耐磨性。 用反应硼化烧结法在高温下真空烧结,制备出高耐磨的粉末高速钢与三元硼化物陶瓷的复合材料。:材料主要是由三元硼化物基硬质相和高速钢基体组成,硬质颗粒与基体界面结合良好,分散均匀,摩擦磨损试验表明此种材料具有优异的耐磨性。

金属强化的主要方法

一、金属强化的主要方法。 从金属材料的强化途径来看,金属材料的强化方法主要有两大类: 一是提高合金的原子间结合力,提高其理论强度,并制得无缺陷的完整晶体,如晶须。已知铁的晶须的强度接近理论值,可以认为这是因为晶须中没有位错,或者只包含少量在形变过程中不能增殖的位错。这种强化方法只有在几种特殊的金属中才得到应用。 另一强化途径是向晶体内引入大量晶体缺陷,如位错、点缺陷、异类原子、晶界等,这些缺陷阻碍位错运动,也会明显地提高金属强度。事实证明,这是提高金属强度最有效的途径。对工程材料来说,一般是通过综合的强化效应以达到较好的综合性能。具体方法有固溶强化、形变强化、沉淀强化和弥散强化、细化晶粒强化、择优取向强化、复相强化、纤维强化和相变强化等,这些方法往往是共存的。下面简要的予以介绍: 1、结晶强化 结晶强化就是通过控制结晶条件,在凝固结晶以后获得良好的宏观组织和显微组织,从而提高金属材料的性能。它包括: (1)细化晶粒。细化晶粒可以使金属组织中包含较多的晶界,由于晶界具有阻碍滑移变形作用,因而可使金属材料得到强化。同时也改善了韧性,这是其它强化机制不可能做到的。 (2)提纯强化。在浇注过程中,把液态金属充分地提纯,尽量减少夹杂物,能显著提高固态金属的性能。夹杂物对金属材料的性能有很大的影响。采用真空冶炼等方法,可以获得高纯度的金属材料。 2、形变强化 也叫加工硬化,金属材料经冷加工塑性变形可以提高其强度。这是由于材料在塑性变形后位错运动的阻力增加所致。如铜合金。 3、固溶强化 通过合金化(加入合金元素)组成固溶体,使得融入固溶体中的原子造成晶格畸变,晶格畸变增大了位错运动的阻力,使塑性变形更加困难,从而使合金固溶体的强度与硬度增加的现象。 4、相变强化

第一章 钢的合金化原理作业题 参考

第一章钢的合金化原理作业题参考答案要点1、名词解释: 1)合金元素:特别添加到钢中用以改变钢的组织、提高钢的性能的化学元素。 2)微合金元素:有些合金元素如V,Nb,Ti和B等,当其含量只在0.2%左右甚至更低时(如B 0.002%)时,也会显著地影响钢的组织与性能,将这种化学(合金)元素称为微合金元素。 3)原位析出:在淬火回火过程中,合金元素溶解于原渗碳体中,当其溶解度超 过其最大溶解量后,合金渗碳体转变为特殊碳化物的析出方式。 4)离位析出:在淬火回火过程中,直接从α相中析出特殊碳化物的析出方式。 5)二次硬化:在强K形成元素含量较高的合金钢淬火后,在500-600℃范围内回火时,在α相中沉淀析出这些元素的特殊碳化物,并使钢的HRC和强度提高的现象。 6)二次淬火:在强K形成元素含量较高的合金钢淬火后,残余奥氏体十分稳定,甚至加热到500-600℃回火时升温与保温时中仍不分解,而是在冷却时部分转变成马氏体,使钢的硬度和强度提高的现象。 2、说明钢中常用合金元素(V,Mo,Cr,Ni,Mn,Si,Al, B)对珠光体(贝氏体)转变影响的作用机制。 答:(1)对珠光体转变影响的作用机制:P20 (2)对贝氏体转变影响的作用机制:P20 3、以低碳回火马氏体钢20SiMn2MoVB为例,说明其合金化及热处理(淬火加低温回火)中存在哪些强化与韧化途径? 答:低碳回火马氏体钢通过合金化与热处理工艺相结合,在实现强化的同时,保

证有较好的韧性。主要体现在以下方面: (1)强化: ①C及合金元素的固溶强化; ②加入Si, Mn等合金元素能提高奥氏体的过冷能力,从而细化晶粒;③加入V、Ti后的弥散强化; ④加入V、Ti后的细化晶粒作用; ⑤马氏体中大量位错的位错强化。 (2)韧化: ①低碳马氏体为位错型马氏体,韧性较好; ②Ni,Mn韧性元素的加入有利于提高韧性; ③工艺中的快冷、加入的合金元素对奥氏体过冷能力的提高、第二相粒子对晶粒长大的抑制作用,均能使马氏体晶粒细化,从而提高韧性; ④通过加入Si对低温回火脆性温度的延迟作用以及钢的回火稳定性的增加,可以适当提高回火温度,从而提高韧性水平。 4、为何Si-Mn-Mo-V复合添加可以大大提高钢的淬透性? 答:Si、Mn、Mo、V这四种合金元素提高过冷奥氏体稳定性的机制不同。 (1)Si在钢中不形成碳化物,也不溶于体,因此碳化物晶核形成必须等待硅的扩散(推迟P转变)。另外,Si能提高铁原子间作用力,提高铁的自扩散激活能,推迟P和B转变; (2)Mn是扩大γ相区元素,大大增加了α形核功;且锰也是碳化物形成元素,推迟合金渗碳体的形核与长大,因此锰不仅使C曲线向右移,且使之向下移;(3)Mo是中强碳化物形成元素,除了推迟珠光体转变时碳化物的形核与长大外,还增加了铁原子间的结合力,提高铁的自扩散激活能,推迟P和B 转变。

钢的强化手段及应用

钢的强化手段及应用的探讨随着工业革命和现代科技的进步,钢材在社会的发展过程中起到的作用达到 了前所未有的重要程度,成为国家建设和现代化推进必不可少的重要物资。其广泛应用于矿山、建筑、机械、交通运输、桥梁、石油化工、轻工和电子工业等领域。而且品种繁多,一般分为型材、板材、管材和金属制品四大类。 大部分钢材加工都是钢材通过压力加工,使被加工的钢(坯、锭等)产生塑性变形,由于在很多领域有特殊的工艺要求,所以钢材需要进一步的强化。通过合金化、塑性变形和热处理等手段提高金属材料的强度,称为强化。钢的强化主要是指加强抵抗塑性变形的能力。强化的途径一般分为两种,一种是尽量消除位错等晶体缺陷,获得近乎理想的单晶材料。另一种是增加位错密度和移动阻力。因此钢的强化分为晶界强化、位错强化、固溶强化、沉淀和弥撒强化、相变强化、调幅分解强化等。 晶界强化是指向界两侧原子的取向不同中加入一些微量的表面活性元素,如硼和稀土元素等,产生内吸附现象让钢浓集于晶界,从而使钢的蠕变极限和持久强度显著提高的方法。如珠光体耐热钢12Cr2MoWVB,即利用硼的晶界强化作用,提高了钢的蠕变极限和持久强度。 晶界强化中经常用到一种方法——细晶强化。晶界是位错运动的最大障碍之一,晶位错集中在晶界附近晶粒越细,这种阻碍作用就越强。近年来,用控制奥氏体再结晶技术,获得超奥氏体晶粒,淬火后得到超细马氏体组织,使其屈服强度接近2000MPa。同时利用快速循环加热工艺对材料进行超细化处理得到进展,细晶在提高材料强度的同时,也是材料的塑性、韧性得到改善,从而使其具备了其他强化手段没有的优势。 位错强化也是金属材料中最为有效的强化方式之一。自从位错理论提出后,人们就对位错之间的相互作用进行了大量的研究,在位错强化(加工硬化)方面取得了长足的进展。增加金属的位错密度,例如冷加工变形。由于位错的交互作用和缠绕作用,使位错的可动性大大降低,从而提高强度和硬度。这种现象被称之为“加工硬化”,其强度和位错密度的平方根成正比例提高。 有实验研究了碳和锰含量对淬火中锰马氏体钢的位错密度、残余奥氏体含量、晶粒尺寸等组织结构以及室温力学性能的影响。借助于SEM、EBSD、TEM和XRD表征了材料的微观组织,探讨了马氏体钢的强化机制。结果表明,随着碳含量增加,淬火中锰钢的位错密度和残余奥氏体体积分数逐渐增加,板条束和板条块尺寸逐渐细化,大角晶界百分数逐渐增加,强度逐渐升高;增加锰含量能够提高马氏体钢的位错密度和抗拉强度。通过分析可知,位错强化和细晶强化是淬火中锰马氏体钢的主要强化机制。马氏体板条尺寸是马氏体抗拉强度的结构控制单元,而原奥氏体晶粒尺寸则是马氏体屈服强度的结构控制单元。

相关文档
最新文档