钢的强化机制

钢的强化机制

钢的强化机制

钢的强化机制可分为固溶强化机制、界面强化、弥散强化、析出强化及细晶强化。其中固溶强化是钢最重要的强化手段。本文以余瑞璜院士的“固体和分子经验电子论”和刘志林教授的“合金价电子结构”为理论工具,详细的计算了碳、硅、锰、钼、铜、铬、镍、钨八种元素的固溶强化数据。研究发现,碳元素的固溶强化增量随碳元素的含量的增加而线性增加;硅、锰、钼、铜、铬、镍、钨每种合金元素的固溶强化增量曲线都有一个转折点(固溶强化最佳点),在各自转折点以前和转折点以后每种合金元素的固溶强化增量都是随该合金元素的含量的增加而线性增加,但是在转折点以前和转折点以后固溶强化速率是不同的,在转折点以前的固溶强化速率大于在转折点以后的固溶强化速率;同时硅、锰、钼、铜、铬、镍、钨这七种合金元素的固溶强化速率又是不同的,在各自转折点(固溶强化最佳点)以前,固溶强化速率大小顺序是硅、钼、铬、镍、锰、铜、钨,硅的固溶强化速率最好,在各自转折点(固溶强化最佳点)以后固溶强化速率都变得较小。从而在电子结构层次上解释了固溶强化规律。

The strengthening mechanisms of steel include solution strengthening, boundary strengthening, dispersion strengthening, precipitation strengthening, and fine-grained strengthening and so on. The solution strengthening is the most important

intensification. In this paper the solution strengthening increments of carbon, silicon, manganese, molybdenum, copper, chromium, nickel, and tungsten are detailedly calculated with Academician Yu Ruihuang’s The Empirical Electron Theory of Solids and Molecules and P...

金属材料的强化机理讲解

材料结构与性能读书报告--金属材料的强化机理

摘要 综合论述金属材料强化原理,基本途径,文章从宏观性能—微观组织结构—材料强化三者的相互依存关系,叙述了材料强化的本质、原理与基本途径作了论述。金属的强化可以改善零件的使用性能,提高产品的质量,充分发挥材料的性能潜力,延长工件的使用寿命,在实际应用中,有着非常重要的意义。对工程材料来说,一般是通过综合的强化效应以达到较好的综合性能。具体方法有固溶强化、形变强化、沉淀强化和弥散强化、晶界强化、位错强化、复相强化、纤维强化和相变强化等。 关键词:强化;细晶;形变;固溶;弥散;相变

Abstract In this paper a summary is made on the principle of material strengthening,basis way and new technology of heat treatment.The essence,principle and basis ways of strengthening various materials were expounded in terms of their microscope properties,microstructure and material strengthening technology.:Metal strengthening can improve the performance of parts, improve the quality of products, give full play to the properties of materials, extend the use of workpiece potential life, in practical applications, has a very important significance. A systematic discussion was made about the explantation of the potential of materials.For engineering materials, it is usually by the strengthening effect comprehensive to achieve good comprehensive performance. Specific methods have solid-solution strengthening,distortion and deposition strengthening ,he complex phase strengthening,fiber reinforced and phase change aggrandizement, etc. Keywords:strengthen; fine grain; deformation; solution; dispersion; phase transition

马氏体强化机制

2012春季学期 材料力学性能课程论文 院(系)材料科学与工程 专业材料科学与工程 学生唐骜 学号 1091900101 班号 0919001

铁碳马氏体的强化机制 唐骜 1091900101 摘要:本文以铁碳马氏体的组织形貌以及马氏体转变过程为出发点,引述了马氏体的主要强韧化机制。并通过引用各学者的实验结论,得到了铁碳马氏体的强韧化机理。 关键词:马氏体,强韧化机制,高强度钢,低碳钢,时效 1. 马氏体概述 马氏体(martensite)是黑色金属材料的一种组织名称。将钢加热到一定温度(形成奥氏体)后经迅速冷却(淬火),得到的能使钢变硬、增强的一种淬火组织。 马氏体最先由德国冶金学家 Adolf Martens(1850-1914)于19世纪90年代在一种硬矿物中发现。马氏体的三维组织形态通常有片状(plate)或者板条状(lath),但是在金相观察中(二维)通常表现为针状(needle-shaped),这也是为什么在一些地方通常描述为针状的原因。马氏体的晶体结构为体心四方结构(BCT)。中高碳钢中加速冷却通常能够获得这种组织。高的强度和硬度是钢中马氏体的主要特征之一。 20世纪以来,对钢中马氏体相变的特征累积了较多的知识,又相继发现在某些纯金属和合金中也具有马氏体相变,如:Ce、Co、Hf、Hg、La、Li、Ti、Tl、Pu、V、Zr、和Ag-Cd、Ag-Zn、Au-Cd、Au-Mn、Cu-Al、Cu-Sn、Cu-Zn、In-Tl、Ti-Ni等。目前广泛地把基本特征属马氏体相变型的相变产物统称为马氏体。 2. 马氏体相变特征 马氏体转变的一般定义为:过冷奥氏体以较快的速度冷却,抑制其扩散性分解,在较低的温度下发生的无扩散型相变称为马氏体相变。 其主要特点有以下几点: (1)马氏体相变是无扩散相变。马氏体相变时没有穿越界面的原子无规行走或顺序跳跃,因而新相(马氏体)承袭了母相的化学成分、原子序态和晶体缺陷。马氏体相变时原子有规则地保持其相邻原子间的相对关系进行位移,这种位移是切变式的。原子位移的结果产生点阵应变(或形变)。这种切变位移不但使母相点阵结构改变,而且产生宏观的形状改变。 (2)产生表面相变时浮突。马氏体形状改变使先经抛光的试样表面形成浮突。马氏体形成时,与马氏体相交的表面上发生倾动,在干涉显微镜下可见到浮突的高度以及完整尖锐的边缘。 (3)新相(马氏体)和母相之间始终保持一定的位向关系。马氏体相变时在一定的母相面上形成新相马氏体,这个面称为惯习(析)面,它往往不是简单的指数面,如

最新(原文)细晶强化的机理及其应用

细晶强化的机理及其应用 摘要:本文讲述了细晶强化的含义及其微观机理,介绍了三种推导Hall-Petch关系式的物理模型,并说明了微量碳在钢铁材料中细晶强化时对Hall-Petch关系式中σ0和k的影响。本文还介绍了一种细晶强化金属材料的新方法-不对称挤压法。 关键词:细晶强化,Hall-Petch关系式,位错。 1 引言 通常金属是由许多晶粒组成的多晶体,晶粒的大小可以用单位体积内晶粒的数目来表示,数目越多,晶粒越细。实验表明,在常温下的细晶粒金属比粗晶粒金属有更高的强度、硬度、塑性和韧性。这是因为细晶粒受到外力发生塑性变形可分散在更多的晶粒内进行,塑性变形较均匀,应力集中较小;此外,晶粒越细,晶界面积越大,晶界越曲折,越不利于裂纹的扩展。故工业上将通过细化晶粒以提高材料强度的方法称为细晶强化。 细晶强化的关键在于晶界对位错滑移的阻滞效应。位错在多晶体中运动时,由于晶界两侧晶粒的取向不同,加之这里杂质原子较多,也增大了晶界附近的滑移阻力,因而一侧晶粒中的滑移带不能直接进入第二个晶粒,而且要满足晶界上形变的协调性,需要多个滑移系统同时动作。这同样导致位错不易穿过晶界,而是塞积在晶界处,引起了强度的增高。可见,晶界面是位错运动的障碍,因而晶粒越细小,晶界越多,位错被阻滞的地方就越多,多晶体的强度就越高,已经有大量实验和理论的研究工作证实了这一点。另外,位错在晶体中是三维分布的,位错网在滑移面上的线段可以成为位错源,在应力的作用下,此位错源不断放出位错,使晶体产生滑移。位错在运动的过程中,首先必须克服附近位错网的阻碍,当位错移动到晶界时,又必须克服晶界的障碍,才能使变形由一个晶粒转移到另一个晶粒上,使材料产生屈服。因此,材料的屈服强度取决于使位错源运动所需的力、位错网给予移动位错的阻力和晶界对位错的阻碍大小。晶粒越细小,晶界就越多,障碍也就越大,需要加大外力才能使晶体产生滑移。所以,晶粒越细小,材料的屈服强度就越大。 细化晶粒是众多材料强化方法中唯一可在提高强度的同时提高材料塑性、韧性的强化方法。其提高塑性机制为:晶粒越细,在一定体积内的晶粒数目多,则在同样塑性变形量下,变形分散在更多的晶粒内进行,变形较均匀,且每个晶粒中塞积的位错少,因应力集中引起的开裂机会较少,有可能在断裂之前承受较大的变形量。提高强度机制为:晶界增多,而晶界上的原子排列不规则,杂质和缺陷多,能量较高,阻碍位错的通过。 2 细晶强化的经典理论 一般而言,细晶试样不但强度高,而且韧性也好。所以细晶强化成为金属材料的一种重要强化方式,获得了广泛的应用。在大量试验基础上,建立了晶粒大小与金属强度的定量关系的一般表达式为: σy=σ0+kd-n (1)式中,σy为流变应力,σ0为晶格摩擦力,d为晶粒直径,k为与材料有关的参数,指数n常

钢的热处理原理及四把火

钢的热处理 钢的热处理:是将固态钢材采用适当的方式进行加热、保温和冷却以获得所需组织结构与性能的工艺。热处理不仅可用于强化钢材,提高机械零件的使用性能,而且还可以用于改善钢材的工艺性能。其共同点是:只改变内部组织结构,不改变表面形状与尺寸。 第一节钢的热处理原理 热处理的目的是改变钢的内部组织结构,以改善钢的性能,通过适当的热处理可以显著提高钢的机械性能,延长机器零件的使用寿命。热处理工艺不但可以强化金属材料、充分挖掘材料性能潜力、降低结构重量、节省和能源,而且能够提高机械产品质量、大幅度延长机器零件的使用寿命。 热处理工艺分类:(根据热处理的目的、要求和工艺方法的不同分类如下) 1、整体热处理:包括退火、正火、淬火、回火和调质; 2、表面热处理:包括表面淬火、物理和化学气相沉积等; 3、化学热处理:渗碳、渗氮、碳氮共渗等。 热处理的三阶段:加热、保温、冷却

一、钢在加热时的转变 加热的目的:使钢奥氏体化 (一)奥氏体( A)的形成 奥氏体晶核的形成以共析钢为例A1点则W c =0.0218%(体心立方晶格F)W c =6.69%(复杂斜方渗碳体)当T 上升到A c1 后W c =0.77%(面心立方的A)由此可见转变过程中必须经过C和Fe原子的扩散,必须进行铁原子的晶格改组,即发生相变,A的形成过程。在铁素体和渗碳体的相界面上形成。有两个有利条件①此相界面上成分介于铁素体和渗碳体之间②原子排列不规则,空位和位错密度高。 1、奥氏体长大由于铁素体的晶格改组和渗碳体的不断溶解,A晶核一方面不断向铁素体和渗碳体方向长大,同时自身也不断形成长大。 2、残余 Fe 3 C的溶解 A长大同时由于有部分渗碳体没有完全溶解,还需一段时间才能全溶。(F比Fe 3 C先消失) 3、奥氏体成分的均匀化残余Fe 3 C全溶后,经一段时间保温,通过碳原子的扩散,使A成分逐步均匀化。 (二)奥氏体晶粒的长大 奥氏体大小用奥氏体晶粒度来表示。分为 00,0,1,2…10等十二个等级,其中常用的1~10级,4级以下为粗晶粒,5-8级为细晶粒,8级以上为超细晶粒。 影响 A晶粒粗大因素 1、加热温度越高,保温时间愈长,奥氏体晶粒越粗大。因此,合理选择加热和保温时间。以保证获得细小均匀的奥氏体组织。(930~950℃以下加热,晶粒长大的倾向小,便于热处理) 2、A中C含量上升则晶粒长大的倾向大。

论述四种强化的强化机理强化规律及强化方法

论述四种强化的强化机理 强化规律及强化方法 The Standardization Office was revised on the afternoon of December 13, 2020

1、形变强化 形变强化:随变形程度的增加,材料的强度、硬度升高,塑性、韧性下降的现象叫形变强化或加工硬化。 机理:随塑性变形的进行,位错密度不断增加,因此位错在运动时的相互交割加剧,结果即产生固定的割阶、位错缠结等障碍,使位错运动的阻力增大,引起变形抗力增加,给继续塑性变形造成困难,从而提高金属的强度。 规律:变形程度增加,材料的强度、硬度升高,塑性、韧性下降,位错密度不断增加,根据公式Δσ=αbGρ1/2,可知强度与位错密度(ρ)的二分之一次方成正比,位错的柏氏矢量(b)越大强化效果越显著。 方法:冷变形(挤压、滚压、喷丸等)。 形变强化的实际意义(利与弊):形变强化是强化金属的有效方法,对一些不能用热处理强化的材料可以用形变强化的方法提高材料的强度,可使强度成倍的增加;是某些工件或半成品加工成形的重要因素,使金属均匀变形,使工件或半成品的成形成为可能,如冷拔钢丝、零件的冲压成形等;形变强化还可提高零件或构件在使用过程中的安全性,零件的某些部位出现应力集中或过载现象时,使该处产生塑性变形,因加工硬化使过载部位的变形停止从而提高了安全性。另一方面形变强化也给材料生产和使用带来麻烦,变形使强度升高、塑性降低,给继续变形带来困难,中间需要进行再结晶退火,增加生产成本。 2、固溶强化 随溶质原子含量的增加,固溶体的强度硬度升高,塑性韧性下降的现象称为固溶强化。强化机理:一是溶质原子的溶入,使固溶体的晶格发生畸变,对滑移面上运动的位错有阻碍作用;二是位错线上偏聚的溶质原子形成的柯氏气团对位错起钉扎作用,增加了位错运动的阻力;三是溶质原子在层错区的偏聚阻碍扩展位错的运动。所有阻止位错运动,增加位错移动阻力的因素都可使强度提高。 固溶强化规律:①在固溶体溶解度范围内,合金元素的质量分数越大,则强化作用越大;②溶质原子与溶剂原子的尺寸差越大,强化效果越显著;③形成间隙固溶体的溶质元素的强化作用大于形成置换固溶体的元素;④溶质原子与溶剂原子的价电子数差越大,则强化作用越大。 方法:合金化,即加入合金元素。 3、第二相强化 钢中第二相的形态主要有三种,即网状、片状和粒状。

材料强化基本原理

第十章材料的强韧化 第一节材料强化基本原理 结合键和原子排列方式的不同,是金属材料、陶瓷材料、高分子材料力学性能不同的根本原因。通过改变材料的内部结构可以达到控制材料性能的目的。不同种类的材料,提高其强度的机理、方法也不同。 一、金属材料的强化原理 纯金属经过适当的合金化后强度、硬度提高的现象, 称为固溶强化。其原因可归结于溶质原子和位错的交互作 用,这些作用起源于溶质引发的局部点阵畸变。固溶体可 分为无序固溶体和有序固溶体,其强化机理也不相同。 (1)无序固溶强化固溶强化的实质是溶质原子的 长程应力场和位错的交互作用导致致错运动受阻。溶质相 位错的交互作用是二者应力场之间的作用。作用的大小要 看溶质本身及溶质与基体之间的交互作用,这种作用使位 错截交成弯曲形状。如图10—l所示. 图中的A、B、C表示溶质原子强烈地钉扎了位错。 x—x',A未被钉扎的乎直位错线,被钉后呈观曲线形状。 处于位错线上的少数溶质原子与位错线的相互作用很强, 这些原子允许位错线的局部曲率远大于根据平均内应力 求出的曲率。钉扎的第一个效应就是使位错线呈曲折形 状。相对于x—x'的偏离为x在受到垂直方向的外加切应力τ作用下,由于B点位错张力的协助作用,将使ABC段位错移到AB'C,在B'处又被钉扎起来。位错之所以能够这样弯曲,其原因是因位错长度的增加而升高的弹件能被强钉扎所释放的能量抵偿旧有余,位错的弹性能反而有所降低.位错经热激活可以脱钉,因而被钉扎时相对处于低能态。在切应力τ的作用下,ABC 段移动到AB'C.ABC和AB'C是相邻的平衡位置,阻力最大在位错处于中间位置AC时产生,外加切应力要克服这样的阻力方可使位错移动。若AC≈2y,ABC比2y略大,近似地当作2y。由ABC变为AC方面要脱钉需要能量,另一方面要缩短位错长度释放能量。总共需要 式中:Eb是位错脱扎所需能量;EI为单位长度位错由于加长而升高的能量,EI与Eb相比小而略去。由ABC 变为AC,平均位移为x/2,外加切应力需要做功为τb(2y)·x/2,故

论述四种强化的强化机理、强化规律及强化方法。

1、形变强化 形变强化:随变形程度的增加,材料的强度、硬度升高,塑性、韧性下降的现象叫形变强化或加工硬化。 机理:随塑性变形的进行,位错密度不断增加,因此位错在运动时的相互交割加剧,结果即产生固定的割阶、位错缠结等障碍,使位错运动的阻力增大,引起变形抗力增加,给继续塑性变形造成困难,从而提高金属的强度。 规律:变形程度增加,材料的强度、硬度升高,塑性、韧性下降,位错密度不断增加,根据公式Δσ=αbGρ1/2,可知强度与位错密度(ρ)的二分之一次方成正比,位错的柏氏矢量(b)越大强化效果越显著。 方法:冷变形(挤压、滚压、喷丸等)。 形变强化的实际意义(利与弊):形变强化是强化金属的有效方法,对一些不能用热处理强化的材料可以用形变强化的方法提高材料的强度,可使强度成倍的增加;是某些工件或半成品加工成形的重要因素,使金属均匀变形,使工件或半成品的成形成为可能,如冷拔钢丝、零件的冲压成形等;形变强化还可提高零件或构件在使用过程中的安全性,零件的某些部位出现应力集中或过载现象时,使该处产生塑性变形,因加工硬化使过载部位的变形停止从而提高了安全性。另一方面形变强化也给材料生产和使用带来麻烦,变形使强度升高、塑性降低,给继续变形带来困难,中间需要进行再结晶退火,增加生产成本。 2、固溶强化 随溶质原子含量的增加,固溶体的强度硬度升高,塑性韧性下降的现象称为固溶强化。强化机理:一是溶质原子的溶入,使固溶体的晶格发生畸变,对滑移面上运动的位错有阻碍作用;二是位错线上偏聚的溶质原子形成的柯氏气团对位错起钉扎作用,增加了位错运动的阻力;三是溶质原子在层错区的偏聚阻碍扩展位错的运动。所有阻止位错运动,增加位错移动阻力的因素都可使强度提高。 固溶强化规律:①在固溶体溶解度范围内,合金元素的质量分数越大,则强化作用越大; ②溶质原子与溶剂原子的尺寸差越大,强化效果越显著;③形成间隙固溶体的溶质元素的强化作用大于形成置换固溶体的元素;④溶质原子与溶剂原子的价电子数差越大,则强化作用越大。 方法:合金化,即加入合金元素。 3、第二相强化 钢中第二相的形态主要有三种,即网状、片状和粒状。 ①网状特别是沿晶界析出的连续网状Fe3C,降低的钢机械性能,塑性、韧性急剧下降,强度也随之下降; ②第二相为片状分布时,片层间距越小,强度越高,塑性、韧性也越好。符合σs=σ0 +KS 0-1/2的规律,S 片层间距。

钢的强化方法及机理

强化 3Cr2W8V钢属过共析钢, 原材料晶粒粗大, 碳化物偏析严重往往呈块、网、带状分布。通过改锻(三次循环调质处理), 击碎块状碳化物, 七碎粗晶粒, 并使其形成的纤维组织沿着模具轮廓呈无定向分布, 增加钢的塑性、韧性与强度。经三次高温固溶淬火, 使未锻透的内层组织中的残留块状、网状、带状碳化物和难溶的碳化物质点和合金元素充分溶解于奥氏体中, 大大增加了固溶体中的合金化程度, 大大降低了碳化物偏析对基体的切割作用。 升至淬火温度保温后出炉水冷2一3秒淬人硝盐等温, 获得强韧性高的板条弥散组织,再经二次高温回火后碳化物呈高度弥散析出, C一N硬化层有硬度较高的过渡层支承, 基体具有良好的强韧性, 使凹模具有外硬型面和内韧基体特性, 获得一顶十的高寿命。 3Cr2W8V钢可采用淬火、回火处理,渗碳、渗氮、渗硼及碳氮共渗、渗铝、渗铬及铬一铝一硅三元共渗等化学热处理,镀金属等表面强化处理来提高其高温强度、冷热疲劳抗力、耐磨性、抗腐蚀性及防粘模等性能,从而达到提高3Cr2W8V钢制模具的使用寿命的目的。 渗金属渗铬处理可显著提高模具高温耐磨性、热疲劳抗力。 真空热处理。采用真空热处理,模具表面光洁,硬度均匀,变形小,尤其适应对精度要求和表面粗糙度要求高的模具。 3Cr2W8V钢超塑形变处理与常规热处理比较,其强度和韧性同时得到提高 电火花表面强化是利用火花放电时释放的能量,将一种导电材料熔渗到工件表面,构成合金化的表面强化层,从而改善工件表面的物理及化学性能 喷丸强化是借助于硬丸粒,高速、连续锤击金属表面,使其产生强烈的冷作硬化。通过喷丸可以明显改变金属表层的应力状态、显微硬度、表层的微观形貌,从而提高模具的疲劳强度、抗冲击磨损及抗应力腐蚀 离子注入是将被注入元素的原子利用离子注入机电离成带一个正电荷的离子,经高压电场作用后,强行注入材料的表面,使其产生物理、化学性能的优化的工艺方法。可将任何元素注入任何材料中,浓度可严格控制,且不受材料固溶度的限制,强化层也不会剥落,处理温度低,易于控制,工件的基体材料不可能因温升而弱化,也不会产生变形和翘曲。离子注入可提高金属材料表面的硬度、耐磨性、耐疲劳性和耐腐蚀性。 锻热淬火+高温回火:即(锻热调质处理)将形变强化和相变强化结合, 既细化碳化物又细化马氏体所得回火索氏体不仅有良好的切削加工性, 且因较小比容而可降低最终淬火时的变形。 Crl2MoV钢经深冷处理,深冷处理可使淬火马氏体析出高度弥散的超微细碳化物,随后进行200℃低温回火后,这些超微细碳化物可转变为碳化物。未经深冷处理的马氏体,在低温周火后,仅在某些局部区域析出有少量的碳化物。 Crl2MoV采用低温化学热处理方法, 在保持Crl2MoV钢高硬度和高耐磨性的基础上,离子渗氮、气体氮碳共渗、盐浴硫氰共渗种常用的低温化学热处理渗层的粘着抗力。3种低温化学热处理渗层均有显若的抗冲击粘着作用, 其中尤以盐浴硫氰共渗最佳。Crl2MoV钢制不锈钢器皿拉伸模经气体氮碳共渗处理后, 使用寿命达3万件以上, 较常规淬火、回火处理的同类模具寿命提高10倍以上。 Crl2MoV冷作模具钢的中性盐浴渗钒处理工艺,Crl2MoV钢经中性盐浴渗钒处理可获得碳化物渗层,一、碳钒化合物,该渗层组织均匀,具有良好的连续性和致密性,厚度均匀,结构致密,具有很高的显微硬度和较高的耐磨性,表面硬度、耐磨性及抗粘着性等性能大幅度提高。二、VC在奥氏体中的溶解度比它在铁索体中的溶解度高,随着温度的降低,VC从铁索体中析出,使合金强化及晶粒细化,化合物层表现出较高的硬度。 Cr12MoV 属于高碳高铬莱氏体钢, 碳化物含量高,约占20 % ,且常呈带状或网状不均匀分布,偏析严重, 而常规热处理又很难改变碳化物偏析的状况, 严重影响了钢的力学性能与模具的使用寿命。而碳化物的形状、大小对钢的性能也有很大的影响, 尤其大块状尖角碳化物对钢基体的割裂作用比较大,往往成为疲劳断裂的策源地, 为此必须对原材料轧制钢材进行改锻,充分击碎共晶碳化物,使之 呈细小、均匀分布, 纤维组织围绕型腔或无定向分布, 从而改善钢材的横向力学性能。 锻造时对钢坯从不同方向进行多次镦粗和拉拔,并采用“二轻一重”法锻造,即坯料始锻时要轻击,防止断裂,在980~1 020 ℃中间温度可重击, 以保证击碎碳化物, Cr12MoV 钢未改锻,采用固溶双细化处理[5 ] ,即500 ℃及800 ℃左右二级预热,1 100~1 150 ℃固溶处理,淬入热油或等温淬 火,750 ℃高温回火,机加工后960 ℃加热油冷后进行最终热处理, 也可使碳化物细化、棱角圆整化,晶粒细化。 H13钢(4Cr5MoSiV1)是目前国内外广泛使用的热作模具钢。主要失效形式为热磨损(熔损)和热疲劳。这就要求表面具有高硬度、耐蚀、抗粘结等性能。H13钢常规淬火、回火后的硬度一般为42—48HRC,耐磨性十足,模具使用寿命短。鉴于模具失效大都由表面开始,从节省能源和资源,充分发挥材料性能潜力并获得特殊性能和最大经济效益出发,对H13钢模具进行表面强化处理,是综合改善模具寿命的关键。 H13钢常规处理后硬度HRC44,经激光淬火,表面硬度可达772HV(相当于62HRC)。由于得到以超细化高密度位错型马氏体为主的组织,以及激光加热后自回火过程中析出弥散碳化物,使得淬硬层硬度、抗回火稳定性、耐磨性及抗蚀性均显著提高。 低温化学热处理可以提高H13钢的抗热疲劳、耐热磨损和耐蚀性能,且工艺成本低廉,故应用广泛。常用工艺有离子渗氮、N—C 共渗(软氮化)、S—N—C共渗以及多元共渗等。比较典型的多元共渗工艺为C、N、O、S、B五元共渗。H13钢经五元共渗后,在工件表面形成硼化物、碳化物和氮化物,起到弥散强化作用,对比试验表明,硬化效果比气体渗氮和S、C、N三元共渗都好,在适当温度时保持,硬度下降平缓,红硬性、耐磨性明显提高。 盐浴复合处理技术,其中“盐浴复合”的含义是指在氮化盐浴和氧化盐浴两种盐浴中处理工件。实现了渗氮工序和氧化工序的复合;渗层组织是氮化物和氧化物的复合;性能是耐磨性和抗蚀性的复合:工艺是热处理技术和防腐技术的复合。 稀土元素在H13 热作模具钢表面强化中的应用, 重点探讨了在扩散渗入、离子注入及气相沉积等三种表面强化技术中的强化效果和作用机理。扩散渗入中, 稀土元素主要起到催渗和微合金化的作用; 离子注入中, 添加稀土元素能形成致密的氧化物, 可提高模具的抗高温氧化能力; 气相沉积中, 稀土元素的加入增强涂层的膜- 基结合强度。结果表明, 稀土元素的加入均能显著提高模具的使用寿命。 H13钢电渣重熔后成为优质钢大大降低S、P等有害杂质,提高了纯洁度组织成分均匀性、抗热裂、抗裂纹和改善了钢的横向性能。改锻双重淬火改善碳化物形貌使之呈细小匀圆分布于钢基体,提高热强性、断裂韧性、红硬性、疲劳抗力和综合力学性能。深层软氮化提高模面硬度、耐磨性、抗疲劳、抗咬合、抗粘结和抗腐蚀等性能。 以磨损失效的高速钢, 提高寿命的途径是提高表面硬度与耐磨性。 在激光相变硬化条件下,既使高速钢的表面不熔化,以不牺牲其表面粗糙度,叉使高速钢的加热温度尽可能高.以增大其固溶体的合金固溶度。在这种条件下可以高速钢的表面大大强化‘高速钢经激光相变强化处理+600"C回火处理可以充分发挥激光强化的硬化潜力高速钢经激光相变硬化后,其回火硬度和红硬性可以得到明显改善 高速工具钢刀具经深冷处理后, 碳化物的粒度和分布的均匀性都有明显的变化。这种变化是稳定的, 不可逆的, 而且是从刀具表面到内部整体上的变化, 比一般表面强化有很大的优越性。这是深冷处理后刀具耐磨性和使用寿命提高一倍的主要原因深冷处理后样品显微硬度略有降低, 这与马氏体中含碳量减少和碳化物变得更加细小弥散有关因此刀具强化不是由于硬度提高所致。 高速钢经多元共渗处理后,钢的形成了表面强化层。强化层主要以氧化物、硫化物和氮化物、硼化物为主,由表面氧化疏松层、次表面致密化合物层和扩散过渡层组成。相对于原始材料,强化层硬度显著提高,从而提高了材料干摩擦条件下的耐磨性。 用反应硼化烧结法在高温下真空烧结,制备出高耐磨的粉末高速钢与三元硼化物陶瓷的复合材料。:材料主要是由三元硼化物基硬质相和高速钢基体组成,硬质颗粒与基体界面结合良好,分散均匀,摩擦磨损试验表明此种材料具有优异的耐磨性。

金属强化的主要方法

一、金属强化的主要方法。 从金属材料的强化途径来看,金属材料的强化方法主要有两大类: 一是提高合金的原子间结合力,提高其理论强度,并制得无缺陷的完整晶体,如晶须。已知铁的晶须的强度接近理论值,可以认为这是因为晶须中没有位错,或者只包含少量在形变过程中不能增殖的位错。这种强化方法只有在几种特殊的金属中才得到应用。 另一强化途径是向晶体内引入大量晶体缺陷,如位错、点缺陷、异类原子、晶界等,这些缺陷阻碍位错运动,也会明显地提高金属强度。事实证明,这是提高金属强度最有效的途径。对工程材料来说,一般是通过综合的强化效应以达到较好的综合性能。具体方法有固溶强化、形变强化、沉淀强化和弥散强化、细化晶粒强化、择优取向强化、复相强化、纤维强化和相变强化等,这些方法往往是共存的。下面简要的予以介绍: 1、结晶强化 结晶强化就是通过控制结晶条件,在凝固结晶以后获得良好的宏观组织和显微组织,从而提高金属材料的性能。它包括: (1)细化晶粒。细化晶粒可以使金属组织中包含较多的晶界,由于晶界具有阻碍滑移变形作用,因而可使金属材料得到强化。同时也改善了韧性,这是其它强化机制不可能做到的。 (2)提纯强化。在浇注过程中,把液态金属充分地提纯,尽量减少夹杂物,能显著提高固态金属的性能。夹杂物对金属材料的性能有很大的影响。采用真空冶炼等方法,可以获得高纯度的金属材料。 2、形变强化 也叫加工硬化,金属材料经冷加工塑性变形可以提高其强度。这是由于材料在塑性变形后位错运动的阻力增加所致。如铜合金。 3、固溶强化 通过合金化(加入合金元素)组成固溶体,使得融入固溶体中的原子造成晶格畸变,晶格畸变增大了位错运动的阻力,使塑性变形更加困难,从而使合金固溶体的强度与硬度增加的现象。 4、相变强化

第一章 钢的合金化原理作业题 参考

第一章钢的合金化原理作业题参考答案要点1、名词解释: 1)合金元素:特别添加到钢中用以改变钢的组织、提高钢的性能的化学元素。 2)微合金元素:有些合金元素如V,Nb,Ti和B等,当其含量只在0.2%左右甚至更低时(如B 0.002%)时,也会显著地影响钢的组织与性能,将这种化学(合金)元素称为微合金元素。 3)原位析出:在淬火回火过程中,合金元素溶解于原渗碳体中,当其溶解度超 过其最大溶解量后,合金渗碳体转变为特殊碳化物的析出方式。 4)离位析出:在淬火回火过程中,直接从α相中析出特殊碳化物的析出方式。 5)二次硬化:在强K形成元素含量较高的合金钢淬火后,在500-600℃范围内回火时,在α相中沉淀析出这些元素的特殊碳化物,并使钢的HRC和强度提高的现象。 6)二次淬火:在强K形成元素含量较高的合金钢淬火后,残余奥氏体十分稳定,甚至加热到500-600℃回火时升温与保温时中仍不分解,而是在冷却时部分转变成马氏体,使钢的硬度和强度提高的现象。 2、说明钢中常用合金元素(V,Mo,Cr,Ni,Mn,Si,Al, B)对珠光体(贝氏体)转变影响的作用机制。 答:(1)对珠光体转变影响的作用机制:P20 (2)对贝氏体转变影响的作用机制:P20 3、以低碳回火马氏体钢20SiMn2MoVB为例,说明其合金化及热处理(淬火加低温回火)中存在哪些强化与韧化途径? 答:低碳回火马氏体钢通过合金化与热处理工艺相结合,在实现强化的同时,保

证有较好的韧性。主要体现在以下方面: (1)强化: ①C及合金元素的固溶强化; ②加入Si, Mn等合金元素能提高奥氏体的过冷能力,从而细化晶粒;③加入V、Ti后的弥散强化; ④加入V、Ti后的细化晶粒作用; ⑤马氏体中大量位错的位错强化。 (2)韧化: ①低碳马氏体为位错型马氏体,韧性较好; ②Ni,Mn韧性元素的加入有利于提高韧性; ③工艺中的快冷、加入的合金元素对奥氏体过冷能力的提高、第二相粒子对晶粒长大的抑制作用,均能使马氏体晶粒细化,从而提高韧性; ④通过加入Si对低温回火脆性温度的延迟作用以及钢的回火稳定性的增加,可以适当提高回火温度,从而提高韧性水平。 4、为何Si-Mn-Mo-V复合添加可以大大提高钢的淬透性? 答:Si、Mn、Mo、V这四种合金元素提高过冷奥氏体稳定性的机制不同。 (1)Si在钢中不形成碳化物,也不溶于体,因此碳化物晶核形成必须等待硅的扩散(推迟P转变)。另外,Si能提高铁原子间作用力,提高铁的自扩散激活能,推迟P和B转变; (2)Mn是扩大γ相区元素,大大增加了α形核功;且锰也是碳化物形成元素,推迟合金渗碳体的形核与长大,因此锰不仅使C曲线向右移,且使之向下移;(3)Mo是中强碳化物形成元素,除了推迟珠光体转变时碳化物的形核与长大外,还增加了铁原子间的结合力,提高铁的自扩散激活能,推迟P和B 转变。

钢的强化手段及应用

钢的强化手段及应用的探讨随着工业革命和现代科技的进步,钢材在社会的发展过程中起到的作用达到 了前所未有的重要程度,成为国家建设和现代化推进必不可少的重要物资。其广泛应用于矿山、建筑、机械、交通运输、桥梁、石油化工、轻工和电子工业等领域。而且品种繁多,一般分为型材、板材、管材和金属制品四大类。 大部分钢材加工都是钢材通过压力加工,使被加工的钢(坯、锭等)产生塑性变形,由于在很多领域有特殊的工艺要求,所以钢材需要进一步的强化。通过合金化、塑性变形和热处理等手段提高金属材料的强度,称为强化。钢的强化主要是指加强抵抗塑性变形的能力。强化的途径一般分为两种,一种是尽量消除位错等晶体缺陷,获得近乎理想的单晶材料。另一种是增加位错密度和移动阻力。因此钢的强化分为晶界强化、位错强化、固溶强化、沉淀和弥撒强化、相变强化、调幅分解强化等。 晶界强化是指向界两侧原子的取向不同中加入一些微量的表面活性元素,如硼和稀土元素等,产生内吸附现象让钢浓集于晶界,从而使钢的蠕变极限和持久强度显著提高的方法。如珠光体耐热钢12Cr2MoWVB,即利用硼的晶界强化作用,提高了钢的蠕变极限和持久强度。 晶界强化中经常用到一种方法——细晶强化。晶界是位错运动的最大障碍之一,晶位错集中在晶界附近晶粒越细,这种阻碍作用就越强。近年来,用控制奥氏体再结晶技术,获得超奥氏体晶粒,淬火后得到超细马氏体组织,使其屈服强度接近2000MPa。同时利用快速循环加热工艺对材料进行超细化处理得到进展,细晶在提高材料强度的同时,也是材料的塑性、韧性得到改善,从而使其具备了其他强化手段没有的优势。 位错强化也是金属材料中最为有效的强化方式之一。自从位错理论提出后,人们就对位错之间的相互作用进行了大量的研究,在位错强化(加工硬化)方面取得了长足的进展。增加金属的位错密度,例如冷加工变形。由于位错的交互作用和缠绕作用,使位错的可动性大大降低,从而提高强度和硬度。这种现象被称之为“加工硬化”,其强度和位错密度的平方根成正比例提高。 有实验研究了碳和锰含量对淬火中锰马氏体钢的位错密度、残余奥氏体含量、晶粒尺寸等组织结构以及室温力学性能的影响。借助于SEM、EBSD、TEM和XRD表征了材料的微观组织,探讨了马氏体钢的强化机制。结果表明,随着碳含量增加,淬火中锰钢的位错密度和残余奥氏体体积分数逐渐增加,板条束和板条块尺寸逐渐细化,大角晶界百分数逐渐增加,强度逐渐升高;增加锰含量能够提高马氏体钢的位错密度和抗拉强度。通过分析可知,位错强化和细晶强化是淬火中锰马氏体钢的主要强化机制。马氏体板条尺寸是马氏体抗拉强度的结构控制单元,而原奥氏体晶粒尺寸则是马氏体屈服强度的结构控制单元。

高强度索氏体钢的开发及强化机理研究

高强度索氏体钢的开发及强化机理研究 为了更有效地利用索氏体组织具有的超细片层结构提升弹簧钢的性能,本文以热轧高碳钢卷板为研究对象,采用控制冷却的思路模拟了铅浴等温淬火工艺,并成功实现了材料的索氏体化。利用X射线衍射(XRD)、扫描电镜(SEM)电子背散射衍射(EBSD)和透射电镜(TEM)等分析手段研究了索氏体化后的钢板在冷轧过程中的组织演变规律,通过测试材料在不同状态下的力学性能,揭示了索氏体钢在冷轧大应变下的强化机理,并在索氏体结构中引入Cu作为第二相强化颗粒,结合索氏体化工艺控制其析出行为,进一步提升了索氏体弹簧钢的强度。 本文的主要研究内容及取得的成果如下:1、使用金属材料相图计算软件JMatPro以及Gleeble 3800热模拟试验机对两种热轧高碳钢(1#:SAE 1078;2#:SK 85)的相变点和过冷奥氏体转变曲线进行分析,确定了控制冷却的索氏体化工艺。研究表明,随着等温温度的降低,珠光体片层间距和渗碳体片层厚度逐渐减小,两种材料在450°C以下温度等温淬火可获得片层间距细小的索氏体。 等温温度升高,珠光体片层间距的增加主要由来自于渗碳体的粗化,在较高温度等温时出现了粗大的短棒状渗碳体。2、综合考虑珠光体转变的界面能、形核初期晶核的形状以及形核位置,建立了珠光体转变模型。 采用SEM观察珠光体形貌,并测量了珠光体片层间距,发现通过模型计算的珠光体片层间距与实测值基本相符。3、SAE 1078和SK 85在不同索氏体工艺下的拉伸性能与显微组织有关,在较低温度等温得到的索氏体组织表现出良好的强度和塑性。 两种材料均在350°C等温时获得了较高的强度,分别是1170 MPa和1240 MPa。在高于500°C时等温,珠光体片层逐渐粗大,强度下降的同时塑性并未增加,

钢的强化机制

钢的强化机制 钢的强化机制可分为固溶强化机制、界面强化、弥散强化、析出强化及细晶强化。其中固溶强化是钢最重要的强化手段。本文以余瑞璜院士的“固体和分子经验电子论”和刘志林教授的“合金价电子结构”为理论工具,详细的计算了碳、硅、锰、钼、铜、铬、镍、钨八种元素的固溶强化数据。研究发现,碳元素的固溶强化增量随碳元素的含量的增加而线性增加;硅、锰、钼、铜、铬、镍、钨每种合金元素的固溶强化增量曲线都有一个转折点(固溶强化最佳点),在各自转折点以前和转折点以后每种合金元素的固溶强化增量都是随该合金元素的含量的增加而线性增加,但是在转折点以前和转折点以后固溶强化速率是不同的,在转折点以前的固溶强化速率大于在转折点以后的固溶强化速率;同时硅、锰、钼、铜、铬、镍、钨这七种合金元素的固溶强化速率又是不同的,在各自转折点(固溶强化最佳点)以前,固溶强化速率大小顺序是硅、钼、铬、镍、锰、铜、钨,硅的固溶强化速率最好,在各自转折点(固溶强化最佳点)以后固溶强化速率都变得较小。从而在电子结构层次上解释了固溶强化规律。 The strengthening mechanisms of steel include solution strengthening, boundary strengthening, dispersion strengthening, precipitation strengthening, and fine-grained strengthening and so on. The solution strengthening is the most important

intensification. In this paper the solution strengthening increments of carbon, silicon, manganese, molybdenum, copper, chromium, nickel, and tungsten are detailedly calculated with Academician Yu Ruihuang’s The Empirical Electron Theory of Solids and Molecules and P...

材料的强化机制

材料的强化机制: 强韧化意义 提高材料的强度和韧性。节约材料,降低成本,增加材料在使用过程中的可靠性和延长服役寿命希望所使用的材料既有足够的强度,又有较好的韧性,通常的材料二者不可兼得理解材料强韧化机理,掌握材料强韧化现象的物理本质,是合理运用和发展材料强韧化方法从而挖掘材料性能潜力的基础 提高金属材料强度途径 1.完全消除内部的位错和其他缺陷,使它的强度接近于理论强度 2.主要采用另一条途径来强化金属,即在金属中引入大量的缺陷,以阻碍位错的运动 目前虽然能够制出无位错的高强度金属晶须,但实际应用它还存在困难,因为这样获得的高强度是不稳定的,对操作效应和表面情况非常敏感,而且位错一旦产生后,强度就大大下降 强度是指材料抵抗变形和断裂的能力 金属材料的强化 在生产实践中,主要采用在金属中引入大量的缺陷,以阻碍位错的运动的方法来强化金属,包括 1.固溶强化 2.细晶强化 3.第二相粒子强化 4.形变强化 固溶强化 固溶强化:利用点缺陷对位错运动的阻力使金属基体获得强化的方法 溶质原子在基体金属晶格中占据的位置分填隙式和替代式两种不同方式 1.填隙原子对金属强度的影响可用下面的通式表示 2.替代式溶质原子在基体晶格中造成的畸变大都是球面对称的,因而强化效果要比填隙式原子小,但在高温下,替代式固溶强化变得较为重要 细化晶粒可以提高金属的强度 1.晶界对位错滑移的阻滞效应 2.晶界上形变要满足协调性,需要多个滑移系统同时动作,这同样导致位错不易穿过晶界,而是塞积在晶界处,引起强度的增高 位错在多晶体中运动时,由于晶界两侧晶粒的取向不同,加之这里杂质原子较多,增大了晶界附近的滑移阻力,因而一侧晶粒中的滑移带不能直接进入第二个晶粒

高锰钢的性能特点及强化原理

《材料冶金学》专题之一 高锰钢的性能特点及强化原理 1概述 自Hadfield 1882年发明高锰钢以来,至今已有100多年的历史。高锰钢一般是指含碳量为0 9%~1 3%,含锰量为11 0%~14 0%的铸钢,即ZGMn13。此材料在1000~1100℃之间为单一奥氏体组织,为保持此组织,需高温淬火,即在1100~1050℃间的温度内立即水淬至常温。经过处理后的材料具备很好的韧性,受冲击载荷时发生表面硬化,其具有很高的耐磨性,故称之为耐磨钢。因此高锰钢被广泛应用于机械制造、冶金、矿山、建材、电力和铁路等部门所使用的金属耐磨体,如挖掘机斗齿、球磨机衬板、破碎壁、轧臼壁、拖拉机履带板、风扇磨冲击板、破碎机颚板、铁道路岔等。但由于此材料加工硬化快,不易切削加工,一般只限于铸造。 2高锰钢的性能特点 2.1高锰钢的机械性能 高锰钢的铸态组织是由奥氏体、碳化物、珠光体和通常存在的少量磷共晶等所组成。碳化物数量多时会在晶界上以网状出现,钢的性能很脆。这种低塑性、低韧性的钢在铸态下是无法使用的。但通过固溶处理(即水韧处理)后,在强冲击工况下它变成一种高强度、高塑性、韧性好、特别耐磨的材料。其性能对比如表1:

σb (Mpa) σ0.2 (Mpa) δ (%) αK J/cm2 HB 铸态性能343.23― 392.27 294.20― 490.33 0.5― 5 9.80― 29.42 200― 300 水韧处理性能617.82― 1274.86 343.23― 470.72 15― 85 196.13― 294.20 180― 225 表1:高锰钢在铸态下和水韧处理后性能对比 以上是高锰钢在常温下的各种机械性能,但具有奥氏体组织的高锰钢在加热时会发生组织转变,性能会发生很大的变化。当温度超过125℃时,在奥氏体中开始有碳化物析出。随着温度的提高析出量增加,钢的性能变脆,塑、韧性下降。 图1是高锰钢经1050℃水韧处理后加热温度和延伸率的关系;图2是化学成分为 C1.12%, Mn13.56%, Si0.63%, S0.012%,P0.092%, Ti0.06%的高锰钢,经水韧处理后加热到不同温度,保温5小时水冷后测得的冲击韧性。 图1加热温度与延伸率的关系

细晶强化的机理及其应用(DOC)

J I A N G S U U N I V E R S I T Y 材料强化与质量评定细晶强化的机理及其应用 Fine-grain strengthening mechanism and its application 学院名称:机械工程学院 专业班级:机械1402 学生姓名:XX 指导教师姓名:XX 指导教师职称:副教授 2015年8 月

细晶强化的机理及其应用 摘要:通常金属是由许多晶粒组成的多晶体,晶粒的大小可以用单位体积内晶粒的数目来表示,数目越多,晶粒越细。实验表明,在常温下的细晶粒金属比粗晶粒金属有更高的强度、硬度、塑性和韧性[1]。因此,在实际使用中,人们常用细晶强化的方法来提高金属的力学性能。 关键词:定义、细晶强化机制、细化晶粒本质与途径、细晶强化新方法Fine-grain strengthening mechanism and its application Abstract: polycrystal metal is usually composed of many grain, grain size can be used to represent the number of grain per unit volume, the more the number, grain is fine. Experiments show that the fine grained metal at room temperature than coarse grain metal has higher strength, hardness, plasticity and toughness . Therefore, in the practical use, people often use fine-grain strengthening method to increase mechanical properties of the metal. Keywords:definition, fine-grain strengthening mechanism, refining grain essence new methods and ways, fine-grain strengthening 1引言 通过细化晶粒而使金属材料力学性能提高的方法称为细晶强化[2]。 细晶强化机制包括提高塑性机制和提高强度机制。提高塑性的机制是:晶粒越细,在一定体积内的晶粒数目越多,则在同样塑性变形量下,变形分散在更多的晶粒内进行,变形较为均匀,且每个晶粒中塞积的位错少,因应力集中引起的开裂机会较少,有可能在断裂之前承受较大的变形量。提高强度的机制是[3]:晶界增多,而晶界上的原子排列不规则,杂质和缺陷多,能量较高,阻碍位错的通过。 细化晶粒本质[4]:形成足够多的晶核,使它们在尚未显著长大时便相互接触,完成结晶过程。

相关文档
最新文档