第10章量子力学基础

第10章量子力学基础
第10章量子力学基础

第十章 量子力学基础

思 考 题

10-1 什么是绝对黑体?它与平常所说的黑色物体有何区别?

答:(1)在任何温度下都能全部吸收照射到它表面上的各种波长的光,这种物体称为绝对黑体,简称黑体。但黑体自身要向外界辐射能量,黑体并不一定是黑色,它的颜色是由它自身所发射的辐射频率决定的。若温度较低,则它辐射的能量就很少,辐射的峰值波长会远大于可见光波长,会呈现黑色;若温度较高,则它辐射的能量就很大,辐射的峰值波长处于可见光波长范围内,会呈现各种颜色。

(2)平常所说的黑色的物体,用肉眼看起来是黑色的,只表明它对可见光强烈吸收,并不能说它对不可见光(红外线、紫外线)都强烈吸收,所以黑色物体的单色吸收本领并不恒等于1,一般不能称为黑体。

10-2 若一个物体的温度(绝对温度数值)增加一倍,它的总辐射能增加到多少倍? 答:根据斯特藩-玻耳兹曼定律,绝对黑体的总辐出度(总辐射能)为

()()40

d T T M T M B B σλλ==?∞

现在,212=T ,于是

1624

4

1212==???

? ??=T T M M 即绝对黑体的温度增加一倍,它的总辐射能将增至为原来的16倍。

10-3 假设人体的热辐射是黑体辐射,请用维恩位移定律估算人体的电磁辐射中单色辐出度的最大波长(设人体的温度为310K )。

答:根据维恩位移定律

m T b λ=

可得

(m)1035.9310

10898.263

--?=?==T b m λ

10-4 所有物体都能发射电磁辐射,为什么用肉眼看不见黑暗中的物体? 答:物体要能够被眼睛观察到,必须需要两个条件:(1)物体要发射或者反射出眼睛能感觉到的可见光,其波长范围大约为0.40~0.78μm ;(2)可见光的能量要达到一定的阈值。根据黑体辐射,任何物体在一定温度下都发射出各种波长的电磁辐射,在不同温度下单色辐出度的峰值波长不同。黑暗中周围物体的温度等于环境温度(近似为人体温度),单色辐出度的峰值波长在10μm 附近,在可见光波长范围的电磁辐射能量都比较低,因此不能引起眼睛的视觉响应。

10-5 请用一些日常生活中所见到的例子说明在物体热辐射的各种波长中单色辐出度最大的波长随物体温度的升高而减小。

答:火焰外焰温度高,内焰相对温度低;观察火焰,发现内焰颜色偏红,外焰颜色偏蓝(红光波长大于蓝光波长),可见单色辐出度的峰值波长随物体温度的升高而减小。

10-6 普朗克提出了能量量子化的概念,在经典物理学范围内有没有量子化的物理量?请举出例子。

答:在经典物理学范围内有量子化的物理量,比如说电荷的量子化。

10-7 什么是爱因斯坦的光量子假说,光子的能量和动量与什么因素有关?

答:爱因斯坦认为,一束光是一束以光速运动的粒子流。这些粒子称为光量子,后来简称光子。不同颜色的光的光子能量不同,若光的频率为ν,一个光子具有的能量为E h ν=,光子的动量为p h /λ=,可见光子的能量和动量都与它的频率或者波长有关。

10-8 光子与其他微观粒子有什么相似和不同?

答:(1)相同点:光子与其他微观粒子(电子、质子、中子等)都具有波粒二象性,都可以用E 、p 、ν和λ等物理量描述;他们都遵守能量守恒与动量守恒定律。

(2)不同点:光子的静止质量为0且呈电中性,而其他微观粒子(如电子)静止质量不为0且有可能带电;光子与其他微观粒子的自旋也不同,服从不同的统计规律。

10-9 “光的强度越大,光子的能量就越大”。这句话对吗?

答:不对,光的强度是单位时间内照射在单位面积上的光的总能量。一定频率的光强度越大,表明光子数量越多,但每个光子的能量是一定的,只与频率有关,而与光子数量无关。

10-10 已知一些材料的逸出功如下:钽4.12 eV ,钨4.50eV ,铝4.20 eV ,钡2.50 eV ,锂2.30 eV 。试问:如果制造在可见光下工作的光电管,应取哪种材料?

答:可见光的波长范围(按能量从低到高排列)可取为(760~400)nm ,对应的光子能量由λνc h h =可知在(1.64~3.11)eV 范围内。根据爱因斯坦光电效应方程,在可见光下能发生光电效应的材料应满足:A h -ν≥0。所以,应取钡和锂。

10-11 日常生活中,为什么觉察不到粒子的波动性和电磁辐射的粒子性?

答:根据德布罗意假设,粒子的动量大,相应的波长就小。日常生活中的粒子动量很大,波长很短,故粒子的波动性不明显。日常生活中的电磁辐射的波长相对较长(频率为M 100数量级,波长为m 1左右),容易绕过障碍物,所以电磁辐射的粒子性很难觉察到。

10-12 一个电子和一个原子具有相同的动能,相应的德布罗意波长哪个大? 答:电子和原子的动能均为

m

p m E k 22122

==υ

又因为

λ

h

p =

所以

2

2

2λm h E k =

由于原子的质量大于电子的质量,根据上式可知原子的德布罗意波长小于电子的德布罗意波长。

10-13 说明物质波与机械波和电磁波的区别。 答:物质波与机械波和电磁波都有本质的区别。

(1)机械波是机械振动在弹性介质中的传播形成的;电磁波表示电场强度E 和磁场强度H 的周期性变化在空间的传播过程;而物质波(又称德布罗意波)是对实物粒子的统计描述,其振幅的平方只表示粒子出现的概率,是概率波。

(2)机械波)π2(cos x t A y λω-=和电磁波)π2(cos 0x t E E λω-=,当其对应的振幅A 和0E 分别增大为A 2和02E 时,相应的波的能量和强度都增大为原来的4倍;而物质波的波函数乘以任意一个常数后,并不改变粒子的运动状态。所以,对于波函数而言,有意义的是相对概率分布,从相对概率分布角度来说,)(x ψ与)(x c ψ是等价的。

10-14 在经典力学中用粒子的位置和速度来描述粒子的运动状态。在量子力学中,

粒子的运动状态是如何描述的?

答:量子力学指出,微观粒子的运动状态用波函数来描述。一般来说,波函数ψ是空间和时间的函数,即),,,(t z y x ψψ=。在量子力学中,用薛定谔方程来描述势场中的粒子状态(波函数)随时间变化的规律。

10-15 在一维无限深势阱中,如果减小势阱的宽度,其能级将如何变化?如果增大势阱的宽度,其能级又将如何变化?

答:一维无限深的方势阱中粒子可能的能量为

2

2

2

8n h E n ma =

式中a 为势阱宽度。由此可见,能级的能量n E 与2a 成反比关系,如果减小势阱的宽度,每个能级的能量将增大,能级间隔增大;如果增大势阱的宽度,每个能级的能量将减小,能级间隔减小。

练 习 题

10-1 宇宙大爆炸遗留在宇宙空间的均匀背景热辐射相当于3 K 辐射,求:(1)此辐射的单色辐射本领在什么波长下有极大值? (2)地球表面接收此辐射的功率有多大?(设地球半径为6106?m)

解:(1)由维恩位移定律得

(m)106693

10898243

m --?=?==..T b λ

(2)根据斯特藩-玻耳兹曼定律

()4T T M B σ=

设地球表面接收此辐射的功率为P ,地球的表面积为S ,则有

()2

44E B R T S T M P πσ==

代入数据,解得

()

92

6

48100821061434310675?=??????=-...P (W )

10-2 白炽灯工作时的温度为2 400 K ,灯丝可看作黑体,如果灯的功率为100 W ,则灯丝的表面积多大?

解:根据斯特藩一玻耳兹曼定律

()4T T M B σ= 则灯的功率为

()S T M P B = 其中,S 为灯丝的表面积。于是 ()

()

5

48

41035240010675100--?=??==

=..T P T M P S B σ(m 2)

10-3太阳辐射到地球大气层外表面单位面积的辐射通量0I 称为太阳常量,实验测

得20m kW 3.1-?=I 。把太阳近似当作黑体,试由太阳常量估算太阳的表面温度(已知太阳半径为m 10078?.,日地距离为m 105111?.)。

解:根据能量守恒,有

1102M S I S ?=?

其中,21,S S 分别为太阳表面积、以地球和太阳距离为半径的球面积。

220211π4π4r I r M ?=? (1) 其中,21,r r 分别为太阳半径、地球和太阳距离:m 100.781?=r ,m 105.1112?=r 。又根据斯特藩-玻尔兹曼定律

4M T σ= (2) 其中, 810670.5-?=σ42K m W --?? 由式(1)和式(2)可得

4

/12

1

2

20???

? ??=r r I T σ

代入数据可得太阳的表面温度为

)K (107.5)100.7(10670.5)105.1(103.134

/128821134

/12

1

220?=???

? ????????=???

? ??=-r r I T σ

10-4 单位时间内太阳发射到地球上每单位面积的辐射能量为0.14 J ·cm -2·s -1,假 定太阳辐射的平均波长为550nm ,问这相当于每秒钟向地球表面每平方厘米上发射多少个光子?

解:一个光子的能量为

λ

νεc

h h ==

能量为E =0.14J 的能量辐射包含的光子数为

17

8

3491087310

0031063610550140?=?????===--....hc E E

n λε个

10-5 在理想条件下,如果正常人的眼睛接收550nm 的可见光,此时只要每秒有100个光子数就会产生光的感觉。试问与此相当的光功率是多少?

解:每个光子能量为νh ,其中h 为普朗克常量(3410626.6-?=h S J ?),则100个波长为550nm 的光子的光功率为

(W)1061.31

1055010310626.6100179

8

34---?=??????====t nhc t nh t E P λν

10-6(1)广播天线以频率1MHz 、功率1kW 发射无线电波,试求它每秒发射的光子数;(2)利用太阳常量20m kW 3.1-?=I ,计算每秒人眼接收到的来自太阳的光子数。假设人的瞳孔面积约为26m 103-?,光波波长约为550nm 。

解:(1)每个光子能量为h ν ,由t

nh t E P ν

==(其中P 、νnh E =分别为辐射功

率和辐射能量)可得广播天线每秒发射的光子数为

306

3431051110

11062661101?=?????==-..h Pt n ν (2) 每秒人眼接收到的来自太阳的光子数为

168

34963001008.110

310626.610550103103.1?=????????===---hc S I h S I n λν

10-7 从钠中脱出一个电子至少需要2.30eV 的能量,若用波长为430nm 的光投射到钠的表面上,试求:(1)钠的截止频率0ν及其相应的波长0λ;(2)出射光电子的最大动能max k E 和最小动能min k E ;(3)截止电压0U 。

解:(1)由光电效应方程

A m h +=22

1

υν

令电子的初动能02

1

2=υm ,得钠的截止频率

(Hz)1055.510

626.61060.130.214

34

190?=???==--h A ν 钠相应的波长为

(m)1041.510

55.51037

14

800-?=??==νλc

(2)当光子能量νh 完全被光电子吸收,并在逸出过程中未因碰撞而损失能量时,该电子克服逸出功而逸出金属后将具有最大动能,即

(J)1043.91060.130.210

43010310

626.620199834

max ----?=??-????=-=A h E k ν 如果在光电子逸出金属的过程中部分能量因碰撞而损失后,使光电子刚好能克服逸出功而逸出金属,这些光电子将具有最小动能,即

0min =k E

(3)光电效应的截止电压为

截止电压 (V)589.010

60.11043.91920

max 0=??==--e E U k

10-8 一束带电量与电子电量相同的粒子经 206V 电压加速后,测得其德布罗意波

长为0.002nm ,试求粒子的质量(已知电子电量为1910601-?.C )。

解:经过电压U 加速后,带电粒子的动能为

eU m =22

1

υ (1) 其中e 为电子电量。又根据德布罗意公式

λ

υh

m p == (2)

由式(1)和式(2)可得电子质量为

2

2

2λeU h m = (3)

将已知数据代入式(3),得

(kg)1067.1)

10002.0(2061060.12)10626.6(227

2

91923422----?=??????==λeU h m

10-9 热中子平均动能为(3/2)kT ,试问当温度为 300 K 时,一个热中子的动能

为多大?相应的德布罗意波长是多少?(已知热中子的质量为2710671-?.kg )

解:(1)微观粒子的平均平动动能为3

2

kT ε=,其中k 为玻耳兹曼常数,则

232133

1.3810300 6.2110(J)22

kT ε--==???=?

(2) 根据

υm p = 和

22

1

υεm =

由上两式可得

m p ε2=

代入h

p λ

=

,可得德布罗意波长为

(m)104611067110216210626621027

2134

----?=?????=

=

....m

h ελ

10-10 设电子和光子的波长均为 0.50 nm ,试求两者的动量及动能之比。(已知电子的质量为311019-?.kg )

解:(1)根据

h p λ=

对于电子1

1λh

p =

,对于光子2

2λh

p =

。所以,电子和光子的动量之比为

12

21

1p p λλ== (2)电子的动能为

e

m p m E 221212

1=

=υ 光子的动能为

c p mc E 222==

由上两式可得电子和光子的动能之比为

3

9

8313422

121104.210

50.0103101.9210626.6222----?=???????====λc m h c m p c p m p E E e e e

10-11 物理光学的一个基本结论是:在被观测物小于所用照射光波长的情况下,任

何光学仪器都不能把物体的细节分辨出来,这对电子显微镜中的电子德布罗意波同样适用。因此,若要研究线度为0.020μm 的病毒,用光学显微镜是不可能的。然而,电子的德布罗意波长约比病毒的线度小1000倍,用电子显微镜可以形成非常好的病毒的像,问这时电子所需要的加速电压是多少?(已知电子电量为191061-?.C ,电子质量为311019-?. kg 。)

解:经过电压U 加速后,带电粒子的动能为

eU m =22

1

υ 又根据德布罗意公式

λ

υh

m p ==

解得

2

2

2λem h U =

又因为电子波长为1000/10020.06-?=λ(m ),将已知数据代入可得

(V)108.3)1010020.0(101.91060.12)10626.6(23

2

63311923422?=????????==-----λem h U

10-12 设粒子在x 轴运动时,速率的不确定量为1Δ=υcm ·s -1。试估算下列情况下

坐标的不确定量?x :(1)质量为311019-?.kg 的电子;(2)质量为10-13kg 的布朗粒子;(3)质量为10-4kg 的小弹丸。

解:由不确定关系可得

υ

ΔΔΔ?=

=

m h

p h x x (1)电子的坐标不确定量为

(m)103.710

1101.910626.6ΔΔ2

2

313411----?=????=?=υm h x (2)质量为1310kg -的布朗粒子的坐标不确定量为

(m)106.61011010626.6ΔΔ19

2

133422----?=???=?=υm h x (3)质量为kg 104-的小弹丸的坐标不确定量为

(m)106.610

11010626.6ΔΔ282

434

33----?=???=?=υm h x

10-13 作一维运动的电子,其动量不确定量125s m kg 10Δ--??=x p ,能将这个电子约束在内的最小容器的大概尺寸是多少?

解:根据不确定关系h x p x ≥??,设能约束住电子的最小容器的大概尺寸为min x ,则

349min

256.62610 6.62610(m)10

x h x p ---?===??

10-14 若不确定关系为()π4ΔΔ/h p x ≥,氦氖激光器所发出的红光波长为

λ=632.8nm ,谱线宽度?λ=10--9nm 。试求光子沿运动方向的位置不确定量(即波列长度)。

解:光子具有二象性,所以也应满足不确定关系,由于λh p /=,则

λ

λ

λλ

ΔΔΔ2

p

h

p =-

=

根据不确定关系式π

4ΔΔh

p x ≥

,可得 (m)1019.310

1014.34)108.632(πΔ4Δπ4πΔ4Δ49

92

92?=????===≥---λλλλp h p h x

10-15 一维无限深势阱中粒子的定态波函数为

a

x

n a n πsin

2=

ψ 试求粒子处于下述状态时在x =0和x =a /3之间找到粒子的概率:(1)粒子处于基态;(2)

粒子处于n =2的状态。

解: 粒子的概率密度正比于波函数模的平方,即

a

x n a x πsin 2)(22

在0x =和/3x a =之间找到粒子的概率为

x a

x n a x x P a a d πsin 2d )(2303

02??==ψ

可解得

3π2sin π2131π2sin π

21d )π2cos 1(13030n n a x n n a x x a x n a P a

a

-=??????-=-=? (1) 当n =1时,粒子处于基态的概率为

19.0π

43

313π2sin π2131=-=-=

P (2) 当n =2时,粒子处于该态的概率为

40.0π

83313π4sin π4131=+=-=

P

10-16 设粒子的波函数为222

1

e )(x a A x -=ψ,a 为常数,求归一化常数A 。

解:由归一化条件

1d )(2

=?+∞

-x x ψ

可知,将本题中的粒子波函数代入归一化条件,可得

1d e 2

22=?

+∞∞

--x A x a

利用积分公式

2

10

2πd e 2

a

x ax =

?

-

解得

12π

22

=a

A 即归一化常数为

21

π???

? ??=a A

10-17 一维运动的粒子处于如下波函数所描述的状态:

)

0()

0(,0,)(<≥??

?=-x x Axe x x λψ 式中λ>0。(1)计算波函数)(x ψ中的归一化常数A ;(2)求粒子的概率分布函数;(3)在何处发现粒子的概率最大?

解:(1)已知归一化条件

1d )(2

=?

+∞

-x x ψ

把波函数代入归一化条件,得

14d e

d e

d 032

220

2220

20

2

===+-∞

+-∞

+∞

-?

?

λλA x x A x x A x x

x

解得

2A =(2) 粒子的概率分布函数为

2222

(2(0)

()0

(0)x

x e x x x λψ-?≥?=?

=x

x ψ时出现极值,按此条件将概率分布函数求导数,并令其为

零,可得

0)e 2e 2(42223=---x x x x λλλλ

由此解得当0x =,1

x λ

=

和x →∞时,函数2

()x ψ有极值。

又由二阶导数0]

d )(d [

1

2

2

2<=

λ

ψx x x 可知,在1

x λ

=

处,函数2

()x ψ有最大值,即粒子

在该处出现的概率最大。

10-18 计算氢原子光谱中巴耳末系、莱曼系和帕邢系的最短和最长波长。 解:氢原子光谱规律为

)11(122i

f n n R λ-= 式中,=f n 1,2,3,…;1+=f i n n ,2+f n ,…;17m 10097.1-?=R .

(1) 莱曼系的谱线满足

)1

11(122i

n R λ-=,=i n 2,3,4,… 令2=i n ,得该谱系中最长的波长为

nm 5.121max =λ

令→i n ∞,得该谱系中最短的波长为

nm 16.91min =λ

(2) 巴耳末系的谱线满足

)1

21(122i

n R λ-=,=i n 3,4,5,… 同理可得,nm 3.656max =λ,nm 6.364min =λ

(3) 帕邢系的谱线满足

)1

31(122i

n R λ-=,=i n 4,5,6,… 同理可得,μm 875.1max =λ,μm 8204

.0min =λ

10-19在基态氢原子被外来单色光激发后发出的巴耳末系中仅观察到两条光谱线。试计算这两条光谱线的波长及外来激发光的频率。

解:在氢原子光谱中,仅观察到两条巴耳末系谱线,说明氢原子吸收光子后达到的最高能级是4=n 的能级,在它回到基态的过程中,从4=n 向2=n 的能级跃迁和从3=n 向2=n 的能级跃迁形成两条巴耳末系谱线。

(1) 由于巴耳末系的谱线满足

)121(122n

R -=λ

则当3=n 时

)m (10563.6)

9

1

41(10097.11

)3

121(

17722-?=-??=

-=

R λ

当4=n 时

)m (10862.4)

16

1

41(10097.11

)4121(

1772

2-?=-??=

-=

R λ

(2) 外来激发光的频率为

)Hz (10079.310626.61060.1)6.13(16151615415

34

19112114?=???-?-=-=-=-=--h E h E E h E E ν

第1章 量子力学基础-习题与答案

一、是非题 1. “波函数平方有物理意义, 但波函数本身是没有物理意义的”。对否 解:不对 2. 有人认为,中子是相距为10-13 cm 的质子和电子依靠库仑力结合而成的。试用测不准关系判断该模型是否合理。 解:库仑吸引势能大大地小于电子的动能, 这意味着仅靠库仑力是无法将电子与质子结合成为中子的,这个模型是不正确的。 二、选择题 1. 一组正交、归一的波函数123,,,ψψψ。正交性的数学表达式为 a ,归一性的 表达式为 b 。 () 0,() 1i i i i a d i j b ψψτψψ** =≠=?? 2. 列哪些算符是线性算符------------------------------------------------------ (A, B, C, E ) (A) dx d (B) ?2 (C) 用常数乘 (D) (E) 积分 3. 下列算符哪些可以对易-------------------------------------------- (A, B, D ) (A) x ? 和 y ? (B) x ?? 和y ?? (C) ?x p 和x ? (D) ?x p 和y ? 4. 下列函数中 (A) cos kx (B) e -bx (C) e -ikx (D) 2 e kx - (1) 哪些是 dx d 的本征函数;-------------------------------- (B, C ) (2) 哪些是的22 dx d 本征函数;-------------------------------------- (A, B, C ) (3) 哪些是22dx d 和dx d 的共同本征函数。------------------------------ (B, C ) 5. 关于光电效应,下列叙述正确的是:(可多选) ------------------(C,D ) (A)光电流大小与入射光子能量成正比 (B)光电流大小与入射光子频率成正比 (C)光电流大小与入射光强度成正比 (D)入射光子能量越大,则光电子的动能越大 6. 提出实物粒子也有波粒二象性的科学家是:------------------------------( A )

第十六章 量子力学基础

第十六章 量子力学基础 16-1试比较概率波与经典物理中的波的不同特性。 答:微观粒子的运动状态称为量子态,是用波函数(),r t ψ来描述的,这个波函数所反映的微观粒子波动性,就是德布罗意波,也称为概率波。它与经典物理中的波有如下区别: (1)描述微观粒子的波函数(),r t ψ并不表示某物理量的波动,它的本身没有直接的物理意义。这与经典物理中的波是不同的。 (2)微观粒子的波函数(),r t ψ的模的平方:()2 ,r t ψ表示在空间某处粒子被发现的概率密度,这种概率在空间的分布,遵从波动的规律,因此称之为概率波。这与经典物理中的波也是不同的。 (3)在经典物理学中,波函数(),r t ψ和(),A r t ψ(A 是常数)代表了能量或强度不同的两种波动状态;而在量子力学中,这两个波函数却描述了同一个量子态,或者说代表了同一个概率波,因为它们所表示的概率分布的相对大小是相同的。也就是说,对于空间任意两点i r 和j r 下面的关系必定成立: ()() ()() 222 2 ,,,,i i j j r t A r t r t A r t ψψ= ψψ 所以,波函数允许包含一个任意的常数因子。这与经典物理中的波也是不同的。 16-2概述概率波波函数的物理意义。 答:概率波波函数的物理意义:微观粒子的波函数(),r t ψ的模的平方:()2 ,r t ψ表示在空间某处粒子被发现的概率密度,这种概率在空间的分布,遵从波动的规律,因此称之为概率波。 波函数具有:(1)单值性、连续性和有限性;(2)波函数满足归一化条件。(3)波函数允许包含一个任意的常数因子(即:(),r t ψ与(),A r t ψ描述同一个量子态)(4)满足态叠加原理,即如果函数

第一章 量子力学基础和原子结构

第一章 量子力学基础和原子结构 一、填空题 1、若用波函数ψ来定义电子云,则电子云即为_________________。 2、氢原子s ψ1在 r =a 0和 r =2a 0处的比值为_____________。 3、有两个氢原子,第一个氢原子的电子处于主量子数 n =1 的轨道, 第二个氢原子的电子处于n =4 的轨道。 (1)原子势能较低的是______, (2) 原子的电离能较高的是____。 4、设氢原子中电子处在激发态 2s 轨道时能量为E 1, 氦原子处在第一激发态 1s 12s 1时的2s电子能量为E 2,氦离子He + 激发态一个电子处于 2s 轨道时能量为E 3, 请写出E 1,E 2,E 3的从大到小顺序。_____________。 5、对氢原子 1s 态: (1) 2ψ在 r 为_______________处有最高值 (2) 径向分布函数 224ψr π在 r 为____________处有极大值; (3) 电子由 1s 态跃迁至 3d 态所需能量为_____________。 6、H 原子(气态)的电离能为 13.6 eV, He +(气态)的电离能为 _______ eV。 二、选择题 1、波长为662.6pm 的光子和自由电子,光子的能量与自由电子的动能比为何值? (A )106:3663 (B )273:1 (C )1:C (D )546:1 2、一电子被1000V 的电场所加速.打在靶上,若电子的动能可转化

为光能,则相应的光波应落在什么区域? (A) X光区(约10-10m) (B)紫外区(约10-7m) (C)可见光区(约10-6m)(D)红外区(约10-5m 3、普通阴极管管径为10-2m数量级.所加电压可使电子获得105ms-1速度,此时电子速度的不确定量为十万分之一,可用经典力学处理.若以上其它条件保持不变则阴极管的管径在哪个数量级时必须用量子力学处理? (A)约10-7m (B)约10-5m (C)约10-4m (D)约10-2m 4、下列条件不是品优函数的必备条件的是 (A)连续(B)单值(C)归一(D)有限或平方可积 5、己知一维谐振子的势能表达式为V=kx2/2,则该体系的定态薛定谔方程应当为 6、粒子处于定态意味着 (A)粒子处于概率最大的状态 (B)粒子处于势能为0的状态 (C)粒子的力学量平均值及概率密度分布都与时间无关的状态

第一章 量子力学基础知识

《结构化学基础》 讲稿 第一章 孟祥军

第一章 量子力学基础知识 (第一讲) 1.1 微观粒子的运动特征 ☆ 经典物理学遇到了难题: 19世纪末,物理学理论(经典物理学)已相当完善: ? Newton 力学 ? Maxwell 电磁场理论 ? Gibbs 热力学 ? Boltzmann 统计物理学 上述理论可解释当时常见物理现象,但也发现了解释不了的新现象。 1.1.1 黑体辐射与能量量子化 黑体:能全部吸收外来电磁波的物体。黑色物体或开一小孔的空心金属球近似于黑体。 黑体辐射:加热时,黑体能辐射出各种波长电磁波的现象。 ★经典理论与实验事实间的矛盾: 经典电磁理论假定:黑体辐射是由黑体中带电粒子的振动发出的。 按经典热力学和统计力学理论,计算所得的黑体辐射能量随波长变化的分布曲线,与实验所得曲线明显不符。 按经典理论只能得出能量随波长单调变化的曲线: Rayleigh-Jeans 把分子物理学中能量按自由度均分原则用到电磁辐射上,按其公式计算所得结果在长波处比较接近实验曲线。 Wien 假定辐射波长的分布与Maxwell 分子速度分布类似,计算结果在短波处与实验较接近。 经典理论无论如何也得不出这种有极大值的曲线。 ? 1900年,Planck (普朗克)假定: 黑体中原子或分子辐射能量时作简谐振动,只能发射或吸收频率为ν, 能量为 ε=h ν 的整数倍的电磁能,即振动频率为 ν 的振子,发射的能量只能是 0h ν,1h ν,2h ν,……,nh ν(n 为整数)。 ? h 称为Planck 常数,h =6.626×10-34J ?S ? 按 Planck 假定,算出的辐射能 E ν 与实验观测到的黑体辐射能非常吻合: ●能量量子化:黑体只能辐射频率为 ν ,数值为 h ν 的整数倍的不连续的能量。 能量波长 黑体辐射能量分布曲线 () 1 /81 3 3 --= kt h c h e E ννπν

第十九章 量子力学基础2(答案)

第十九章 量子力学基础(Ⅱ) (薛定谔方程、一维无限深势阱、隧道效应、能量和角动量量子化、电子自旋、多电子原子) 一. 选择题 [ C ]1.(基础训练10)氢原子中处于2p 状态的电子,描述其量子态的四个量子数(n ,l ,m l ,m s )可能取的值为 (A) (2,2,1,21?). (B) (2,0,0,21 ). (C) (2,1,-1,21?). (D) (2,0,1,2 1 ). 【提示】p 电子:l =1,对应的m l 可取-1、0、1, m s 可取 21或2 1?。 [ C ]2.(基础训练11)在激光器中利用光学谐振腔 (A) 可提高激光束的方向性,而不能提高激光束的单色性. (B) 可提高激光束的单色性,而不能提高激光束的方向性. (C) 可同时提高激光束的方向性和单色性. (D) 既不能提高激光束的方向性也不能提高其单色性. [ D ]3.(自测提高7)直接证实了电子自旋存在的最早的实验之一是 (A) 康普顿实验. (B) 卢瑟福实验. (C) 戴维孙-革末实验. (D) 斯特恩-革拉赫实验. [ C ]4.(自测提高9)粒子在外力场中沿x 轴运动,如果它在力场中的势能分布如附图所示,对于能量为 E < U 0从左向右运动的粒子,若用 ρ1、ρ2、ρ3分别表示在x < 0,0 < x a 三个区域发现粒子的概率,则有 (A) ρ1 ≠ 0,ρ2 = ρ3 = 0. (B) ρ1 ≠ 0,ρ2 ≠ 0,ρ3 = 0. (C) ρ1 ≠ 0,ρ2 ≠ 0,ρ3 ≠ 0. (D) ρ1 = 0,ρ2 ≠ 0,ρ3 ≠ 0. 【提示】隧道效应 二. 填空题 1.(基础训练17)在主量子数n =2,自旋磁量子数2 1 =s m 的量子态中,能够填充的最大电子数是_________. 【提示】L 壳层:n =2,能够填充的最大电子数是2n 2=8。考虑到本题m s 只取2 1 ,此时能够填充的最大电子数是4。 2.(基础训练20)在下列给出的各种条件中,哪些是产生激光的条件,将其标号列下:(2) (3 ) (4) (5). (1)自发辐射.(2)受激辐射.(3)粒子数反转.(4)三能极系统.(5)谐振腔. x O U (x )U 0 a

第一章量子力学基础和原子轨道报告

第一章 量子力学基础与原子结构 一、单项选择题(每小题1分) 1.一维势箱解的量子化由来( ) ① 人为假定 ② 求解微分方程的结果 ③ 由势能函数决定的 ④ 由微分方程的边界条件决定的。 2.下列算符哪个是线性算符( ) ① exp ② ▽2 ③ sin ④ 3.指出下列哪个是合格的波函数(粒子的运动空间为 0+)( ) ① sinx ② e -x ③ 1/(x-1) ④ f(x) = e x ( 0 x 1); f(x) = 1 ( x 1) 4.基态氢原子径向分布函数D(r) ~ r 图表示( ) ① 几率随r 的变化 ② 几率密度随r 的变化 ③ 单位厚度球壳内电子出现的几率随r 的变化 ④ 表示在给定方向角度上,波函数随r 的变化 5.首先提出微观粒子的运动满足测不准原理的科学家是( ) ①薛定谔 ② 狄拉克 ③ 海森堡 ③波恩 6.立方势箱中22 810m a h E <时有多少种状态( ) ① 11 ② 3 ③ 7 ④ 2 7.立方势箱在22 812m a h E ≤的能量范围内,能级数和状态数为( ) ①5,20 ② 6,6 ③ 5,11 ④ 6,17 8.下列函数哪个是22 dx d 的本征函数( ) ① mx e ② sin 2x ③ x 2+y 2 ④ (a-x)e -x 9.立方势箱中22 87m a h E <时有多少种状态( ) ① 11 ② 3 ③ 4 ④ 2 10.立方势箱中22 89m a h E <时有多少种状态( ) ① 11 ② 3 ③ 4 ④ 2 11.已知x e 2是算符x P ?的本征函数,相应的本征值为( ) ① i h 2 ② i h 4 ③ 4ih ④ πi h

作业10量子力学基础( I ) 作业及参考答案

() 一. 选择题 [ C]1.(基础训练2)下面四个图中,哪一个 正确反映黑体单色辐出度 M Bλ (T)随λ 和T的变化关 系,已知T2 > T1. 解题要点: 斯特藩-玻耳兹曼定律:黑体的辐 射出射度M0(T)与黑体温度T的四次方成正比,即 . M0 (T)随温度的增高而迅速增加 维恩位移律:随着黑体温度的升高,其单色辐出度最大值所对应的波长 m λ向短波方向移动。 [ D]2.(基础训练4)用频率为ν 的单色光照射某种金属时,逸出光电子的最大动能 为E K;若改用频率为2ν 的单色光照射此种金属时,则逸出光电子的最大动能为: (A) 2 E K.(B) 2hν - E K.(C) hν - E K.(D) hν + E K. 解题要点: 根据爱因斯坦光电效应方程:2 1 2m h mv A ν=+, 式中hν为入射光光子能量, A为金属逸出功,2 1 2m mv为逸出光电子的最大初动能,即 E K。所以有:0 k h E A ν=+及' 2 K h E A ν=+,两式相减即可得出答案。 [ C]3.(基础训练5)要使处于基态的氢原子受激发后能发射赖曼系(由激发态跃迁 到基态发射的各谱线组成的谱线系)的最长波长的谱线,至少应向基态氢原子提供的能量是 (A) 1.5 eV.(B) 3.4 eV.(C) 10.2 eV.(D) 13.6 eV. 解题要点: 根据氢原子光谱的实验规律,莱曼系: 2 11 (1 R n ν λ ==- 式中,71 1.09677610 R m- =?,称为里德堡常数,2,3, n= 最长波长的谱线,相应于2 n=,至少应向基态氢原子提供的能量1 2E E h- = ν, 又因为 2 6. 13 n eV E n - =,所以l h E E h- = ν=?? ? ? ? ? - - - 2 21 6. 13 2 6. 13eV eV =10.2 eV [ A]4.(基础训练8)设粒子运动的波函数图线 分别如图19-4(A)、(B)、(C)、(D)所示,那么其中确定粒 子动量的精确度最高的波函数是哪个图? 解题要点: 根据动量的不确定关系: 2 x x p ???≥ (B) x (A) x (B) x (C) x (D)

11第十九章量子力学基础2作业答案.doc

3.(自 提高16)有一种原子,在基态时 =1和〃 =2的主壳层都填满电子, 3s 次壳层也 作业+—(第十九章 量子力学简介(II)) (薛定谱方程、一维无限深势阱、隧道效应、能量和角动量量子化、电子自旋、多电子原子) 电子组态 [C ]1.(基础训练10)氢原子中处于2p 状态的电子,描述其量子态的四个量子数(〃,I, 可能 取的值为 (A ) (2, 2, 1, ")? (B ) (2, 0, 0, O (C ) (2, 1, -1, 少 (D ) (2, 0, 1, 1 【提示】P 电子:Z=b 对应的叫可取一1、0、1,风可取上或一 2 2 2.(基础训练17)在主量子数// =2,自旋磁量子数=上的量子态中,能够填充的最大电 2 子数是 4 . 【提示】主量子数〃 =2的L 克层上最多可容纳2^=8个电子(电子组态为2$22p6),如 仅考虑自旋磁量子数=-的量子态,则能够填充的电子数为上述值的一半。 2 填满电子,而3p 壳层只填充一半.这种原子的原子序数是_15 ,它在基态的电子组态为 “2 2s? 2I )6 3S 2 31)3 . 4.(自测提高17)在下列各组量子数的空格上,填上适当的数值,以便使它们可以描述原子 中电子的状态: 1 I (1) n =2, / = 1 ,如=一1, in.=—. 2 n 1 (2) (2) n =2, / =0, nil = 0 , in,=—. ------ 2 If 1 (3) 〃 =2, / =1? mi — m s =—或-—. 2 2 【提示】/的取值:0,1,2,……(〃-1); 叫的取值:0,±1,±2,……±/; 的取值:±1 激光 [C ]5,(基础训练11)在激光器中利用光学谐振腔 (A) 可提高激光束的方向性,而不能提高激光束的单色性. (B) 可提高激光束的单色性,而不能提高激光束的方向性. (C) 可同时提高激光束的方向性和单色性.

第22章量子力学基础教案

第二十二章量子力学基础知识 1924年德布罗意提出物质波概念。1926年薛定谔给出物质波的波函数基本动力学方程----------薛定谔方程, 玻恩对波函数统计解释。1927年海森堡提出著名的不确定关系。 海森堡、狄拉克、薛定谔各建立矩阵力学、新力学和波动力学, 形成了完整的量子力学理论。 ----------------------------------------------------------------------------------------------------------------- 教学要求: * 了解实物粒子的波动性及实验,理解物质波的统计意义; * 能用德布罗意关系式计算粒子的德布罗意波长; * 了解波函数统计意义及其标准化条件和归一化条件,

会简单计算粒子的概率密度及归一化常数; * 理解不确定关系并作简单的计算; * 了解薛定谔方程及一维定态薛定谔方程 * 了解一维无限深势阱中粒子的波函数求解步骤, 学会用波函数求概率密度和发现粒子的概率。 教学内容: §22-1波粒二象性 §22-2 波函数 §22-3 不确定关系 §22-4 薛定谔方程(简略,一维定态薛定谔方程) §22-5 一维无限深势阱中的粒子 §22-6 势垒隧道效应 * §22-7 谐振子 * 教学重点: 实物粒子的波粒二象性及其统计意

义; 概率密度和发现粒子的概率计算; 实物粒子波的统计意义—概率波; 波函数的物理意义及不确定关系。 作业 22-01)、22-03)、22-05)、22-07)、 22-09)、22-11)、22-13)、22-15)、 22-17)、22-18)、----------------------------------------------------------------------- §22-1 波粒二象性 1924年,法国德布罗意在博士论文中提出:“整个世纪以来,在辐射理论方面,比起波动的研究方法来,是过于忽略了粒子的研究方法;那么在实物理论上,是否发生了相反的错误,把粒子的图象想象得太多, 而过于忽略了波的图象?”德布罗意根据光与实物

大学物理讲义(第15章量子力学基础)第五节

§15.5 量子力学的基本概念和基本原理 描述微观粒子运动的系统理论是量子力学,它是薛定谔、海森伯等人在 1925~1926年期间初步建立起来的.本节介绍量子力学的基本概念和基本方程. 一、波函数极其统计解释 在经典力学中我们已经知道,一个被看作为质点的宏观物体的运动状态,是用 它的位置矢量和动量来描述的.但是,对于微观粒子,由于它具有波动性,根据不确 定关系,其位置和动量是不同时具有确定值的,所以我们就不可能仍然用位置、动 量及轨道这样一些经典概念来描述它的运动状态.微观粒子的运动状态称为量子 态,是用波函数来描述的,这个波函数所反映的微观粒子的波动性,就是德布罗意 波.这是量子力学的一个基本假设. 例如一个沿X 轴正方向运动的不受外力作用的自由粒子,由于能量E 和动量p 都是恒量,由德布罗意关系式可知,其物质波的频率ν和波长λ也都不随时间变化,因此自由粒子的德布罗意波是一个单色平面波. 对机械波和电磁波来说,一个单色平面波的波函数可用复数形式表示为 )(2)x/λνt πi Ae t y(x,--= 但实质是其实部.类似地,在量子力学中,自由粒子的德布罗意波的波函数可表示 为 η)/(0)(Px Et i e t x,--ψ=ψ 式中0ψ是一个待定常数, η/0iPx e ψ相当于x 处波函数的复振幅,而ηiEt/e -则反映波函 数随时间的变化. 对于在各种外力场中运动的粒子,它们的波函数要随着外场的变化而变化.力 场中粒子的波函数可通过下面要讲的薛定谔方程来求解. 经典力学中的波函数总代表某一个物理量在空间的波动,然而量子力学中的 波函数又代表着什么呢?对此,历史上提出了各种不同的看法,但都未能完善的解 释微观粒子的波—粒二象性,直到1926年玻恩(M.Born,1882—1970)提出波函数的 统计解释才完善的解释了微观粒子的波—粒二象性.玻恩认为:实物粒子的德布 罗意波是一种几率波;t 时刻,粒子在空间 r 附近的体积元dV 中出现的几率dW 与该处波函数的模方成正比,即 V t r,Ψt r,ΨV t r,ΨW *d d d 2 )()()(== (15.35) 由式(15.35)可知,波函数的模方2)(t r,Ψ代表t 时刻粒子在空间r 处的单位体积中 出现的几率,称为几率密度.这就是波函数的物理意义,波函数本身没有直接的物

量子力学导论第12章答案

第十二章 散射 12-1)对低能粒子散射,设只考虑s 波和p 波,写出散射截面的一般形式。 解: ()()()2 2 c o s s i n 121∑∞ =+= l l l i P e l k l θδθσδ 只考虑s 波和p 波,则只取1,0=l ,于是 ()()()2 11002 cos sin 3cos sin 11 θ δθδθσδδP e P e k i i += ()1cos 0=θP , (),c o s c o s 1θθ=P 代入上式,得 ()2 102 cos sin 3sin 11 θ δδθσδδi i e e k += ()2 2 12 101002 2cos sin 9cos cos cos sin 6sin 1θ δθδδδδδ+-+=k 2 2 2102 cos cos 1θ θA A A k ++= 其中 020sin δ=A ,()10101cos cos sin 6δδδδ-=A ,122sin 9δ=A 。 12-2)用波恩近似法计算如下势散射的微分截面: (a ) ()?? ?><-=. , 0;,0a r a r V r V (b ) ()2 0r e V r V α-= (c ) ()r e r V αγ κ-= (d ) ()().r r V γδ= 解:本题的势场皆为中心势场,故有 ()() ? ∞ - =0 ' '' ' 2 sin 2dr qr r V r q u f θ ,2 sin 2θ k q = (1) ()() () 2 ' ' ' ' 2 4 22sin 4? ∞ = =dr qr r V r q u f θθσ (1) (a )()()qa qa qa q V dr qr V r a cos sin sin 2 00 ' ' 0' -- =-? ()()2 6 4 2 02cos sin 4 qa qa qa q V u -= ∴ θσ (b )()? ? ∞ --∞ --= ??? ??0 ' '00 ''0' ' ' 2 '2'2sin dr e e e r i V dr qr e V r iqr iqr r r αα

《新编基础物理学》第15章习题解答和分析

第15章 早期量子论 15-1 某物体辐射频率为14 6.010Hz ?的黄光,问这种辐射的能量子的能量是多大? 分析 本题考察的是辐射能量与辐射频率的关系. 解: 根据普朗克能量子公式有: -3414196.6310 6.010 4.010(J)h εν-==???=? 15-2 假设把白炽灯中的钨丝看做黑体,其点亮时的温度为K 2900. 求: (1) 电磁辐射中单色辐出度的极大值对应的波长; (2) 据此分析白炽灯发光效率低的原因. 分析 维恩位移定律告诉我们,电磁辐射中单色辐出度的极大值对应的波长与温度的乘积等于一个常量.由此可以直接由维恩位移定律求解. 解 (1)由维恩位移定律,得 -3 -72.89810=9.9910(m)=999(nm)2900 b T λ?==? (2)因为电磁辐射中单色辐出度的极大值对应的波长在红外区域,所以白炽灯的发光 效率较低。 15-3 假定太阳和地球都可以看成黑体,如太阳表面温度T S =6000K ,地球表面各处温度相同,试求地球的表面温度(已知太阳的半径R 0=6.96×105km ,太阳到地球的距离r =1.496×108km )。 分析 本题是斯忒藩—玻尔兹曼定律的应用。 解: 由 40T M σ= 太阳的辐射总功率为 242 8482 0026 44 5.671060004(6.9610)4.4710(W) S S S P M R T R πσππ-===?????=? 地球接受到的功率为 622262211 17 6.3710() 4.4710()422 1.49610 2.0010(W) S E E E S P R P R P d d ππ?===???=? 把地球看作黑体,则 2 4 2 44E E E E E R T R M P πσπ== 290(K)E T ===

第15章量子力学习题解答

第15章 量子物理基础习题 15.1 钾的光电效应红限波长为μm 62.00=λ。求(1)钾的逸出功;(2)在波长nm 330=λ的紫外光照射下,钾的遏止电势差。 解:(1)逸出功eV 01.2J 1021.31900=?== =-λνhc h W (2)由光电效应方程W m h m +=221υν及022 1eU m m =υ 可得 V 76.10=-=-=e W e hc e W e h U λν 15.2 铝的逸出功为4.2eV ,今用波长为200nm 的紫外光照射到铝表面上,发射的光电子的最大初动能为多少?遏止电势差为多大?铝的红限波长是多大? 解:(1)由光电效应方程W m h m +=22 1υν,得 eV 0.2J 1023.321192=?=-=-=-W hc W h m m λ νυ (2)由022 1eU m m =υ,得 V 0.22120==e mv U m (3)由00λνhc h W ==,得 nm 2960==W hc λ 15.3 钨的逸出功是4.52eV ,钡的逸出功是2.50eV ,分别计算钨和钡的截止频率。哪一种金属可以作可见光范围内的光电管阴极材料? 解:由光电效应方程W m h m +=22 1υν可知,当入射光频率

.02 120===υννm h W 表面,其初动能时,电子刚能逸出金属因此0ν是能产生光电效应的入射光的最低频率(即截止频率),它与材料的种类有关。 钨的截止频率 z h W H 1009.115101?==ν 钡的截止频率 z h W H 10603.015202?== ν 对照可见光的频率范围0.395×1015~0.75×1015z H 可知,钡的截止频率02ν正好处于该范围内,而钨的截止频率01ν大于可见光的最大频率,因而钡可以用于可见光范围内的光电管阴极材料。 15.4 钾的截止频率为4.62×1014z H ,今以波长为435.8nm 的光照射,求钾放出的光电子的初速度。 解:根据光电效应的爱因斯坦方程 W m h m +=22 1υν 其中 0νh W =, λ νc = 所以电子的初速度 152/10s m 1074.5)(2-??=??????-=νλυc m h 由于逸出金属的电子的速度c <<υ,故式中m 取电子的静止质量。 15.5 用波长nm 1.00=λ的光子做康普顿散射实验。求散射角为900的散射波长是多少?(普朗克常量h =6.63×10-34J ·s ,电子静止质量m e =9.11×10-31kg ) 解:(1)康普顿散射光子波长改变为: m 10024.0)cos 1(10-?=-=?θλc m h e m 10024.1100-?=?+=λλλ

第13章 量子力学基础..

第13章 量子力学基础 13.1 绝对黑体和平常所说的黑色物体有什么区别? 答:绝对黑体是对照射其上的任意辐射全部吸收而不发生反射和透射的物体,而平常所说的黑色物体是只反射黑颜色的物体。 13.2 普朗克量子假设的内容是什么? 答:普朗克量子假设的内容是物体发射和吸收电磁辐射能量总是以νεh =为单位进行。 13.3 光电效应有哪些实验规律?用光的波动理论解释光电效应遇到了哪些困难? 答:光电效应的实验规律为:1)阴极K 在单位时间内所发射的光子数与照射光的强度成正比;2)存在截止频0ν;3)光电子的初动能与照射光的强度无关,而与频率成线性关系; 4)光电效应是瞬时的。 用光的波动理论解释光电效应遇到的困难在于:1)按照波动理论,光波的能量由光强决定,因而逸出光电子的初动能应由光强决定,但光电效应中光电子的初动能却与光强无关;2)若光波供给金属中“自由电子”逸出表面所需的足够能量,光电效应对各种频率的光都能发生,不应存在红限;3)光电子从光波中吸收能量应有一个积累过程,光强越弱,发射光子所需时间就越长。这都与光电效应的实验事实相矛盾。 13.4 波长λ为0.1nm 的X 射线,其光子的能量ε= J 151099.1-?;质量m = kg 321021.2-?;动量p = 1241063.6--???s m kg . 13.5 怎样理解光的波粒二象性? 答:光即具有波动性,又具有粒子性,光是粒子和波的统一,波动和粒子是光的不同侧面的反映。 13.6 氢原子光谱有哪些实验规律? 答:氢原子光谱的实验规律在于氢原子光谱都由分立的谱线组成,并且谱线分布符合组合规律 )11()()(~2 2n k R n T k T kn -=-=ν k 取 ,3,2,1,分别对应于赖曼线系,巴耳米线系,帕形线系,. 13.7 原子的核型结构模型与经典理论存在哪些矛盾? 答:原子的核型结构与经典理论存在如下矛盾:1)按经典电磁辐射理论,原子光谱应是连续的带状光谱;2)不存在稳定的原子。这些结论都与实验事实矛盾。 13.8 如果枪口的直径为5mm,子弹质量为0.01kg,用不确定关系估算子弹射出枪口时的横

答案 第15章 量子力学基础训练题

第15章 量子力学基础 综合训练题 一、选择题 1. 如果两种不同质量的粒子,其德布罗意波长相同,则这两种粒子的 [ A ] (A) 动量大小相同。 (B) 能量相同。 (C) 速度相同。 (D) 动能相同。 2. 若α粒子在磁感应强度为B 的均匀磁场中沿半径为R 的圆形轨道运动,则粒子的德布罗意波长是 [ A ] (A) eRB h 2 (B) eRB h (C) eRB 21 (D) eRBh 1 3. 设粒子运动的波函数图线分别如图(A)、(B)、(C)、(D)所示,那么其中确定粒子动量的精确度最高的波函数是哪个图? [ A ] 4. 关于不确定关系??? ? ? =≥???π2h p x x 有以下几种理解: (1) 粒子的动量不可能确定。 (2) 粒子的坐标不可能确定。 (3) 粒子的动量和坐标不可能同时确定。 (4) 不确定关系不仅适用于电子和光子,也适用于其它粒子。 其中正确的是: [ C ] (A) (1)、(2) (B) (2)、(4) (C) (3)、(4) (D) (4)、(1) 5. 已知粒子在一维矩形无限深势阱中运动,其波函数为: ()()a x a a x a x ≤≤-?= 23cos 1πψ 那么粒子在6/5a x =处出现的概率密度为 [ A ] (A) a 21 (B) a 1 (C) a 21 (D) a 1 6. 根据玻尔氢原子理论,巴耳末线系中谱线最小波长与最大波长之比为 [ A ] (A) 9 5 (B) 9 4 (C) 9 7 (D) 9 2 7. 若外来单色光把氢原子激发至第三激发态,则当氢原子跃迁回低能态时,可发出的可见光光谱线的 () D x x x () A () B () C

第10章量子力学基础

第十章 量子力学基础 思 考 题 10-1 什么是绝对黑体?它与平常所说的黑色物体有何区别? 答:(1)在任何温度下都能全部吸收照射到它表面上的各种波长的光,这种物体称为绝对黑体,简称黑体。但黑体自身要向外界辐射能量,黑体并不一定是黑色,它的颜色是由它自身所发射的辐射频率决定的。若温度较低,则它辐射的能量就很少,辐射的峰值波长会远大于可见光波长,会呈现黑色;若温度较高,则它辐射的能量就很大,辐射的峰值波长处于可见光波长范围内,会呈现各种颜色。 (2)平常所说的黑色的物体,用肉眼看起来是黑色的,只表明它对可见光强烈吸收,并不能说它对不可见光(红外线、紫外线)都强烈吸收,所以黑色物体的单色吸收本领并不恒等于1,一般不能称为黑体。 10-2 若一个物体的温度(绝对温度数值)增加一倍,它的总辐射能增加到多少倍? 答:根据斯特藩-玻耳兹曼定律,绝对黑体的总辐出度(总辐射能)为 ()()40 d T T M T M B B σλλ==?∞ 现在,212=T T ,于是 1624 4 1212==??? ? ??=T T M M 即绝对黑体的温度增加一倍,它的总辐射能将增至为原来的16倍。 10-3 假设人体的热辐射是黑体辐射,请用维恩位移定律估算人体的电磁辐射中单色辐出度的最大波长(设人体的温度为310K )。 答:根据维恩位移定律 m T b λ= 可得 (m)1035.9310 10898.263 --?=?==T b m λ 10-4 所有物体都能发射电磁辐射,为什么用肉眼看不见黑暗中的物体? 答:物体要能够被眼睛观察到,必须需要两个条件:(1)物体要发射或者反射出眼睛能感觉到的可见光,其波长范围大约为0.40~0.78μm ;(2)可见光的能量要达到一定的阈值。根据黑体辐射,任何物体在一定温度下都发射出各种波长的电磁辐射,在不同温度下单色辐出度的峰值波长不同。黑暗中周围物体的温度等于环境温度(近似为人体温度),单色辐出度的峰值波长在10μm 附近,在可见光波长范围的电磁辐射能量都比较低,因此不能引起眼睛的视觉响应。

第十九章 量子力学基础(Ⅱ)

第十九章量子力学简介(Ⅱ) (薛定谔方程、一维无限深势阱、隧道效应、能量和角动量量子化、电子自旋、多电子原子) 一. 选择题 [ ]1.(基础训练10)氢原子中处于2p状态的电子,描述其量子态的四个量子数(n,l,m l,m s)可能取的值为 (A) (2,2,1,). (B) (2,0,0,). (C) (2,1,-1,). (D) (2,0,1,). [ ]2.(基础训练11)在激光器中利用光学谐振腔 (A) 可提高激光束的方向性,而不能提高激光束的单色性. (B) 可提高激光束的单色性,而不能提高激光束的方向性. (C) 可同时提高激光束的方向性和单色性. (D) 既不能提高激光束的方向性也不能提高其单色性. [ ]3.(自测提高7)直接证实了电子自旋存在的最早的实验之一是 (A) 康普顿实验. (B) 卢瑟福实验. (C) 戴维孙-革末实验. (D) 斯特恩-革拉赫实验. [ ]4.(自测提高9)粒子在外力场中沿x轴运动,如果它在力场中的势能分布如附图所示,对于能量为E< U0从左向右运动的粒子,若用ρ1、ρ2、ρ3分别表示在x < 0,0 < x a三个区域发现粒子的概率,则有 (A) ρ1 ≠ 0,ρ2 = ρ3 = 0. (B) ρ1 ≠ 0,ρ2 ≠ 0,ρ3 = 0. (C) ρ1 ≠ 0,ρ2 ≠ 0,ρ3 ≠ 0. (D) ρ1 = 0,ρ2 ≠ 0,ρ3 ≠ 0.

二. 填空题 1.(基础训练17)在主量子数n=2,自旋磁量子数的量子态中,能够填充的最大电子数是_________. 2.(基础训练20)在下列给出的各种条件中,哪些是产生激光的条件,将其标号列下: (1)自发辐射.(2)受激辐射.(3)粒子数反转.(4)三能极系统.(5)谐振腔. 3.(自测提高16)有一种原子,在基态时n= 1和n= 2的主壳层都填满电子,3s次壳层也填满电子,而3p壳层只填充一半.这种原子的原子序数是 4.(自测提高17)在下列各组量子数的空格上,填上适当的数值,以便使它们可以描述原子中电子的状态: (1) n =2,l =_____,m l= -1,. (2) (2) n =2,l =0,m l =_____,. (3) n =2,l =1,m l = 0,m s = . 三. 计算题 1.(自测提高22)已知粒子处于宽度为a的一维无限深方势阱中运动的波函数为 ,n = 1, 2, 3, … 试计算n = 1时,在x1 = a/4 →x2 = 3a/4区间找到粒子的概率。

第9章量子力学基础

第9章 量子力学基础 思考题解答 1. 试用复数来表示驻波。 解:驻波可由振幅相同而方向相反的两个平面波重叠而成。设沿正反方向传播的两个平面波用复数表示的波函数分别为 )]/i( πexp[201t x νλψΨ+= )]/i( πexp[202t x νλψΨ?= 叠加后的波函数为 )] i π2exp() i π2)[exp(/i π2(021t t x ννλψΨΨΨ?+=+= )2cos()() πcos(22)/i πexp(20t x t x πνψνλψ=?= (1) (注意αααcos 2)i exp()i exp(=?+)可见振幅随x 变化, )/i πexp(22)(0λψψx x = (2) 式(1)为用复数表示的驻波的波函数,式(2)为用复数表示的驻波的振幅。 2. 为什么说波粒二象性是统计规律,而不确定原理是二象性的必然结果。 解:微粒在空间的运动并没有确定的轨迹。例如在电子衍射中,单个电子出现在荧光屏上的位置是不确定的,只有当大量电子同时运动或单个电子重复多次才出现衍射环纹,即电子在空间一定的概率分布。因此,这种微粒的波动性是大量粒子运动的统计结果。正是由于微粒在空间的运动具有波动性,如果波长一定即动量一定,则坐标无法确定;如果坐标完全一定,则必须由无穷多个不同波长的波叠加,动量就不确定;也就是它的坐标和动量不能同时确定,即为不确定原理。 3. 宏观物体的状态是如何描述的,力学量与状态的关系是怎样的。微观粒子的运动状态又是如何描述的,力学量与状态的关系又是怎样

·156· 思考题和习题解答 的。 解:宏观物体的状态是用坐标和动量描述的,状态的变化遵循牛顿力学。力学量与状态(坐标和动量)间具有确定的函数关系。微观粒子的状态是用波函数来描述的,状态的变化遵循量子力学。每一个力学量 F 都对应着一个算符F ?,力学量的统计平均值F 与状态(波函数Ψ)的关系由下式计算τΨΨd ?*F F ∫=。 4. 为什么波函数必须是品优函数。 解:品优函数要求函数是单值的、对坐标是连续可微的、并且是平方可积的,即函数平方对全空间积分是有限的。波函数是描述粒子运动状态的函数,是薛定谔方程的解,必须满足有关物理意义和数学要求。波函数的平方代表粒子在空间某处的概率,概率有确定值,因此波函数一定是单值函数;空间的概率和必为有限值,因此波函数平方对空间积分必定是有限值;薛定谔方程是波函数对坐标的二阶偏微分方程,因此要求波函数连续可微,因为只有波函数和波函数对坐标的一阶偏导数连续,才能保证其二阶偏导数存在。 5. 力学量算符的本征函数是否就是波函数。 解:力学量算符的本征函数不一定是波函数。只有与哈密顿算符H ?可以对易的力学量算符的本征函数才是波函数。例如动量算符x p ?与H ?不可对易,它的本征函数就不是波函数,而动量平方算符2?x p 与H ?可对易,波函数就是它的本征函数。 6. 微观粒子的波函数与经典波函数有什么不同。试从振幅与能量的关系,波的叠加等方面进行讨论。 解:微观粒子的波函数与经典波函数有类似之处,但也有原则差异。首先物质波振幅的平方正比于粒子在空间的强度以及在空间出现的概率密度,而经典波振幅的平方只代表波的强度。再从波的叠加来说,虽然两者都遵循波的叠加原理,但也有差别。经典波叠加后,形成新的状态,具有新的能量。而物质波叠加后,一般形成了一种混合状态,由1ψ、

大学物理讲义(第15章量子力学基础)第二节

§15.2 光电效应与爱因斯坦的光量子假设 普朗克的量子假设提出后的最初几年中,并未受到人们的重视,甚至普朗克本人也总是试图回到经典物理的轨道上去.最早认识普朗克假设重要意义的是爱因斯坦,他在1905年发展了普朗克的思想,提出了光子假设,成功的解释了光电效应的实验规律. 一、光电效应的实验规律 金属在光的照射下,有电子从表面逸出,这 种现象称为光电效应.光电效应中逸出金属表 面的电子称为光电子.光电子在电场的作用下 所形成的电流叫光电流.研究光电效应的实验 装置如图15.3所示.在一个抽空的玻璃泡内装 有金属电极K(阴极)和A(阳极),当用适当频率的 光从石英窗口射入照在阴极K 上时,便有光电子 自其表面逸出,经电场加速后为阳极A 所吸收, 形成光电流.改变电位差U AK ,测得光电流 i ,可得 光电效应的伏安特性曲线,如图15.4所示. 实验研究表明,光电效应有如下规律: 1)阴极K 在单位时间内所发射的光电子数 与照射光的强度成正比. 从图15.4可以看出,光电流i 开始时随 增 大而增大,而后就趋于一个饱和值 , 它与单位时间内从阴极K 发射的光 子数成正比.所以单位时间内从阴极 K 发射的光电子数与照射光强成正 比. 2)存在截止频率. 实验表明,对一定的金属阴极,当 照射光频率小于某个最小值i s 时,不 管光强多大,都没有光电子逸出,这个 最小频率v 0称为该种金属的光电效应截止频率,也叫红限,对应的波长0λ称为截止波长.每一种金属都有自己的红限. 3)光电子的初动能与照射光的强度无关,而与其频率成线性关系. 在保持光照射不变的情况下,改变电位差U AK ,发现当U AK =0时,仍有光电流.这显然是因为光电子逸出时就具有一定的初动能.改变电位差极性,使U AK <0 ,当反向

第十九章 量子力学基础( I ) 作业参考答案(2015)

() 一. 选择题 [ D ]1.(基础训练1)在加热黑体过程中,其最大单色辐出度(单色辐射本领)对应的波长由0.8 μm 变到0.4 μm ,则其辐射出射度(总辐射本领)增大为原来的 (A) 2倍. (B) 4倍. (C) 8倍. (D) 16倍. [ ] 提示: 由维恩位移定律:T m λ=b ,∴m λ∝ T 1,即1221 m m T T λλ= 又由斯特藩-玻耳兹曼定律,总辐射出射度: 0400 ()()M T M T d T λλσ∞ ==? 444022140112()0.8 ()(16()0.4 M T T M T T λλ∴==== [ D ]2.(基础训练4)用频率为ν 的单色光照射某种金属时,逸出光电子的最 大动能为E K ;若改用频率为2ν 的单色光照射此种金属时,则逸出光电子的最大 动能为: (A) 2 E K . (B) 2h ν - E K . (C) h ν - E K . (D) h ν + E K . 提示: 根据爱因斯坦光电效应方程:2 012 m h mv A ν=+, 式中h ν为入射光光子能量,0A 为金属逸出功,2 12 m mv 为逸出光电子的最大初动能,即E K 。 所以有:0k h E A ν=+及' 02K h E A ν=+,两式相减即可得出答案。 [ C ]3.(基础训练5)要使处于基态的氢原子受激发后能发射赖曼系(由激发态跃迁到基态发射的各谱线组成的谱线系)的最长波长的谱线,至少应向基态氢原子提供的能量是 (A) 1.5 eV . (B) 3.4 eV . (C) 10.2 eV . (D) 13.6 eV . 提示: 根据氢原子光谱的实验规律,莱曼系:2 1 1 (1)R n νλ = =- 最长波长的谱线,相应于2n =,至少应向基态氢原子提供的能量12E E h -=ν,又因为26.13n eV E n - =,所以l h E E h -=ν=???? ??---2216.1326.13eV eV =10.2 eV

相关文档
最新文档