石墨烯的合成与转移

石墨烯的合成与转移
石墨烯的合成与转移

大面积石墨烯的合成与转移实验

石墨烯(Graphene)是一种由碳原子组成六角型呈蜂巢晶格的平面薄膜,是只有一个碳原子厚度的二维材料。它的出现引起了全世界的研究热潮,并且以惊人的速度在发展。它不但对物理化学方面的纳米技术产生了重大影响,而且对材料科学和工程以及各个学科之间的

纳米技术也产生了重大的影响。本实验中,大面积石墨烯的合成是通过化学气相沉积法

(CVD来合成,石墨烯的转移主要采用湿法转移来实现。

【实验目的】

1、理解利用化学气相沉积法合成纳米材料的方法;

2、熟悉双温区管式炉的操作;

3

、掌握大面积石墨烯合成的过程;

4

掌握大面积石墨烯的湿法转移过程。

【实验原理】

1

化学气相沉积(CVD的基本原理

化学气相沉积是一种化学气相生长法,简称CVD (Chemical Vapor Deposition )技术。这种方法是把含有构成薄膜元素的一种或者几种化合物的单质气体提供给基片,利用加热、等离子体、紫外线乃至激光等能源,借助气相作用或者基片表面的化学反应(热分解或化学合成)生成要求的薄膜。由于CVD法是一种化学合成的方法,所以可以制备多种物质的

薄膜。如各种单晶、多相或非晶态无机薄膜。CVD法制备薄膜的过程,可分为以下几个主要

阶段:(1)反应气体向基片表面扩散;(2)反应气体吸附于表面;(3)在基片表面上发生化学反应;(4)在基片表面产生的气相副产物脱离表面而扩散掉或被真空泵抽走,在基片上留下不会发的固体反应物一薄膜。

2、大面积石墨烯在铜箔上的生长机理

对于石墨烯这一新型的二维纳米材料在铜箔上生长的机理来说,暂时还没有确切的理论来解释,但目前比较流行的说法是:表面催化作用是石墨烯在铜箔上生长的主要机制(在镍箔上主要是析出机制),甲烷在铜箔的催化下被分解,碳原子键断裂并在铜箔的表面以sp2

杂化键重新形成并连接生成石墨烯(如图1所示为石墨烯制备过程图)。上述过程发生在图

1中所示的甲烷分解阶段,而不是在降温阶段。如果在铜的表面覆盖上一层石墨烯,铜箔的

催化作用将会基本丧失,这样铜的表面在生长完单层的石墨烯后便很难再生长更多层得石墨

烯,这种生长过程被称为自限制生长,所以在铜箔上更容易得到均一单层的石墨烯

3、大面积石墨烯的湿法转移技术

该技术主要是运用“基体刻蚀”法实现 CVD 法合成石墨烯的转移。在生长过的石墨烯的 铜箔的表面旋涂上聚甲基丙烯酸甲酯(PMM )后,用酸刻蚀掉铜,然后将其转移至目标基底 上,最后用丙酮除去聚甲基丙烯酸甲酯。不过,这种方法所得到的石墨烯容易破裂,这可能 是由于平整度的不同导致石墨烯与基底不能够完全接触所致。目前为止,在铜箔上生长的石 墨烯很多都是采用湿法转移法的。

【实验装置】

双温区管式炉主要由炉腔、温度控制面板、加热丝、热电偶、石英管、减压阀、进气 阀、出气阀、

放气阀、保温砖等组成。如图 2所示。

1015 r- Time

铜箔退火 甲烷分解

200 r

图2

【实验步骤】

1、大面积石墨烯的合成

(1)放样:将25卩m厚的铜箔裁剪成7cm x 7cm大小,放入管式炉的石英管中热电偶中心处,封闭好管式炉,上紧螺丝。打开机械泵开关,打开进气阀,打开出气阀至最大,将管内压强抽到最小后关闭出气阀。

(2)洗气:将H2和甲烷气体瓶的阀打开,打开真空流量计,将氢气的流量控制阀打到阀控档,灌入氢气,减压阀指针大概在0.6pa左右,氢气流量控制阀打到关闭档,打开出气阀至最大,将管内的气体抽调至最小。将氢气的流量控制阀打到通气档,数值调到

10sccm=

(3)设置程序:按照图一设置好程序即可。

(4)取样:待温度降到室温后,关闭进气阀和出气阀,关闭机械泵,打开石英管螺丝,打开放气阀,取出表面长有石墨烯的铜箔。

2、大面积石墨烯的转移

将表面长有石墨烯的铜箔裁剪成所需要的大小,用匀胶机在3600rad/s的转速下,旋涂上6嘛甲基丙烯酸甲酯(PMM)的溶液。然后放入刻蚀液(硫酸铜:盐酸:水=1:5:5 )中刻蚀半个小时,铜刻蚀完毕后即可转移到任意衬底上。

3、大面积石墨烯质量的初步检测

将1cm x 1cm大小、刻蚀完毕的石墨烯转移到石英玻璃衬底上,放入烘箱中60E烘20min 后,放入丙酮中浸泡,去掉PMM,用万用表测量其电阻,两表笔的距离为1mm左右,得出电

阻数值,即可初步判断合成石墨烯的质量。

【思考题】

1、转移石墨烯时,采用的刻蚀液是硫酸铜、盐酸和水的混合溶液,那为什么能把铜给刻蚀掉呢?

2、在合成的过程中,石墨烯的质量会受到那些因素的影响?

石墨烯的制备与表征综述

氧化石墨烯还原的评价标准 摘要还原氧化石墨烯(RGO)是一种 有趣的有潜力的能广泛应用的纳米 材料。虽然我们花了相当大的努力 一直致力于开发还原方法,但它仍然 需要进一步改善,如何选择一个合适 的一个特定的还原方法是一个棘手 的问题。在这项研究中,还原氧化石 墨烯的研究者们准备了六个典型的 方法:N2H4·H2O还原,氢氧化钠还 原,NaBH4还原,水浴还原 ,高温还原以及两步还原。我们从四个方面系统的对样品包括:分散性,还原程度、缺陷修复程度和导电性能进行比较。在比较的基础上,我们提出了一个半定量判定氧化石墨烯还原的评价标准。这种评价标准将有助于理解氧化石墨烯还原的机理和设计更理想的还原方法。 引言 单层石墨烯,因为其不寻常的电子性质和应用于各个领域的潜力,近年来吸引了巨大的研究者的关注。目前石墨烯的制备方法,包括化学气相沉积(CVD)、微机械剥离石墨,外延生长法和液相剥离法。前三种方法因为其获得的石墨烯的产品均一性和层数选择性原因而受到限制。此外,这些方法的低生产率使他们不适合大规模的应用。大部分的最有前途生产的石墨烯的路线是石墨在液相中剥离氧化然后再还原,由于它的简单性、可靠性、大规模的能力生产、相对较低的材料成本和多方面的原因适合而适合生产。这种化学方法诱发各种缺陷和含氧官能团,如羟基和环氧导致石墨烯的电子特性退化。与此同时,还原过程可能导致发生聚合、离子掺杂等等。这就使得还原方法在化学剥离法发挥至关重要的作用。 到目前为止,我们花了相当大的努力一直致力于开发还原的方法。在这里我们展示一个简单的分类:使用还原剂(对苯二酚、二甲肼、肼、硼氢化钠、含硫化合物、铝粉、维生素C、环六亚甲基四胺、乙二胺(EDA) 、聚合电解质、还原糖、蛋白质、柠檬酸钠、一氧化碳、铁、去甲肾上腺素)在不同的条件(酸/碱、热处理和其他类似微波、光催化、声化学的,激光、等离子体、细菌呼吸、溶菌酶、茶溶液)、电化学电流,两步还原等等。这些不同的还原方法生成的石墨烯具有不同的属性。例如,大型生产水分散石墨烯可以很容易在没有表面活性稳定剂的条件下地实现由水合肼还原氧化石墨烯。然而,水合肼是有毒易爆,在实际使用的过程中存在困难。水浴还原方法可以减少缺陷和氧含量的阻扰。最近,两个或更多类型的还原方法结合以进一步提高导电率或其他性能。例如,水合肼还原经过热处理得到的石墨烯通常显现良好的导电性。

氧化石墨烯的制备方法总结

氧化石墨烯的制备方法: 方法一: 由天然鳞片石墨反应生成氧化石墨,大致分为3 个阶段,低温反应:在冰水浴中放入大烧杯,加入110mL 浓H2SO4,在磁力搅拌器上搅拌,放入温度计让其温度降至4℃左右。加入-100目鳞片状石墨5g,再加入NaNO3,然后缓慢加入15g KMnO4,加完后记时,在磁力搅拌器上搅拌反应90min,溶液呈紫绿色。中温反应:将冰水浴换成温水浴,在磁力搅拌器搅拌下将烧杯里的温度控制在32~40℃,让其反应30 min,溶液呈紫绿色。高温反应:中温反应结束之后,缓慢加入220mL 去离子水,加热保持温度70~100℃左右,缓慢加入一定双氧水(5 %)进行高温反应,此时反应液变成金黄色。反应后的溶液在离心机中多次离心洗涤,直至BaCl2检测无白色沉淀生成,说明没有SO42-的存在,样品在40~50℃温度下烘干。H2SO4、NaNO3、KMnO4一起加入到低温反应的优点是反应温度容易控制且与KMnO4反应时间足够长。如果在中温过程中加入KMnO4,一开始温度会急剧上升,很难控制反应的温度在32~40℃。技术路线图见图1。 方法二:Hummers 方法 采用Hummers 方法[5]制备氧化石墨。具体的工艺流程在冰水浴中装配好250 mL 的反应瓶加入适量的浓硫酸搅拌下加入2 g 石墨粉和1 g 硝酸钠的固体混合物再分次加入6 g 高锰酸钾控制反应温度不超过20℃搅拌反应一段时间然后升温到35℃左右继续搅拌30 min再缓慢加入一定量的去离子水续拌20 min 后并加入适量双氧水还原残留的氧化剂使溶液变为亮黄色。趁热过滤并用5%HCl 溶液和去离子水洗涤直到滤液中无硫酸根被检测到为止。最后将滤饼置于60℃的真空干燥箱中充分干燥保存备用。方法三:修正的Hummers方法 采用修正的Hummers方法合成氧化石墨,如图1中(1)过程。即在冰水浴中装配好250 mL的反应瓶,加入适量的浓硫酸,磁力搅拌下加入2 g 石墨粉和1 g硝酸钠的固体混合物,再缓慢加入6 g高锰酸钾,控制反应温度不超过10 ℃,在冰浴条件下搅拌2 h后取出,在室温下搅拌反应5 d。然后将样品用5 %的H2SO4(质量分数)溶液进行稀释,搅拌2 h后,加入6 mL H2O2,溶液变成亮黄色,搅拌反应2 h离心。然后用浓度适当的H2SO4、H2O2混合溶液以及HCl反复洗涤、最后用蒸馏水洗涤几次,使其pH~7,得到的黄褐色沉淀即为氧化石墨(GO)。最后将样品在40 ℃的真空干燥箱中充分干燥。将获得的氧化石墨入去离子水中,60 W功率超声约3 h,沉淀过夜,取上层液离心清洗后放入烘箱内40 ℃干燥,即得片层较薄的氧化石墨烯,如图1中(2)过程。

石墨烯制备方法及应用的研究进展

石墨烯制备方法及应用的研究进展 邓振琪黄振旭 (郑州师范学院化学化工学院,河南郑州450044) 摘要:石墨烯因具有高的比表面积、突出的导热性能和力学性能及其非凡的电子传递性能等一系列优异的性质,引起了科学界新一轮的研究热点。本文总结近年石墨烯的研究现状,综述介绍石墨烯的制备方法和其应用的研究进展。 关键字:石墨烯;制备;应用 2004年,英国曼彻斯特大学Geim研究小组首成功地在实验中从石墨中分离出石墨烯[1],并提出了表征石墨烯的光学方法,对其电学性能进行了系统研究,发现石墨烯具有很高的载流子浓度、迁移率和亚微米尺度的弹道输运特性,从而掀起了石墨烯研究的热潮。 石墨烯是由碳原子以sp2杂化连接按照六边形紧密排列成蜂窝状晶格的二维晶体,其理论厚度仅为0.35nm,是目前所发现的最薄的二维材料[2]。是构造其他维度碳质材料的基本单元,它可以包裹形成零维富勒烯,也可以卷起来形成一维的碳纳米管或者层层堆叠构成三维的石墨。 石墨烯因其独特的二维晶体结构,从而具有优异的性能。如单原子层石墨烯材料理论表面积可达2630m2/g,半导体本征迁移率高达2×105cm2/(V·s),弹性模量约为1.0TPa,热传导率约为5000W/(m·K),透光率高达97.7%,强度高达 110GPa[3]。这些优异的性能使得石墨烯在纳米电子器件、传感器、电化学及复合材料等领域有光明的应用前景。 1.石墨烯的制备 现在制备石墨烯主要方法为微机械剥离法、基底生长法、化学气相沉淀法、氧化石墨还原法。另简单介绍液相或气相直接剥离法、电化学法、石墨插层法等方法。 1.1微机械剥离法 石墨烯最初的制备就是微机械剥离,机械剥离法就是通过机械力从具有高度定向热解石墨表面剥离石墨烯片层。Geim教授采用胶带剥离法可以认为是机械剥离法中的一个代表。Knieke等[4]利用湿法研磨法在室温下研磨普通石墨粉,成功的对石墨的片层结构进行了剥离,制备了单层和多层的石墨烯片。微机械剥离法制得的石墨烯具有最高的质量,适用于研究石墨烯的电学性质。但该方法低

石墨烯介绍

1石墨烯概述-结构及性质 1.1 石墨烯的结构 石墨烯是一种由碳原子以sp2杂化连接形成的单原子层二维晶体,碳原子规整的排列于蜂窝状点阵结构单元之中,如图1所示。每个碳原子除了以σ键与其他三个碳原子相连之外,剩余的π电子与其他碳原子的π电子形成离域大π键,电子可在此区域内自由移动,从而使石墨烯具有优异的导电性能。同时,这种紧密堆积的蜂窝状结构也是构造其他碳材料的基本单元,如图2所示,单原子层的石墨烯可以包裹形成零维的富勒烯,单层或者多层的石墨烯可以卷曲形成单壁或者多壁的碳纳米管。 图1 石墨烯的结构示意图 图2石墨烯:其他石墨结构碳材料的基本构造单元,可包裹形成零维富勒烯,卷曲形成一维 碳纳米管,也可堆叠形成三维的石墨 1.2石墨烯的性质 石墨烯独特的单原子层结构,决定了其拥有许多优异的物理性质。如前所述,石墨烯中的每个碳原子都有一个未成键的π 电子,这些电子可形成与平面垂直的π轨道,π 电子可在这种长程π 轨道中自由移动,从而赋予了石墨烯出色的导电性能。研究表明室温下载流子在石墨烯中的迁移率可达到15000cm2/(V·s),相当于光速的1/300,在特定条件,如液氦的温度下,更是可达到250000cm2/(V·s),远远超过其他半导体材料,如锑化铟、砷化镓、硅半

导体等。这使得石墨烯中的电子的性质和相对论性的中微子非常相似。并且电子在晶格中的移动是无障碍的,不会发生散射,使其具有优良的电子传输性质。同时,石墨烯独特的电子结构还使其表现出许多奇特的电学性质,比如室温量子霍尔效应等。由于石墨烯中的每个碳原子均与相邻的三个碳原子结合成很强的σ 键,因此石墨烯同样表现出优异的力学性能。最近,哥伦比亚大学科学家利用原子力显微镜直接测试了单层石墨烯的力学性能,发现石墨烯的杨氏模量约为1100GPa,断裂强度更是达到了130GPa,比最好的钢铁还要高100 倍。石墨烯同样是一种优良的热导体。因为在未掺杂石墨中载流子密度较低,因此石墨烯的传热主要是靠声子的传递,而电子运动对石墨烯的导热可以忽略不计。其导热系数高达5000W/(m·K), 优于碳纳米管,更是比一些常见金属,如金、银、铜等高10 倍以上。除了优异的传导性能及力学性能之外,石墨烯还具有一些其他新奇的性质。由于石墨烯边缘及缺陷处有孤对电子,使石墨烯具有铁磁性等磁性能。由于石墨烯单原子层的特殊结构,使石墨烯的理论比表面积高达2630m2/g。石墨烯也具备独特的光学性能,单层石墨烯在可见光区的透过率达97%以上。这些特性使石墨烯在纳米器件、传感器、储氢材料、复合材料、场发射材料等重要领域有着广泛的应用前景。 图3石墨烯的应用 2石墨烯聚酯复合材料的制备方法 由于石墨烯优异的性质以及低的成本,石墨烯作为聚合物纳米填料被广泛报道。为了获得优异性能的聚合物/石墨烯复合材料,首先要保证石墨烯在聚合物基体中均匀分散。石墨烯的分散与制备方法、石墨烯表面化学、橡胶种类以及石墨烯-橡胶界面有着密切关系。聚合物/石墨烯复合材料的制备方法主要有溶液共混、熔体加工、原位聚合和乳液共混四种方法。 2.1 溶液共混法 溶液共混法主要是采用聚合物本身聚合体系的有机溶剂,充分分散石墨烯于体系中,随着体系聚合反应进行,最后石墨烯均匀分散并充分结合于聚合物基体中,得到石墨烯/聚合物复合材料的一种方法。通常先制备氧化石墨烯作为前驱体,对其进行功能化改性使之能在聚合体系溶剂中分散,还原后与聚合物进行溶液共混,从而制备石墨烯/聚合物复合材料。通过溶液共混制备复合材料的关键是将石墨烯及其衍生物均匀分散在能溶解聚合物的溶剂中。

石墨烯的制备方法

石墨烯的制备方法 主要市场包括:石墨烯透明导电薄膜材料的生产和销售,以及在透明电极、储能、电子器件等领域的应用技术开发和技术支持服务。公司目前的石墨烯导电层产品功能良率能做到85%,但外观良率目前只能做到60%左右。目前产品已经在低端手机上逐渐应用。常州二维碳素科技有限公司的关键技术如下: ②辉锐集团由辉锐科技(香港)有限公司,辉锐材料科技有限公司与辉锐电子技术有限公司。 辉瑞科技专注于石墨材料的研发和生产,是大面积高质量石墨烯的量产成为现实。而辉锐材料则主要从事应用产品的设计和营销,提升石墨烯在移动设备,发电和能源储备,医疗保健等领域的应用。 辉锐科技是一家从事石墨烯技术发展的公司,率先进军大面积石墨烯柔性触控屏市场,且计划未来3年公投资1.5亿美元发展石

墨烯移动设备市场。5月份,厦门大学,英国BGT Material Limited 和福建辉瑞材料有限公司签署协议在厦门大学建立“石墨烯工业技术研究院”。石墨烯发明者诺贝奖物理学奖获得者康斯坦丁·诺沃肖洛夫等将加盟改研究院。公司正研制利用石墨烯制造可屈曲触摸屏,目前已经投产。 2. 石墨烯在锂离子电池领域的应用 石墨烯优异的导电性能可以提升电极材料的电导率,进而提升锂离子电池的充放电速度;石墨烯的二维层状结构可以有效抑制电极材料在充放电过程中因体积变化引起的材料粉化;石墨烯还能很好地改善锂电池的大电流充放电性能、循环稳定性和安全性。除此之外还能大幅提高电池的充放电速度。国内研究成果: 宁波墨西科技有限公司依托中科院宁波所技术研发实力,产学研一体化优势,使得公司在石墨烯领域走在行业前列;公司产品分为三大类:基础产品(浆料、粉体)、专用分散液、工业化应用产品。在锂电池领域,已经开发出石墨烯复合电极材料、石墨烯导电添加剂、石墨烯涂层铝箔等;公司石墨烯导电剂产品已经在磷酸铁锂电池厂商试样,能有效提高电池倍率充放电性能。 宁波墨西锂电池领域研发目标:第一,2016 年实施Battery 200 计划,研发能量密度达到200Wh/kg 的新型电力锂电池及其材料技术;第二,2020 年实施Battery 300 计划,研发能量密度达到300Wh/kg 的下一代动力锂电池及其材料技术。目前技术路线,以石墨烯作为新一代导电剂研发为主,包括石

石墨烯的制备方法与应用

石墨烯的制备方法与应用 摘要: 石墨烯是目前发现的唯一存在的二维自由态原子晶体, 它是构筑零维富勒烯、一维碳纳米管、三维体相石墨等sp2 杂化碳的基本结构单元, 具有很多奇异的电子及机械性能。因而吸引了化学、材料等其他领域科学家的高度关注。本文介绍了近几年石墨烯的研究进展, 包括石墨烯的合成、去氧化、化学修饰及应用前景等方面的内容。石墨烯由于其特殊的电学、热学、力学等性质以及在纳米电子器件、储能材料、光电材料等方面的潜在应用,引起了科学界新一轮的热潮。关键字: 石墨烯, 制备, 应用,氧化石墨烯,传感器 石墨烯的定义 石墨烯是碳原子紧密堆积成单层二维蜂窝状晶格结构的一种碳质新材料,厚度只有0.335纳米,仅为头发的20万分之一,是构建其它维数碳质材料(如零维富勒烯、一维纳米碳管、三维石墨)的基本单元,具有极好的结晶性、力学性能和电学质量。 石墨烯的结构 完美的石墨烯是二维的, 它只包括六角元胞(等角六边形)。 如果有五角元胞和七角元胞存在,那么他们构成石墨烯的缺陷。如果少量的五角元胞细胞会使石墨烯翘曲; 12个五角元胞的会形成富勒烯。碳纳米管也被认为是卷成圆桶的石墨烯; 可见,石墨烯是构建其它维数碳质材料(如零维富勒烯、一维纳米碳管、三维石墨)的基本单元。

单原子层石墨晶体薄膜。 每个原胞中两个碳原子,每个原子与最相邻三个碳原子形成三个σ键。 每个碳原子贡献一个多余p电子,垂直于graphene平面,形成未成键的π电子——良好的导电性。 石墨烯的性能 最薄——只有一个原子厚 强度最高——美国哥伦比亚大学的专家为了测试石墨烯的强度,先在一块硅晶体板上钻出一些直径一微米的孔,每个小孔上放置一个完好的石墨烯样本,然后用一个带有金刚石探头的工具对样本施加压力。结果显示,在石墨烯样品微粒开始断裂前,每100纳米距离上可承受的最大压力为2.9 微牛左右。按这个结果测算,要使1 米长的石墨烯断裂,需要施加相当于55 牛顿的压力,也就是说,用石墨烯制成的包装袋应该可以承受大约两吨的重量。 没有能隙——良好的半导体 良好的导热性 热稳定性——优于石墨 较大的比表面积 优秀导电性——电子的运动速度达到了光速的1/300,远远超过了电子在一般导体中的运动速度--电子的“光速”移动碳原子有四个价电子,这样每个碳原子都贡献一个未成键的π电子,这些π电子与平面成垂直的方向可形成轨道,π电子可在晶体中自由移动,赋予

石墨烯的合成与转移

大面积石墨烯的合成与转移实验 石墨烯(Graphene)是一种由碳原子组成六角型呈蜂巢晶格的平面薄膜,是只有一个碳原子厚度的二维材料。它的出现引起了全世界的研究热潮,并且以惊人的速度在发展。它不但对物理化学方面的纳米技术产生了重大影响,而且对材料科学和工程以及各个学科之间的纳米技术也产生了重大的影响。本实验中,大面积石墨烯的合成是通过化学气相沉积法(CVD)来合成,石墨烯的转移主要采用湿法转移来实现。 【实验目的】 1、理解利用化学气相沉积法合成纳米材料的方法; 2、熟悉双温区管式炉的操作; 3、掌握大面积石墨烯合成的过程; 4、掌握大面积石墨烯的湿法转移过程。 【实验原理】 1、化学气相沉积(CVD)的基本原理 化学气相沉积是一种化学气相生长法,简称CVD (Chemical Vapor Deposition)技术。这种方法是把含有构成薄膜元素的一种或者几种化合物的单质气体提供给基片,利用加热、等离子体、紫外线乃至激光等能源,借助气相作用或者基片表面的化学反应(热分解或化学合成)生成要求的薄膜。由于CVD法是一种化学合成的方法,所以可以制备多种物质的薄膜。如各种单晶、多相或非晶态无机薄膜。CVD法制备薄膜的过程,可分为以下几个主要阶段:(1)反应气体向基片表面扩散;(2)反应气体吸附于表面;(3)在基片表面上发生化学反应;(4)在基片表面产生的气相副产物脱离表面而扩散掉或被真空泵抽走,在基片上留下不会发的固体反应物—薄膜。 2、大面积石墨烯在铜箔上的生长机理 对于石墨烯这一新型的二维纳米材料在铜箔上生长的机理来说,暂时还没有确切的理论 来解释,但目前比较流行的说法是:表面催化作用是石墨烯在铜箔上生长的主要机制(在镍 箔上主要是析出机制),甲烷在铜箔的催化下被分解,碳原子键断裂并在铜箔的表面以sp2 杂化键重新形成并连接生成石墨烯(如图1所示为石墨烯制备过程图)。上述过程发生在图 1中所示的甲烷分解阶段,而不是在降温阶段。如果在铜的表面覆盖上一层石墨烯,铜箔的

关于石墨烯的总结

一.石墨烯常用修饰方法总结 石墨烯是由一层密集的、包裹在蜂巢晶体点阵上的碳原子组成,是世界上最薄的二维材料,其厚度仅为0.35 nm。这种特殊结构蕴含了丰富而新奇的物理现象,使石墨烯表现出许多优异性质。 结构完整的石墨烯是由不含任何不稳定键的苯六元环组合而成的二维晶体,化学稳定性高,其表面呈惰性状态,与其他介质(如溶剂等)的相互作用较弱,并且石墨烯片与片之间有较强的范德华力,容易产生聚集,使其难溶于水及常用的有机溶剂,这给石墨烯的进一步研究和应用造成了极大的困难。为了充分发挥其优良性质,并改善其成型加工性(如提高溶解性、在基体中的分散性等),必须对石墨烯进行有效的功能化。通过引入特定的官能团,还可以赋予石墨烯新的性质,进一步拓展其应用领域。功能化是实现石墨烯分散、溶解和成型加工的最重要手段。 从功能化的方法来看。主要分为共价键功能化和非共价键功能化两种。 1. 石墨烯的共价功能化 石墨烯的共价键功能化是目前研究最为广泛的功能化方法。尽管石墨烯的主体部分由稳定的六元环构成,但其边沿及缺陷部位具有较高的反应活性,可以通过化学氧化的方法制备石墨烯氧化物(Grapheneoxide)。由于石墨烯氧化物中含有大量的羧基、羟基和环氧键等活性基团,可以利用多种化学反应对石墨烯进行共价键功能化。 1.1 石墨烯的聚合物功能化 (1)聚乙二醇(PEG)具有优异的生物相容性和亲水性,被广泛应用于多种不同的功能化纳米材料,以提高这些材料的生物相容性,减小其对生物分子及细胞的非特定的约束力,也改善了体内的药物代谢动力学,以实现更好的肿瘤靶向性治疗[1,2,3-5]。2008年,Dai 等使用六臂星型氨基聚乙二醇的端氨基与纳米石墨烯片边缘的羧基通过亚胺催化酰胺形成反应,制备PEG 修饰纳米石墨烯片,得到的产物在用于体外给药和生物成像的生理溶液中显示了优良的分散性和稳定性[2]。 (2)除了PEG外,还有其他的被用来共价功能化GO的亲水大分子。刘庄工作组,将氨基修饰的DEX与GO通过共价键键合,得到了具有生物相容性的材料,这种材料大大提高了GO生理溶解性的稳定性[6]。Bao et al.

石墨烯的合成

合成化学综述论文 ——石墨烯的合成 姓名:常俊玉 学号:1505120528

学院:化学化工学院 班级:应化1204班 时间:2015-4-19 石墨烯合成综述 应化1204 常俊玉1505120528 摘要:由于石墨烯优异的电学、光学、机械性能以及石墨烯广泛的应用前景,自英国曼彻斯特大学物理学教授Geim 等得到了稳定存在的石墨烯以来,掀起对碳材料的又一次研究热潮。这10年来,石墨烯的制备方法上取得了重大进展。本文对石墨烯的机械剥离法、化学气相沉积法、氧化还原法、有机合成法四种制备方法进行了综述,比较可以发现各种合成方法有其优缺点,实际生产可以根据实际情况选择对应方法。 关键词:石墨烯、机械剥离法、化学气相沉积法、氧化还原法、有机合成法一.引言 石墨烯是由碳原子通过sp2 杂化,构成的单层蜂窝状二维网格结构。石墨烯是构成其他碳同素异形体的基本单元,它可折叠成富勒烯(零维),卷曲成碳纳米管(一维),堆垛成石墨(三维),如图一所示[1]。石墨烯的理论研究已经有60 多年,当时主要用来为富勒烯和碳纳米管等结构构建模型,没有人认为石墨烯会稳定存在,因为物理学家认为,热力学涨落不允许二维晶体在有限温度下存在。 2004 年,英国曼彻斯特大学物理学教授Geim 等,用胶带反复剥离高定向热解石墨的方法,得到了稳定存在的石墨烯[2]。该发现立即引起了物理学家、化学家和材料学家的广泛关注,掀起了继富勒烯和碳纳米管之后碳材料的又一次研究热潮。由于石墨烯优异的电学、光学和机械性能,以及石墨烯广泛的应用前景,石墨烯的发现者Geim 教授和Novoselov 博士被授予2010 年度诺贝尔物 理学奖。

石墨烯的制备方法概述

石墨烯的制备方法概述 1物理法制备石墨烯 物理方法通常是以廉价的石墨或膨胀石墨为原料,通过机械剥离法、取向附生法、液相或气相直接剥离法来制备单层或多层石墨烯。这些方法原料易得,操作相对简单,合成的石墨烯的纯度高、缺陷较少。 1.1机械剥离法 机械剥离法或微机械剥离法是最简单的一种方法,即直接将石墨烯薄片从较大的晶体上剥离下来。Novoselovt等于2004年用一种极为简单的微机械剥离法成功地从高定向热 解石墨上剥离并观测到单层石墨烯,验证了单层石墨烯的独立存在。具体工艺如下:首先利用氧等离子在1mm厚的高 定向热解石墨表面进行离子刻蚀,当在表面刻蚀出宽20μm —2mm、5μm的微槽后,用光刻胶将其粘到玻璃衬底上, 再用透明胶带反复撕揭,然后将多余的高定向热解石墨去除并将粘有微片的玻璃衬底放入丙酮溶液中进行超声,最后将单晶硅片放入丙酮溶剂中,利用范德华力或毛细管力将单层石墨烯“捞出”。 但是这种方法存在一些缺点,如所获得的产物尺寸不易控制,无法可靠地制备出长度足够的石墨烯,因此不能满足工业化需求。

1.2取向附生法—晶膜生长 PeterW.Sutter等使用稀有金属钌作为生长基质,利用基质的原子结构“种”出了石墨烯。首先在1150°C下让C原子渗入钌中,然后冷却至850°C,之前吸收的大量碳原子就会浮到钌表面,在整个基质表面形成镜片形状的单层碳原子“孤岛”,“孤岛”逐渐长大,最终长成一层完整的石墨烯。第一层覆盖率达80%后,第二层开始生长,底层的石墨烯与基质间存在强烈的交互作用,第二层形成后就前一层与基质几乎完全分离,只剩下弱电耦合,这样制得了单层石墨烯薄片。但采用这种方法生产的石墨烯薄片往往厚度不均匀,且石墨烯和基质之间的黏合会影响制得的石墨烯薄片的特性。 1.3液相和气相直接剥离法 液相和气相直接剥离法指的是直接把石墨或膨胀石墨(EG)(一般通过快速升温至1000°C以上把表面含氧基团除去来获取)加在某种有机溶剂或水中,借助超声波、加热或气流的作用制备一定浓度的单层或多层石墨烯溶液。Coleman等参照液相剥离碳纳米管的方式将墨分散在N-甲基-吡咯烷酮(NMP)中,超声1h后单层石墨烯的产率为1%,而长时间的 超声(462h)可使石墨烯浓度高达1.2mg/mL。研究表明,当溶剂与石墨烯的表面能相匹配时,溶剂与石墨烯之间的相互作用可以平衡剥离石墨烯所需的能量,能够较好地剥离石墨烯

化学气相沉积法合成石墨烯的转移技术研究进展 (1)

化学气相沉积法合成石墨烯的转移技术研究进展 黄 曼1郭云龙2*武 斌2刘云圻2付朝阳1*王 帅1* (1华中科技大学化学与化工学院 武汉 4300742中国科学院化学研究所有机固体重点实验室 北京 100190) 摘 要化学气相沉积(CVD)法合成石墨烯已为人们广泛研究采用。其中,如何将生长的石墨烯材料转移到与各种器件匹配的基底上是十分重要的科学问题。本文从方法、特点和结果等方面综述了由CVD法合成石墨烯的几种主要转移技术的研究进展,并对转移技术的未来做出了展望。 关键词化学气相沉积法 石墨烯 转移技术 Progress in Transfer Techniques of Graphene Synthesized by Chemical Vapor Deposition Huang Man1,Guo Yunlong2*,Wu Bin2,Liu Yunqi2,Fu Chaoyang1*,Wang Shuai1* (1School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074;2Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190) Abstract The growth of graphene by chemical vapour deposition (CVD) is being widely studied. The transfer of graphene grown by CVD onto a substrate for making devices is a very important area of research. In this paper, six main transfer techniques of CVD-grown graphene were analyzed. Also, the advances in the methods, characteristics and results of the transfer techniques of CVD-grown graphene were discussed. Finally, the future of transfer techniques was briefly introduced. Keywords Chemical vapor deposition,Graphene,Transfer techniques 自2004年Geim等[1]发现石墨烯(graphene)以来,石墨烯的研究已为世界各国科学家所高度重视。石墨烯是由单层碳原子紧密堆积而成的二维蜂窝状晶体,同时也是构建不同维度结构碳材料的基本结构单元,它可以卷曲成零维富勒烯、一维碳纳米管和三维石墨[2]。石墨烯作为一种有独特电子性能的理想二维材料,引起了研究者们对于探索凝聚态物理学中的基本问题(例如,量子霍尔效应)以及开发各种应用(例如,透明电极等)的广泛兴趣[1~6]。此外,石墨烯在晶体管、超级电容器和传感器等方面广泛的应用[6~9]也得到了产业界的广泛关注。石墨烯已经成为材料科学、凝聚态物理学及高科技产品生产领域中一颗冉冉升起的“明星”[2]。 可控制备高质量、大面积单层、单晶石墨烯是石墨烯合成的趋势。目前,石墨烯的主要制备方法有机械剥离法[1]、化学剥离法[10,11]、SiC外延生长法[12~14]、化学气相沉积(CVD)法[7,15~17]等。其中,CVD 法是目前获得大面积高质量、层数可控的石墨烯的主要方法。由于Cu极溶碳率低[15],以Cu为基体的CVD法已经发展成迄今为止最具前景的大面积单层石墨烯合成法[18~23]。另外,近年来,科学家们也对无需转移的CVD法合成的石墨烯做了相关研究[24,25],它的突出优点是去除了传统转移 黄 曼女,25岁,硕士,从事石墨烯的制备、表征及性能研究。*联系人,E-mail: cyfu@https://www.360docs.net/doc/eb5475965.html,;samuel19741203@https://www.360docs.net/doc/eb5475965.html,; guoyunlong@https://www.360docs.net/doc/eb5475965.html, 国家自然科学基金项目(51173055)和跨世纪优秀人才和国家青年千人项目资助 2012-03-25收稿,2012-09-25接受

石墨烯转移综述

黄曼1,郭云龙2*,武斌2,刘云圻2,付朝阳1*,王帅1* 1. 华中科技大学化学与化工学院,湖北武汉 430074 2. 中国科学院化学研究所有机固体重点实验室,北京100190 摘要目前化学气相沉积(CVD)法合成石墨烯得到了人们的广泛研究。其中如何将生长的石墨烯材料转移到与各种器件匹配的基底上是十分重要的科学问题。文章通过总结与分析目前CVD法石墨烯的几种主要转移技术,从方法、特点和结果等方面综述了转移技术的研究进展,并对转移技术的未来做出了展望。 关键词化学气相沉积法;石墨烯;转移 Research Progress in transfer techniques of graphene by chemical vapor deposition Huang Man1, Guo Yunlong2*, Wu Bin2, Liu Yunqi2, Fu Chaoyang1*, Wang Shuai1* 1.School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China 2.Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China Abstract The growth of graphene by chemical vapour deposition (CVD) is being widely studied. The transfer of CVD-grown graphene onto a substrate for making devices is a very important area of research. In this paper, six main transfer techniques of CVD-grown graphene are analyzed. Also, the recent advances in the methods, characteristics and results of the transfer techniques of CVD-grown graphene are discussed. Finally, the future of transfer techniques is briefly introduced. Keywords:Chemical vapor deposition; Graphene; transfer _______________________________________ 作者:黄曼(1988-),女,硕士,从事石墨烯的制备、表征及性能研究;*通讯作者:付朝阳(1968-),男,副教授,博士,电话-704,(电子信箱);王帅(1974-),男,教授,博士,(手机),(电子信箱),国家自然科学基金项目(),跨世纪优秀人才和国家青年千人项目资助;郭云龙(1982-),男,助研,博士,(手机),(电子信箱).

石墨烯的制作方法是什么

石墨烯的制作方法是什么 石墨烯的制作方法是什么?虽然石墨烯是这两年非常热门的新型高科技材料之一,但由于技术和设备的限制,不高的产量和纯度一直是限制其发展的重要因素。今天小编就为大家介绍一种较为流行的石墨烯制作方法。 氧化还原法 氧化-还原法制备成本低廉且容易实现,成为制备石墨烯的合适方法,而且可以制备稳定的石墨烯悬浮液,解决了石墨烯不易分散的问题。氧化-还原法是指把天然石墨与强酸和强氧化性物质反应生成氧化石墨(GO),经过超声分散制备成氧化石墨烯(单层氧化石墨),加入还原剂去除氧化石墨表面的含氧基团,如羧基、环氧基和羟基,得到石墨烯。 氧化-还原法被提出后,以其简单易行的工艺成为实验室制备石墨烯的简便的方法,得到广大石墨烯研究者的青睐。Ruoff等发现通过加入化学物质例如二甲肼、对苯二酚、硼氢

化钠(NaBH4)和液肼等除去氧化石墨烯的含氧基团,就能得到石墨烯。氧化-还原法可以制备稳定的石墨烯悬浮液,解决了石墨烯难以分散在溶剂中的问题。 氧化-还原法的缺点是宏量制备容易带来废液污染和制备的石墨烯存在一定的缺陷,例如,五元环、七元环等拓扑缺陷或存在-OH基团的结构缺陷,这些会导致石墨烯部分电学性能的损失,使石墨烯的应用受到限制。 先进纳米材料制造商和技术服务商——江苏先丰纳米材料科技有限公司,2009年成立以来一直在科研和工业两个方面为客户提供完善服务。科研客户超过一万家,工业客户超过两百家。 南京先丰纳米材料科技有限公司2009年9月注册于南京大学国家大学科技园内,现专注于石墨烯、类石墨烯、碳纳米管、分子筛、银纳米线等发展方向,立志做先进材料及技术提供商。 2016年公司一期投资5000万在南京江北新区浦口开发区成立“江苏先丰纳米材料科技有限公司”,建筑面积近4000平方,形成了运营、研发、中试、生产全流程先进纳米材料制造和技术服务中心。现拥有石墨烯粉体、石墨烯浆料和石墨烯膜完整生产线,2017年年产高品质石墨烯粉末50吨,石墨烯浆料1000吨。 欢迎广大客户和各界朋友莅临我司指导!欢迎电话咨询或者登陆我们的官网进行查看~

石墨烯的制备及转移简介

石墨烯的制备及转移简介 石墨烯的制备方法可分为固相法、液相法和气相法(图1)。 图1石墨烯的制备(a—c)固相法:(a)机械剥离法; (b)SiC上外延生长;(c)等离子体刻蚀打开CNTs获得石墨烯纳米条带;(d—f)溶液法:(d)液相剥离获得氧化石墨烯片;(e)通过热AFM针尖和激光还原GO;(f)单体组装获

得不同形貌的GNRs;(g)CVD装置示意图;(h)CVD生长机制:甲烷裂解产生碳;Ni基底溶解和析出碳(左),铜基底吸附碳(右);石墨烯的后续生长 1、固相法 固相法包括机械剥离法和SiC外延法。胶带机械剥离高定向热解石墨(图1(a))可以获得高质量石墨烯,该方法效率低且成本高。 在单晶SiC上通过真空石墨化外延生长可获得石墨烯(图1(b))。所获得的外延石墨烯质量高、层数可控,可制备大尺寸的石墨烯,但由于高反应温度和SiC材料的高成本,SiC外延生长石墨烯成本很高,并且无论从产物质量上还是晶粒尺寸上都略逊于机械剥离法获得的石墨烯。 2、液相法 氧化还原法是一种常见的液相法制备石墨烯材料的方法,该方法成本低、产量高,但产物有缺陷。石墨烯衍生材料如氧化石墨烯(graphene oxide,GO)常用液相法制备。液相法制备的GO溶液在水中可完全分散从而获得几乎独立存在的GO层片的悬浮液(图1(d))。GO溶液可在多种表面上沉积成膜,还原可得到还原氧化石墨烯(rGO)薄膜。除使用还原剂外,GO在惰性气体中加热、催化剂辅助光照或高温作用、电还原等也可以还原。原子力显微镜(AFM)的热针尖、激光束和脉冲微波可以实现精细的局部

GO还原(图1(e))。通过加热AFM探针进行热化学纳米光刻可以获得纳米尺度图样化的rGO,不会造成探针的磨损和样品的破损。rGO图样的宽度可控制在12—20μm。激光辐照还原也可以实现rGO图样化。热探针还原和激光还原GO具有可靠、清洁、快速、易操作的优点。 3、气相法 石墨烯应用于电子器件的先决条件是获得高质量、大面积的石墨烯,无论液相法还是机械剥离法都很难获得。但通过化学气相沉积(CVD)可以获得大面积单层、双层或多层石墨烯薄膜。典型的CVD装置如图1(g)所示。因甲烷等气态碳源限制了可用碳源种类,一些廉价易得的固态碳源(如蔗糖和聚甲基丙烯酸甲酯(PMMA))用于生长石墨烯,以铜或镍为基底,反应温度在800—1000℃可以获得厚度可控的石墨烯,而且可同时实现可控掺杂。CVD法原材料选择灵活,是一种获得大面积高质量石墨烯的有效方式。但CVD生长过程通常要耗费几个小时,效率较低,生长过程和后续转移过程会在石墨烯中引入缺陷。1000℃的生长温度导致石墨烯生长能耗高,在转移过程中需将金属基底刻蚀去除,基底难以重复利用造成浪费。综合以上原因,CVD法生长石墨烯的成本高于液相法。 CVD制备石墨烯的生长机制(图1(h))与基底密切相关,镍基底和铜基底上石墨烯的生长机制不同。对于镍基底,

石墨烯制备综述

石墨烯制备方法综述 石墨烯的制备方法可以分为物理和化学制备方法。物理的方法主要是采取机械剥离的方法,化学方法主要是分为化学沉积和化学合成两大方向。物理制备方法包括微机械剥离法,碳纳米管切割法,取向复生法等;化学制备方法包括化学气相沉积法,氧化还原法,液相剥离法,有机合成法,SiC外延生长法等。 物理方法制备石墨烯共同的缺点就是生产出的石墨烯厚度不一,可操作性差,并且无法生长出大尺寸的石墨烯,但微机械剥离法为人类发现石墨烯做出了重要的贡献。 化学制备方法中化学气相沉积法和氧化还原法分别是先进制备石墨烯薄膜和石墨烯粉体最重要的方法,也是最有希望实现大规模制备石墨烯的方法。化学气相沉积法制备的石墨烯能生成大尺寸石墨烯薄膜,但制备技术仍然缺乏稳定性,在转移过程中也会造成石墨烯缺陷,制备得到的石墨烯薄膜面积仍然相对有限。氧化还原法制备过程中采用强酸,容易造成设备损坏和环境污染,制备得到的石墨烯粉末品质不高。整体上,化学制备方法是最有希望实现大规模制备石墨烯的方法,但存在稳定性问题,技术还需要继续改进。表4.1是各种制备方法的优缺点。 表1.1各种石墨烯制备方法的优缺点列表

4.1.1石墨烯的CVD法制备工艺 CVD法制备研究概况:用化学气相沉积(CVD)方法在金属催化剂基底上可以得到大面积连续的石墨烯薄膜,所用的多晶基底相比于单晶基底更为廉价易得,同时生长出的石墨烯薄膜的转移也相对简单,目前来看是大规模制备石墨烯的最有希望的方法之一。通过CVD生长方法已经获得大面积(最大面积可达30英寸)、高质量、层数可控、带隙可调的石墨烯薄膜材料。这种生长方法因其便捷易操作且可控性高、能与下一步石墨烯的转移与应用紧密结合的优点,已经成为石墨烯生长领域的主流方法。石墨烯在金属催化剂表面的CVD生长是一个复杂的多相催化反应体系。该过程主要包括如下几步:(1)烃类碳源在金属催化剂基底上的吸附与分解;(2)表面碳原子向催化剂体相内的溶解以及在体相中的扩散。某些

石墨烯的制备方法

一.文献综述 随着社会的发展,人们对材料的要求越来越高,碳元素在地球上分布广泛,其独特的物理性质和多种多样的形态己逐渐被人类发现、认识并利用。1924年 确定了石墨和金刚石的结构;1985年发现了富勒烯;1991年发现了碳纳米管;2004年,曼彻斯特大学Geim等成功制备的石墨烯是继碳纳米管被发现后富勒烯 家族中又一纳米级功能性材料,它的发现使碳材料领域更为充实,形成了从零维、一维、二维到三维的富勒烯、碳纳米管、石墨烯以及金刚石和石墨的完整系统。而2004年至今,关于氧化石墨烯和石墨烯的研究报道如雨后春笋般涌现,其已 成为物理、化学、材料学领域的国际热点课题。 制备石墨烯的方法有很多种,如外延生长法,氧化石墨还原法,CVD法, 剥离-再嵌入-扩涨法以及有机合成法等。在本文中主要介绍氧化石墨还原法。 除此之外,还对其的一些性能进行表征。 二.石墨烯材料 2.1石墨烯材料的结构和特征 石墨烯(gr即hene)是指碳原子之间呈六角环形排列的一种片状体,由一层 碳原子构成,可在二维空间无限延伸,可以说是严格意义上的二维结构材料,同时,它被认为是宇宙上最薄的材料[`2],也被认为是有史以来见过的最结实的材料。 ZD结构的石墨烯具有优异的电子特性,且导电性依赖于片层的形状和片层数,据悉石墨烯是目前已知的导电性能最出色的材料,可运用于导电高分子复合 材料,这也使其在微电子领域、半导体材料、晶体管和电池等方面极具应用潜力。有专家指出,如果用石墨烯制造微型晶体管将能够大幅度提升计算机的运算速度,其传输电流的速度比电脑芯片里的硅元素快100倍。近日,某科技日报称,mM的 研究人员展示了由石墨烯材料制作而成的场效应晶体管(FET),经测试,其截止频率可达100吉赫兹(GHz),这是迄今为止运行速度最快的射频石墨烯晶体管。石 墨烯的导热性能也很突出,且优于碳纳米管。石墨烯的表面积很大,McAlliste: 等通过理论计算得出石墨烯单片层的表面积为2630扩/g,这个数据是活性炭的 2倍多,可用于水净化系统。

石墨烯的性质、应用及合成

石墨烯的性质、应用及合成 摘要:自2004年Geim教授和Novoselov教授在实验室用胶带剥离出石墨烯后,其令人惊叹的性质激发了人们对这一材料的强烈兴趣,Geim教授和Novoselov 教授也因他们“对二维材料石墨烯的开拓性研究”而获得了2010年的诺贝尔物理学奖。石墨烯由六方蜂巢晶格排列的碳原子组成,仅有一个原子层厚。下面我将简单介绍一下石墨烯的性质、应用及合成。 关键字:石墨烯性质应用合成 石墨烯的性质 对于石墨烯的性质,在此简单介绍一下石墨烯的电学性质、光学性质、电子自旋性质、力学性质和热学性质。 石墨烯的电学性质引起了科技工作者的广泛兴趣,通过简单的最近邻紧束缚计算可以得到较近似的单层石墨烯的能带结构。其能带结构揭示了单层石墨烯的三个吸引人的电学性质:狄拉克点处的载流子密度为零,伪自旋现象和载流子的相对论特性。利用化学反应修饰石墨烯结构已有超过150年的历史,化学过程对石墨烯带来的有利的结构变化主要有两种:从块状石墨剥离得到石墨烯片层,或者进行层间插层。当考虑石墨烯和石墨中的电子自旋时,需要考虑两种类型的自旋,即与缺陷相关的静态自旋和传导电子自旋。在石墨烯中,碳原子采用共价的三重键和方式,即sp2杂化。我们都知道决定键强度的一个重要因素是原子轨道间的重叠度,杂化体系的一个很关键的优势在于,根据最大重叠定律进行的键合会十分牢固,化学键的强度对于一个材料的物理和力学性能十分重要,如熔点、相变的活化能、拉伸和抗剪强度等。实际上,在石墨烯中sp2杂化碳采用的是最强的C-C化学键,考虑到三重键和的C-C键是最强的化学键,所以不难推测石墨烯具有良好的力学性能。碳材料具有多种性质差异显著的同素异形体,不同同素异形体的热导率横跨5个数量级,最高的为金刚石和石墨烯,(2000W/mK),最低的为无定形碳(0.01W/mK),尽管石墨烯为二维晶体材料,和金刚石不太一样,但在很多前沿领域也表现出了优良的热操控性能。 石墨烯的应用 对于石墨烯的应用,我主要讲述一下石墨烯电子器件、石墨烯复合材料以及石墨烯储能器件。 自2004年Geim教授和Novoselov教授在实验室用胶带剥离方法制备出石墨烯,并且制备出石墨烯器件之后,石墨烯在各种电子器件的应用方面取得了很大的进展。石墨烯独特且优异的载流子输运特性使得石墨烯有望成为下一代集成电路的基础材料。石墨烯具有很高的机械强度,这也使得石墨烯适用于微机电系统和纳机电系统器件的制造;石墨烯还具有良好的透光性和导电性,又使其适用于光电器件透明电极。石墨烯高的导电率和特殊的能带结构,使其特别适用于场效应晶体管方面,也已经制备出了石墨烯场效应晶体管(GFET)。石墨烯良好的导电性能、透光性能及化学稳定性使其与传统的透明电极材料氧化铟锡(ITO)相比更具有优势,而且石墨烯在整个光谱上光透过率维持着统一的分布。例如,2010年6月,韩国SKKU和三星联合报道了在铜箔上生长30英寸单层石墨烯,他们所制备的单层石墨烯面电阻为125Ω/sq,透过率高达97.4%,这一性能已经超过了ITO,在触控显示屏以及柔性电子器件领域具有非常好的应用前景。石墨烯具有高迁移率、高透光率了、高稳定性、可功能化及其他优异的电学特性,这使其不

相关文档
最新文档