集热器面积计算

集热器面积计算
集热器面积计算

附件

太阳能集热器面积确定

太阳能集热系统分为直接式(在太阳能集热器中直接加热水供给用户的太阳能集热系统)和间接式(在太阳能集热器中加热液体传热工质,再通过换热器由该种传热工质加热水供给用户的太阳能集热系统)两种工作方式。标准给出了这两类系统确定太阳能集热器面积的计算公式。

1)直接系统太阳能集热器总面积应按下式计算:

()

L cd T H 1J f 86400Q Ac ηη-= (4-1)

式中:Ac ——直接系统集热器总面积,(m 2);

Q H ——建筑物耗热量, (W );

J T ——当地集热器采光面上的平均日太阳辐照量,J/(m 2?日),按附录A

选取;

f ——太阳能保证率,%,按附录A 选取;

ηcd ——基于总面积的集热器平均集热效率,%,按附录B 方法计算;

ηL ——管路及贮热装置热损失率,%,按附录C 方法计算。

2)间接系统太阳能集热器总面积应按下式计算: ???

? ????+?=hx hx C L C N I A U A U A A 1 (4-2) 式中:A IN ——间接系统集热器总面积,m 2;

A c ——直接系统集热器总面积,m 2;

U L ——集热器总热损系数,W/(m 2·℃),测试得出;

U hx ——换热器传热系数,W/(m 2·℃),查产品样本得出;

A hx ——间接系统换热器换热面积,m 2,按附录方法计算。

太阳能集热器的设计与计算

华扬公司工程计算举例: 客户要求 1)、项目名称:河南郑州太阳能集中热水工程; 2)、用水类型:全天 3)、用水量:3吨/天 4)、用水方式:落水式 5)、辅助能源:电加热 设计气象参数依据 1)、河南郑州在我国为二等太阳能辐照度地区。太阳辐射强度高,但总量大,年辐射总量为 16.41 MJ/m2.a。 2)、郑州地理纬度为34°43′,东经113°21′左右; 3)、郑州地区全年自来水水温在5-12℃之间。(设计取值8℃,春分时节); 确定总用水量 人均用水当量参照给排水设计规范,如下表:

选择初始水温:

参照下表,采用设计冷水水温为8℃。 集热面积计算 将已知条件“用户设计用水量3吨,日平均辐射量16.41MJ/㎡,,设计热水温度为50℃,初始水温8℃。,太阳能保证率取0.5(系统要求全年使用)”等参数代入国家标准 GB 50364-2005《民用建筑太阳能热水系统应用技术规范》中 直接循环系统计算公式,集热面积c A 为: )1()(L cd T i end w w c J f t t C Q A ηη--= c A ——直接系统集热器采光面积,㎡; w Q ——日均用水量Kg ;3000L end t ——储水箱内水的终止温度(用水温度);50℃ w C ——水的定压比热容,4.18 KJ/(㎏2℃); i t —— 自来水的初始温度,8℃; t J ——集热器受热面上春分时节日辐照量,取16410KJ/m 2 f ——太阳能保证率,无量纲,0.5;

cd η——集热器全日集热效率,无量纲, L η—管路及储水箱热损失率(按最寒冷季节取值),无量纲, 取0.3; 则: Ac=Q W C W (t end - t i )f/J T η cd (1-η L )= 3000 ㎏34.18 KJ/㎏2℃3 (50℃-8℃)350%÷{16410 KJ/㎡30.53(1-0.3)}≈45.85㎡ 选择用全玻璃管联箱横插直接循环集热器,直径47*1500/每组50支(集热面积5.41,配水量300-500L平均每只管带6—10L)9组,从而提供3T热水,(即取每只带水箱水6.7L水箱水的容积。) 参数表

换热器计算

换热器计算的设计型和操作型问题--传热过程计算 与换热器 日期:2005-12-28 18:04:55 来源:来自网络查看:[大中小] 作者:椴木杉热度: 944 在工程应用上,对换热器的计算可分为两种类型:一类是设计型计算(或称为设计计算),即根据生产要求的传热速率和工艺条件,确定其所需换热器的传热面积及其他有关尺寸,进而设计或选用换热器;另一类是操作型计算(或称为校核计算),即根据给定换热器的结构参数及冷、热流体进入换热器的初始条件,通过计算判断一个换热器是否能满足生产要求或预测生产过程中某些参数(如流体的流量、初温等)的变化对换热器传热能力的影响。两类计算所依据的基本方程都是热量衡算方程和传热速率方程,计算方法有对数平均温差(LMTD)法和传热效率-传热单元数(e-NTU)法两种。 一、设计型计算 设计型计算一般是指根据给定的换热任务,通常已知冷、热流体的流量以及冷、热流体进出口端四个温度中的任意三个。当选定换热表面几何情况及流体的流动排布型式后计算传热面积,并进一步作结构设计,或者合理地选择换热器的型号。 对于设计型计算,既可以采用对数平均温差法,也可以采用传热效率-传热单元数法,其计算一般步骤如表5-2所示。 表5-2 设计型计算的计算步骤

体进出口温度计算参数P 、R ; 4. 由计算的P 、R 值以及流动排布型式,由j-P 、R 曲线确定温度修正系数j ;5.由热量衡算方程计算传热速率Q ,由端部温度计算逆流时的对数平均温差Δtm ; 6.由传热速率方程计算传热面积 。 体进出口温度计算参数e 、CR ; 4.由计算的e 、 CR 值确定NTU 。由选定的流动排布型式查取 e-NTU 算图。可能需由e-NTU 关系反复计算 NTU ;5.计算所需的传热面积 。 例5-4 一列管式换热器中,苯在换热器的管内流动,流量为 kg/s ,由80℃冷却至30℃;冷却水在管间与苯呈逆流流动,冷却水进口温度为20℃,出口温度不超过50℃。若已知换热器的传热系数为470 W/(m2·℃),苯的平均比热为1900 J/(kg·℃)。若忽略换热器的散热损失,试分别采用对数平均温差法和传热效率-传热单元数法计算所需要的传热面积。 解 (1)对数平均温差法 由热量衡算方程,换热器的传热速率为 苯与冷却水之间的平均传热温差为 由传热速率方程,换热器的传热面积为 A = Q/KΔt m = = m 3 (2)传热效率-传热单元数法 苯侧 (m C ph ) = *1900 = 2375 W/℃ 冷却水侧 (m c C pc ) =(m h C ph )(t h1-t h2)/(t c1-t c2) =2375*(80-30)/(50-20)= W/℃ 因此, (m C p )min=(m h C ph )=2375 W/℃ 由式(5-29),可得

太阳能热水的一般计算方法

1、真空管数量的计算: 真空管集热器(?47)10根可作为1平方米的集热面积,在一般光照下每天可产生45℃--65℃的热水90千克。如果每天要用热水X吨,太阳能集热器真空管的根数为Y,那么Y=(1000X÷90)×10。例如需要8吨热水,那么Y=(1000×8÷90)×10=888(根) 2、辅助电加热功率的计算: ①当阴雨天无光照时,需要热水,可通过电辅助加热的办法,其功率大小的运算如下: 一般情况下按每吨水5千瓦计算。例如8吨水需8×5=40千瓦。尽量采用三相电供电.大于10KW的电加热器若采用单相电,极易使供电线路偏相而跳闸断电. ②电加热导线的直径的计算方法( 铜线): 一般每平方3安培。例如42千瓦(三相电)需要16平方的导线。公式:S(平方数)=P(功率)÷3(三相电)÷220(相电压)÷3(每安培平方数)。铝线及导线过长应适当增加直径。 ③防漏电的措施: a、电加热的水箱必须可靠接地,即使潮湿的地面,地线角铁必须打入2米以下。干燥的地面得4米以下,接触潮湿土壤为准。有的人想

用避雷线代替地线,这是绝对不允许的,其做法是,导致引雷,且不能防漏电。但可以用大楼的主地线代替(可以从大楼的配电柜中找)。 b、全自动控制柜里面应安装国家3C认证的名牌漏电断路器。 c、另外,采用加长纯塑料热水出水管道(8米以上PPR或PEX等管),也是提高安全系数的办法。 3、循环泵、电磁阀的选购方法: ①循环泵应在估算每天循环次数和水箱总量的基础上计算出流量,根据流量计算和扬程去选循环泵。一般功率200E—3000W之间。或询问循环泵供应商,大于1KW应采用三相供电。②电磁阀:一般应采用220V交流电压,20W-60W瓦的功率,这样可防止电压波动带来的危害,直径可取?20—32mm。电磁阀一般无漏电之虑。 4、工程造价的计算方法: 1、按真空管的面积计算:一般每平方米1600—1900元左右。 2、按每日产热水(45℃以上)每吨按1.5—2.8万元左右。 管道防冻的方法: 1、定温控制伴热带的供电,当管道温度低于某值时(例如4℃,不要低于0℃再动作,这样费电),给紧贴管道外壁的伴热带通电加温;当管道的温度到达另一值时(例如12℃,可根据实际调整),伴热带断电。伴热带功率的计算方法:宽8mm-20MM,每米15瓦—30瓦,10米

平板太阳能集热器主要参数表

杭州临安乘易太阳能技术有限公司 平板太阳能集热器主要参数表 型号P-G(Y)/1.0-PX/NT-2.0-L 尺寸规格(G/Y)2000*1000*75mm/(Y)2500*800*75mm /Y2000*800*75/Y3000*1000*75 有效吸热面积 1.81㎡ 玻璃低铁超白布纹钢化玻璃,厚度3.2mm。 集热主流道管Φ25*1.2mm 整体吸热芯板口琴式多孔扁铝吸热板(口琴式太阳能集热器板芯实用 新型专利,专利号:201320667926.7) 吸热涂层钛纳米黑基吸热涂层(金属陶瓷纳米基体吸热涂层材料 发明专利,专利号:201310515802.1) 边框铝合金6063 T5 背板0.5mm镀铝锌板(宝钢)/0.5mm彩钢板(宝钢) 组装密封材料太阳能组件专用密封胶,确保25年使用寿命。 底隔热层侧隔热层聚氨酯整体发泡 接口密封圈Φ25mm硅胶圈 管口G1/2内螺纹 重量公斤35Kg 使用寿命20年

决定平板集热器品质的三大要素 一、平板的整体保温功能,是减少热能散发,提高产品热效率极为重要的环节。 二、集热器板芯流道结构设计的合理科学性,能提升热能的快速交换,达到吸收更多的太阳能转换成热能。 三、选择性吸热膜的使用性能致关重要,好的产品能用25年以上,很好地和建筑真正意义上的结合。但有的用3-5年就退色,导致产品无吸热效果,有的甚至1-2年就退色报废了。 结构技术特点 ☆整板吸热芯:板芯流道与膜层采用一体化设计(口琴式太阳能集热器板芯实用新型专利,专利号:201320667926.7、金属陶瓷纳米基体吸热涂层材料发明专利,专利号:201310515802.1)。集热效率高,热损小,吸收率高,发射率低。1㎡的吸热面积相等于进口的吸热面积蓝钛膜1.1㎡。这种结构有别于铜铝复合采用激光或者超声波焊接的结构。(铜铝复合结构传热特点是面与点之间、其最大的缺点会因为设备和人为的原因造成运输过程或使用若干年后铜铝脱开,使集热器的集热效率大大下降而报废。) ☆框体结构:采用四边铝合金型材,底板、玻璃盖板的无螺丝,无铆钉,无橡胶皮条的连接封装技术。外壳机构设计简洁美观,连接灵活,具有防水功能,适用于多种安装方式,易于和建筑结合,实现太阳能与建筑一体化。工业级的铝合金材料(铝合金6063 T5)的设计,结构合理,强度大,表面经氧化处理,耐腐蚀。☆保温措施:采用整体发泡技术处理,边框和背板及保温聚氨酯一体化,加强了防水防潮功能,有效减少集热器吸潮能力,使保温材料长久保持良好的隔热性能、热损小。 ☆玻璃盖板:采用钢化低铁超白布纹玻璃,透光率92%以上。 ☆板芯口琴式多孔流道及主流道管:采用特殊铝材料,耐腐蚀、可承压30kg、

换热器及其基本计算

姓名:杜鑫鑫学号:0903032038 合肥学院 材 料 工 程 基 础 姓名: 班级:09无机非二班 学号:\ 课题名称:换热器及其基本计算 指导教师:胡坤宏

换热器及其基本计算 一、换热器基础知识 (1)换热器的定义: 换热器是指在两种温度不同的流体中进行换热的设备。 (2)换热器的分类: 由于应用场合不同,工程上应用的换热器种类很多,这些换热器照工作原理、结构和流体流程分类。 二、几个不同的换热器 (1)管壳式换热器 管壳式换热器又称列管式换热器,是一种通用的标准换热设备。它具有结构简单、坚固耐用、造价低廉、用材广泛、清洗方便、适应性强等优点,应用最为广泛,在换热设备中占据主导地位。 管壳式换热器是把换热管束与管板连接后,再用筒体与管箱包起来,形成两个独立的空间。管内的通道及与其相贯通的管箱称为管程;管外的通道及与其相贯通的部分称为壳程。一种流体在管内流动,而另一种流体在壳与管束之间从管外表面流过,为了保证壳程流体能够横向流过管束,以形成较高的传热速率,在外壳上装有许多挡板。 而壳管式换热器又可根据不同分为U形管式换热器、固定管板换热器、浮头式换热器、填料函式换热器几类。 (2) 套管式换热器 套管式换热器是用两种尺寸不同的标准管连接而成同心圆套管,外面的叫壳程,内部的叫管程。两种不同介质可在壳程和管程内逆向流动(或同向)以达到换热的效果。 套管式换热器以同心套管中的内管作为传热元件的换热器。两种不同直径的管子套在一起组成同心套管,每一段套管称为“一程”,程的内管(传热管)借U形肘管,而外管用短管依次连接成排,固定于支架上。热量通过内管管壁由一种流体传递给另一种流体。通常,热流体由上部引入,而冷流体则由下部引入。套管中外管的两端与内管用焊接或法兰连接。内管与U形肘管多用法兰连接,便于传热管的清洗和增减。每程传热管的有效长度取4~7米。这种换热器传热面积最高达18平方米,故适用于小容量换热。当内外管壁温差较大时,可在外管设置U形膨胀节或内外管间采用填料函滑动密封,以减小温差应力。管子可用钢、铸铁、陶瓷和玻璃等制成,若选材得当,它可用于腐蚀性介质的换热。这种换热器具有若干突出的优点,所以至今仍被广泛用于石油化工等工业部门。

太阳能集热器汇总

太阳能集热器 太阳能的热利用中,关键是将太阳的辐射能转换为热能。由于太阳能比较分散,必须设法把它集中起来,所以,集热器是各种利用太阳能装置的关键部分。由于用途不同,集热器及其匹配的系统类型分为许多种,名称也不同,如用于炊事的太阳灶、用于产生热水的太阳能热水器、用于干燥物品的太阳能干燥器、用于熔炼金属的太阳能熔炉,以及太阳房、太阳能热电站、太阳能海水淡化器等等。 一、太阳能集热器概念 1.概念 在太阳能的热利用中,关键是将太阳的辐射能转换为热能。由于太阳能比较分散,必须设法把它集中起来,所以,集热器是各种利用太阳能装置的关键部分。由于用途不同,集热器及其匹配的系统类型分为许多种,名称也不同,如用于炊事的太阳灶、用于产生热水的太阳能热水器、用于干燥物品的太阳能干燥器、用于熔炼金属的太阳能熔炉,以及太阳房、太阳能热电站、太阳能海水淡化器等。 2.原理 效率比较高的集热器由收集和吸收装置组成。阳光由不同波长的可见光和不可见光组成,不同物质和不同颜色对不同波长的光的吸收和反射能力是不一样的。黑颜色吸收阳光的能力最强,因此棉衣一般用深色或黑色布。白色反射阳光的能力最强,因而夏季的衬衫多是淡色或白色的。因此利用黑颜色可以聚热。让平行的阳光通过聚焦透镜聚集在一点、一条线或一个小的面积上,也可以达到集热的目的。纸在阳光照射下,不管阳光多么强,哪怕是在炎热的夏天,也不会被阳光点燃。但是,若利用集光器,把阳光聚集在纸上,就能将纸点燃。集热器一般可分为平板集热器、聚光集热器和平面反射镜等几种类型。 3.平板集热器 平板集热器一般用于太阳能热水器等。聚光集 热器可使阳光聚焦获得高温,焦点可以是点状或线 状,用于太阳能电站、房屋的采暖(暖气)和空调 (冷气)、太阳炉等。按聚光镜构造有“菲涅尔”透 镜、抛物面镜和定日镜。 平面反射镜用于太阳能塔式发电,有跟踪设备, 一般和抛物面镜联合使用。平面镜把阳光集中反射 在抛物面镜上,抛物面镜使其聚焦。 二、定义 太阳能集热器的定义是:吸收太阳辐射并将产生的热能传递到传热介质的装置。这短短

太阳能热水系统设计计算

.太阳能热水系统设计计算 .1基本参数 (1) 用水人数 404号楼共有住户21户,每户以2.8人计,用水人数共计约59人。 (2) 用水定额(热水定额) 404号楼有集中热水供应和淋浴设备,每人每日用热水定额以60℃热水计算,取100L/人·d。 (3) 用水时间 24小时全日供应热水 2设计计算 (1) 设计小时耗热量的计算 式中:Qh—设计小时耗热量(W) m—用水人数 qr—热水用水定额(L/人·d) Qh—水的比热,c=4187(J/kg·℃) tr—热水温度,tr=60(℃) tL—冷水温度,tL=10(℃) r—热水密度(kg/L),r=0.983kg/L kh—小时变化系数,kh=5.12 Qh=71951(W) (2) 设计小时热水量 式中:qrh—设计小时热水量(L/h) h—设计小时耗热量(W) tr—设计热水温度(℃),tr=55(℃) tL—设计冷水温度(℃),tL=10(℃)

r—热水密度(kg/L),r=0.986(kg/L) qrh=1394.32(L/h) (3) 全日供应热水系统的热水循环流量 式中:qx—全日供应热水的循环流量(L/h) Qs—配水管道的热损失(W),取设计耗热量的5% △t—配水管道的热水温度差(℃),取5℃ qx= 615.6(L/h) (4) 热水供水管的设计秒流量q(L/s) 计算最大用水时卫生器具给水当量平均出流概率 式中:Uo—生活给水管道的最大用水时卫生器具给水当量平均出流概率(%) qr—最高热水用水定额 m—每户用水人数 kh—热水小时变化系数 Ng—每户设置的卫生器具给水当量数 T—用水时数(h) 0.2—一个卫生器具,给水当量的额定流量(L/s) Uo=0.012% 查《建筑给水排水设计规范》(GB50015-2003)得系统热水供水管的设计秒流量为q=2.51(L/s)。 3 设备选取 (1) 蓄水箱 对于太阳能热水系统,由于受自然条件(太阳辐射一天之内随时间变化)的限制,太阳能集热系统,不可能全天24小时满足设计小时用水量(qrh)的要求。为满足使用要求,根据实际情况,考虑蓄热水箱水量、太阳能集热板的功率和用户用水量之间的关系,设计水箱容量为4.5个最大小时用水量(qrh),则必能满足用水量的要求。 水箱的有效容积vk=4.5 qrh≈6.5m3。 (2) 太阳能系统水泵选择:

平板型太阳能集热器技术标准

平板型太阳能集热器技术标准 1 范围 本标准规定了胜强阳光公司平板型太阳能集热器的产品分类、标记、技术要求、标识包装等内容。 2 引用文件 GB/T 6424-2007 平板型太阳集热器技术条件 GB/T 4271-2007 平板型太阳集热器热性能试验方法 GB/T 26974-2011 平板型太阳能集热器吸热体技术要求 GB/T 12936-2007 太阳能热利用术语 GB/T 25969-2010 家用太阳能热水系统主要部件选材通用技术条件 GB/T 1800.1-2009产品几何技术规范(GPS)极限与配合第1部分:公差、偏差和配合的基础 GB/T 1804-2000 一般公差未注公差的线性和角度尺寸的公差 GB/T 1720-1979 漆膜附着力测定法 GB/T 1527-2006 铜及铜合金拉制管 GB/T 3190-2008 变形铝及铝合金化学成分 GB/T 6892-2006 一般工业用铝及铝合金挤压型材 GB/T 14846-2008 铝及铝合金挤压型材尺寸偏差 GB 5237.1-2008 铝合金建筑型材第1部分基材 GB 5237.2-2008 铝合金建筑型材第2部分阳极氧化型材 GB 5237.3-2008 铝合金建筑型材第3部分电泳涂漆型材 GB 5237.4-2008 铝合金建筑型材第4部分粉末喷涂型材 GB 15763.2-2005 建筑用安全玻璃第2部分:钢化玻璃 GB/T 2518-2008 连续热镀锌钢板及钢带 GB/T 14978-2008 连续热镀铝锌合金镀层钢板及钢带 GB/T 13448-2006 彩色涂层钢板及钢带试验方法 GB/T 3880.1-2012 一般工业用铝及铝合金板、带材第1部分:一般要求 GB/T 3880.2-2012 一般工业用铝及铝合金板、带材第2部分:力学性能 GB/T 3880.3-2012 一般工业用铝及铝合金板、带材第3部分:尺寸偏差 GB/T 26709-2011太阳能热水器用硬质聚氨酯泡沫塑料 GB/T 17795-2008 建筑绝热用玻璃棉制品 GB/T 24798-2009 太阳能热水系统用橡胶密封件 GB/T 11618.1-2008 铜管接头第1部分:钎焊式管件 GB/T 11618.2-2008 铜管接头第1部分:卡压式管件 GB/T 13384-2008 机电产品包装通用技术条件 GB/T 191-2008 包装储运图示标志 3 产品分类与标记 3.1产品分类

太阳能热利用模拟试题参考答案及评分标准

黄淮学院电子科学与工程系2013—2014学年第二学期期末考试《太阳能热利用技术》模拟试卷参考答案及评分标准 一、单选题(每小题1分,共20分) 二、填空题(每空1分,共22分) 1、显热储存潜热储存化学储存 2、热力参数 3、透明盖板隔热材料吸热板外壳 4、蒸发传热冷凝传热 冷凝液回流 5、空气水压 6、普通玻璃镜片高纯铝阳极氧化反光材料聚酯薄膜真空镀铝反光材料 7、传热、传质 8、吸收剂的质量分数 9、提高温室白天的太阳吸收量、减少温室夜间向外散热 10、太阳能集热棚太阳能烟囱涡轮机发电机组 三、简答题(每小题4分,共16分) 1、答:当平板集热器工作时,太阳辐射穿过透明盖板后,投射在吸热板上,被吸热板吸收转换成热能,然后将能量传递给吸热板内的传热介质,使传热介质的温度升高,作为集热器的游泳能量输出。同时,温度升高后的吸热板不可避免地要通过传导对流和辐射等方式向四周散热,成为集热器的热量损失。 2、答:作用:透过太阳辐射;保护吸热板不受外界损坏;形成温室效应,阻止吸热板对外界散热 技术要求:高全光透射比;耐冲击强度高;良好的耐候性能;绝热性能好;加工性能好; 3、答:良好的发泡车间温度;良好的保温环境;做好发泡前的准备;注意原料的储存温度;选用优质发泡原料。

4、答:收集阳光并将其聚集到一个有限尺寸面上,以提高单位面积上太阳辐射度,从而提高被加热工质的工作温度,即将太阳能辐射聚集,以提高其功率密度。 四、分析题(每小题5分,共15分) 1、答:如若出现白色,就是因为在镀膜过程中没有打开氮气瓶的气阀,氮气没进入镀膜机内,这可以通过检查氮气瓶气压表或管道等处来确保打开氮气瓶的气阀; 如若出现黄色膜层,则说明氮气量过多,应减少气流量或修正计算机输入程序。 2、答:(1)水箱必须在承受一定的水压时不能渗漏。根据国家标准要求,承受水压相当于工作压力的1.5~2倍。 (2)要求水箱在较高的温度(80℃~100℃)下能确保水的质量,即符合我国的生活饮用水标准; (3)水箱必须具有足够的机械强度和刚度; (4)水箱应根据建筑现场考虑与基础设施的配合,必须用隔热材料加以保温; (5)具有良好的耐候性能及较长的使用寿命,一般要求10~15年以上; 3、答:假设采暖热媒温度为40℃、回水温度为25℃时,集热器温度超过40℃,辅助加热工具就不工作;当集热器温度在25~40℃之间,辅助加热装置需提供部分热源;当集热器温度降到25℃以下,系统中全部水量只通过旁通管进入辅助加热装置,采暖所需热量都由辅助加热装置提供,暂不利用太阳能。 五、计算题(共11分) 1、(5分) 2、(6分) 根据题意已知:t f1=20℃,t f2=6℃,A=1m2,h1=7.5W/(m2·K),λ =0.8W/(m·K),h2=22.7W(m2·K)。那么各部分热阻分别为: R1=1/(h1A)=1/(7.5×1)=0.13333(K/W)

已颁布实施的太阳能热水器国家标准和行业标准.doc

已颁布实施的太阳能热水器国家标准和行业标准 《家用太阳能热水器热性能试验方法》(GB/T12915-1991) 《太阳热利用术语第一部分》(GB/T12936.1-1991) 《太阳热利用术语第二部分》(GB/T12936.2-1991) 《工作直接日射表的校准方法》(GB/T14890-1994) 《太阳热水器吸收体连接管及其配件所用弹性材料的评价方法》(GB/T15513-1995) 《平板型太阳集热器技术条件》(GB/T6424-1997) 《全玻璃真空太阳集热管》(GB/T17049-1997) 《家用太阳热水器技术条件》(ny/T343-1998) 《真空管太阳集热器》(GB/T1758l-1998) 《太阳能在地面不同接收条件下的太阳光谱辐照度标准》(GB/T17683.1-1999)第一部分:大气质量1.5的方向直接日射辐照度和半球向日射辐照度) 《平板型太阳集热器性能试验方法》(GB/T4271-2000) 《家用太阳能热水系统热性能试验方法》(GB/T18708-2002) 《太阳能热水系统设计安装即工程验收技术规范》(GB/T18713-2002) 《太阳集热器热性能室内试验方法》(GB/T18974-2003) 《家用太阳热水系统技术条件》(GB/T19141-2003) 《太阳热水系统性能评定规范》(GB/T20095-2006) 《太阳能热利用术语》(GB 12936-2007) 《环境标志产品技术要求——家用太阳能热水系统》(HJ/T363-2007) 《环境标志产品技术要求——太阳能集热器》(HJ/T362-2007) 以上标准对太阳能行业有很好的规范作用。 ------------word文档可编辑-------------

太阳能集热器月平均集热效率计算方法、热水系统热性能快速检测方法

附录E 太阳能集热器月平均集热效率计算方法 E.0.1 太阳能集热器月平均集热效率,应根据集热器瞬时效率方程(瞬时效率曲线)实际检测结果,按下式计算: η = η0-U ×(t i - t a ) / G 式中η—基于采光面积的集热器月平均集热效率(%)。 η0—基于采光面积的集热器瞬时效率曲线截距(%)。 (式E .0.1) U —基于采光面积的集热器瞬时效率曲线斜率[W/(m2·℃]。 t i —集热器工质进口温度(℃)。 t a —月平均环境空气温度(℃)。 G —月平均日总太阳辐照度(W/m2)。 (t i ?t a)/G—归一化温差[(℃·m2)/ W]。 E.0.2 归一化温差计算的参数选择,应符合下列原则: 1 月平均集热器工质进口温度应按下式计算: t i = t l/3+2 t i /3 式中:t i —集热器工质进口温度(℃)。 (式 E.0.2-1) t l —冷水计算温度(℃,取所在地统计数据)。 t r —热水设计温度(℃)。 2 月平均环境气温(应取项目所在地气象统计数据)。 3 月平均日总太阳辐照度应按下式计算: G =J T ×1000 /(S y ×3.6) (式E.0.2-2) 式中:G —月平均日集热器采光面上的总太阳辐照度(W/m2)。 J T—月平均日太阳辐照量[MJ/(m2·d)]。 Sy—月平均日照小时数(h/d)。

附录F 太阳能热水系统热性能快速检测方法 F.1 一般规定 F.1.1 本方法适用于晴天条件下对采用平板或真空管太阳能集热器构成的太阳能集中、以及分户储热水箱为闭式承压水箱的太阳能集中—分散和分散太阳能热水系统的日热水温升快速检测。 F.1.2 太阳能热水系统热性能快速检测内容应包括: 1 集热器类型,是否带反光板;总采光面积,总面积。 2 储热水箱规格,数量,有效水量。 3 无辅助热源补充条件下的太阳能热水系统日热水温升。 F.1.3 同一类型的太阳能热水系统,系统抽检量不应少于1%的该类型系统总数量,且不得少于1套。 F.1.4 对太阳能集中—分散供热水系统的检测,至少应含对集中供热水主管近端、远端和中间区域各1处分户储热水箱日热水温升的检测。 F.1.5 检测应在系统完成调试和试运行后进行。检测期间,太阳能热水系统平均供热负荷率不应小于50%,储热水箱有效容水量应大于等于设计日产水量的95%。 F.1.6 检测期间,不得有冷水注入系统;辅助加热设备不得启用;系统中的防冻用自限式电热带和其它常规热源补热设备不得启用。 F.1.7 温度测量仪表最大允许误差应小于等于0.2℃,分辨率应小于等于 0.1℃。 F.1.8 检测应在晴好天气下进行。检测时长冬季宜不少于6 小时,夏季宜不少于8 小时。 F.2 检测步骤 F.2.1 太阳能集中供热水系统的检测应按以下步骤进行: 1 在水箱水位有效高度的1/6H、1/2H、5/6H 处,布置水温测点(应注意避免使测量水温的温度传感器与水箱壁接触)。

太阳能集热器面积计算说明

太阳能集热器面积计算 1、前言 2005年笔者参与了由市建设与管理局组织的《市太阳能热利用与建筑一体化实施可行性报告》的课题研究,经过近一年的努力,调研、学习总结太阳能热水系统运用较好的、省份的工程经验,针对太阳能资源及气候条件的实际情况,提出了在地区太阳能热利用与建筑一体化的可行实施方案,课题针对不同的建筑形式提出了在市太阳能利用推荐方案,对今后市实施太阳能热利用与建筑一体化具有科学、实际的指导意义。近几年笔者多次参与市太阳能试点工程的设计及专家论证会,并对工程进行跟踪调研,积累了一些经验。下面笔者就太阳能在民用建筑应用技术方面的设计要点进行阐述,供同行参考。中华太阳能 2、我国目前太阳能热水系统应用技术现状 太阳能作为一种可持续使用的绿色能源,在我国已广泛开发使用,建设部根据国家可持续发展规律战略要求,已在民用建筑中积极推广使用太阳能热水器,并在全国围推广实施"计划"。近年来,我国太阳能利用虽然取得了很好的节能效益,但在民用建筑中太阳能利用往往自成系统,作为建筑的后置设备安装和使用,即使是新建筑,也是简单的安装在屋面上。因为早期没有可执行的相关国家规,太阳能热水器在建筑上布置极为随意,未预留管井,无位置随意占用烟道,集热器、热水箱的承载、防风、避雷等安全措施不健全,给城市景观、建筑的安全带来及不利的影响。笔者在参观太阳能利用情况时,看到许多类似的情况,已大大影响了市容市貌和建筑安全,致使国有些城市禁止在建筑上安装太阳能热

水器,并要求拆除已安装的太阳能热水器,这些都将制约太阳能热水系统在建筑中的利用。为使太阳能热水系统安全可靠、性能稳定,与建筑和周边环境协调统一,并规太阳能热水系统的设计、安装和验收,推动太阳能热水系统在建筑中的利用,近年来国家先后出台了一系列相关规和国标图集,有GB/T18713-2002《太阳能热水系统设计、安装及工程验收技术规》、GB50364-2005《民用建筑太阳能热水系统应用技术规》、GB/T20095-2006《太阳热水系统性能评定规》、国标图集06J908-6《太阳能热水器选用与安装》06SS128《太阳能集中热水系统选用与安装》& hellip;.及省标J10807-2006《居住建筑与太阳能热水系统一体化设计、安装及验收规程》(以下简称省标J10807-2006),以上标准都各具特色,特别是国标GB50364-2005是我国第一项有关太阳能热水系统在建筑中应用的国家标准,为我国太阳能热水系统在建筑中推广应用提供了技术依据。 3、民用建筑太阳能热水系统设计要点及主要设计步骤 《民用建筑太阳能热水系统应用技术规》中(以下简称GB50364-2005)首先强调民用建筑太阳能热水系统设计应纳入建筑给排水设计中,建筑给排水专业人员在太阳能企业技术人员的配合下,依据规GB50364-200 5的要求,对太阳能热水系统进行设计,同时并应符合国家现行有关标准的要求。 3.1、民用建筑太阳能热水系统设计的基本条件: 根据我国太阳能资源分布情况,南部属于太阳能资源较丰富地区,北部属于太阳能资源一般地区。参照省标J10807-2006表3.1.2:省又可分

太阳能集热器面积计算

太阳能集热器面积计算 2009-11-30 21:13:10| 分类:工作| 标签:|字号大中小订阅 关键词:民用建筑太阳能热水系统太阳能集热器一体化设计 1、前言 2005年笔者参与了由厦门市建设与管理局组织的《厦门市太阳能热利用与建筑一体化实施可行性报告》的课题研究,经过近一年的努力,调研、学习总结太阳能热水系统运用较好的云南、山东省份的工程经验,针对厦门太阳能资源及气候条件的实际情况,提出了在厦门地区太阳能热利用与建筑一体化的可行实施方案,课题针对不同的建筑形式提出了在厦门市太阳能利用推荐方案,对今后厦门市实施太阳能热利用与建筑一体化具有科学、实际的指导意义。近几年笔者多次参与厦门市太阳能试点工程的设计及专家论证会,并对工程进行跟踪调研,积累了一些经验。下面笔者就太阳能在民用建筑应用技术方面的设计要点进行阐述,供同行参考。中华太阳能 2、我国目前太阳能热水系统应用技术现状 太阳能作为一种可持续使用的绿色能源,在我国已广泛开发使用,建设部根据国家可持续发展规律战略要求,已在民用建筑中积极推广使用太阳能热水器,并在全国范围内推广实施"阳光计划"。近年来,我国太阳能利用虽然取得了很好的节能效益,但在民用建筑中太阳能利用往往自成系统,作为建筑的后置设备安装和使用,即使是新建筑,也是简单的安装在屋面上。因为早期没有可执行的相关国家规范,太阳能热水器在建筑上布置极为随意,未预留管井,无位置随意占用烟道,集热器、热水箱的承载、防风、避雷等安全措施不健全,给城市景观、建筑的安全带来及不利的影响。笔者在参观昆明太阳能利用情况时,看到许多类似的情况,已大大影响了市容市貌和建筑安全,致使国内有些城市禁止在建筑上安装太阳能热水器,并要求拆除已安装的太阳能热水器,这些都将制约太阳能热水系统在建筑中的利用。为使太阳能热水系统安全可靠、性能稳定,与建筑和周边环境协调统一,并规范太阳能热水系统的设计、安装和验收,推动太阳能热水系统在建筑中的利用,近年来国家先后出台了一系列相关规范和国标图集,有GB/T18713-2002《太阳能热水系统设计、安装及工程验收技术规范》、GB50364-2005《民用建筑太阳能热水系统应用技术规范》、GB/T20095-2006《太阳热水系统性能评定规范》、国标图集06J908-6《太阳能热水器选用与安装》06SS128《太阳能集中热水系统选用与安装》….及省标J10807-2006《居住建筑与太阳能热水系统一体化设计、安装及验收规程》(以下简称省标J10807-2006),以上标准都各具特色,特别是国标GB50364-2005是我国第一项有关太阳能热水系统在建筑中应用的国家标准,为我国太阳能热水系统在建筑中推广应用提供了技术依据。 3、民用建筑太阳能热水系统设计要点及主要设计步骤 《民用建筑太阳能热水系统应用技术规范》中(以下简称GB50364-2005)首先强调民用建筑太阳能热水系统设计应纳入建筑给排水设计中,建筑给排水专业人员在太阳能企业技术人员的配合下,依据规范GB50364-2005的要求,对太阳能热水系统进行设计,同时并应符合国家现行有关标准的要求。 3.1、民用建筑太阳能热水系统设计的基本条件: 根据我国太阳能资源分布情况,福建南部属于太阳能资源较丰富地区,福建北部属于太阳能资源一般地区。参照省标J10807-2006表3.1.2:福建省又可分为I类地区和II类地区,福州、厦门等城市属I类地区,太阳能资源较丰富,民用建筑宜设计选用太阳能热水系统。 3.2、民用建筑主要基本情况调查: 周围环境:建筑所处地点纬度、年日照时间、年太阳辐射强度、年环境温度等; 建筑功能:最高日热水量、供水方式、用水温度、用水点位置等; 安装条件:场地面积、形状、建筑结构承载力、遮挡情况等; 辅助热源情况:电价、气价 3.3、太阳能热水系统类型的确定: 设计人员应根据建筑物以上综合因素,依据规范GB50364-2005表4.2.6选择系统类型,选择其类型、色泽和安装

换热面积的计算

F=Q/kK*△tm F 是换热器的有效换热面积 Q 是总的换热量 k 是污垢系数一般取0.8-0.9 K 是传热系数 △tm 是对数平均温差 1.板式换热器简介 板式换热器是由一系列具有一定波纹形状的金属片叠装而成的一种新型高效换热器。各种板片之间形成薄矩形通道,通过半片进行热量交换。它与常规的管壳式换热器相比,在相同的流动阻力和泵功率消耗情况下,其传热系数要高出很多,在适用的范围内有取代管壳式换热器的趋势。 板式换热器的型式主要有框架式(可拆卸式)和钎焊式两大类,板片形式主要有人字形波纹板、水平平直波纹板和瘤形板片三种。 1.1板式换热器的基本结构 板式换热器主要由框架和板片两大部分组成。 板片由各种材料的制成的薄板用各种不同形式的磨具压成形状各异的波纹,并在板片的四个角上开有角孔,用于介质的流道。板片的周边及角孔处用橡胶垫片加以密封。 框架由固定压紧板、活动压紧板、上下导杆和夹紧螺栓等构成。 板式换热器是将板片以叠加的形式装在固定压紧板、活动压紧板中间,然后用夹紧螺栓夹紧而成。 1.2板式换热器的特点(板式换热器与管壳式换热器的比较) a.传热系数高由于不同的波纹板相互倒置,构成复杂的流道,使流体在波纹板间流道内呈旋转三维流动,能在较低的雷诺数(一般Re=50~200)下产生紊流,所以传热系数高,一般认为是管壳式的3~5倍。 b.对数平均温差大,末端温差小在管壳式换热器中,两种流体分别在管程和壳程内流动,总体上是错流流动,对数平均温差修正系数小,而板式换热器多是并流或逆流流动方式,其修正系数也通常在0.95左右,此外,冷、热流体在板式换热器内的流动平行于换热面、无旁流,因此使得板式换热器的末端温差小,对水换热可低于1℃,而管壳式换热器一般为5℃. c.占地面积小板式换热器结构紧凑,单位体积内的换热面积为管壳式的2~5倍,也不像管壳式那样要预留抽出管束的检修场所,因此实现同样的换热量,板式换热器占地面积约为管壳式换热器的1/5~1/10。 d.容易改变换热面积或流程组合,只要增加或减少几张板,即可达到增加或减少换热面积的目的;改变板片排列或更换几张板片,即可达到所要求的流程组合,适应新的换热工况,而管壳式换热器的传热面积几乎不可能增加。 e.重量轻板式换热器的板片厚度仅为0.4~0.8mm,而管壳式换热器的换热管的厚度为 2.0~2.5mm,管壳式的壳体比板式换热器的框架重得多,板式换热器一般只有管壳式重量的1/5左右。 f. 价格低采用相同材料,在相同换热面积下,板式换热器价格比管壳式约低40%~60%。 g. 制作方便板式换热器的传热板是采用冲压加工,标准化程度高,并可大批生产,管壳式换热器一般采用手工制作。 h. 容易清洗框架式板式换热器只要松动压紧螺栓,即可松开板束,卸下板片进行机械清洗,这对需要经常清洗设备的换热过程十分方便。

换热器热量及面积计算公式

换热器热量及面积计算 一、热量计算 1、一般式Q=Q c=Q h Q=W h(H h,1- H h,2)= W c(H c,2- H c,1) 式中: Q为换热器的热负荷,kj/h或kw; W为流体的质量流量,kg/h; H为单位质量流体的焓,kj/kg; 下标c和h分别表示冷流体和热流体,下标1和2分别表示换热器的进口和出口。 2、无相变化 Q=W h c p,h(T1-T2)=W c c p,c(t2-t1) 式中: c p为流体平均定压比热容,kj/(kg.℃); T为热流体的温度,℃; t为冷流体的温度,℃。 3、有相变化 a.冷凝液在饱和温度下离开换热器,Q=W h r = W c c p,c(t2-t1) 式中: W h为饱和蒸汽(即热流体)冷凝速率(即质量流量)(kg/s) r为饱和蒸汽的冷凝潜热(J/kg) b.冷凝液的温度低于饱和温度,则热流体释放热量为潜热加显热

Q=W h[r+c p,h(T s-T w)] = W c c p,c(t2-t1) 式中: c p,h为冷凝液的比热容(J/(kg/℃));T s为饱和液体的温度(℃) 二、面积计算 1、总传热系数K 管壳式换热器中的K值如下表: 注: 1 w = 1 J/s = 3.6 kj/h = 0.86 kcal/h 1 kcal = 4.18 kj 2、温差

(1)逆流 热流体温度T:T1→T2 冷流体温度t:t2←t1 温差△t:△t1→△t2 △t m=(△t2-△t1)/㏑(△t2/△t1) (2)并流 热流体温度T:T1→T2 冷流体温度t:t1→t2 温差△t:△t2→△t1 △t m=(△t2-△t1)/㏑(△t2/△t1) 对数平均温差,两种流体在热交换器中传热过程温差的积分的平均值。( 恒温传热时△t=T-t,例如:饱和蒸汽和沸腾液体间的传热。) 对数平均温差因为在冷凝器板换一系列的换热器中温度是变化的为了我们更好的选型计算所以出来一个相对准确的数值, 当△T1/△T2>1.7时用公式: △Tm=(△T1-△T2)/㏑(△T1/△T2). 如果△T1/△T2≤1.7时,△Tm=(△T1+△T2)/2 二种流体在热交换器中传热过程温差的积分的平均值。 逆流时△T1=T1-t2 △T2=T2-t1 顺流时△T1=T1-t1 △T2=T2-t2 其中: T1 ——热流进口温度℃ T2——热流出口温度

国家标准《太阳能供热采暖工程技术规范》解读

(中国太阳能产业资讯荐)国家标准《太阳能供热采暖工程技术规范》GB 50495—2009的编制目的是规范太阳能供热采暖工程的设计、施工与验收,以保证工程质量,使运行工作后的太阳能供热采暖系统能做到安全适用、经济合理、技术先进可靠,从而促进和推动太阳能供热采暖系统在建筑上的应用与发展。 1 标准编制的目的、背景与主要内容 由于太阳能供热采暖的综合利用能极大提高太阳能替代常规能源的比例,更多地节约建筑能耗。而且,欧美等发达国家的太阳能供热采暖技术日臻成熟,提供了可以借鉴的方法和设计参数,国内也建成一批太阳能供热采暖综合利用的示范工程,积累了一定的工程经验。因此,中国建筑科学研究院于2005年底向建设部标准定额司申请立项,编制工程建设国家标准《太阳能供热采暖工程技术规范》,并列入建设部2006年工程建设标准规范制定、修订计划;根据建设部下达的建标 [2006] 77号文件,批准《太阳能供热采暖工程技术规范》立项;编制工作于2008年底完成,2009年8月、该标准正式发布实施。 标准分5章和7个附录,主要技术内容包括:总则、术语、太阳能供热采暖系统设计、太阳能供热采暖工程施工、太阳能供热采暖工程的调试、验收与效益评估等,标准共包括了 5 条强制性条文。标准适用于在新建、扩建和改建建筑中使用太阳能供热采暖系统的工程,以及在既有建筑上改造或增设太阳能供热采暖系统的工程。 2 标准总则 总则中的重要条文有: 1.0.3太阳能供热采暖系统应纳入建筑工程建设的规定程序,统一规划、同步设计、同步施工、统一验收、同时投入使用。 1.0.4 太阳能供热采暖系统应做到全年综合利用,采暖期为建筑物供热采暖,非采暖期向本建筑物或相邻建筑物提供生活热水或其他用热。 1.0.5 在既有建筑上增设或改造太阳能供热采暖系统,必须经建筑结构安全复核,并应满足建筑结构及其他相应的安全性要求(该条为强制性条文)。 3 系统设计的基本规定 系统设计一般规定中的重要条文有: 3.1.3 太阳能供热采暖系统应根据不同地区和使用条件采取防冻、防结露、防过热、防雷、防雹、抗风、抗震和保证电气安全等技术措施。(该条为强制性条文) 3.1.5 太阳能供热采暖系统中的太阳能集热器的性能应符合《平板型太阳能集热器》GB / T 6424和《真空管型太阳能集热器》GB / T 17581中规定的要求,正常使用寿命不应少于10年。其余组成设备和部件的质量应符合国家相关产品标准规定的要求。 3.1.7 太阳能供热采暖系统设计完成后,应进行系统节能、环保效益预评估。

冷凝器换热面积计算方法

冷凝器換熱面積計算方法 (製冷量+壓縮機功率)/200~250=冷凝器換熱面 例如:(3SS1-1500壓縮機)CT=40℃:CE=-25℃ 製冷量12527W+壓縮機功率11250W 23777/230=氣冷凝器換熱面積103m2 水冷凝器換熱面積與氣冷凝器比例=概算1比18;(103/18)= 6m2 蒸發器的面積根據製冷量(蒸發溫度℃×Δt進氣溫度) 製冷量=溫差×重量/時間×比熱×安全係數 例如:有一個速凍庫1庫溫-35℃,2冷凍量1ton/H、3時間2/H內,4冷凍物品(鮮魚);5環境溫度27℃;6安全係數1.23 計算:62℃×1000/2/H×0.82×1.23=31266kcal/n 可以查壓縮機蒸發溫度CT=40;CE-40℃;製冷量=31266kcal/h NFB與MC選用 無熔絲開關之選用 考慮:框架容量AF(A)、額定跳脫電流AT(A)、額定電壓(V), 低電壓配線建議選用標準 (單一壓縮機) AF 取大於AT 一等級之值.(為接點耐電流的程度若開關會熱表示AF選太小了) AT(A ) = 電動機額定電流×1 .5 ~2 .5(如保險絲的IC值) (多台壓縮機) AT(A )=(最大電動機額定電流×1 .5 ~2 .5)+ 其餘電動機額定電流總和 IC啟斷容量,能容許故障時的最大短路電流,如果使用IC:5kA的斷路器,而遇到10kA的短路電流,就無法承受,IC值愈大則斷路器內部的消弧室愈

大、體積愈大,愈能承受大一點的故障電流,擔保用電安全。要搭配電壓來表示220V 5KA 電壓380V時IC值是2.5KA。 電磁接觸器之選用 考慮使用電壓、控制電壓,連續電流I t h 之大小(亦即接點承受之電流大小),連續電流I th 的估算方式建議為I t h=馬達額定電流×1.25/√3。直接啟動時,電磁接觸器之主接點應選用能啟閉其額定電流之10倍。 額定值通常以電流A、馬力HP或千瓦KW標示,一般皆以三相220V電壓之額定值為準。 電磁接觸器依啟閉電流為 額定電流倍數分為: (1).AC1級:1.5倍以上,電熱器或電阻性負載用。 (2).AC2B級:4倍以上,繞線式感應電動機起動用。 (3).AC2級:4倍以上,繞線式感應電動機起動、逆相制動、寸動控制用。 (4).AC3級:閉合10倍以上,啟斷8倍以上,感應電動機起動用。 (5).AC4級:閉合12倍以上,啟斷10倍以上,感應電動機起動、逆相制動、寸動控制用。 如士林sp21規格 ◎額定容量CNS AC3級3相 220~240V→kW/HP/A:5.5/7.5/24 380~440V→kW/HP/A:11/15/21 壓縮功率計算 一. 有關壓縮機之效率介紹: 1.體積效率(EFF V) :用以表示該壓縮機洩漏或閥門間隙所造成排出的 氣體流量減少與進入壓縮機冷媒因溫度升高造成比體積增加之比值 體積效率(EFF V)=壓縮機實際流量/壓縮機理論流量 體積效率細分可分為二部分 (1)間隙體積效率 ηvc=V′/ V V′:實際之進排氣量V :理論之排氣量 間隙體積效率一般由廠商提供,當壓縮機之壓縮比(PH / PL)增大,即高壓愈高或低壓愈低,則膨脹行程會增長,ηvc減少。

相关文档
最新文档